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How natural is a small θ̄ in left-right SUSY models ?
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Abstract

In the world without an axion the smallness of θ̄ may be achieved due to a spontaneously
broken discrete left-right symmetry. We analyze the radiatively induced θ̄ in the context
of generic left-right symmetric SUSY models without assuming flavor degeneracy in the
squark sector. Left-right symmetry allows to keep θ̄ within its present bound only if the
inter-generational mass splitting in the squark sector at the scale of the left-right symmetry
breaking is smaller than 0.5%. We also consider the naturalness of mu = 0 solution to the
strong CP problem in the context of horizontal flavor symmetries. A strong bound on the
combination of the horizontal charges in the Up quark sector is found in this case.
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1 Introduction

The strong CP problem remains an important and open issue in particle physics. The QCD
Lagrangian has a fundamental parameter θ which labels different super-selection sectors. Its
effect can be accounted by an additional term in the QCD Lagrangian,

L = θ
g2
3

16π2
Ga

µνG̃
a

µν , (1)

which violates P and CP symmetries [1].

In a full theory, the effective low energy value for the theta term is modified by possible
complex phases in the quark mass matrices:

θ̄ = θ + arg(detMuMd) + ... (2)

The ellipsis stands for other possible contributions from yet unknown fermions, charged with
respect to SU(3) color gauge group (for example, gluino).

Current experimental limits on the electric dipole moment (EDM) of the neutron put
severe constraints on the allowed size of the θ̄-angle. Among different ways of calculating
the EDM of the neutron, induced by θ̄, the most reliable ones use chiral perturbation theory
[2] or QCD sum rules [3, 4, 5]. Here we use the numerical result of ref. [3] which gives the
following prediction for dn(θ̄):

dn ≃ 1.2 × 10−16θ̄ e · cm. (3)

Together with the current experimental limits on the neutron EDM [6] it implies a stringent
bound on the theta term, θ̄ < 6 × 10−10. Similar bounds are provided by the limits on the
electric dipole moment of 199Hg atom [7, 8, 9].

The puzzling smallness of θ̄ in comparison with a natural expectation of θ̄ ∼ 1 is usually
referred to as the strong CP problem. There are several theoretical possibilities of removing θ̄
from the theory, none of which are free from their own intrinsic problems. The most popular
solution to the strong CP problem uses the dynamical relaxation of θ̄ through the axion
mechanism [10]. Perhaps, it is the most elegant and universal way of removing the theta
term. However, the negative results of all experimental searches of axions and very restrictive
astrophysical and cosmological considerations which place the axion coupling constant into
a relatively narrow range, 1010 − 1012 GeV, suggest to look for other alternative solutions.

In principle, one can speculate on the vanishing of the Yukawa coupling for the up
quark, hoping that the hadronic phenomenology would still allow for mu = 0 [11, 12].
The vanishing of this coupling may be a consequence of the horizontal flavor symmetries,
supposedly responsible for the hierarchy of masses and mixing angles in the fermion sector
[13, 14, 15]. We will comment on this possibility in supersymmetric models and show that
mu is highly susceptible to the supersymmetric threshold corrections. mu = 0 is unnatural
unless there exists large differences in horizontal charges in the Up sector.
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The main goal of this paper is to consider an important class of solutions where θ̄ is small
by construction. This can occur if parity or CP symmetry are exact symmetries of the full
theory. Here we assume that these symmetries are spontaneously broken at some energy
scale above the electroweak scale. In the absence of the axion mechanism, the radiative
corrections to θ̄ which are induced below this scale, will be the main source of the EDMs in
the hadronic sector. Therefore, these corrections have to be within the experimental bounds.
This provides severe restrictions on the amount of CP-violation that one can have in this
class of theories [16].

The models with spontaneously broken CP, constructed to solve the strong CP problem
[17], normally fail to keep θ̄ within the experimental bound after the radiative corrections
are taken into account. In the supersymmetric framework this problem was emphasized in
Ref. [19], where it was shown that the non-universality in the squark sector generates θrad

considerably larger than the experimental bound. In order to keep the radiative corrections to
θ̄ small, one has to suppress all CP-violating phases in the theory, including the phase in the
Kobayashi-Maskawa matrix. In general, it is hard to achieve and these are of the superweak
type models. Recent confirmation of the non-zero result on ǫ′/ǫ [20] casts strong doubts
on the viability of the superweak framework and disfavors most of the models with small
θ̄ due to spontaneous breaking of CP. There is, however, a recent model-building proposal
which combines the low energy SUSY breaking and strong complex renormalization of the
quark wave functions at high scale with unbroken SUSY in order to get zero θ̄ and generate
sufficiently large Kobayashi-Maskawa phase [18].

