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Introduction

Throughout this paper M will be a compact, connected, irreducible, orientable 3-

manifold whose boundary is a torus. We shall fix a base point in ∂M and therefore have a

well-defined homomorphism π1(∂M)→ π1(M).

The SL(2, C)-representation variety of π1(M) is a complex affine algebraic variety R(M)

whose points correspond to representations of π1(M) with values in SL(2, C) [9]. If tr :

SL2(C)→ C denotes the trace function, then each ρ ∈ R(M) determines

χρ : π1(M)→ C χρ(γ) = tr(ρ(γ)),

called its character, and the set of such characters X(M) = { χρ | ρ ∈ R(M)} admits the

structure of a complex affine algebraic variety in such a way that the function

t : R(M)→ X(M), ρ 7→ χρ

is regular [9]. It turns out that t can be canonically identified with the algebro-geometric

quotient of R(M) by the natural action of SL(2, C) [13, Theorem 3.3.5]. This means that

C[X(M)] is isomorphic to the ring of invariants C[R(M)]SL(2,C) and t corresponds to the

inclusion C[R(M)]SL(2,C) ⊂ C[R(M)]. The orbit of a representation ρ under this action will

be denoted by O(ρ).

Each γ ∈ π1(M) determines an element of the coordinate ring Iγ ∈ C[X(M)] given by

evaluation: Iγ(χ) = χ(γ). Of more interest to us is the related function

fγ(χ) = χ(γ)2 − 4.

Research has shown that many topological properties of a 3-manifold M , as above, are

encoded in the functions fγ , so it is of interest to study their basic properties. One of the

goals of this paper is to find a useful set of conditions which allow us to determine the

multiplicities of certain characters as zeros of the functions fγ when γ ∈ π1(∂M). In order

to make sense of this statement, we introduce several notions.
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A class in α ∈ H1(∂M) determines an element γ(α) ∈ π1(M) through the Hurewicz

isomorphism H1(∂M) ∼= π1(∂M)→ π1(M). We shall abuse notation by writing α for γ(α).

For instance the function fγ(α) will be denoted by fα.

A slope on ∂M is a ∂M -isotopy class of essential, simple closed curves on ∂M . Any

slope r on ∂M determines (and is determined by) a pair ±α(r) of primitive elements of

H1(∂M) - the images in H1(∂M) of the two generators of H1(C) ∼= Z where C ⊂ ∂M is a

representative curve for r.

Consider a non-trivial curve X0 ⊂ X(M), that is a curve which contains the character

of an irreducible representation. Assume that X0 is irreducible. There is a unique 4-

dimensional subvariety R0 ⊂ R(M) for which t(R0) = X0 (cf. [5, Lemma 4.1]). The

smooth projective model X̃0 of X0 decomposes as

X0
ν
←− Xν

0
i
−→ Xν

0 ∪ I = X̃0

where ν : Xν
0 → X0 is a surjective regular birational equivalence, i is an inclusion, and I is

the finite set of ideal points of X0. These maps induce an isomorphism between function

fields:

C(X0)→ C(X̃0), f 7→ f̃ .

We use Zx(f̃γ) to denote the multiplicity of x ∈ X̃0 as a zero of f̃γ . By convention this

means that Zx(f̃γ) = ∞ if f̃γ = 0. The motivation to investigate these quantities arises

when γ = α(r) for some slope r on ∂M . Indeed, if M(r) is the 3-manifold obtained by Dehn

filling M along r, there is a quantifiable relationship between Zx(f̃α(r)) and the PSL(2, C)

representation theory of π1(M(r)) [8], [4,5,7]. For instance from [8, Proposition 1.5.4] it

follows that if x ∈ Xν
0 , β ∈ π1(∂M), and

Zx(f̃β) < Zx(f̃α(r)) <∞,

then ρ(α(r)) = ±I for each ρ ∈ R0 whose character is ν(x). Hence each such ρ induces a

representation π1(M(r)) → PSL(2, C). Under appropriate hypotheses, more can be said.

For instance if π1(M(r)) is a finite group, then Zx(f̃α(r)) = Zx(f̃β)+2 [4]. These facts were

essential ingredients in the proofs of the cyclic surgery theorem [8] and the finite surgery

theorem [7]. Theorem A below allows us to quantify the differences Zx(f̃α(r)) − Zx(f̃β) in

more general and topologically significant circumstances.

A representation ρ ∈ R(M) determines a homomorphism Ad◦ρ : π1(M)→ Aut(sl2(C))

where Ad : SL(2, C) → Aut(sl2(C)) is the adjoint representation. We shall simplify no-

tation by writing H1(M ;Adρ) for the cohomology group H1(M ; sl2(C)Ad◦ρ). Note that if

ρ(α(r)) = ±I for some slope r, then Ad◦ρ induces a representation π1(M(r))→ PSL(2, C).

In particular it makes sense to consider the cohomology group H1(M(r);Adρ).
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Theorem A Fix a slope r on ∂M and consider a non-trivial, irreducible curve X0 ⊂

X(M). Suppose that x ∈ Xν
0 is such that ν(x) = χρ for some representation ρ ∈ R0 with

non-abelian image which satisfies ρ(α(r)) ∈ {±I}. Assume that H1(M(r);Adρ) = 0 and

ρ(π1(∂M)) 6⊂ {±I}.

(1) If β ∈ π1(∂M) and ρ(β) 6= ±I, then

Zx(f̃α(r)) ≥ Zx(f̃β) + 2.

(2) If β ∈ π1(∂M) and Zx(f̃α(r)) > Zx(f̃β), then fα(r)|X0 6= 0, ρ(β) 6= ±I, and

Zx(f̃α(r)) = Zx(f̃β) + 2.

We can be a little more specific when ρ(π1(∂M)) is diagonalisable, for then it is clear

that Zx(f̃β) = 0 whenever ρ(β) 6= ±I. Hence under the hypotheses of Theorem A (2) we

have Zx(f̃α(r)) = 2. In the case where ρ(π1(∂M)) is parabolic subgroup, Zx(f̃β) > 0 for

each β ∈ H1(∂M). When fα(r)|X0 6= 0 we know of no instance where Zx(f̃α(r)) > 3 (cf. [3],

[12]).

Theorem A begs the question: given a non-trivial curve X0 ⊂ X(M) and some x ∈ Xν
0 ,

when is there a representation ρ ∈ R0, with non-abelian image, such that χρ = ν(x)?

According to [2, §2], such a representation exists if and only if ν(x) is a non-trivial character,

that is, a character whose image is not contained in {±2}. If rankZH1(M) = 1, then each

character in X0 is non-trivial ([2, Proposition 2.8]).

Corollary B Assume the hypotheses of Theorem A.

(1) If β ∈ H1(∂M) \ {0} and fβ|X0 = 0, then fα(r)|X0 = 0.

(2) If fα(r)|X0 6= 0 and β ∈ H1(∂M), then

Zx(f̃β) =











Zx(f̃α(r))− 2 if β ∈ H1(∂M) \ { nα(r) |n ∈ Z}

Zx(f̃α(r)) if β = nα(r) some n ∈ Z \ {0}

∞ if β = 0.

In order to describe a criterion on the manifold M(r) which allows us to apply the

results above in situations of interest, consider the small Seifert manifolds, i.e. those 3-

manifolds which admit the structure of a Seifert fibred space whose base orbifold is the

2-sphere with at most three cone points. If we exclude S1 × S2, these manifolds are known

to be irreducible. Further they are Haken if and only if they have infinite first homology

[11, VI.13]. For us, their key property is contained in the following proposition.

