
Lyndon + Christoffel = Digitally Convex ⋆

S. Brlek a, J.-O. Lachaud b, X. Provençal a, C. Reutenauer a,

aLaCIM, Université du Québec à Montréal,
C. P. 8888 Succursale “Centre-Ville”, Montréal (QC), CANADA H3C 3P8

bLaboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie,
73376 Le Bourget du Lac, France

Abstract

Discrete geometry redefines notions borrowed from Euclidean geometry creating a
need for new algorithmical tools. The notion of convexity does not translate trivially,
and detecting if a discrete region of the plane is convex requires a deeper analysis. To
the many different approaches of digital convexity, we propose the combinatorics on
words point of view, unnoticed until recently in the pattern recognition community.
In this paper we provide first a fast optimal algorithm checking digital convexity
of polyominoes coded by their contour word. The result is based on linear time
algorithms for both computing the Lyndon factorization of the contour word, and
the recognition of Christoffel factors that are approximations of digital lines. By
avoiding arithmetical computations the algorithm is much simpler to implement and
much faster in practice. We also consider the convex hull computation and relate
previous work in combinatorics on words with the classical Melkman algorithm.

Key words: Digital Convexity, Lyndon words, Christoffel words, Convex hull

1 Introduction

In Euclidean geometry, a given region R is said to be convex if and only if
for any pair of points p1, p2 in R the line segment joining p1 to p2 is com-
pletely included in R. In discrete geometry on square grids, the notion does

⋆ with the support of NSERC (Canada) and Canada Research Chair
Email addresses: brlek.srecko@uqam.ca (S. Brlek),

jacques-olivier.lachaud@univ-savoie.fr (J.-O. Lachaud),
xavierprovencal@gmail.com (X. Provençal), reutenauer.christophe@uqam.ca
(C. Reutenauer).

Preprint submitted to Elsevier 3 November 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archipel - Université du Québec à Montréal

https://core.ac.uk/display/77618506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

not translate trivially, since the only convex (in the Euclidean sense) regions
are isolated points when pixels are considered as points in the plane, or rect-
angles when pixels are seen as unit squares. Many attempts have been made
to fill the gap, and a first definition of discrete convexity based on discretiza-
tion of continuous object came from Sklansky [1] and Minsky and Papert [2]:
it is not convenient since, in some cases, sets of arbitrary distant points are
considered digitally convex (see Fig. 1).

Fig. 1. The discretization of a continuous objet resulting in a non-connected set.

Later, Kim [3,4] then Kim and Rosenfeld [5] provided several equivalent char-
acterizations of discrete convex sets, and finally Chaudhuri and Rosenfeld [6]
proposed a new definition of digital convexity based this time on the notion
of digital line segments (see [7] for a review of digital straightness). Given a
finite subset S of Z2 its convex hull is defined as the intersection of all Eu-
clidean convex sets containing S. Of course all the vertices of the convex hull
are points from S. Therefore, throughout this work, a polyomino P (which is
the interior of a closed non-intersecting grid path of Z2) is called convex if and
only if its convex hull contains no integer point outside P . This definition of
convexity is called H-convexity by Eckhardt in his review on digital convex-
ity [8]. Since we only consider polyominoes which are 4-connected subsets of
Z2, these objects are considered as convex under most common definitions of
digital convexity (see for instance Eckardt for a precise statement of several
equivalences). Debled-Rennesson et al. [9] already provided an algorithm de-
ciding if a given polyomino is convex. Their method uses arithmetical tools
to compute the sequence of maximal segments along the polyomino. Digital
convexity is then achieved if and only if the induced sequence of slopes is
monotonous. From this observation, a linear — and thus optimal — time al-
gorithm is obtained using optimal time methods for computing the tangential
cover of a digital contour, which relies on a moving digital straight line recog-
nition algorithm [10,11]. It is worthy to note that digital convex sets and hulls
have specific properties that are not shared by their Euclidean counterpart.
For instance, Hübler et al [12] (or easiest to find [13]) have shown that the
convex hull of any 4-connected set of discrete points can be computed in lin-
ear time. Even more surprising, the digital convex hull of an implicitly defined
euclidean convex body can be computed in sublinear time O(d2/3 log d), where
d is the diameter of the set [14].

In their survey on digital straightness, Klette and Rosenfeld [7] mention that

“Related work even earlier on the theory of words, specifically, on mechanical

2

or Sturmian words, remained unnoticed in the pattern recognition commu-

nity.”

Indeed, the study of words goes back to Bernouilli, Markov, Thue and Morse
(see Lothaire’s books [15–17] for an exhaustive bibliographic account) and
suggest to build a bridge between discrete geometry and combinatorics on
words which will benefit to both areas. This approach gave an elementary proof
and a generalization [18] of a result of Daurat and Nivat [19] relating salient
and reentrant points in discrete sets. It also provided an optimal algorithm
for recognizing tiles that tile the plane by translation [20,21].

Here we study the problem of deciding whether a polyomino coded by its con-
tour word, also called Freeman chain code, is convex or not. To achieve this
we use well known tools of combinatorics on words. The first is the existence
of a unique Lyndon factorization, and its optimal computation by a linear al-
gorithm (Fredricksen and Maiorana [22], Duval [23]). The second concerns the
Christoffel words, a class of finite factors of Sturmian words, that are discrete
approximations of straight lines. After recalling the combinatorial background
and basic properties, we propose another linear time algorithm deciding con-
vexity of polyominoes. This new purely discrete algorithm is however much
simpler to implement and some experiments reveal that it is 10 times faster
than previous linear algorithms. Furthermore, one of its main interests lies in
the explicit link between combinatorics on words and discrete geometry. Since
our method does not rely on geometric and vector computations, it also shows
that digital convexity is much more fundamental and abstract property than
general convexity.

