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7 Department of Physics, UAE University, P.O.Box 17551, Al-Ain, United Arab Emirates.
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Abstract

We study the consequences of the Z2-symmetry behind the µ–τ universality in neutrino mass matrix. We

then implement this symmetry in the type-I seesaw mechanism and show how it can accommodate all

sorts of lepton mass hierarchies and generate enough lepton asymmetry to interpret the observed baryon

asymmetry in the universe. We also show how a specific form of a high-scale perturbation is kept when

translated via the seesaw into the low scale domain, where it can accommodate the neutrino mixing data.

We finally present a realization of the high scale perturbed texture through addition of matter and extra

exact symmetries.
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1 Introduction

Flavor symmetry is commonly used in model building seeking to determine the nine free parameters

characterizing the effective neutrino mass matrix Mν, namely the three masses (m1,m2 and m3), the

three mixing angles (θ23, θ12 and θ13), the two Majorana-type phases (ρ and σ) and the Dirac-type

phase (δ). Incorporating family symmetry at the Lagrangian level leads generally to textures of specific

forms, and one may then study whether or not these specific textures can accommodate the experimental

data involving the above mentioned parameters ([1] and references therein). The recent observation of

a non-zero value for θ13 from the T2K[2], MINOS[3], and Double Chooz[4] experiments puts constraints

on models based on flavor symmetry (see Table 1 where the most recent updated neutrino oscillation

parameters are taken from [5]). In this regard, recent, particularly simple, choices for discrete and

continuous flavor symmetry addressing the non-vanishing θ13 question were respectively worked out ([6]

and references therein). The µ–τ symmetry [7, 8] is enjoyed by many popular mixing patterns such as

tri-bimaximal mixing (TBM) [9], bimaximal mixing (BM) [10], hexagonal mixing (HM) [11] and scenarios

of A5 mixing [12], and it was largely studied in the literature [13]. Any form of the neutrino mass matrix

respects a (Z2)
2 symmetry [14], and we can define the µ–τ symmetry by fixing one of the two Z2’s to
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express exchange between the second and third families, whereas the second Z2 factor is to be determined

later by data or, equivalently, by Mν parameters. The whole (Z2)
2 symmetry might turn out to be a

subgroup of a larger discrete group imposed on the whole leptonic sector. In realizing µ–τ symmetry we

have two choices namely (S−, S+, as explained later), and thus we have two textures corresponding to

µ–τ symmetry. It is known that both of these textures lead to a vanishing θ13 (with S− achieving this

in a less natural way), and thus perturbations are needed to get remedy of this situation[15]. In [16] we

studied the perturbed µ–τ neutrino symmetry and found the four patterns, obtained by disentangling

the effects of the perturbations, to be phenomenologically viable.

Table 1: Allowed 3σ-ranges for the neutrino oscillation parameters, mixing angles and mass-square dif-

ferences, taken from the global fit to neutrino oscillation data [5]. The quantities δm2 and ∆m2 are

respectively defined as m2
2 − m2

1 and m2
3 −

(

m2
1 +m2

2

)

/2, whereas Rν denotes the phenomenologically

important quantity δm2

|∆m2| . Normal and Inverted Hierarchies are respectively denoted by NH and IH.

Parameter Best fit 3σ range

δm2
(

10−5eV2
)

7.54 6.99− 8.18
∣

∣∆m2
∣

∣

(

10−3eV2
)

(NH) 2.43 2.23− 2.61
∣

∣∆m2
∣

∣

(

10−3eV2
)

(IH) 2.38 2.19− 2.56

Rν (NH) 0.0310 0.0268− 0.0367

Rν (IH) 0.0317 0.0273− 0.0374

θ12 (NH or IH) 33.710 30.590 − 36.800

θ13 (NH) 8.800 7.620 − 9.890

θ13 (IH) 8.910 7.670 − 9.940

θ23 (NH) 41.380 37.690 − 52.300

θ23 (IH) 38.070 38.070 − 53.190

In this work, we re-examine the question of exact µ–τ symmetry and implement it in a complete setup

of the leptonic sector. Then, within type-I seesaw scenarios, we show the ability of exact symmetry to

accommodate lepton mass hierarchies. Upon studying its effect on leptogenesis we find, in contrast to

other symmetries studied in [6] and [17] that it can account for it. The reason behind this fact is that

fixing just one Z2 in µ–τ symmetry leaves one mixing angle free which can be adjusted differently in

the Majorana and Dirac neutrino mass matrices (MR and MD), thus allowing for different diagonalizing

matrices. For the mixing angles and in order to accommodate data, we introduce perturbations at

the seesaw high scale and study their propagations into the low scale effective neutrino mass matrix.