Proposition Suppose W is a small Seifert manifold and ρ ∈ Hom(π1(W ), PSL(2, C)) is

either irreducible or non-abelian. Then the cohomology group H1(W ;Adρ) is zero. ♦
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The proof of this proposition in the case where ρ factors through SL(2, C) can be found

in [6]. The general result follows from a similar computation.

Consider a curve X0 ⊂ X(M). The Culler-Shalen seminorm

‖ · ‖X0
: H1(∂M ; R)→ [0,∞)

was introduced in [8] to study Dehn fillings of M with cyclic fundamental groups. For

β ∈ H1(∂M), ‖β‖X0
is the degree of fβ| : X0 → C, or equivalently

‖β‖X0
=

{

0 if fβ|X0 = 0
∑

x∈X̃0
Zx(f̃β) if fβ|X0 6= 0.

Roughly speaking, ‖α(r)‖X0
measures the number of characters in X0 of representations

which send α(r) to ±I. As a consequence of Theorem A we are often able to give an explicit

calculation of ‖α(r)‖X0
when M(r) is small Seifert.

Theorem C Let M be the exterior of a knot in a closed, connected, orientable 3-manifold

W for which Hom(π1(W ), PSL(2, C)) contains only diagonalisable representations. Suppose

further that there is a non-boundary slope r for which M(r) is an irreducible, non-Haken

small Seifert manifold. Fix a non-trivial, irreducible curve X0 ⊂ X(M) for which fα(r)|X0

is non-constant. Then

‖α(r)‖X0
= m0 + 2A

where m0 =
∑

x∈X̃0
min{Zx(f̃α) | f̃α|X̃0 6≡ 0} and A is the number of characters χρ ∈ X0

of non-abelian representations ρ ∈ R0 such that ρ(α(r)) = ±I.

The condition that Hom(π1(W ), PSL(2, C)) contains only diagonalisable representa-

tions is a regularity condition. It implies that no representation in Hom(π1(M), PSL(2, C))

which is non-diagonalisable can send π1(∂M) into {±I}. This ensures the smoothness of

X0 at certain characters (cf. Theorem 1.1). Typically W will be S3 or a lens space.

Though we have assumed above that X0 is irreducible, this is not necessary. Culler-

Shalen seminorms are defined for arbitrary curves in X(M), i.e. curves which are possibly

reducible (cf. §6 of [7]). A comparable proof shows that Theorem C holds in this more

general situation. The interest in results of this form stems from the study of exceptional

Dehn fillings of M . Such fillings are, on the whole, well understood, except for those that

yield small Seifert manifolds. Calculations of the sort found in Theorem C were instrumental

in the proofs of the cyclic surgery theorem [8] and the finite surgery theorem [7], as well

as other results on exceptional fillings [5]. Our hope is that the result above will help shed

some light on the general problem of small Seifert fillings. In that context, it is of interest

to determine the number of PSL(2, C)-characters (§2) of the fundamental group a small

Seifert manifold. This we do in our last result.
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Suppose that W is a non-Haken Seifert manifold whose base orbifold is of the form

S2(p, q, r) where p, q, r ≥ 2. There is a presentation of π1(W ) of the form

π1(W ) = < x, y, h | h central, xp = ha, yq = hb, (xy)r = hc >

where gcd(a, p) = gcd(b, q) = gcd(c, r) = 1 [11, §VI]. Let ⌊·⌋ : R → Z denote the “greatest

integer less than or equal to” function.

Proposition D Assume that W is as described immediately above.

(1) The number of reducible PSL(2, C)-characters of π1(W ) is

⌊
|aqr + bpr + cpq|

2
⌋+

{

1 if gcd(p, q, r) is odd

2 if gcd(p, q, r) is even.

(2) The number of PSL(2, C)-characters of π1(W ) representations with image a dihedral

group of order at least 4 is

σ(q, r)⌊
p

2
⌋+ σ(p, r)⌊

q

2
⌋+ σ(p, q)⌊

r

2
⌋ − 2σ(p, q)σ(p, r)σ(q, r)

where σ(m,n) is one if m,n are both even, and zero otherwise.

(3) The number of PSL(2, C)-characters of π1(W ) is

⌊
p

2
⌋⌊

q

2
⌋⌊

r

2
⌋+ ⌊

p − 1

2
⌋⌊

q − 1

2
⌋⌊

r − 1

2
⌋+ ⌊

|aqr + bpr + cpq|

2
⌋ − ⌊

gcd(pq, pr, qr)

2
⌋

+⌊
gcd(p, q)

2
⌋+ ⌊

gcd(p, r)

2
⌋+ ⌊

gcd(q, r)

2
⌋+ 1.

It is possible to perform a similar calculation in the case of a Haken small Seifert man-

ifold. The only difference which arises is that in this case the set of reducible characters

is positive dimensional, reflecting the fact that such a manifold has infinite first homology

(see Remark 3.3).

We prove Theorem A, Corollary B and Theorem C in §1. It turns out that with appli-

cations in mind, it is useful to develop PSL(2, C) versions of our results. This is done in

§2. Finally in §3 we prove Propositon D.

1 Jumps in multiplicities of zeros

Throughout this section we shall assume that X0 ⊂ X(M) is a non-trivial, irreducible

curve and R0 is the unique 4-dimensional irreducible subvariety of R(M) for which t(R0) =

R(M). Suppose that ρ ∈ R0 has a non-abelian image and ρ(α(r)) ∈ {±I} but ρ(π1(∂M)) 6⊆
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{±I}. To simplify the notation, we shall use the symbol Adρ to designate either the

restriction of Adρ to a subgroup of π1(M) or a quotient of a subgroup of π1(M) through

which Adρ factors. In particular, as ρ(α(r)) ∈ {±I}, Adρ factors through π1(M(r)). We

assume that H1(M(r);Adρ) = 0.

The following result is essential to our analysis. Its proof in the case of an irreducible

representation can be found in [6]. The case of a reducible representation is handled in

Corollary B of [2].

Theorem 1.1 Suppose that ρ ∈ Rirr(M) is a non-abelian representation for which ρ(α(r)) ∈

{±I} but ρ(π1(∂M)) is not contained in {±I}, and H1(M(r);Adρ) = 0. Then

(1) ρ is a simple point of R(M) and the algebraic component of R(M) which contains it is

4-dimensional.

(2) χρ is a simple point of Xirr(M) and the algebraic component of Xirr(M) which contains

it is a curve.

(3) there is an analytic 2-disk D, smoothly embedded in R(M) and transverse to O(ρ) at ρ,

such that t|D is an analytic isomorphism onto a neighbourhood of χρ in Xirr(M).

(4) ρ is scheme reduced and there is a commutative diagram [h=2.5em] TZar
ρ O(ρ)TZar

ρ R(M)dtTZar
χρ

Xirr(M)
∼=∼=∼=

B1(M ;Adρ)Z1(M ;Adρ)H1(M ;Adρ).

1.1 The proof of Theorem A (1)

The proof splits naturally into the two cases: ρ(π1(∂M)) is diagonalisable, ρ(π1(∂M)) is

parabolic. We begin by developing material common to both.

By Theorem 1.1, our hypotheses imply that ν(x) = χρ is a smooth point of X0 and

therefore ν : Xν
0 → X0 provides an analytic isomorphism from a small neighbourhood of x

in Xν
0 to a small neighbourhood of χρ ∈ X0. In particular the following lemma holds.