We also consider the convex hull computation in our framework: while the
classical Melkman algorithm [24] applies to any simple polygonal curve, our
algorithm applies to words coding the contour of a polyomino and appears as
a discrete version of it.

This paper is an extended and enhanced version of a paper presented at the
14th International Conference on Discrete Geometry for Computer Imagery
(DGCI 2008) held in Lyon (Fance) on April 14-16, 2008 [25].

2 Preliminaries

A word w is a finite sequence of letters w1w2 · · ·wn on a finite alphabet Σ,
that is a function w : [1..n] −→ Σ, and |w| = n is its length. Consistently its
number of a letters, for a ∈ Σ, is denoted |w|a. The set of words of length n
is denoted Σn and the set of all finite words is Σ∗, the free monoid on Σ. The
empty word is denoted ε and by convention Σ+ = Σ∗ \ {ε}. The k-th power of

3

word w is defined by wk = wk−1 ·w with the convention that w0 = ε. A word
is said primitive when it is not the power of a nonempty word. A period of a
word w is a number p such that wi = wi+p, for all 1 ≤ i ≤ |w|−p. The reversal

of a word w1w2 · · ·wn is the word w̃ = wnwn−1 · · ·w2w1, and a palindrome is
a word such that w = w̃ . The set of palindromes in Σ∗ is denoted PAL(Σ).

Given a total order < on Σ, the lexicographic ordering extends this order to
words on Σ by using the following rule :

w < w′ if either (i) w′ ∈ wΣ+,

(ii) w = uav and w′ = ubv′ with a < b, a, b ∈ Σ, u ∈ Σ∗.

Two words w, w′ on the alphabet Σ are said to be conjugate, written w ≡ w′,
if there exist u, v such that w = uv and w′ = vu. The conjugacy class of a
word is defined as the set of all its conjugates and is equivalent to the set of
all circular permutations of its letters.

Let w be a finite word over the alphabet {0, 1}. We denote by −→w the vector
(|w|0, |w|1). For any word w, the partial function φw : N −→ Z× Z associates
to any integer j, 1 ≤ j ≤ |w|, the vector φw(j) = −−−−−−−→w1w2 · · ·wj . In other words,
this map draws the word as a 4-connected path in the plane starting from
the origin, going right for a letter 0 and up for a letter 1 (see Fig. 2). This

1

0

0 0 0

0

1

1

Fig. 2. Path encoded by the word w = 01000110.

extends naturally to more general paths by using the four letter alphabet
Σ = {0, 1, 0̄, 1̄}, associating the letter 0̄ to a left step and 1̄ to a down step.
This notation allows to code the border of any polyomino by a 4-letter word
known as the Freeman chain code.

The lexicographic order < on points of R2 or Z2 is such that (x, y) < (x′, y′)
when either x < x′ or x = x′ and y < y′. The convex hull of a finite set S
of points in R2 is the intersection of all convex sets containing these points
and is denoted by Conv(S). S being finite, it is clearly a polygon in the plane
whose vertices are elements of S. The upper convex hull of S, denoted by
Conv+(S), is the clockwise oriented sequence of consecutive edges of Conv(S)
starting from the lowest vertex and ending on the highest vertex. The lower

convex hull of S, denoted by Conv−(S), is the clockwise oriented sequence of
consecutive edges of Conv(S) starting from the highest vertex and ending on
the lowest vertex.

4

3 Combinatorics on words

Combinatorics on words has imposed itself as a powerful tool for the study of
large number of discrete, linear, non-commutative objects. Such objects ap-
pears in almost any branches of mathematics and discrete geometry is not
an exception. Traditionally, discrete geometry works on characterization and
recognition of discrete objects using arithmetic approach or computational
geometry. However combinatorics on words provide mathematical tools and
efficient algorithms to address this problem as already mentioned. Lothaire’s
books [15–17] constitute the reference for presenting a unified view on combi-
natorics on words and many of its applications.

3.1 Lyndon words

Introduced as standard lexicographic sequences by Lyndon in 1954, Lyndon
words have several characterizations (see [15]). We shall define them as words
being strictly smaller than any of their circular permutations.

Definition 1 A Lyndon word l ∈ Σ+ is a word such that l = uv with u, v ∈
Σ+ implies that l < vu.

Note that Lyndon words are always primitive. An important result about
Lyndon words is the following unique factorization theorem (see Lothaire [15]
Theorem 5.1.1).

Theorem 2 Any word w ∈ Σ+ admits a unique factorization as a sequence

of decreasing Lyndon words :

w = ln1

1 ln2

2 · · · l
nk

k , l1 > l2 > · · · > lk (1)

where ni ≥ 1 and li is a Lyndon word, for all i such that 1 ≤ i ≤ k.

There exist several algorithms for factorizing a word w = w1w2 · · ·wn into
Lyndon words.

1. The naive one, which mimics the proof of existence of the factorization (see
e.g.[15], Theorem 5.1.5 and its proof) is the following :

L1. start with the list (l1, l2, . . . , ln)← (w1, w2, . . . , wn);
L2. if li < li+1 for some i, then (l1, l2, . . . , ln)← (l1, . . . , li−1, lili+1, li+2, . . . , ln),

and stop otherwise.

2. The second algorithm rests on the following result : let w = l1l2 · · · lk be
the factorization of w into a nonincreasing product of Lyndon words. Then lk

5

is the smallest suffix of w for the lexicographical order (see [15], Proposition
5.1.6).