The idea of the spontaneous breaking of parity, initially introduced in the framework
of Pati-Salam unification [21], was thoroughly studied in the case of SU(3) × SU(2)L ×
SU(2)R × U(1) gauge group [22]. Among different appealing features of these models is the
possibility to have θ = 0 at the tree level as a consequence of exact left-right symmetry
under which θ → −θ [23]. Several years ago, this idea was discussed again in the context of
the supersymmetric left-right models [24, 25]. The vanishing of θ̄ at the tree level does not
necessarily lead to a solution to the strong CP problem as loop corrections below the scale
of left-right breaking can generate θrad above the required bound. Careful analysis of the
radiative corrections to the theta term performed in Ref. [26] showed that θrad can be kept
within the experimental limits, assuming the initial universality in the squark sector at the
scale of the SUSY breaking. However, it is not generally expected that the universality in
the squark sector is exact, and therefore it is not clear how large the radiative corrections to
θ̄ in a generic left-right SUSY model can be. One can hope that a moderate splitting among
the squark masses would allow to keep θ̄ within the experimental bound. Examples of ∼ 1%
splitting in the squark mass sector could be attained in some variants of the free fermionic
superstring models [27, 28].

In this paper we explore the necessary conditions for naturally small θ̄ in a generic
supersymmetric theory which has the following features. Below some scale Λ, the field
content of the theory is that of the Minimal Supersymmetric Standard Model with the SM
gauge group. Above Λ, the theory has the built-in discrete left-right symmetry and more
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complicated gauge structure compatible with it. It is important that the vanishing of the θ̄
parameter at the tree level in these models relies on the existence of the discrete left-right
symmetry rather than on the particular choice of the gauge group. We assume that the
Higgs structure below the scale of the left-right breaking is minimal in the spirit of ref. [29].
We analyze radiative corrections to the theta term without assuming squark degeneracy and
find the allowed degree of the non-universality in the soft-breaking sector consistent with
the bounds on theta. It turns out that EDMs require 0.5% degeneracy in the squark sector
at the scale Λ as well as a strong alignment of squark masses and Yukawa couplings in the
Down quark sector.

2 Theta term and left-right symmetry in SUSY

Previous works on the the theta problem in SU(3) × SU(2)L × SU(2)R × U(1) left-right
symmetric theories [24, 25, 26] used very specific ansatz of proportionality and degeneracy
in the squark sector. By these conditions we understand the following requirements imposed
on the soft-breaking sector at the scale of the SUSY breaking:

M2
Q = m2

Q1; M2
D = m2

D1; M2
U = m2

U1 ”degeneracy” (4)

Au = AuYu; Ad = AdYd ”proportionality”. (5)

It is known, however, that in the models which use a spontaneously broken CP symmetry
to solve strong CP problem, the departure from the exact universality should be at a very tiny
level, 10−6 or so [19]. To determine allowed squark mass splittings in LR SUSY models, we
relax the conditions of the universality and proportionality, while keeping explicit left-right
symmetry at the scale Λ. This symmetry requires the hermiticity of the Yukawa matrices Y

and trilinear scalar coupling matrices A, as well as the identity of the left and right handed
squark mass matrices,

Yu = Y†
u, Yd = Y

†
d, Au = A†

u, Ad = A
†
d

M2
Q = M2

D = M2
U = M2 ≡ m21 + S. (6)

Matrix S parametrizes the departure from the degeneracy condition, and we choose S in
such a way that TrS = 0. Another important set of conditions is the absence of the explicit
CP-violating phases in the gaugino masses and B-parameter in the Higgs potential,

B = B∗, mλi
= m∗

λi
, µ = µ∗. (7)

As noted in [24, 25], the reality of the SU(2) gaugino mass does not follow from the left-right
symmetry. We consider it as a consequence of a higher unification scheme which makes all
gaugino phases equal.