Lemma 1.2 Zχρ(fγ) is defined and equals Zx(f̃γ) for each γ ∈ π1(M). ♦

Theorem 1.1 also shows that we may choose a smooth, analytic disk D ⊂ R0 such that

D ∩O(ρ) = {ρ} and t|D is an analytic isomorphism between D and a neighbourhood of χρ

in X(M). Let σ : ((−ǫ, ǫ), 0) → (t(D), χρ) be a smooth path with non-zero tangent at 0.

Then σ lifts to a smooth deformation ρs of ρ = ρ0. This deformation admits an expansion

of the form

ρs = exp(su1 + s2u2 + s3u3 + . . .)ρ

where uj : π → sl2(C) [10]. Thus for each γ ∈ π1(M),

ρs(γ) = exp(su1(γ) + s2u2(γ) + s3u3(γ) + . . .)ρ(γ) ∈ SL(2, C).
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It is well known (cf. [10]) that u1 ∈ Z1(M ;Adρ) and that under the isomorphism TZar
ρ R(M)

→ Z1(M ;Adρ) (Theorem 1.1), we have d
ds |s=0 ρs 7→ u1. Hence if ū1 denotes the class of u1

in H1(M ;Adρ) ∼= C (Theorem 1.1), the fact that ρs has a non-zero tangent at s = 0 which

is not in TZar
ρ O(ρ) implies that ū1 6= 0.

Lemma 1.3 (1) If γ ∈ π1(M), then fγ(χρs) has a Taylor expansion of the form

fγ(χρs) = fγ(χρ) + 2Iγ(χρ) tr(u1(γ)ρ(γ)) s + {2Iγ(χρ) tr(u2(γ)ρ(γ))

+tr(u1(γ)ρ(γ))2 + Iγ(χρ) tr(u1(γ)2ρ(γ))} s2 + O(s3).

(2) If γ ∈ π1(M) and 0 = u1(γ) = u2(γ) = . . . = uk−1(γ) where k > 1, then fγ(χρs) has a

Taylor expansion of the form

fγ(χρs) = fγ(χρ) + 2Iγ(χρ) tr(uk(γ)ρ(γ)) sk + 2Iγ(χρ) tr(uk+1(γ)ρ(γ)) sk+1

+O(sk+2).

Proof. Just develop fγ(χρs) = {tr(ρs(γ))}2 − 4 using the expansion exp(A) =
∑∞

j=1
Aj

j!

for A ∈ sl2(C). ♦

Our analysis now divides into two cases depending on whether ρ(π1(∂M)) is a diago-

nalisable or parabolic.

1.1.1 The case when ρ(π1(∂M)) is diagonalisable.

Since ρ(β) is diagonalisable, but not ±I, it follows that fβ(χρ) 6= 0, and thus

Zx(f̃β) = 0.

On the other hand since ρ(α(r)) = ±I, Lemma 1.3 implies that

fα(r)(χρs) = 2 tr(u1(α(r))2)s2 + O(s3).

Thus Zx(f̃α(r)) ≥ 2 = Zx(f̃β) + 2 (cf. Lemma 1.2) and so this case of the theorem is

complete.

1.1.2 The case when ρ(π1(∂M)) is parabolic.

As we have assumed that ρ(β) 6= ±I, we may suppose, after possibly replacing ρ by a

conjugate representation, that

ρ(β) = ±

(

1 1

0 1

)

.
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Evidently fβ(χρ) = 0, so that Zx(f̃β) ≥ 1. If fβ|X0 = 0, then by [9, Proposition 1.5.4] there

is a neighbourhood U of ρ in R0 such that ρ′(β) is parabolic for each ρ′ ∈ U . Hence the fact

that α(r) and β commute implies that ρ′(α(r)) is either parabolic or central in SL(2, C)

for each such ρ′. It follows that fα(r)|X0 = 0 and hence that the inequality of part (1) of

Theorem A holds. We shall therefore assume below that fβ|X0 6= 0 and we take

k0 = Zx(f̃β) <∞.

Our first task is to replace the curve

ρs = exp(su1 + s2u2 + s3u3 + . . .)ρ

described above by a new deformation of ρ which is better adapted to the calculation we

have in hand.

Lemma 1.4 The equality Zx(f̃β) ≥ k holds if and only if there exists a smooth curve

φs ∈ R(M) of the form φs = exp(sv1 + s2v2 + s3v3 + . . .)ρ where

(i) v̄1 = ū1 ∈ H1(M ;Adρ).

(ii) vi(β) = 0 for 1 ≤ i < k.

(iii) vk(β) =

(

0 0

c 0

)

for some c ∈ C.

Moreover, Zx(f̃β) = k if and only if there exists a curve of this type with c 6= 0.

Proof. First assume that there is a smooth curve in R(M) of the form φs = exp(sv1 +

s2v2 + . . .)ρ which satisfies the three conditions of the hypotheses. Then Lemma 1.3 implies

that

fβ(χφs
) = 4csk + O(sk+1).

Thus Zx(f̃β) ≥ k with equality if and only if c 6= 0.

Conversely assume that Zx(f̃β) ≥ k. We shall alter the deformation ρs = exp(su1 +

s2u2 + s3u3 + . . .)ρ inductively to show that there is a new deformation φs of the required

form.

For each A ∈ sl2(C), let uA ∈ B1(M ;Adρ) be the 1-coboundary defined by

uA(γ) = A−Adρ(γ)(A).

Suppose that u1(β) =

(

a b

c −a

)

and set B =

(

−1
2(a + b) 0

a 1
2 (a + b)

)

. Standard iden-

tities involving the exponential map of a Lie group imply that the curve of representations

ρ′s = exp(sB)ρsexp(−sB) admits an expansion of the form

ρ′s = exp(sv1 + s2u′
2 + · · ·)ρ

8



where v1 = u1 + uB , so v̄1 = ū1. Observe that v1(β) = (u1 + uB)(β) =

(

0 0

c 0

)

and so

by the first paragraph of the proof, Zx(f̃β) ≥ 1 with equality if and only if c 6= 0. This

completes the case where k = 1.

Assume inductively that we can find such a curve whenever Zx(f̃β) ≥ n ≥ 1 and

suppose that in fact Zx(f̃β) ≥ n + 1. Then there is a smooth curve in R(M) of the form

φs = exp(sv1+s2v2+. . .)ρ which satisfies the three conditions of the hypotheses with k = n.

By the first paragraph of the proof c = 0, that is vn(β) = 0. Write vn+1(β) =

(

a b

c −a

)

and set B =

(

−1
2(a + b) 0

a 1
2(a + b)

)

. The curve φ′
s = exp(sn+1B)φsexp(−sn+1B) may

be expanded as

φ′
s = exp(sv1 + · · ·+ snvn + sn+1v′n+1 + sn+2v′n+2 + · · ·)ρ

where v′n+1 = vn+1 + uB . Clearly v′n+1(β) =

(

0 0

c 0

)

. Thus the first paragraph of the

proof shows that Zx(f̃β) ≥ n + 1 with equality if and only if c 6= 0. This completes the

induction. ♦

In what follows we suppose that the curve of representations ρs admits an expansion of

the form described in Lemma 1.4:

ρs = exp(su1 + s2u2 + s3u3 + . . . + skuk + O(sk+1))ρ

where

ui(β) = 0 for all i such that 1 ≤ i < k0 = Zx(f̃β)

and

uk0
(β) =

(

0 0

c 0

)

for some c ∈ C
∗ = C \ {0}.