3. The previous algorithms are not linear. A linear algorithm, which is more-
over very subtle and elegant, was found by Duval [23]. It works by reading
from left to right, with at most 2n comparisons of letters (see also [26], Section
7.4). We use this algorithm later and it is explained in full detail in Section 5.

4. Another algorithm, which turns out to be linear, rests on the concept of
suffix standardization of the word w, that is the permutation σ on [1, 2, . . . , n]
such that the j-th suffix of w for the lexicographical order is wiwi+1 · · ·wn,
where σ(i) = j. For example, let

w = 1 0 1 1 0 1 0 0 1.

Then its suffix-standard permutation is

σ = 8 4 9 7 3 6 1 2 5,

since the suffixes of w in increasing order are 001, 01, 01001, 01101001, 1,
1001, 101001, 101101001, 1101001. Now, consider the sequence of left-to-right

minima of σ : a left-to-right minimum of σ is an index k such that σ(i) > σ(k)
for any i < k. In the example, the left-to-right minima are k = 1, 2, 5, 7
corresponding to the values σ(k) = 8, 4, 3, 1. Then the Lyndon factorization
of w is obtained by cutting w just before each left-to-right minimum of its
suffix-standard permutation σ :

σ = 84 9 7 3 6 1 2 5,

w = (1) (0 1 1) (0 1) (0 0 1).

This algorithm is linear : indeed, suffix standard permutation is equivalent to
the suffix array of w, which may be computed in linear time [27]. Moreover,
the sequence of left-to-right minima of a permutation is clearly computable in
linear time. This algorithm was known to Duval and Lefebvre ([28], p. 250),
who attribute it to Crochemore [27]. Note that suffix standardization may be
used also to build the tree (or nonassociative word) associated to a Lyndon
word, hence the associated Lie polynomial, which gives the Lyndon basis of the
free Lie algebra (see [29]). Finally, note that the suffix standardization, when
applied to a Christoffel word w of length n, gives the Cayley graph of Z/nZ

which generated it. For example for w = 0010101, we obtain σ = 1473625,
and w is recovered by reading cyclically σ and writing 0 for an ascent and 1
for a descent (see [30]).

6

3.2 Christoffel words

Introduced by Christoffel [31] in 1875 and reinvestigated recently by Borel and
Laubie [32] who pointed out some of their geometrical properties, Christoffel
words reveal an important link between combinatorics on words and discrete
geometry.

This first definition of Christoffel word, borrowed from Berstel and de Luca
[33], highlights their geometrical properties and helps to understand the main
result of this work stated in Proposition 7. Let Σ = {0, 1}. The slope of a word
is a map ρ : Σ∗ → Q ∪ {∞} defined by

ρ(ǫ) = 1, ρ(w) = |w|1/|w|0, for w 6= ǫ.

It is assumed that 1/0 = ∞. It corresponds to the slope of the straight line
joining the first and the last point of the path coded by w. For each k, 1 ≤
k ≤ |w|, we define the set

δk(w) = {u ∈ Σk|ρ(u) ≤ ρ(w)},

of words of length k whose slope is not greater than the slope of w. The
quantity

µk(w) = max{ρ(u)|u ∈ δk(w)}

is used to define Christoffel words (see Fig. 3).

Definition 3 A word w is a Christoffel word if for any prefix v of w one has

ρ(v) = µ|v|(w).

1

0 0 0

0 0

0 0 0

0 0

1

1

1

Fig. 3. The path coded by the Christoffel word w = 00010010001001 staying right
under the straight line of slope r = 2/5.

A direct consequence of this definition is that given a Christoffel word ur = vs

for some r, s ≥ 1, both words u and v are also Christoffel words. From an
arithmetical point of view, discrete lines (see Reveillès [34]) are defined by a
pair of Diophantine inequalities.

Definition 4 Three integers a, b, c such that a and b are relatively prime de-

fine the 4-connected straight line Da,b,c of slope a/b as the set :

Da,b,c =
{
(x, y) ∈ Z2|c ≤ ax− by < c + |a|+ |b|

}
.

7

Among the points of the set Da,b,c those which verify the equation ax− by = c
are called the upper leaning points, and a Christoffel word is a connected sub-
set of a 4-connected straight line joining upper leaning points (see Fig. 4).

(3,2)

(0,0)

(10,5)

Fig. 4. The 4-connected straight line D3,7,−5 = {(x, y) ∈ Z2| − 5 ≤ 3x − 7y < 5}
and the path associated to the primitive Christoffel word of slope 3/7 joining two
upper leaning points.

The next properties are taken from Borel and Laubie [32].

Property 1 [Borel and Laubie[32]] Christoffel words satisfy the following

properties.

(i) All primitive Christoffel words are Lyndon words.

(ii) Given c1 and c2 two Christoffel words, c1 < c2 iff ρ(c1) < ρ(c2).
(iii) Given r ∈ Q+ ∪ {∞}, let Fr be the set of words w on the alphabet {0, 1}

such that ρ(v) ≤ r for all non-empty prefix v of w. Fr corresponds to the

words coding paths starting from (0, 0) and staying below the Euclidean

straight line of slope r. Among these paths, those being the closest ones

to the line and having their last point located on it are Christoffel words.

Originally Christoffel [31] defined these words as follows. Given k < n two
relatively prime numbers, a (primitive) Christoffel word w = w1w2 . . . wn is
defined by :

wi =

0 if ri−1 < ri,

1 if ri−1 > ri,

where ri is the remainder of (i k) mod n. The slope of this word is then
k/(n− k). For example if k = 5 and n = 8, we have the following values

i 0 1 2 3 4 5 6 7 8

(ik) mod n 0 5 2 7 4 1 6 3 0

wi 0 1 0 1 1 0 1 1

and the Christoffel word is w = 01011011.