Conditions (6) and (7) ensure the absence of the theta term at the tree level. At the
loop level one has to consider radiative corrections to the quark and gluino mass matrices.
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These corrections must be proportional to CP-violating phases present in the theory. When
squarks are degenerate, this source is just the complexity of the Yukawa matrices, which is
the Kobayashi-Maskawa (KM) phase in this case. The latter provides a minimal content of
CP-violation. If the contribution to θ̄ from KM phase happens to be large, this means that
one cannot obtain a viable solution to the strong CP problem without fine tuning. This
question was studied in the framework of pure SM [30, 31], where radiative corrections to
θ̄ arise first in the order αsG

2
Fm2

cm
2
s times the CP-odd KM invariant IKM [31], and in the

MSSM with the KM mechanism of CP-violation [32] where the result is also found to be
much smaller than 10−9. The main reason behind the suppression of θrad is the smallness of
the Yukawa couplings and mixing angles contained in the so–called Jarlskog factor,

JSM = IKM(λ2
t − λ2

c)(λ
2
c − λ2

u)(λ
2
u − λ2

t )(λ
2
b − λ2

s)(λ
2
s − λ2

d)(λ
2
d − λ2

b) (8)

Here IKM is the imaginary part of the invariant quartic combination of the KM mixing
elements, IKM = Im(V ∗

tdVtbV
∗
cbVcd).

When the squark degeneracy is abandoned, an analog of Jarlskog–type factor may come
from the squark sector. If violation of degeneracy is “moderate”, i.e. proportional to the
small factor ǫij = (si − sj)/m

2, there is a chance that the experimental bound on θ̄ can be
satisfied without fine tuning.

In the case of MSSM the leading contributions to θ̄ come from corrections to the quark
mass matrix, gluino mass term and the radiative correction to the Higgs potential, Fig. 1.

As it will become clear shortly, the corrections to the quark masses are by far more
important than other types of contributions. In order to solve strong CP problem, the
corrections to Yukawa matrices which can complexify their determinants should be small
and thus we expand eq. (2) to obtain

θ̄ = Im
[

Tr(Y−1
u ∆Yu) + Tr(Y−1

d ∆Yd)
]

. (9)

Below the scale Λ, the general form of the squark mass matrices becomes very compli-
cated. The renormalization group equations are no longer left-right symmetric and induce
the splitting between left- and right-handed squarks; the Yukawa matrices enter into the
running of the squark masses, etc. To analyze SUSY threshold corrections to θ̄ we choose
the following strategy. We treat separately the cprrections to θ̄ induced by the resulting left-
right asymmetry in the squark masses and those induced by the intergenerational splitting
which is induced by Yukawa interactions. In both cases we derive constraints on S-matrix
and require S to satsify all of them, thus neglecting possible cancellations among different
mechanisms of inducing θ. Since we are interested in natural solution to the strong CP
problem, possible cancellations between different mechanisms should be rightfully ignored
as they represent a fine tuning which this solution wants to avoid. In addition to that, we
treat µ and A-proportional corrections separately.

The gauge evolution of the squark masses from the scale Λ to the electroweak scale induce
the left and right-handed squark mass splitting, m2

L − m2
R ≃ m2

2(3α2/2π) ln(Λ2/m2). In our

4



QL
~

QR
~

QL
~

QR
~

QL
~

QR
~

c)

a) b)
λ λ

H H1 2

q q

q

Figure 1: SUSY threshold corrections to a) quark Yukawa couplings, b) gluino mass, c) m2
12

soft breaking parameter which can complexify v1v2

final result we take this splitting to be O(1). The value of θ induced by this effect can be
estimated by expanding the diagram, given by Fig. 1a, in S matrix and keeping only the
lowest possible terms in S. This procedure is justified as long as mass splittings in the squark
sector are smaller than characteristic momenta in the loop. Thus we have

ImTr(Y−1
d ∆Yd) = i

8g2
3

3

∫ d4p

(2π)4

µmλ tan β

p2 − m2
λ

∑

k,l

ImTr(Y−1
d SkYdS

l)

(p2 − m2
L)k+1(p2 − m2

R)l+1
(10)

ImTr(Y−1
u ∆Yu) = i

8g2
3

3

∫

d4p

(2π)4

µmλ cot β

p2 − m2
λ

∑

k,l

ImTr(Y−1
u SkYuS

l)