Lemma 1.5 Given the restrictions we have imposed on the expansion of ρs, the following

identities hold.

(1) ui(α(r)) =

(

0 yi

0 0

)

for some yi ∈ C, 1 ≤ i ≤ k0.

(2) uk0+1(α(r)) =

(

−1
2y1c yk0+1

y1c
1
2y1c

)

for some yk0+1 ∈ C.
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Proof. The fact that each ρs is a homomorphism forces certain relations to hold between

the functions ui. In particular for all 1 ≤ i ≤ k0,

ui(α(r)β) = ui(α(r)) + ui(β) +
1

2

k0−1
∑

j=1

(uj ⌣ uk0−j)(α(r), β)

+
i
∑

l=1

Al(u1, · · · , ui−2)(α(r), β)

where Al(u1, · · · , ui−2)(α(r), β) is a sum of monomials in Lie brackets between the uj(α(r))

and Adρ(α(r))(uj′(β)) with 1 ≤ j, j′ ≤ i− 2 (see [10] and [1]). As uj(β) = 0 for 1 ≤ j < k0

we have

ui(α(r)β) = ui(α(r)) + ui(β) for 1 ≤ i ≤ k0.

Similarly for this range of indices we have

ui(βα(r)) = ui(β) + Adρ(β)(ui(α(r))).

Since β and α(r) commute in π1(∂M), ui(α(r)β) = ui(βα(r)) and hence the calculations

above show

ui(α(r)) = Adρ(β)(ui(α(r))) for 1 ≤ i ≤ k0.

Since ρ(β) = ±

(

1 1

0 1

)

, if we set ui(α(r)) =

(

xi yi

zi −xi

)

, then these conditions im-

ply that xi = zi = 0 for 1 ≤ i ≤ k0. Thus for these values of i we obtain ui(α(r)) =
(

0 yi

0 0

)

, yi ∈ C, and therefore part (1) of the lemma holds.

Next we consider part (2). As above we have identities

uk0+1(α(r)β) = uk0+1(α(r)) + uk0+1(β) +
1

2
[u1(α(r)), uk0

(β)]

uk0+1(βα(r)) = uk0+1(β) + Adρ(β)(uk0+1(α(r))) +
1

2
[uk0

(β), Adρ(β)(u1(α(r)))],

where [·, ·] denotes the Lie bracket on sl2(C). Now ρ(β) = ±

(

1 1

0 1

)

commutes with

u1(α(r)) =

(

0 y1

0 0

)

and uk0+1(α(r)β) = uk0+1(βα(r)), so we obtain

uk0+1(α(r)) = Adρ(β)(uk0+1(α(r))) − [u1(α(r)), uk0
(β)].

Thus
(

xk0+1 yk0+1

zk0+1 −xk0+1

)

=

(

xk0+1 + zk0+1 − y1c yk0+1 − 2xk0+1 − zk0+1

zk0+1 −(xk0+1 + zk0+1 − y1c)

)

10



and therefore uk0+1(α(r)) =

(

−1
2y1c yk0+1

y1c
1
2y1c

)

, as claimed. ♦

Consider the expansion

ρs(α(r)) = exp(su1(α(r)) + · · · + sk0+2uk0+2(α(r)) + O(sk0+3))ρ(α(r))

and denote by As the sum su1(α(r)) + · · ·+ sk0+2uk0+2(α(r)). Then

tr(χρs(α(r))) = ±(2 + tr(As) +
1

2!
tr(A2

s) + . . . +
1

(k0 + 2)!
tr(Ak0+2

s ) + O(sk0+3)).

Lemma 1.5 implies that ui(α(r))uj(α(r)) = 0 for all 1 ≤ i, j ≤ k0. So, by use of the

multinomial formula and Lemma 1.5, we obtain

tr(A2
s) = sk0+2tr(u1(α(r))uk+1(α(r))) + O(sk0+3) = y2

1cs
k0+2 + O(sk0+3)

and

tr(Ai
s) = O(sk0+3) for 1 ≤ i ≤ k0 + 2 and i 6= 2.

This implies that

tr(χρs(α(r))) = ±(2 + (
y2
1c

2
)sk0+2 + O(sk0+3))

and hence

fα(r)(χρs(α(r))) = tr(χρs(α(r)))2 − 4 = 2y2
1cs

k0+2 + O(sk0+3).

Thus Zx(f̃α(r)) ≥ k0 + 2 = Zx(f̃β) + 2. This completes the proof of part (1) of Theorem A.

1.2 The proof of Theorem A (2)

Again our analysis splits into the two cases ρ(π1(∂M)) diagonalisable and ρ(π1(∂M))

parabolic. We begin, as before, developing material common to both.

According to the hypotheses of this part of Theorem A, fβ|X0 6= 0. We claim that the

condition H1(M(r);Adρ) = 0 implies that fα(r)|X0 6= 0 as well. Otherwise ρ′(α(r)) is either

parabolic or lies in {±I} for each ρ′ ∈ R0. If the former occurs for some ρ′, then it holds for

ρ′ in a Zariski open subset of R0 [9, Proposition 1.5.4] and hence the fact that α(r) and β

commute implies that fβ|X0 = 0, contrary to our assumptions. Thus ρ′(α(r)) = ǫI for all

ρ′ ∈ R0 and some fixed ǫ ∈ {±1}. Let R̄(M) denote the PSL(2, C)-representation variety

of M [5] and denote by R̄0 the image of R0 in R̄(M) under the finite-to-one map R(M)→

R̄(M). Clearly R̄0 is 4-dimensional and is contained in R̄(M(r)) ⊂ R̄(M). In particular,

4 ≤ dimρ R̄(M(r)) ≤ dim Z1(M(r);Adρ). But this is impossible as our assumption that

11



H1(M(r);Adρ) = 0 implies that Z1(M(r);Adρ) ∼= C
3. Hence fα(r)|X0 6= 0. In particular

we see that

Zx(f̃α(r)) <∞.

Next we show that ρ(β) cannot be ±I. First we need a lemma.

Lemma 1.6 Let Γ be a finitely generated group, γ ∈ Γ, and X0 ⊂ X(Γ) a curve. Then

for each n ∈ Z, there is some gn ∈ C(X0) such that fγn(x) = gn(x)fγ(x) for each x ∈ X0.

Furthermore if ρ ∈ R0, then gn(χρ) = 0 if and only if ρ(γ) has finite order d > 2 where d

divides 2n.

Proof. Let R0 be the unique 4-dimensional subvariety of R(M) for which t(R0) = X0.

There is a finite extension F of C(R0) and a tautological representation P : π→PSL2(F )

defined by

P (ζ) =

(

a b

c d

)

where the functions a, b, c and d satisfy the identity

ρ(γ) =

(

a(ρ) b(ρ)

c(ρ) d(ρ)

)

for all ρ ∈ R0 ([8]). In particular, for each ρ ∈ R0 we have fζ(χρ) = tr(P (ζ))(ρ)2 − 4.

By passing to an extension field of F if necessary, we may assume that P (γ) is an upper-

triangular matrix, say P (γ) =

(

a ∗

0 a−1

)

. Then for n ∈ Z,

fγn = (an − a−n)2 = (a− a−1)2(a(|n|−1) + a(|n|−3) + ... + a−(|n|−1))2.