8

In [33] Berstel and de Luca provided an alternative characterization of primi-
tive Christoffel words. Let CP be the set of primitive Christoffel words, PAL
the set of palindromes and PER the set of words w having two periods p and
q such that |w| = p + q − 2. The following relations hold :

CP =
(
{0, 1} ∪ 0 · PER · 1

)
⊂

(
{0, 1} ∪ 0 · PAL · 1

)
.

These properties of Christoffel words are useful for deciding if a given word is
Christoffel or not.

4 Digital convexity

There are several (more or less) equivalent definitions of digital convexity,
depending on whether or not one asks the digital set to be connected. We say
that a finite 4-connected subset S of Z2 is digitally convex if it is the Gauss
digitization of a convex subset X of the plane, i.e. S = Conv(X) ∩ Z2.

The border Bd(S) of S is the 4-connected path that follows clockwise the
pixels of S that are 8-adjacent to some pixels not in S. This path is a word
in {0, 1, 0̄, 1̄}∗, starting by convention from the lowest point and in clockwise
order.

Definition 5 A word w is said to be digitally convex if it is conjugate to the

word coding the border of some finite 4-connected digitally convex subset of Z2.

Note that implicitly, a digitally convex word is necessarily closed. Now, every
closed path coding the boundary of a region is contained in a smallest rectangle
such that its contour word w may be factorized as follows. Four extremal points
are defined by their coordinates:

S
w4

w1

3w

w2

N

W
E

W is the lowest on the Left side;
N is the leftmost on the Top side;
E is the highest on the Right side;
S is the rightmost on the Bottom side;
So that w ≡ w1w2w3w4.

This factorization is called the standard decomposition. We say that a word
w1 in {0, 1}∗ is NW-convex iff there are no integer points between the upper
convex hull of the points {φwi

(j)}j=1...|wi| and the path wi.

Define the counterclockwise π/2 circular rotation by

σ : (0, 1, 0̄, 1̄) 7−→ (1, 0̄, 1̄, 0),

9

as illustrated in the following example.

w (w)σ
w = 1111001̄01̄1̄01̄0̄0̄0̄0̄,

σ(w) = 0̄0̄0̄0̄110100101̄1̄1̄1̄.

Then w2 in {0, 1̄}∗ is NE-convex iff σ(w2) is NW-convex, and more generally,
for the standard decomposition w ≡ w1w2w3w4 we have

wi is convex ⇐⇒ σi−1(wi) is NW-convex.

Clearly, the convexity of w requires the convexity of each wi for i = 1, 2, 3, 4
and we have the following obvious property.

Proposition 6 Let w ≡ w1w2w3w4 be the standard decomposition of a poly-

omino. Then w is digitally convex iff σi−1(wi) is NW-convex, for all i.

Let Alph(w) be the set of letters of w. Observe that if for some i, wi contains
more than 2 letters, that is if Alph(σi−1(wi)) 6⊆ {0, 1}, then w is not digitally
convex.

We are now in position to state the main result which is used in Section 5 to
design an efficient algorithm for deciding if a word is convex.

Proposition 7 A word v is NW-convex iff its unique Lyndon factorization

ln1

1 ln2

2 · · · l
nk

k is such that all li are primitive Christoffel words.

In order to prove Proposition 7, we first need the following lemmas.

Lemma 8 Let v ∈ {0, 1}∗ be a word coding an NW-convex path and let e
be one of the edges of its convex hull. The factor u of v corresponding to the

segment of the path determined by e is a Christoffel word.

This is a direct consequence of Property 1(iii) since both the starting and
ending points of an edge of the convex hull of a discrete figure are necessarily
part of its border. Note that we also have by the same Property 1(iii) that

Lemma 9 Any Christoffel word is NW-convex.

We may now proceed to the proof of Proposition 7.

Proof. Let v be a word coding a NW-convex path and let the ordered sequence
of edges (e1, e2, . . . , ek) be the border of its convex hull. For each i from 1 to
k, let ui be the factor of v determined by the edge ei so that v = u1u2 · · ·uk.
Let li be the unique primitive word such that ui = lni

i . By Lemma 8, ui is

10

a Christoffel word, which implies that li is a primitive Christoffel word. By
Property 1(i), li is also a Lyndon word. Now, since (e1, e2, . . . , ek) is the convex
hull of w, it follows that the slope si of the edge ei is greater than the slope
si+1 of the edge ei+1 leading to the following inequality :

ρ(li) = ρ(ui) = si > si+1 = ρ(ui+1) = ρ(li+1).

By Property 1(ii) we conclude that li > li+1. Thus ln1

1 ln2

2 · · · l
nk

k is the unique
factorization w as a decreasing sequence of Lyndon words.

Conversely, let v ∈ {0, 1}+ be such that its Lyndon factorization ln1

1 ln2

2 · · · l
nk

k

consists of primitive Christoffel words. For each i from 1 to k, let ei be the
segment joining the starting point of the path coded by lni

i to its ending point.
We shall show that (e1, e2, . . . , ek) is the upper convex hull of φv. Since lni

i

is a Christoffel word, Lemma 9 ensures that the path always stays below the
segment. By hypothesis, li > li+1. Using the same argument as before we have
that the slope of ei is strictly greater than the slope of ei+1. We have just built
a sequence of edges whose vertices are points of φv, which stay above it, and
with decreasing slopes. (e1, e2, . . . , ek) is thus exactly the upper convex hull of
φv.