As in [16], we consider that the perturbed texture arising at the high scale keeps its form upon RG

running which, in accordance with [20], does not affect the results in many setups. As to the origin of

the perturbations, we shall not introduce explicitly symmetry breaking terms into the Lagrangian [21],

but rather follow [16], and enlarge the symmetry with extra matter and then spontaneously break the

symmetry by giving vacuum expectation values (vev) to the involved Higgs fields.

The plan of the paper is as follows. In Section 2, we review the standard notation for the neutrino

mass matrix and the definition of the µ–τ symmetry. In Section 3 and 4, we introduce the two textures

realizing the µ–τ symmetry through S− and S+ respectively. We then specify our analysis to the latter

case (S+), and in Section 5 we introduce the type-I seesaw scenario. We address the charged lepton

sector in Subsection 5.1, whereas we study the different neutrino mass hierarchies in Subsection 5.2, and

in Subsection 5.3, we study the generation of lepton asymmetry. Sections 6 and 7 examine the possible

consequences for one particular possible deviation from the exact µ–τ symmetry, where we present the

analytical study in the former section, while the numerical study is given in the latter section. In Section

8 we present a theoretical realization of the perturbed texture. We end by discussion and summary in

Section 9.
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2 Notations and preliminaries

In the Standard Model (SM) of particle interactions, there are 3 lepton families. The charged-lepton mass

matrix linking left-handed (LH) to their right-handed (RH) counterparts is arbitrary, but can always be

diagonalized by a bi-unitary transformation:

V l
L Ml (V

l
R)

† =





me 0 0

0 mµ 0

0 0 mτ



 . (1)

Likewise, we can diagonalize the symmetric Majorana neutrino mass matrix by just one unitary trans-

formation:

V ν†Mν V ν∗ =





m1 0 0

0 m2 0

0 0 m3



 , (2)

with mi (for i = 1, 2, 3) real and positive.

The observed neutrino mixing matrix comes from the mismatch between V l and V ν in that

VPMNS = (V l
L)

† V ν . (3)

If the charged lepton mass eigen states are the same as the current (gauge) eigen states, then V l
L = 1 (the

unity matrix) and the measured mixing comes only from the neutrinos VPMNS = V ν . We shall assume

this saying that we are working in the “flavor” basis. As we shall see, corrections due to V l
L 6= 1 are

expected to be of order of ratios of the hierarchical charged lepton masses, which are small enough to

justify our assumption of working in the flavor basis. However, one can treat these corrections as small

perturbations and embark on a phenomenological analysis involving them [21].

We shall adopt the parametrization of [22], related to other ones by simple relations [1], where the

VPMNS is given in terms of three mixing angles (θ12, θ23, θ13) and three phases (δ, ρ, σ), as follows.

P = diag
(

eiρ, eiσ, 1
)

,

U = R23 (θ23) R13 (θ13) diag
(

1, e−iδ, 1
)

R12 (θ12)

=





c12 c13 s12 c13 s13
−c12 s23 s13 − s12 c23 e

−iδ −s12 s23 s13 + c12 c23 e
−iδ s23 c13

−c12 c23 s13 + s12 s23 e
−iδ −s12 c23 s13 − c12 s23 e

−iδ c23 c13



 ,

VPMNS = U P =





c12 c13e
iρ s12 c13e

iσ s13
(−c12 s23 s13 − s12 c23 e

−iδ)eiρ (−s12 s23 s13 + c12 c23 e
−iδ)eiσ s23 c13

(−c12 c23 s13 + s12 s23 e
−iδ)eiρ (−s12 c23 s13 − c12 s23 e

−iδ)eiσ c23 c13



 , (4)

where Rij (θij) is the rotation matrix in the (i, j)-plane by angle θij , and s12 ≡ sin θ12 . . .. Note that in

this adopted parametrization, the third column of VPMNS is real.