If we set gn = a2(1−n)(a2n−1
a2−1

) = (a(|n|−1) + a(|n|−3) + ... + a−(|n|−1))2, then fγn = gnfγ .

Further gn(χρ) = 0 if and only if a(ρ)2 6= 1 and a(ρ)2n = 1, which is what we set out to

prove. ♦

Corollary 1.7 Given that Zx(f̃β) < Zx(f̃α(r)) <∞, then ρ(β) 6= ±I.

Proof. Since ρ(α(r)) = ±I while ρ(π1(∂M)) 6⊆ {±I}, it suffices to show that β 6= nα(r)

for any n ∈ Z.

Suppose to the contrary that β = nα(r) for some n. Since Zx(f̃β) <∞, we have n 6= 0.

According to Lemma 1.6, f̃β = f̃nα = g̃nf̃α where g̃n(x) = n2 6= 0. Hence

Zx(f̃β) = Zx(f̃nα(r)) = Zx(f̃α) + Zx(g̃n) = Zx(f̃α),

12



contrary to our assumptions. Thus β cannot be a multiple of α(r), and we are done. ♦

We can therefore apply the work of §1.1 in this section. In particular

Zx(f̃α(r)) ≥ Zx(f̃β) + 2.

The key to showing that equality holds rests in our next lemma.

Lemma 1.8 If ū is a non-zero class in H1(M ;Adρ) ∼= C, then u(α(r)) 6= 0.

Proof. Denote by V (r) the surgery torus in M(r) = M ∪ V (r). If j : ∂M→V (r) is the

inclusion, let j# : π1(∂M)→π1(V (r)) and j∗ : H1(V (r);Adρ) →H1(∂M ;Adρ) denote the

associated homomorphisms.

Suppose that u(α(r)) = 0 and let u0 ∈ Z1(∂M ;Adρ) be the composition π1(∂M) →

π1(M)
u
−→ C. An easy calculation shows that u0(α(r)n) = 0 for each n ∈ Z, and thus

u′
0 = u0◦j

−1
# : π1(V (r))→sl2(C) is a well-defined 1-cocycle on π1(V (r)). Clearly u0 = u′

0◦j#

so that ū0 = j∗(u′
0). The Mayer-Vietoris sequence for cohomology with twisted coefficients

associated to the decomposition M(r) = M ∪∂M V (r) shows that ū is in the image of the

natural homomorphism H1(M(r);Adρ) → H1(M ;Adρ). Since H1(M(r);Adρ) = 0, this

implies that ū = 0, contrary to our assumptions. Thus u(α(r)) 6= 0. ♦

1.2.1 The case when ρ(π1(∂M)) is diagonalisable.

Recall from §1.1.1, that Zx(f̃β) = 0 while

fα(r)(χρs) = 2 tr(u1(α(r))2)s2 + O(s3)

where u1 ∈ Z1(M ;Adρ) is non-zero cohomologically. The desired result is then a conse-

quence of

Lemma 1.9 If ū is a non-zero class in H1(M ;Adρ), then tr(u(α(r))2) 6= 0.

Proof. Without loss of generality we may suppose that ρ(π1(∂M)) ⊂ D, the group of

diagonal matrices in SL(2, C). We claim that u(α(r)) is also a diagonal matrix. To see this,

first observe that by our hypotheses on ρ, ρ(β) =

(

λ 0

0 λ−1

)

, where λ 6= ±1. Now

u(α(r)) + u(β) = u(α(r)β) = u(βα(r)) = u(β) +

(

λ 0

0 λ−1

)

u(α(r))

(

λ−1 0

0 λ

)
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and hence, u(α(r)) =

(

λ 0

0 λ−1

)

u(α(r))

(

λ−1 0

0 λ

)

. As λ2 6= 1, this can occur only if

u(α(r)) is diagonal.

We may now write u(α(r)) = z

(

1 0

0 −1

)

for some z ∈ C. Note that z 6= 0 by Lemma

1.8. Then tr(u(r)2) = 2z2 6= 0, and the lemma is proved. ♦

1.2.2 The case when ρ(π1(∂M)) is parabolic.

The hypotheses of part (2) preclude the possibility that fβ|X0 = 0, and so we shall take

Zx(f̃β) = k0 <∞.

According to §1.1.2, there is a smooth deformation of ρ:

ρs = exp(su1 + s2u2 + s3u3 + . . . + skuk + O(sk+1))ρ

where ui(β) = 0 for all i such that 1 ≤ i < k0 and uk0
(β) =

(

0 0

c 0

)

for some c ∈ C
∗.

Furthermore, the local development of f̃α(r) with respect to the deformation χρs of χρ is

fα(r)(χρs(α(r))) = 2y2
1cs

k0+2 + O(sk0+3)

where y1 ∈ C is determined by u1(α(r)) =

(

0 y1

0 0

)

. According to Lemma 1.8, y1 6= 0

and therefore

Zx(f̃α(r)) = k0 + 2 = Zx(f̃β) + 2.

This completes the proof of Theorem A.

1.3 The proof of Corollary B

Assume that fβ|X0 = 0. If β ∈ H1(∂M) \ { nα(r) | n ∈ Z \ {0}}, then ρ(β) 6= ±I and so

part (1) of Theorem A implies that Zx(f̃α(r)) ≥ Zx(f̃β) + 2 =∞. Hence fα(r) = 0. On the

other hand if β = nα(r) for some non-zero n ∈ Z, then Lemma 1.6 implies that there is a

regular function g : X0 → C such that 0 = fβ|X0 = gfα(r)|X0 and further g(χρ′) = 0 if and

only if ρ′(α(r)) has finite order d > 2 where d divides 2n. Since ρ(α(r)) = ±I, it follows

that g 6= 0 and thus fα(r)|X0 = 0. This proves part (1) of the corollary.

Next assume that fα(r)|X0 6= 0 and therefore Zx(f̃α(r)) < ∞. If β ∈ H1(∂M) \

{ nα(r) |n ∈ Z} then ρ(β) 6= ±I so that Theorem A (1) gives Zx(f̃α(r)) ≥ Zx(f̃β) + 2 >

Zx(f̃β). Hence by part (2) of that theorem we have Zx(f̃α(r)) = Zx(f̃β) + 2. If β = nα(r)
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for some non-zero n ∈ Z, then by Lemma 1.6, there is a smooth function g̃ : X̃0 → C such

that f̃β = g̃f̃α(r) and g̃(x) 6= 0. Then Zx(f̃β) = Zx(g̃f̃α(r)) = Zx(f̃α(r)). Finally Zx(f̃β) =∞

when β = 0 by convention. This completes the proof of the corollary. ♦

1.4 The proof of Theorem C

Assume the hypotheses of Theorem C and denote by R0 the unique irreducible 4-dimensional

algebraic subset of R(M) for which t(R0) = X0. Let

- J ⊂ X̃0 be the set of points x in X̃0 such that Zx(f̃α(r)) > Zx(f̃β) for some β ∈ π1(∂M).

- K be the set of characters in X0 of non-abelian ρ ∈ R0 for which ρ(α(r)) ∈ {±I}.

By hypothesis, M(r) contains no closed essential surfaces and hence, as r is not a boundary

slope, Zx(f̃α(r)) ≤ Zx(f̃β) for all ideal points x of X̃0 and β ∈ H1(∂M) [8, §1.6]. Thus

J ⊂ Xν
0 . We prove next that ν : Xν

0 → X0 induces a bijection between J and K.