(p2 − m2
L)k+1(p2 − m2

R)l+1
(11)

It is easy to see that the lowest possible order in which the CP violation does not vanish
is k + l = 3. It is convenient to choose the basis in which squark masses are diagonal:

S = diag(s1, s2, s3), Yu = UYdiag
u U †, Yd = V Y

diag
d V †. (12)

The product of U and V matrices gives the Kobayashi-Maskawa mixing matrix, K = U †V .
Then the two lowest order structures, naturally arising from eqs. (10-11), are

Ju = Im(U∗
21U23U

∗
33U31)(s1 − s2)(s2 − s3)(s3 − s1)

(mu − mc)(mc − mt)(mt − mu)

mumcmt

Jd = Im(V ∗
21V23V

∗
33V31)(s1 − s2)(s2 − s3)(s3 − s1)

(md − ms)(ms − mb)(mb − md)

mdmsmb

(13)
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To estimate the size of the integral we take mL ≃ mR ≃ mλ and arrive at the following
expression for θ̄

θ̄ ≃
2αs

90π

(m2
L − m2

R)µ

m3

Ju cotβ + Jd tanβ

m6
≃

8.5 · 10−4 (m2
L − m2

R)µ

m3
ǫ12ǫ23ǫ31

(

mt

mu

Im(U∗
21U23U

∗
33U31) cotβ +

mb

md

Im(V ∗
21V23V

∗
33V31) tanβ

)

.

(14)
Here, only the leading terms enhanced by the ratios mt/mu or mb/md are retained in eqs.
(13). We note in passing that the answer in this form does not allow to take the limit
mu(d) → 0 because it relies on ∆mu ∼ Im(U...U)mt ≪ mu. The numerical bound on theta
is satisfied as long as

(m2
L − m2

R)µ tanβ

m3
Im(V ∗

21V23V
∗
33V31) ǫ12ǫ23ǫ31 < 10−9 (15)

(m2
L − m2

R)µ cotβ

m3
Im(U∗

21U23U
∗
33U31) ǫ12ǫ23ǫ31 < 10−11 (16)

Equations (15-16) suggest that the squarks have to be degenerate at 1% level in the basis in
which mixing angles of U and V are on the order of CKM mixing angles, Uij ∼ Vij ∼ Kij .
Indeed, with Im(V ∗

21V23V
∗
33V31) ∼ Im(V ∗

21V23V
∗
33V31) ∼ IKM ∼ 10−5 and ǫij ∼ 0.01, both

constraints (15) and (16) can be satisfied. The most relaxed constraints on ǫij , ǫij < 0.05
are for the case of U = 1 and V = K, which corresponds to the squark matrix, Yu being
diagonal in the same basis.

The inclusion of the squark mass renormalization group running, generated by the Yukawa
interaction, introduce additional “dangerous” corrections to θ̄. The change of the mass ma-
trices at one loop level is given by the following set of expressions (See, e.g. ref. [33]),
linearized in the renormalization group coefficients:

M2
uLL = m21 + S + M†

uMu + c1Y
†
u(m

21 + S)Yu + c2Y
†
d(m

21 + S)Yd (17)

M2
uRR = m21 + S + MuM

†
u + c3Yu(m

21 + S)Y†
u

For the down squark matrices, u and d indices should be interchanged. The renormalization
group coefficients ci ∼ (16π2)−1 ln(λ2/m2) can be found in refs. [34, 33]. Their particular
forms are not important for our purposes as we take them to be O(1). Using these matrices
we calculate the theta term, again expanding the propagators in the Yukawa couplings. In
principle, for the top quark one should retain all orders in this expansion and the correct
way of doing this was given in ref. [33]. However, for the present discussion it is sufficient
to keep only the first-order term. The most important contributions to the θ̄ parameter are
coming from the expansion of the right-handed squark line in S and left-handed squark line
in Yu(d):

ImTr(Y−1
d ∆Yd) = i

8g2
3

3

∫

d4p

(2π)4

m2µmλ tan β

p2 − m2
λ

c2ImTr(Y−1
d Y2

uYdS)

(p2 − m2)4
(18)

ImTr(Y−1
u ∆Yu) = i

8g2
3

3

∫

d4p

(2π)4

m2µmλ cot β

p2 − m2
λ

c2ImTr(Y−1
u Y2

dYuS)