In this parametrization, and in the flavor basis, the neutrino mass matrix elements are given by:

Mν 11 = m1 c
2
12 c

2
13 e

2 i ρ +m2 s
2
12 c

2
13 e

2 i σ +m3 s
2
13,

Mν 12 = m1

(

−c13 s13 c
2
12 s23e

2 i ρ − c13 c12s12 c23 e
i (2 ρ−δ)

)

+m2

(

−c13 s13 s
2
12 s23e

2 i σ + c13 c12 s12 c23 e
i (2 σ−δ)

)

+m3 c13 s13 s23,

Mν 13 = m1

(

−c13 s13 c
2
12 c23 e

2 i ρ + c13 c12 s12 s23 e
i (2 ρ−δ)

)

+m2

(

−c13 s13 s
2
12 c23 e

2 i σ − c13 c12 s12 s23 e
i (2σ−δ)

)

+m3 c13 s13 c23,

Mν 22 = m1

(

c12 s13 s23 e
i ρ + c23 s12 e

i (ρ−δ)
)2

+m2

(

s12 s13 s23 e
i σ − c23 c12 e

i (σ−δ)
)2

+m3 c
2
13 s

2
23,

Mν 33 = m1

(

c12 s13 c23 e
i ρ − s23 s12 e

i (ρ−δ)
)2

3



+m2

(

s12 s13 c23 e
i σ + s23 c12 e

i (σ−δ)
)2

+m3 c
2
13 c

2
23,

Mν 23 = m1

(

c212 c23 s23 s
2
13 e

2 i ρ + s13 c12 s12
(

c223 − s223
)

ei (2 ρ−δ) − c23 s23 s
2
12 e

2 i (ρ−δ)
)

+m2

(

s212 c23 s23 s
2
13 e

2 i σ + s13 c12 s12
(

s223 − c223
)

ei (2σ−δ) − c23 s23 c
2
12 e

2 i (σ−δ)
)

+m3 s23 c23 c
2
13. (5)

This helps in viewing directly at the level of the mass matrix that the effect of swapping the indices 2

and 3 corresponds to the transformation θ23 → π
2 − θ23 and δ → δ ± π. Hence, for a texture satisfying

the µ-τ symmetry, one can check the correctness of any obtained formula by requesting it to be invariant

under the above transformation.

As said before, any form of Mν satisfies a Z2
2 -symmetry. This means that there are two commuting

unitary Z2-matrices (squared to unity) (S1, S2) which leave Mν invariant:

ST Mν S = Mν (6)

For a non-degenrate mass spectrum, the form of the Z2-matrix S is given by [17]:

S = V ν diag(±1,±1,±1) V ν† (7)

where the two S’s correspond to having, in diag(±1,±1,±1), two pluses and one minus, the position of

which differs in the two S’s (the third Z2-matrix, corresponding to the third position of the minus sign,

is generated by multiplying the two S’s and noting that the form invariance formula Eq.(6) is invariant

under S → −S).

In practice, however, we follow a reversed path, in that if we assume a ‘real’ orthogonal Z2-matrix

(and hence symmetric with eigenvalues ±1) satisfying Eq.(6), then it commutes with Mν , and so both

matrices can be simultaneously diagonalized. Quite often, the form of S is simpler than Mν , so one

proceeds to solve the eigensystem problem for S, and find a unitary diagonalizing matrix Ũ :

Ũ † S Ũ = Diag (±1,±1,±1) (8)

The conjugate matrix Ũ∗ can ‘commonly’ be identified with, or related simply to, the matrix V satisfying

Eq.(2)∗. In this case, and in the flavor basis, the VPMNS would be generally complex and equal to the one

presented in Eq.(4). Determining the eigenvectors of the S matrices helps thus to determine the neutrino

mixing and phase angles.