Suppose that x ∈ J and let β ∈ π1(∂M) be such that Zx(f̃α(r)) > Zx(f̃β). Since M(r)

is an irreducible, non-Haken small Seifert manifold, b1(M(r)) = 0 and thus b1(M) = 1.

Then [2, Proposition 2.8] implies that ν(x) ∈ X0 is a non-trivial character and further

that there is a non-abelian ρ ∈ R0 such that ν(x) = χρ. Since Zx(f̃α(r)) > Zx(f̃β), we have

ρ(α(r)) ∈ {±I} ([8, §1.5]). Thus ν(x) ∈ K. Note as well that for the induced representation

Adρ : π1(M(r)) → PSL(2, C) we have H1(M(r);Adρ) = 0 by the proposition of the

introduction. Now ρ(π1(∂M)) 6⊂ {±I}, as otherwise ρ induces a representation π1(W ) →

PSL(2, C) which is non-diagonalisable, a possibility which contradicts our hypotheses. Thus

by [2, Theorem A] it follows that ν(x) is a smooth point of X0 and therefore ν−1(ν(x)) = x,

i.e. ν| : J → K is injective.

To prove that ν|J is surjective, suppose that χρ ∈ K where ρ ∈ R0 is non-abelian and

ρ(α(r)) = ±I. According to the proposition of the introduction we have H1(M(r);Adρ) =

0. Note also that ρ(π1(∂M)) 6⊂ {±I}, as otherwise ρ would induce a non-diagonalisable

representation π1(W )→ PSL(2, C). Hence there is some β ∈ π1(∂M) for which ρ(β) 6= ±I.

If x ∈ ν−1(χρ), then by Theorem A (1) we have Zx(f̃α(r)) > Zx(f̃β). Thus x ∈ J and hence

ν(J) = K. We note also that by part (2) of that theorem

Zx(f̃α(r))− Zx(f̃β) = 2 for each x ∈ J. (1)

We are now in a position to complete the proof. Since fα(r)|X0 is non-constant, the

function f̃α(r) : X̃0 → CP 1 has only finitely many zeros. Hence Zx(f̃α(r)) = 0 for all but

finitely many x ∈ X̃0. In particular

m0 =
∑

x∈X̃0

min{Zx(f̃β) | β ∈ H1(∂M)} <∞.
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We observed above that Zx(f̃α(r)) ≤ Zx(f̃β) for all ideal points x of X̃0 and β ∈ H1(∂M)

[8, §1.6]. Thus

‖α(r)‖X0
=

∑

x∈X̃0

Zx(f̃α(r))

= m0 +
∑

x∈Xν
0

(Zx(f̃α(r))−min{Zx(f̃β) | β ∈ H1(∂M)})

= m0 +
∑

x∈J

(Zx(f̃α(r))−min{Zx(f̃β) | β ∈ H1(∂M)})

= m0 + 2#J by (1) above

= m0 + 2#K,

which is what we set out to prove. ♦

2 Jumps in multiplicities of zeros in the case of

PSL(2, C)-characters

For a finitely generated group Γ we set R̄(Γ) = Hom(Γ, PSL(2, C)). Then R̄(Γ) is a

complex affine algebraic set (see eg. [5]) and the natural action of PSL2(C) on R̄(Γ) has

an algebro-geometric quotient X̄(Γ). There is a surjective quotient map

t̄ : R̄(Γ)−→X̄(Γ).

For each γ ∈ Γ, the function X̄(Γ)→C given by

fγ : X̄(Γ)→ C, t̄(ρ) 7→ tr(ρ(γ))2 − 4.

is regular. By analogy, X̄(Γ) is called the set of PSL2(C)-characters of Γ and t̄(ρ̄) will be

denoted by χρ̄.

A representation ρ̄ ∈ R̄(Γ) is called irreducible if it is not conjugate to a representation

whose image lies in {±

(

a b

0 a−1

)

| a, b ∈ C, a 6= 0}. Otherwise it is called reducible. Two

points worth mentioning are (i) the image of an irreducible representation in PSL(2, C)

is either non-abelian or Z/2 ⊕ Z/2 and (ii) any two subgroups of PSL(2, C) abstractly

isomorphic to Z/2⊕ Z/2 are conjugate.

Let N ⊂ PSL(2, C) denote the subgroup

{±

(

z 0

0 z−1

)

,±

(

0 w

−w−1 0

)

| z,w ∈ C
∗}
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of PSL(2, C). One of the features which distinguishes the SL(2, C) and PSL(2, C) theories

is that when an irreducible PSL(2, C) representation ρ conjugates into N , PSL(2, C) does

not act freely on the orbit O(ρ), but has, rather, Z/2 isotropy. This fact obliges us to add

an extra case to the PSL(2, C) version of Theorem A.

A curve X0 ⊂ X̄(Γ) which contains the character of an irreducible representation is

called non-trivial. For any such curve there is a unique 4-dimensional subvariety R0 ⊂

R̄(M), invariant under the action of PSL(2, C) which satisfies t(R0) = X0 [5, Lemma 4.1].

Theorem 2.1 Fix a slope r on ∂M and consider a non-trivial curve X0 ⊂ X̄(M). Suppose

that x ∈ Xν
0 is a point where ν(x) = χρ for some representation ρ ∈ R0 which is irreducible

or has non-abelian image and which satisfyies ρ(α(r)) = ±I. Assume H1(M(r);Adρ) = 0

and ρ(π1(∂M)) 6= {±I}.

(1) If β ∈ π1(∂M) and ρ(β) 6= ±I, then

Zx(f̃α(r)) ≥

{

Zx(f̃β) + 1 if ρ conjugates into N

Zx(f̃β) + 2 otherwise.

(2) If β ∈ π1(∂M) and Zx(f̃α(r)) > Zx(f̃β), then fα(r)|X0 6= 0, ρ(β) 6= ±I, and

Zx(f̃α(r)) =

{

Zx(f̃β) + 1 if ρ conjugates into N

Zx(f̃β) + 2 otherwise.

Proof. Let R0 be the unique algebraic component of t̄−1(X0) ⊂ R̄(M) for which t̄(R0) =

X0 [5, Lemma 4.1]. Then R0 has dimension 4 and is invariant under conjugation by

PSL(2, C). Arguing as in [6] or §3 of [2], we can show that the PSL2(C)-action on R0

admits an analytic 2-disk slice D at ρ. When ρ does not conjugate into N , the fact that

PSL(2, C) acts freely on O(ρ) implies that χρ has a neighbourhood in X0 which is analyt-

ically equivalent, by t̄, to an open subset of D. A proof identical to the one above shows

that the theorem holds in this case.

Assume then that ρ conjugates into N . In this case our hypotheses imply that ρ is

irreducible. Note also that ρ(π1(∂M)) is diagonalisible and so Zx(f̃β) = 0 and Zx(f̃α(r)) ≥

1. To see that Zx(f̃α(r)) = 1 when Zx(f̃α(r)) > Zx(f̃β) we first observe that χρ has a

neighbourhood in X0 which is analytically equivalent to the quotient of D by the action of

the Z/2 isotropy group of ρ [5, §6]. This action is linear and so ν(x) = χρ is a smooth point

of X0 and TxX0 may be identified with H1(M ;Ad◦ρ)/{±1}. The effect this 2−1 branching

has on the calculation of Zx(f̃α(r)) in §1.2.1 is to replace the identity Zx(f̃α(r)) = 2 there

by Zx(f̃α(r)) = 1 here. This completes the proof. ♦

The following corollary is proven in a manner similar to the derivation of Corollary B

from Theorem A.
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Corollary 2.2 Assume the hypotheses of Theorem C.