Now, for all i = 1 . . . k, since lni

i is Christoffel (Lemma above), there are no
integer points lying between ei and φl

ni

i

. It follows that there are no integer
points between φv and its upper convex hull, which means v is NW -convex. 2

For example, consider the following NW-convex path v = 1011010100010.

0

1

0 1

1

0 1

0 1

0 0 0 1 The Lyndon factorization of v is

v = (1)1 · (011)1 · (01)2 · (0001)1 · (0)1,

where 0, 011, 01, 0001 and 0 are all
Christoffel words.

It is interesting to note that many results in the theory of Sturmian word have
been obtained by using geometrical properties. This close relation between the
two domains raises a number of combinatorial problems such as enumeration
of convex words of given length. Another interesting property is the factorial
closure of digitally convex words: while a geometrical proof is rather easy to
obtain, it begs for a purely combinatorial proof. A formal language character-
ization would also be of interest. These more theoretical issues goes beyond
the scope of this paper and will be addressed in a future work.

11

5 Algorithm to check word convexity

We give now a linear time algorithm checking digital NW-convexity for paths
encoded on {0, 1}. This is achieved in two steps: first we compute the prefix ln1

1

of the word w using the Fredricksen and Maiorana algorithm [22] (rediscovered
by Duval [23]), and then Algorithm 2 below checks that the Lyndon factor
l1 ∈ CP. Iterating this process on all Lyndon factors of w provides the answer
whether all li are primitive Christoffel words.

Given a word w ∈ Σ∗ whose Lyndon factorization is w = ln1

1 ln2

2 . . . lnk

k , the fol-
lowing algorithm, taken from Lothaire’s book [17], computes the pair (l1, n1).

Algorithm 1 (FirstLyndonFactor)
Input w ∈ Σn; Output (l1, n1);
1 : (i, j)← (1, 2);
2 : while j ≤ n and wi ≤ wj do
3 : If wi < wj then
4 : i← 1;
5 : else
6 : i← i + 1;
7 : end if
8 : j ← j + 1;
9 : end while

10 : return (w1w2 · · ·wj−i, ⌊(j − 1)/(j − i)⌋);

The underlying principle of the algorithm is to find the longest prefix u of w
such that u is smaller than all its suffixes. Assume then, that at some point of
execution we obtained the factorization w = lnpv where l is a Lyndon factor,
n ≥ 1 and p is a non-empty prefix of l. Translating this relation into the values
of i and j gives j − i = |l|, n = ⌊(j − 1)/(j − i)⌋ and j = |lnp|. Then l = pαq
for some suffix q and some letter α. Three cases may occur:

1. if wi+1 < wj+1 then l′ = lnpwi+1 is a Lyndon factor and (l′, 1) becomes
the current value of the pair (l1, n1);

2. if wi+1 = wj+1 then p is replaced by pwj+1;
3. if wi+1 > wj+1 then algorithm stops and returns (l, n).

Clearly this algorithm is linear in n1|l1|, and hence the Lyndon factorization
of w is computed in linear time with respect to |w|. On the other hand, given
a primitive word w ∈ {0, 1}∗, checking whether it is a Christoffel word is also
achieved in linear time using the original definition from [31] (see example at
the end of Section 3):

C1. compute k = |w|1 and n = |w|;
C2. compute successively r1, r2, . . . , r⌈n/2⌉ where ri = (i k) mod n and check

12

that wi satisfies the definition.

Note that since

CP \ {0, 1} ⊂ 0 · PAL · 1,

the second half of w is checked at the same time by verifying that wi = wn−i+1

for 2 ≤ i ≤ ⌈n/2⌉. This yields the following algorithm.

Algorithm 2 (IsChristoffelPrimitive)
Input w ∈ Σn

1 : k ← |w|1; i← 1; r ← k;
2 : rejected := not(w1 = 0 and wn = 1);
3 : while not(rejected) and i < ⌈n/2⌉ do
4 : i← i + 1 ; r′ ← r + k mod n;
5 : If r < r′ then
6 : rejected← not(0 = wi and 0 = wn−i+1);
7 : else
8 : rejected← not(1 = wi and 1 = wn−i+1);
9 : end if

10 : r ← r′;
11 : end while
12 : return not(rejected);

Combining these two algorithms provides this following algorithm that checks
NW-convexity of a given word w ∈ Σ∗.

Algorithm 3 (IsNW-Convex)
Input w ∈ Σn;
1 : index← 1 ; rejected← false;
2 : while not(rejected) and index ≤ n do
3 : (l1, n1)← FirstLyndonFactor(windexwindex+1 · · ·wn);
4 : rejected← not(IsChristoffelPrimitive(l1));
5 : index← index + n1|l1|;
6 : end while
7 : return not(rejected);

Equation (1) ensures that
∑

i |li| ≤ |w| so that this algorithm is linear in the
length of the word w.

According to Proposition 6, we have to check convexity for each term in the
standard decomposition w ≡ w1w2w3w4. Instead of applying the morphism
σ to each wi, which requires a linear pre-processing, it suffices to implement
a more general version of Algorithm 1 and Algorithm 2, with the alphabet
and its order relation as a parameter. For that purpose, ordered alphabets are
denoted as lists Alphabet = [α, β] with α < β.

13

The resulting algorithm is the following where we assume that w is the contour
of a non-empty polyomino.