The µ–τ symmetry is defined when one of the two Z2-matrices corresponds to switching between the

2nd and the 3rd families. We have, up to a global irrelevant minus sign (see again Eq.6), two choices,

which would lead to two textures at the level of Mν .

3 The µ–τ symmetry manifested through S−: (Mν 12 = Mν 13 and Mν 22 = Mν 33)

The Z2-symmetry matrix is given by:

S− =





1 0 0

0 0 1

0 1 0



 (9)

The invariance of Mν under S− (Eq.6) forces the symmetric matrix Mν to have a texture of the form:

Mν =





Aν Bν Bν

Bν Cν Dν

Bν Dν Cν



 . (10)

∗In fact, as we shall see, starting from the general form of Ũ satisfying Eq.(8), one can determine (up to a diagonal phase

matrix) the unitary matrix Ũ0 which diagonalizes simultaneously the two commuting hermitian matrices S and M∗
νMν so

that Ũ
†
0
M∗

νMν Ũ0 = Diag
(

m2

1
,m2

2
,m2

3

)

= D2. One can show then that D2 commutes with ŨT

0
MνŨ0 which leads to the

latter matrix being diagonal. Fixing now the phases so that the latter diagonal matrix becomes real makes Ũ0 play the role

of V ∗ in Eq. (2). One then can use the freedom in rephasing the charged lepton fields to force the adopted parametrization

on VPMNS.
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The invariance of Mν under S− implies that S− commutes with both Mν and M∗
ν , and thus also with

the hermitian positive matricesM∗
νMν andMνM

∗
ν . One can easily find the general form of the diagonaliz-

ing unitary matrix of S− (up to an arbitrary diagonal phase matrix). The matrix S− has normalized eigen

vectors:
{

v1 =
(

0, 1/
√
2, 1/

√
2
)T

, v2 = (1, 0, 0 )T , v3 =
(

0, 1/
√
2,−1/

√
2
)T
}

corresponding respectively

to the eigenvalues (1, 1,−1). Since the eigenvalue 1 is two-fold degenerate, then there is still freedom for

a unitary transformation defined by an angle ϕ and phase ξ in its eigenspace to get the new eigen vectors

in the following form:

v1 = −sϕ ei ξ v1 + cϕ v2,

v2 = cϕ ei ξ v1 + sϕ v2, (11)

We have three choices as to how we order the eigenvectors forming the diagonalizing matrix U , and we

chose the one which would lead to “plausible” mixing angles falling in the first quadrant. This choice for

ordering the eigenvalues turns out to be (1,−1, 1), as we could check that the two choices corresponding

to the other two positions for the eigenvalue (−1) lead upon identification with VPMNS in Eq.(4) to some

mixing angles lying outside the first quadrant, and the matrix U− which diagonalizes S− can be cast into

the form:

U− = [v1, v3, v2] =





cϕ 0 sϕ
−sϕ ei ξ/

√
2 1/

√
2 cϕ ei ξ/

√
2

−sϕ ei ξ/
√
2 −1/

√
2 cϕ ei ξ/

√
2



 . (12)

One can single out of this general form the unitary matrix which diagonalizes also the hermitian

positive matrix M∗
ν Mν with different positive eigenvalues. In order to simplify the resulting formulas,

the matrix M∗
ν Mν can be organized in a concise form as,

M∗
ν Mν =





aν bν bν
b∗ν cν dν
b∗ν dν cν



 , (13)

where aν , bν , cν and dν are defined as follows,

aν = |Aν |2 + 2 |Bν |2 , bν = A∗
ν Bν +B∗

ν Cν +B∗
ν Dν ,

cν = |Aν |2 + |Bν |2 + |Cν |2 , dν = |Bν |2 + C∗
ν Dν +D∗

ν Cν . (14)

The diagonalization of M∗
ν Mν through U− fixes ϕ and ξ to be:

tan (2ϕ) =
2
√
2 |bν |

cν + dν − aν
, ξ = Arg (b∗ν) . (15)

Now and after having fixed ϕ and ξ we have,

U †
−M∗

ν MνU− = UT
− Mν M

∗
ν U∗

− = Diag
(

m2
1,m

2
2,m

2
3

)

, (16)

where

m2
1 =

aν + cν + dν
2

+
1

2

√

(aν − dν − cν)
2 + 8 |bν |2,

m2
2 = cν − dν ,

m2
3 =

aν + cν + dν
2

− 1

2

√

(aν − dν − cν)
2
+ 8 |bν |2. (17)

The above relations imply directly that UT
− Mν U− commutes with (UT

− Mν U−)∗, and hence also with

the product of these two matrices which is a diagonal matrix: UT
− Mν U−(UT

− Mν U−)∗ = UT
− Mν M

∗
ν U∗

−.