(1) If β ∈ H1(∂M) \ {0} and fβ|X0 = 0, then fα(r)|X0 = 0.

(2) If fα(r)|X0 6= 0 and β ∈ H1(∂M), then

Zx(f̃β) =











































Zx(f̃α(r))− 2 if β ∈ H1(∂M) \ { nα(r) |n ∈ Z} and ρ does not

conjugate into N

Zx(f̃α(r))− 1 if β ∈ H1(∂M) \ { nα(r) |n ∈ Z} and ρ conjugates

into N

Zx(f̃α(r)) if β = nα(r) some n ∈ Z \ {0}

∞ if β = 0.

♦

Culler-Shalen seminorms are defined in the PSL(2, C) setting ([5]). We have the follow-

ing analogue of Theorem C.

Theorem 2.3 Let M be the exterior of a knot in a closed, connected, orientable 3-manifold

W for which Hom(π1(W ), PSL(2, C)) contains only diagonalisable representations. Suppose

further that there is a non-boundary slope r for which M(r) is a non-Haken small Seifert

manifold. Fix a non-trivial curve X0 ⊂ X̄(M) for which fα(r)|X0 is non-constant. Then

‖α(r)‖X0
= m0 + A + 2B

where

m0 =
∑

x∈X̃0

min{Zx(f̃α) | f̃α|X̃0 6≡ 0},

while A, resp. B, is the number of irreducible characters χρ ∈ X0 of representations ρ which

conjugate, resp. do not conjugate, into N and such that ρ(α(r)) = ±I. ♦

3 Counting the PSL(2, C) characters of small Seifert

manifolds

Throughout this section we shall assume that W is a non-Haken small Seifert manifold

whose base orbifold is of the form S2(p, q, r) where p, q, r ≥ 2 (though see Remark 3.3). It

is shown in [11, §VI] that #H1(W ) < ∞ and that there is a presentation of π1(W ) of the

form

π1(W ) = < x, y, h | h central, xp = ha, yq = hb, (xy)r = hc >
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where gcd(a, p) = gcd(b, q) = gcd(c, r) = 1. It follows that

H1(W ) ∼= Z/ gcd(p, q, r)⊕ Z/f

where f = |aqr+bpr+cpq|
gcd(p,q,r) . Since every reducible character is a character of a diagonal repre-

sentation, it can be verified that the number of reducible characters in X̄(W ) is

#X̄red(W ) = ⌊
|aqr + bpr + cpq|

2
⌋+

{

1 if gcd(p, q, r) is odd

2 if gcd(p, q, r) is even

(here ⌊·⌋ : R→ Z denotes the “greatest integer less than or equal to” function). This proves

part (1) of Proposition D.

Lemma 3.1 Let ρ ∈ R̄(W ).

(1) If ρ(h) is parabolic, then χρ is the character of the trivial representation.

(2) If ρ(h) 6= ±I and is diagonalisable, then ρ(π1(W )) is diagonalisable.

Proof. If ρ(h) is a parabolic element of PSL(2, C), then the centrality of h in π1(W ) can

be used to show that each matrix in ρ(π1(W )) is either parabolic or ±I. Thus χρ has the

same character as the trivial representation, which proves part (1).

Next suppose that ρ(h) 6= ±I and is diagonalisable. Then after replacing ρ by a conju-

gate representation, we may suppose that

ρ(h) ∈ D = {±

(

z 0

0 z−1

)

| z ∈ C
∗}.

Another application of the centrality of h in π1(W ) implies that after conjugation either

ρ(π1(W )) ⊂ D or ρ(π1(W )) ⊂ N and ρ(h) = ±

(

i 0

0 −i

)

. If the second case arises and

ρ(x) ∈ N \D, then ±I = ρ(x)2 and so as ρ(xp) = ρ(ha) ∈ D, we have ±I = ρ(x)p = ρ(h)a.

But then both a and p are even, contrary to our assumptions. Thus ρ(x) ∈ D and similarly

ρ(y) ∈ D. It follows that ρ(π1(W )) ⊂ D and we are done. ♦

Setting h = 1 in π1(W ) induces a surjection of π1(W ) onto the (p, q, r) triangle group

∆(p, q, r) = < x, y | xp = 1, yq = 1, (xy)r = 1 > .

Note

H1(∆(p, q, r)) ∼= Z/ gcd(p, q, r)⊕ Z/g

where g = gcd(pq,pr,qr)
gcd(p,q,r) . Then

#X̄red(∆(p, q, r)) = ⌊
gcd(pq, pr, qr)

2
⌋+

{

1 if gcd(p, q, r) is odd

2 if gcd(p, q, r) is even.
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Since X̄(∆(p, q, r)) can be identified with {χρ ∈ X̄(W ) | ρ ∈ R̄(W ) and ρ(h) = ±I} while

by the lemma above {χρ ∈ X̄(W ) | ρ ∈ R̄(W ) and ρ(h) 6= ±I} ⊂ X̄red(W ), the set of

reducible characters in X̄(W ), we have

#X̄(W ) = #X̄(∆(p, q, r)) + #X̄red(W )−#X̄red(∆(p, q, r)).

= #X̄(∆(p, q, r)) + ⌊
|aqr + bpr + cpq|

2
⌋ − ⌊

gcd(pq, pr, qr)

2
⌋. (2)

We must therefore compute #X̄(∆(p, q, r)).

Proposition 3.2

(1) The number of reducible characters in X̄(∆(p, q, r)) is

⌊
gcd(pq, pr, qr)

2
⌋+

{

1 if gcd(p, q, r) is odd

2 if gcd(p, q, r) is even.

(2) The number of characters in X̄(∆(p, q, r)) of representations with image a dihedral group

of order at least 4 is

σ(q, r)⌊
p

2
⌋+ σ(p, r)⌊

q

2
⌋+ σ(p, q)⌊

r

2
⌋ − 2σ(p, q)σ(p, r)σ(q, r)

where σ(m,n) = 1 if m,n are both even and equals zero otherwise.

(3) The number of characters in X̄(∆(p, q, r)) is

⌊
p

2
⌋⌊

q

2
⌋⌊

r

2
⌋+ ⌊

p− 1

2
⌋⌊

q − 1

2
⌋⌊

r − 1

2
⌋+ ⌊

gcd(p, q)

2
⌋+ ⌊

gcd(p, r)

2
⌋+ ⌊

gcd(q, r)

2
⌋+ 1

Proof. We have already discussed part (1) of the lemma above, so consider part (2).

Denote by Dn ⊂ N ⊂ PSL(2, C) a dihedral group of order 2n and by Cn the cyclic, normal

subgroup of order n in Dn. We may assume that

(

0 1

−1 0

)

∈ Dn. Any representation

ρ ∈ R̄(∆(p, q, r)) with image Dn must send at least two of x, y, xy to Dn\Cn, a set consisting

of elements whose square is ±I, and so the corresponding orders amongst p, q, r are even.