Algorithm 4 (IsConvex)
Input w ∈ Σn

0 : Compute the standard decomposition w ≡ w1w2w3w4;
1 : rejected← false; i← 1;Alphabet← [0, 1];
2 : while not(rejected) and i ≤ 4 do
3 : u← wi; k ← |u| ;
4 : if Alph(u) ⊆ Alphabet then
5 : index← 1;
6 : while not(rejected) and index ≤ k do
7 : (l1, n1)← FirstLyndonFactor([uindexuindex+1 · · · uk], Alphabet);
8 : rejected← not(IsChristoffelPrimitive(l1), Alphabet);
9 : index← index + n1|l1|;

10 : end while
11 : else
12 : rejected← true;
13 : end if
14 : i← i + 1;Alphabet← [σi−1(0), σi−1(1)];
15 : end while
16 : return not(rejected);

Remark. For more efficiency, testing that the letters of wi belong to the set
σi−1({0, 1}∗) (Line 4) can be embedded within the algorithm FirstLyndon-
Factor or in the computation of the standard decomposition (Line 0) and
returning an exception.

6 Computing the convex hull

Given a word w on the alphabet {0, 1}, the NW -convex hull of the path coded
by w is given by what is called a Spitzer factorization of w (see [15], page 95).
Given a morphism Φ : {0, 1}∗ → R where R is seen as an additive monoid,
then for all r ∈ R let

Cr =
{
v ∈ {0, 1}+

∣∣∣Φ(v) = r|v|
}

, and Br = Cr \

 ⋃

s≥r

Cs · {0, 1}
+

 .

We provide an example of this definition in Fig. 5. The following theorem is
attributed by Lothaire to Spitzer [35], where it appears in a different context.

Theorem 10 (Spitzer, 1956) Every word w ∈ {0, 1}∗ admits a unique fac-

14

(b)(a) (c)

Fig. 5. Given Φ(0) = −1 and Φ(1) = +1, three paths coded by words from the set
C−1/4. The word in (c) is also in B−1/4 while in (a) the prefix 00011 ∈ C−1/5 and
in (b) the prefix 01 ∈ C0.

torization as

w = b1b2 · · · bk,

bi ∈ Bri
for i = 1, 2, . . . , k and if i 6= k then ri ≥ ri+1.

By taking the morphism Φ defined by Φ(0) = −1 and Φ(1) = +1, the sep-
aration bi · bi+1 between each pair of consecutive factors such that ri > ri+1

corresponds exactly to the vertices of the convex hull of the path coded by w.
As an example consider the word w as shown below :

1

1

0 0

0

00

0 0

0

1

0

1

1

1

0

w = 1000110100001001,

w = 1 · 0001101 · 00001001,

1 ∈ B1,

0001101 ∈ B−1/7,

00001001 ∈ B−1/2.

More precisely the algorithm showing the fusion bibi+1 is given by

w = (1) · (0(0(((01)1)))(01)) · ((0(0(0(01))))(0(01))).

Note that the slope of a word v ∈ Br is ρ(v) = (1 + r)/(1− r), so that if
v ∈ Br and v′ ∈ Br′ then

r < r′ ⇐⇒ ρ(v) < ρ(v′).

As in the case of Viennot factorizations [36], the family of sets (Br)r≥0
, with

Φ(0) = −1 and Φ(1) = +1, has the following obvious property :

Property 2 Let u ∈ Br and v ∈ Bt, if r < t then the word uv belongs to a

Bs for some r < s < t.

As a consequence, the Spitzer factorization of a word w ∈ {0, 1}n can be
computed as follows

S1. start with the list (b1, b2, . . . , bn)← (w1, w2, . . . , wn);
S2. if ρ(bi) < ρ(bi+1) for some i then

(b1, b2, . . . , bk)← (b1, . . . , bi−1, bibi+1, bi+2, . . . , bk), and stop otherwise.

15

It is clear that if the number of occurrences of 0s and 1s of each bi is stored then
the factorization is computed in linear time. Note that if this computation is
done using a stack, then the algorithm obtained appears as a discrete version of
the classical Melkman’s algorithm [24] for the construction of the convex hull
of a polygon in linear time (see [37] for an historical review on the subject).
Of course, the algorithm presented above only applies to words coding the
north-west part of a hv-convex polyomino while Melkman’s algorithm applies
to any simple polyline. Note also that Ehrenfeucht, Haemer and Haussel used
this approach in [38] in order to elaborate an optimal algorithm to compute
the convex hull of an ordered list of points T = (x0, y0), (x1, y1), . . . , (xn, yn),
with distinct x coordinates and sorted in increasing order of this coordinate.

For sake of completeness we provide a general algorithm that computes the
North-West part of the convex hull of any polyomino.

Algorithm 5 (NWConvexHull)
Input w ∈ {0, 1, 0̄, 1̄}n /* the non self-intersecting path from W to N */
Type Subword = struct { i: integer /* position */

a: integer /* vertical displacement */
b: integer /* horizontal displacement */ }

Var P : Stack of Subword
u, v: Subword

1 : for i from 1 to n do
2 : u.i← i;
3 : case wi in
4 : 0 : u.a← 0; u.b← 1; break
5 : 1 : u.a← 1; u.b← 0; break
6 : 0̄ : u.a← 0; u.b← −1; break
7 : 1̄ : u.a← −1; u.b← 0; break
8 : end case
9 : l← true;

10 : while l and (P is not empty) do
11 : v ← top(P);
12 : if v.a ∗ u.b ≤ v.b ∗ u.a then /* if vector u is to the left of vector v */
13 : u.i← v.i;
14 : u.a← u.a + v.a; /* concatenate u and v */
15 : u.b← u.b + v.b;
16 : pop(P);
17 : else l ← false;
18 : end if
19 : end while
18 : push(P, u);
20 : end for
21 : return P /* the stack contains the convex hull edges read from N to W */

16

7 Concluding remarks

The implementation of our algorithm to check digital convexity was compared
to the method of Debled-Rennesson et al. [9], implemented in linear time with
the optimization of [10,11]. The results (see Fig. 6) showed that our technique
was 10 times faster than the technique of maximal segments.