Since we have a non-degenrate spectrum amounting to different eigenvalues of Mν M
∗
ν , we deduce directly

that UT
− Mν U− is diagonal. Actually we get:

UT
− Mν U− = MDiag

ν , (18)
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where MDiag
ν is a diagonal matrix whose entries are,

MDiag

ν 11 = Aν c
2
ϕ −

√
2 s2ϕ ei ξ Bν + (Cν +Dν) s

2
ϕ e2 i ξ,

MDiag

ν 22 = Cν −Dν ,

MDiag

ν 33 = Aν s
2
ϕ +

√
2 s2ϕ ei ξ Bν + (Cν +Dν) c

2
ϕ e2 i ξ. (19)

In order to extract the mixing and phase angles, we use the freedom of multiplying U− by a diagonal

phase matrix Q = Diag
(

e−ip1 , e−ip2 , e−ip3
)

to ensure real positive eigenvalues for the mass matrix Mν

such that

(U− Q)TMν(U− Q) = Diag (m1,m2,m3) , (20)

and we find that we should take

pi =
1

2
Arg(MDiag

νii
), i = 1, 2, 3. (21)

However, we get now the following form for the diagonalizing matrix U− Q:

U− Q =





cφ e
−ip1 0 sφe

−ip3

− 1√
2
sφe

i(ξ−p1) 1√
2
e−ip2 1√

2
cφe

i(ξ−p3)

− 1√
2
sφe

i(ξ−p1) − 1√
2
e−ip2 1√

2
cφe

i(ξ−p3)



 , (22)

In order to have the conjugate of this matrix in the same form as the adopted parametrization of VPMNS

in Eq.(4), where the third column is real, we can make a phase change in the charged lepton fields:

e → e−ip3 e, µ → ei(ξ−p3) µ, τ → ei(ξ−p3) τ (23)

so that we identify now the mixing and phase angles and see that the µ–τ symmetry forces the following

angles:

θ23 = π/4, θ12 = 0, θ13 = ϕ,

ρ =
1

2
Arg

(

MDiag

ν 11 MDiag *

ν 33

)

, σ =
1

2
Arg

(

MDiag

ν 22 MDiag *

ν 33

)

, δ = 2 π − ξ. (24)

We can get, as phenomenology suggests, a small value for θ13 assuming

|bν | ≪ |cν + dν − aν | . (25)

and then the mass spectrum turns out to be:

m2
1 ≈ aν , m2

2 = cν − dν , m2
3 ≈ cν + dν (26)

Inverting these relations to express the mass parameters in terms of the mass eigenvalues we get these

simple direct relations,

aν ≈ m2
1, cν ≈ m2

2+m2
3

2 , dν ≈ m2
3 −m2

2

2
. (27)

It is remarkable that all kinds of mass spectra can be accommodated by properly adjusting the parameters

aν , cν , and dν according to the relations in Eq.(27). As to the mixing angles, we see that the value of θ23
is phenomenologically acceptable corresponding to maximal atmospheric mixing, and the parameter bν
can be adjusted according to Eq.(25) to accommodate the small mixing angle θ13. The phases are not of

much concern because so far there is no serious constraint on phases. It seems that all things fit properly

except the vanishing value of the mixing angle θ12 which is far from its experimental value ≃ 33.7o.