Thus part (2) of the lemma holds if at least two of p, q, r are odd. On the other hand

if, say, ρ(x), ρ(y) ∈ Dn \ Cn, then up to conjugation ρ(x) =

(

0 1

−1 0

)

and ρ(xy) is a

diagonal matrix satisfying ρ(xy)r = ±I. It is easily seen that there are ⌊ r
2⌋ characters of

such representations onto some Dn with n ≥ 2, and therefore part (2) of the lemma holds

if exactly one of p, q, r is odd. To see that it holds when p, q, r are all even, one simply

observes that the ⌊p2⌋+ ⌊ q
2⌋+ ⌊ r

2⌋ characters of representations of ∆(p, q, r) onto some Dn

(n ≥ 2) just constructed are distinct except for the three characters of representations with

image D2.
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Next we prove part (3). Owing to the fact that ∆(p, q, r) is a quotient of Z/p ∗ Z/q =

< x, y | xp = 1, yq = 1 >, we may consider X̄(∆(p, q, r)) ⊂ X̄(Z/p ∗ Z/q). In Example 2.1

of [5], it is shown that

X̄(Z/p ∗ Z/q) = P ⊔ C

where “⊔” denotes disjoint union, P is a finite set of isolated points corresponding to

characters of representations which send x or y to ±I, and C is a disjoint union of [p2 ][ q
2 ]

non-trivial curves. Hence

#X̄(∆(p, q, r)) = #(P ∩ X̄(∆(p, q, r))) + #(C ∩ X̄(∆(p, q, r))).

A point in P ∩ X̄(∆(p, q, r)) is the character of a representation ρ ∈ R̄(∆(p, q, r)) for which

ρ(x) or ρ(y) is ±I. For instance if ρ(x) = ±I, then since ρ(y)q = ±I and ρ(y)r = ρ(xy)r =

±I, we have ρ(y)gcd(q,r) = ±I. There are ⌊gcd(q,r)
2 ⌋ + 1 such characters and it is quickly

verified that

#(P ∩ X̄(∆(p, q, r))) = ⌊
gcd(p, r)

2
⌋+ ⌊

gcd(q, r)

2
⌋+ 1

Next we consider C∩X̄(∆(p, q, r)). Each component of C is isomorphic to a complex line,

parameterised as follows (see [5, Example 2.1]). For each pair (j, k), where 1 ≤ j ≤ [p2 ] and

1 ≤ k ≤ [ q
2 ], set λ = eπij/p, µ = eπik/q, and τ = µ+µ−1. There is a curve C(j, k) ⊂ X̄(Z/p∗

Z/q) whose points are the characters of the representations ρz ∈ Hom(Z/p∗Z/q, PSL2(C)),

z ∈ C, where

ρz(x) = ±

(

λ 0

0 λ−1

)

, ρz(y) = ±

(

z 1

z(τ − z)− 1 τ − z

)

.

We have C = ⊔j,kC(j, k). The surjective, regular map

Ψ : C−→C(j, k), z 7→ χρz

is an isomorphism unless j = p/2 or k = q/2, in which case it is a 2− 1 map branched over

the single point χρ τ
2

.

Now X̄(∆(p, q, r)) ∩ C = A ⊔B where

A = {χρ ∈ X̄(∆(p, q, r)) | χρ ∈ C and ρ(xy) = ±I}

and

B = {χρ ∈ X̄(∆(p, q, r)) | χρ ∈ C and ρ(xy) 6= ±I}.

Since a character χρ ∈ X̄(∆(p, q, r)) lies in C if and only if ρ(x) 6= ±I and ρ(y) 6= ±I, we

have that χρ ∈ A if and only if after a conjugation we have

ρ(x) = ±

(

λ 0

0 λ−1

)

, ρ(y) = ±

(

λ−1 0

0 λ

)
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for some λ = exp(iθ) 6= ±1 such that θ ∈ (0, π
2 ] and λ2p = λ2q = 1. This is equivalent to

requiring λ = νm where ν = exp( 2πi
gcd(p,q)) and 1 ≤ m ≤ ⌊gcd(p,q)

2 ⌋. Thus

#A = ⌊
gcd(p, q)

2
⌋.

On the other hand if for some j, k as above and ρ ∈ R̄(∆(p, q, r)) we have χρ = χρz ∈

B ∩ C(j, k), then as ρ(xy)r = ±I, the (2r)th power of
(

λ 0

0 λ−1

)(

z 1

z(τ − z)− 1 τ − z

)

has trace 2. This implies that

2iIm(λ)z + λ−1τ = tr(

(

λ 0

0 λ−1

)(

z 1

z(τ − z)− 1 τ − z

)

) = 2 cos(
2πl

2r
)

for some l ∈ {1, 2, . . . , r− 1}. Thus the characters B ∩C(j, k) corresponding to representa-

tions of ∆(p, q, r) are contained amongst {χρz1
, χρz2

, . . . , χρzr−1
} where

zl =
2cos(2πl

2r )− λ−1τ

2iIm(λ)
.

Conversely if l ∈ {1, 2, . . . , r−1}, then tr(ρzl
(xy)) = ±2 cos(2πl

2r ) 6= ±2 so that ρzl
(xy)r = ±I

and therefore χρzl
∈ B ∩ C(j, k). If λ 6= i and µ 6= i (i.e. τ 6= 0), then χρz1

, χρz2
, . . . , χρzr−1

are mutually distinct, while if either λ = i or µ = i, it is easy to check that zr−j = τ − zj .

Hence

#(B ∩ C(j, k)) =











r − 1 if 1 ≤ j < p
2 and 1 ≤ k < q

2

⌊ r
2⌋ if j = p

2 or k = q
2 .

Summing over all the curves C(j, k) shows that

#B =























⌊p2⌋⌊
q
2⌋(r − 1) if p, q odd

(⌊p2⌋ − 1)⌊ q
2⌋(r − 1) + ⌊ q

2⌋⌊
r
2⌋ if p even, q odd

⌊p2⌋(⌊
q
2⌋ − 1)(r − 1) + ⌊p2⌋⌊

r
2⌋ if p odd, q even

(⌊p2⌋ − 1)(⌊ q
2⌋ − 1)(r − 1) + ⌊p2⌋⌊

q
2⌋⌊

r
2⌋ if p, q even.

Collecting the calculations from above and simplifying yields

#X̄(∆(p, q, r)) = #(C ∩ X̄(∆(p, q, r))) + #(P ∩ X̄(∆(p, q, r)))

= #A + #B + #(P ∩ X̄(∆(p, q, r)))

= ⌊
p

2
⌋⌊

q

2
⌋⌊

r

2
⌋+ ⌊

p− 1

2
⌋⌊

q − 1

2
⌋⌊

r − 1

2
⌋+ ⌊

gcd(p, q)

2
⌋

+⌊
gcd(p, r)

2
⌋+ ⌊

gcd(q, r)

2
⌋+ 1,

which is what we set out to prove. ♦
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3.1 Proof of Proposition D

Part (1) of the proposition has been dealt with above, while part (2) is a consequence of

Lemma 3.1 and Proposition 3.2. Finally combining Proposition 3.2 with Identity (2) above

yields part (3). This completes the proof of Proposition D. ♦

Remark 3.3 If W is a Haken small Seifert manifold with base orbifold S2(p, q, r) where

p, q, r ≥ 2, then W has first Betti number equal to 1, and since X̄(H1(W )) ⊂ X̄(W ), the

dimension of X̄(W ) is 1. Nevertheless, Lemma 3.1 remains valid in this context and so

#X̄irr(W ) = #X̄irr(∆(p, q, r)).
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