 1

 10

 100

 1000

 10000

 100000

 100000 1e+06 1e+07 1e+08

tim
e(

m
s)

wordsize

Lyndon convexity
Maximal segment convexity

x/100000

 1

 10

 100

 1000

 10000

 100000

 100000 1e+06 1e+07 1e+08

tim
e(

m
s)

wordsize

Lyndon convexity
Maximal segment convexity

x/100000

(a) (b)

Fig. 6. Timing comparison of the digital convexity tests (maximal segments and
Lyndon factorization). Test shapes are ellipses of increasing size (abscissa represents
the contour word length). For each size, a hundred different axis ratios are tested
and the timings are averaged. Figure (a) summarizes the timings on these ellipses,
where each time the convexity test is positive (time in ms and standard deviation).
Figure (b) also summarizes the timings but one 0 has been swaped with a 1, both
letters at a randomly chosen place in the contour word : convexity test is then
negative. Experiments have been runned on a 2.53 GHz Pentium 4 with cache
512 Kb, code written in C++ and compiled with GCC v4.1.2. Computation time
decreases when the shape is no more convex, for both techniques. Speedup ratio for
Lyndon technique is identical.

This speedup is partially due to the fact that computing maximal segments
provides more geometrical informations while testing convexity is simpler.
Nevertheless, our algorithm is much simpler conceptually and suggests that
the notion of digital convexity might be a more fundamental concept than
what is usually perceived. The fact that the combinatorial approach delivers
such an elegant algorithm begs for a systematic study of the link between
combinatorics on words and discrete geometry. In particular, the palindromic
structure of Christoffel words allows to avoid part of the arithmetic calculation.
Among the many problems that can be addressed with this new approach,
we hope to develop a factorization providing the convex hull using mostly
combinatoric properties. The one presented in Section 6 relies completely on
arithmetic computations which explains the similarities with previously known
convex hull computation techniques.

Acknowledgements Srečko Brlek is supported by a grant from NSERC

17

(Canada). Jacques-Olivier Lachaud was partially funded by ANR project
GeoDIB, n◦ ANR-06-BLAN-0225-03. Xavier Provençal was supported by a
scholarship from FQRNT (Québec). Christophe Reutenauer benefited from
support of the Canada Research Chair program (Canada).

References

[1] J. Sklansky, Recognition of convex blobs, Pattern Recognition 2 (1) (1970) 3–10.

[2] M. Minsky, S. Papert, Perceptrons, 2nd Edition, MIT Press, 1988.

[3] C. Kim, On the cellular convexity of complexes, Pattern Analysis and Machine
Intelligence 3 (6) (1981) 617–625.

[4] C. Kim, Digital convexity, straightness, and convex polygons, Pattern Analysis
and Machine Intelligence 4 (6) (1982) 618–626.

[5] C. Kim, A. Rosenfeld, Digital straight lines and convexity of digital regions,
Pattern Analysis and Machine Intelligence 4 (2) (1982) 149–153.

[6] B. Chaudhuri, A. Rosenfeld, On the computation of the digital convex hull and
circular hull of a digital region, Pattern Recognition 31 (12) (1998) 2007–2016.

[7] R. Klette, A. Rosenfeld, Digital straightness—a review, Discrete Appl. Math.
139 (1-3) (2004) 197–230.

[8] U. Eckhardt, Digital lines and digital convexity, Digital and image geometry:
advanced lectures (2001) 209–228.

[9] I. Debled-Rennesson, J.-L. Rémy, J. Rouyer-Degli, Detection of the discrete
convexity of polyominoes, Discrete Appl. Math. 125 (1) (2003) 115–133.

[10] F. Feschet, L. Tougne, Optimal time computation of the tangent of a discrete
curve: Application to the curvature, in: G. Bertrand, M. Couprie, L. Perroton
(Eds.), Proc DGCI 1999, 8-th Int. Conf. on Discrete Geometry for Computer
Imagery, Marne-la-Vallée, France, March 17-19 , No. 1568 in LNCS, Springer-
Verlag, 1999, pp. 31–40.

[11] J.-O. Lachaud, A. Vialard, F. de Vieilleville, Fast, accurate and convergent
tangent estimation on digital contours, Image and Vision Computing 25 (2007)
1572–1587.

[12] A. Hübler, R. Klette, K. Voss, Determination of the convex hull of a finite set of
planar points within linear time, Elektronische Informationsverarbeitung und
Kybernetik 17 (2/3) (1981) 121–139.

[13] K. Voss, Discrete Images, Objects, and Functions in Zn, Springer-Verlag, 1993.

[14] S. Har-Peled, An output sensitive algorithm for discrete convex hulls, Comput.
Geom. 10 (2) (1998) 125–138.

18

[15] M. Lothaire, Combinatorics on words, Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 1997.

[16] M. Lothaire, Algebraic combinatorics on words, Vol. 90 of Encyclopedia of
Mathematics and its Applications, Cambridge University Press, Cambridge,
2002.

[17] M. Lothaire, Applied combinatorics on words, Vol. 105 of Encyclopedia of
Mathematics and its Applications, Cambridge University Press, Cambridge,
2005.

[18] S. Brlek, G. Labelle, A. Lacasse, Properties of the contour path of discrete sets,
Int. J. Found. Comput. Sci. 17 (3) (2006) 543–556.