One might argue that this symmetry pattern S− might be viable phenomenologically if we adopt an

alternative choice of ordering its eigenvalues and use the phase ambiguity to put all mixing angles in the

first quadrant. We have not done this, but rather we prefer to find a phenomenologically viable symmetry

leading directly to mixing angles in the first quadrant. This can be carried out in the second texture

expressing the µ–τ symmetry materialized through S+.
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4 The µ–τ symmetry manifested through S+: (Mν 12 = −Mν 13 and Mν 22 = Mν 33)

The Z2-symmetry matrix is given by:

S+ =





−1 0 0

0 0 1

0 1 0



 (28)

The invariance of Mν under S+ (Eq. 6) forces the symmetric matrix Mν to have a texture of the form:

Mν =





Aν Bν −Bν

Bν Cν Dν

−Bν Dν Cν



 (29)

As before, S+ commutes with Mν , M
∗
ν and thus also with M∗

νMν and MνM
∗
ν . The normalized eigen

vectors of S+ are:
{

v1 =
(

0,−1/
√
2, 1/

√
2
)T

, v2 = ( 1, 0, 0 )
T
, v3 =

(

0, 1/
√
2, 1/

√
2
)T
}

corresponding

respectively to the eigenvalues {−1,−1, 1}. We would like to find the general form (up to a diagonal

phase matrix) of the unitary diagonalizing matrix of S+. Since the eigenvalue −1 is two-fold degenerate,

then there is still freedom for a unitary transformation defined by an angle ϕ and phase ξ in its eigenspace

to get new eigen vectors in the following form:

v1 = sϕ e−i ξ v1 + cϕ v2,

v2 = −cϕ e−i ξ v1 + sϕ v2. (30)

Once again, the suitable choice of ordering the eigenvectors of S+, which would determine the unitary

matrix U+ diagonalizing S+ in such a way that the mixing angles fall all in the first quadrant, turns out

to correspond to the eigenvalues ordering {−1,−1, 1}. Hence, the matrix U+ assumes the following form:

U+ = [v1, v2, v3] =





cϕ sϕ 0

−sϕ e−i ξ/
√
2 1/

√
2 cϕ e−i ξ 1/

√
2

sϕ e−i ξ/
√
2 −1/

√
2 cϕ e−i ξ 1/

√
2



 . (31)

The matrix M∗
νMν has the form,

M∗
ν Mν =





aν bν bν
b∗ν cν dν
−b∗ν dν cν



 , (32)

where aν , bν , cν and dν are defined as follows,

aν = |Aν |2 + 2 |Bν |2 , bν = A∗
ν Bν +B∗

ν Cν −B∗
ν Dν ,

cν = |Bν |2 + |Cν |2 + |Dν |2 , dν = − |Bν |2 + C∗
ν Dν +D∗

ν Cν . (33)

and its eigenvalues are given by:

m2
1 =

aν + cν − dν
2

+
1

2

√

(aν + dν − cν)
2
+ 8 |bν |2,

m2
2 =

aν + cν − dν
2

− 1

2

√

(aν + dν − cν)
2
+ 8 |bν |2,

m2
3 = cν + dν . (34)

The specific form of U+ of Eq.(31) which diagonlizes also the hermitian matrix M∗
νMν, which commutes

with S+, corresponds to:

tan (2ϕ) =
2
√
2 |bν |

cν − aν − dν
, ξ = Arg (bν) , (35)

As in the case of U−, one can prove that UT
+ Mν U+, after having fixed ϕ and ξ according to Eq. (35),

is diagonal

UT
+ Mν U+ = MDiag

ν = Diag (MDiag

ν 11 , M
Diag

ν 22 , M
Diag

ν 33 ), (36)

7



where

MDiag

ν 11 = Aν c
2
ϕ −

√
2 s2ϕ e−i ξ Bν + (Cν −Dν) s

2
ϕ e−2 i ξ,

MDiag

ν 22 = Aν s
2
ϕ +

√
2 s2ϕ e−i ξ Bν + (Cν −Dν) c

2
ϕ e−2 i ξ,

MDiag

ν 33 = Cν +Dν , (37)

while the squared modulus of these complex eigenvalues are identified respectively with the squared mass

m2
1, m

2
2 and m2

3 (the eigenvalues of M∗
νMν in Eq. 34 ).