(p2 − m2)4
(19)
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Taking advantage of large mass ratios in the quark sector, we reduce these expressions
to a simpler form given by the combination of K, V and U matrix elements:

αs

18π

µ tanβ

m
c2y

2
t

mb

md

Im
∑

ij

KidK
∗
tdKtbK

∗
jb(U

Sdiag

m2
U †)ji (20)

αs

18π

µ cotβ

m
c2y

2
b

mt

mu

Im
∑

ij

K∗
uiKubK

∗
tbKtj(V

Sdiag

m2
V †)ji (21)

In a general case, allowed by previous constraints (16), |Uij|; |Vij| ∼ |Kij| and ǫij ∼ 0.01,
the new contributions (20-21) to θ̄ would violate the experimental bound. To satisfy it, we
would have to impose strong restrictions on the splitting in the squark sector, ǫij < 10−4.
There are, however, two important exceptions from this constraint, which we should treat
separately.

Case 1: this is when the squarks and Yukawa couplings of down quarks are diagonal in
the same basis. This corresponds to V = 1 and U † = K and leads to the vanishing of the
expression in eq. (20). The theta term is given by

θ̄ =
αs

18π

µ cotβ

m
c2y

2
bIKMǫ12 ≃ 10−7ǫ12 (22)

As we can see, the value of ǫ12 = 0.005 is consistent with the theta-constraint if the value of
tanβ ∼ O(1).

Case 2: this is when the deviation from universality is expressed as the function of
traceless bilinear combinations of Yukawa matrices.

S = am2(Y2
u −

1

3
Tr
(

Y2
u)
)

+ bm2
(

Y2
d −

1

3
Tr(Y2

d)
)

(23)

This is the generalization of the model discussed in ref. [26]. Indeed, this form of the mass
matrix at the scale Λ can be viewed as the result of the squark universality at the Plank
scale, modified by the renormalization group flow above the scale Λ. Due to a higher left-
right symmetric group, more Higgses are present and this explains the appearance of both
Yd and Yu in Eq. (23). In this case the resulting value of θ̄ was estimatyed in ref. [26],

θ̄ = IKM

αs

90π

(a + c2)ac2µ tanβ

m
y4

t y
2
c

mb

md

∼ 10−10 tanβ (24)

This value is within a desirable bound if tanβ is not too large.

Next we include the corrections coming from the violation of proportionality in A-
matrices. The hermiticity of Au(d) at the scale Λ is violated at lower scales so that

Au → (1 + c4Y
2
u + c5Y

2
d)Au(1 + c6Y

2
u), (25)

7



with the similar transformation for Ad. Insertion of these structures into the squark line
leads to the following potentially dangerous corrections to the Yukawa matrices:

ImTr(Y−1
d ∆Yd) = i

8g2
3

3

∫ d4p

(2π)4

mλ

p2 − m2
λ

c5ImTr(Y−1
d Y2

uAd)

(p2 − m2)3
(26)

ImTr(Y−1
u ∆Yu) = i

8g2
3

3

∫ d4p

(2π)4

mλ

p2 − m2
λ

c5ImTr(Y−1
u Y2

dAu)

(p2 − m2)3
(27)

Let us parametrize A-matrices in the basis where the same type (up or down) Yukawa
matrices are diagonal:

Yd = Y
diag
d , Ad = VAA

diag
d V †

A; Yu = Ydiag
u , Au = UAAdiag

u U †
A (28)

Then the equations (26-27) provide severe restrictions either on the allowed form of the VA

and UA matrices or on the magnitude of the eigenvalues of A matrices at the scale Λ. In
particular, we find that for Adiag

b ∼ myb, the allowed values of element 13 of VA matrix
should be of the order O(10−7) or smaller. This suggests that the allowed departure from
proportionality may occur only at the level of eigenvalues, i.e. Ab/yb 6= As/ys 6= Ad/yd, while
VA = UA = 1 must be preserved. Another, more radical assumption, would be to take the
matrices Au and Ad at the scale Λ to be arbitrary but all entries suppressed to the level of
10−7.

3 Strong CP, mu = 0 and horizontal symmetries

Horizontal symmetries have a potential to explain the hierarchical patterns among the quark
masses and mixing angles [35]. Recently there have been some activities in supersymmetric
models supplemented by horizontal symmetries. These symmetries might be behind an
approximate “alignment” between squark and quark mass matrices [13].