[19] A. Daurat, M. Nivat, Salient and reentrant points of discrete sets, in: A. del
Lungo, V. di Gesu, A. Kuba (Eds.), Proc. IWCIA’03, Int. Workshop on
Combinatorial Image Analysis, Palermo, Italia, 14–16 May, Electronic Notes
in Discrete Mathematics, Elsevier Science, 2003.

[20] S. Brlek, X. Provençal, An optimal algorithm for detecting pseudo-squares., in:
A. Kuba, L. G. Nyúl, K. Palágyi (Eds.), Proc. DGCI 2006, 13-th Int. Conf. on
Discrete Geometry for Computer Imagery, Szeged, Hungary, 25–27 Oct., No.
4245 in LNCS, Springer-Verlag, 2006, pp. 403–412.

[21] S. Brlek, J.-M. Fédou, X. Provençal, On the tiling by translation problem,
Discrete Applied Math. To appear.

[22] H. Fredricksen, J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn
sequences, Discrete Math. 23 (3) (1978) 207–210.

[23] J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (4)
(1983) 363–381.

[24] A. A. Melkman, On-line construction of the convex hull of a simple polyline,
Inf. Process. Lett. 25 (1) (1987) 11–12.

[25] S. Brlek, J.-O. Lachaud, X. Provençal, Combinatorial view of convexity., in:
D. Coeurjolly, I. Sivignon, L. Tougne, F. Dupont (Eds.), Discrete Geometry for
Computer Imagery, 14th International Conference, DGCI 2008, Lyon, France,
April 16-18, 2008. Proceedings, Vol. 4992 of Lecture Notes in Computer Science,
Springer, 2008, pp. 57–68.

[26] C. Reutenauer, Free Lie algebras, Vol. 7 of London Mathematical Society
Monographs. New Series, The Clarendon Press Oxford University Press, New
York, 1993, oxford Science Publications.

[27] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on strings, Cambridge
University Press, Cambridge, 2007, translated from the 2001 French original.

[28] J.-P. Duval, A. Lefebvre, Words over an ordered alphabet and suffix
permutations, Theor. Inform. Appl. 36 (3) (2002) 249–259.

19

[29] C. Hohlweg, C. Reutenauer, Lyndon words, permutations and trees, Theoret.
Comput. Sci. 307 (1) (2003) 173–178, words.

[30] J. Berstel, A. Lauve, C. Reutenauer, F. Saliola, Combinatorics on words :
Chritoffel words and repetition in words, CRM-AMS, Montreal, 2008, to appear.

[31] E. B. Christoffel, Observatio arithmetica, Annali di Mathematica 6 (1875) 145–
152.

[32] J.-P. Borel, F. Laubie, Quelques mots sur la droite projective réelle, J. Théor.
Nombres Bordeaux 5 (1) (1993) 23–51.

[33] J. Berstel, A. de Luca, Sturmian words, Lyndon words and trees, Theoret.
Comput. Sci. 178 (1-2) (1997) 171–203.

[34] J.-P. Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique,
Ph.D. thesis, Université Louis Pasteur, Strasbourg (December 1991).

[35] F. Spitzer, A combinatorial lemma and its application to probability theory,
Trans. Amer. Math. Soc. 82 (1956) 323–339.

[36] G. Viennot, Algèbres de Lie libres et monöıdes libres, Vol. 691 of Lecture Notes
in Mathematics, Springer, Berlin, 1978, bases des algèbres de Lie libres et
factorisations des monöıdes libres.

[37] G. Aloupis, A history of linear-time convex hull algorithms for simple polygons.,
available electronically at http://cgm.cs.mcgill.ca/∼athens/cs601/.

[38] A. Ehrenfeucht, J. Haemer, D. Haussler, Quasi-monotonic sequences: theory,
algorithms and applications, SIAM J. Algebraic Discrete Methods 8 (3) (1987)
410–429.

About the Author—SREČKO BRLEK obtained his Ph.D. from Univer-
sité Bordeaux I in 1988. He is professor of computer science at Université du
Québec à Montréal, and a regular member of the Laboratoire de Combina-
toire et d’informatique Mathématique (LaCIM). In his research combinatorics
on words play a key role, and cover automata theory, formal language the-
ory, algorithms, discrete mathematics and also their applications in discrete
geometry and protocol design.

About the Author—JACQUES-OLIVIER LACHAUD graduated from EN-
SIMAG engineering school in Computer Science in 1994 and received a Ph.D.
degree in computer science from Joseph Fourier University (Grenoble, France)
in 1998. He is currently a Professor in Computer Science at the university of
Savoie (Chambry, France) and works in the mathematics laboratory (LAMA).
His research interests are in image segmentation and analysis, more specifically
deformable models, energy-minimizing techniques, digital geometry, topologi-
cal models and invariants. He has written about thirty papers in international
journals or conferences on these topics.

20

About the Author—XAVIER PROVENÇAL received B.Sc. and M.Sc. from
Université du Québec à Montréal, and has completed his Ph.D (2008) in math-
ematics and computer science. Currently he is a postdoctoral fellow from
FQRNT (Québec) in the laboratory of mathematics LAMA of the univer-
sity of Savoie in Chambéry. His research interests are combinatorics on words,
discrete geometry and theoretical computer science.

About the Author—CHRISTOPHE REUTENAUER is professor of math-
ematics at Université du Québec à Montréal. His research interests include
Agebra, Combinatorics and Theoretical Computer Science. He is also member
of the Laboratoire de Combinatoire et d’informatique Mathématique (LaCIM)
and holds the Canada Research Chair in “Algebra, Combinatorics and Com-
puter Science”.

21