The basic idea in this approach is to relate the smallness of some entries in the Yukawa
matrices with certain powers of the order parameter λ = 〈s〉/M ≪ 1, characterizing the
breaking of the horizontal symmetry. In other words, below the scale M , the superpotential
is the sum of different operators, classified by the dimension of λ,

W =
∑

ij

QiUjH2ci

(

〈s〉

M

)pij

+ ... (29)

Coefficients ci are of the order 1. Let us assume that the H2 field is not charged with respect
to the horizontal group and that s-field carries unit negative charge, Xs = −1. Then the
selection rule for pij can be formulated in the following form:

pij =

{

XQi
+ XUJ

; for XQi
+ XUj

≥ 0
0 for XQi

+ XUj
< 0.

(30)
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Thus the holomorphic properties of the superpotential, i.e. the absence of terms like
QUH2s

∗, can be used to decouple right-handed u-quark from the rest of the MSSM chiral
superfields. In other words, an accidental detYu = 0 can be a natural consequence of hor-
izontal symmetries in the SUSY framework [14], thus reviving an mu = 0 solution to the
strong CP problem.

Does this solution withstand radiative corrections to mu which may arise due to the same
SUSY threshold correction, Fig. 1a? To answer this question we have to check whether it
is natural to have radiatively induced mu(1 GeV) < 10−9 · 5MeV . As it was pointed out
in [13], the selection rule for the squark mass matrix elements, M2

ij ∼ m2(〈s〉/M)qij is quite
different from (30),

qij = |XQi
− XQj

|, |XUi
− XUj

|, |XDi
− XDj

|. (31)

The arguments based on holomorphy do not apply and therefore u-squark cannot be de-
coupled from the rest of the squarks. This is sufficient to generate possibly small but non-
vanishing mu at the SUSY threshold which turns out to be

mu ≃ η mt

αs

18π

A − µ cotβ

m
λ|XQ1

−XQ3
|+|XU1

−XU3
|. (32)

Here again we take advantage of the possibility to “import” large mt through the flavour-
changing along the squark line. η ∼ 2.5 accounts for the QCD renormalization change of mu

from SUSY threshold to 1 GeV. Assuming that λ is equal to the Wolfenstein’s parameter
λW = 0.22, we arrive at the following bound on the combination of the horizontal charges in
the Up quark sector:

|XQ1
− XQ3

| + |XU1
− XU3

| > 17. (33)

Is such a hierarchy of horizontal charges natural? At the very least it is another serious
model-building problem.

4 Conclusion

The vanishing of the theta term at the tree level might be achieved via an exact left-right
symmetry, acting above certain high energy scale Λ. The particular form of the gauge group
which permits such a symmetry is not important for the solution of the strong CP problem.

What is crucial, however, is the degree of the universality in the soft-breaking sector
which influences the value of the radiatively induced θ̄ term. Assuming the MSSM field
structure below a certain scale Λ and exact left-right symmetry above this scale, we studied
the allowed departure from the flavour universality in the squark mass sector. We find that
the 0.5% mass splitting among squarks at the scale Λ can be consistent with the bounds on θ̄,
but only in two very specific cases. The first case corresponds to a situation when the squark
mass matrix can be diagonalized in the same basis as the Down-quark Yukawa matrix. The
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second one is when the departure from the universality is proportional to the combination of
Up and Down Yukawa matrices. The latter form of the mass matrix for squarks may result
from the renormalization group evolution of the initially universal squark masses between
Plank scale and Λ. Thus any model-building effort which tries to explain the smallness of θ̄
by a restoration of parity has to ensure that squark masses fall into one of these two patterns.

We have also shown that a possibility of mu = 0 type of solution to the strong CP
problem in the context of horizontal symmetries depends upon the size of Mu generated
radiatively at SUSY threshold. The squark-gluino exchange diagram would typically induce
a nonzero value for mu which can be expressed in terms of the differences between horizontal
charges of the quark superfields from the first and third generation. Assuming that the order
parameter governing the hierarchical structure is of the order of Wolfenstein’s λ, we obtain
the constraint |XQ1

− XQ3
| + |XU1

− XU3
| > 17 which represents a serious model-building

challenge.
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