Again, as was the case for the S− pattern, we use the freedom of multiplying U+ by a diagonal phase

matrix Q in order that

(U+ Q)TMν(U+ Q) = Diag (m1, m2, m3) . (38)

Moreover, we re-phase the charged lepton fields to make the conjugate of (U+ Q) in the same form as

the adopted parametrization for VPMNS in Eq.(4), so that to identify the mixing and phase angles. We

find that the µ–τ symmetry realized through S+ entails the followings:

θ23 = π/4, θ12 = ϕ, θ13 = 0,

ρ =
1

2
Arg (MDiag

ν 11 ) , σ =
1

2
Arg (MDiag

ν 22 ) , δ =
1

2
Arg (MDiag

ν 33 )− ξ. (39)

These predictions are phenomenologically “almost” viable (the non-vanishing value of θ13 will be at-

tributed to small deviations from the exact symmetry), and furthermore do not require a special adjust-

ment for the parameters aν , bν , cν , dν which can be of the same order, in contrast to Eq.(25), and still

accommodate the experimental value of θ12 ≃ 33.7o.

The various neutrino mass hierarchies can also be produced as can be seen from Eq.(34) and Eq.(35)

where the three masses and the angle ϕ are given in terms of four parameters aν , |bν | , cν , and dν .

Therefore, one can solve the four given equations to get aν , |bν | , cν , and dν in terms of the masses and

the angle ϕ.

5 The seesaw mechanism and the S+ realized µ–τ symmetry

We impose now the µ − τ -symmetry, defined by the matrix S = S+, at the Lagrangian level within a

model for the Leptons sector. Then, we shall invoke the type-I see-saw mechanism to address the origin

of the effective neutrino mass matrix, with consequences on leptogenesis. The procedure has already been

done in [17] for other Z2-symmetries.

5.1 The charged lepton sector

We start with the part of the SM Lagrangian responsible for giving masses to the charged leptons:

L1 = Yij Li φ ℓcj , (40)

where the SM Higgs field φ and the right handed (RH) leptons ℓcj are assumed to be singlet under S,

whereas the left handed (LH) leptons transform in the fundamental representation of S:

Li −→ SijLj. (41)

Invariance under S implies:

STY = Y, (42)

and this forces the Yukawa couplings to have the form:

Y =





0 0 0

a b c

a b c



 , (43)
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which leads, when the Higgs field acquires a vev v, to a charged lepton squared mass matrix of the form:

MlM
†
l = v2





0 0 0

0 1 1

0 1 1





(

|a|2 + |b|2 + |c|2
)

. (44)

As the eigenvectors ofMlM
†
l are

(

0, 1/
√
2, 1/

√
2
)T

with eigenvalue 2v2
(

|a|2 + |b|2 + |c|2
)

and
(

0, 1/
√
2,−1/

√
2
)T

and ( 1, 0, 0 )
T
with a degenerate eigenvalue 0, then the charged lepton mass hierarchy can not be ac-

commodated. Moreover, the nontrivial diagonalizing matrix, illustrated by non-canonical eigenvectors,

means we are no longer in the flavor basis. To remedy this, we introduce SM -singlet scalar fields ∆k

coupled to the lepton LH doublets through the dimension-5 operator:

L2 =
fikr
Λ

Li φ∆k ℓ
c
r. (45)

This way of adding extra SM-singlets is preferred, for suppressing flavor–changing neutral currents, than

to have additional Higgs fields . Also, we assume the ∆k’s transform under S as:

∆i −→ Sij ∆j . (46)

Invariance under S implies,

ST frS = fr, where (fr)ij = fijr, (47)

and thus we have the following form

fr =





Ar Br −Br

Er Cr Dr

−Er Dr Cr



 , (48)

when the fields ∆k and the neutral component of the Higgs field φ◦ take vevs (〈∆k〉 = δk, v = 〈φ◦〉) we
get a charged lepton mass matrix:

(Ml)ir =
vfikr
Λ

δk, (49)

if δ1, δ2 ≪ δ3 then

(Ml)ir ≃ vfi3r
Λ

δ3 ≃





−B1 −B2 −B3

D1 D2 D3

C1 C2 C3



 , (50)

with f13j = −Bj , f23j = Dj , f33j = Cj for j = 1, 2, 3. In Ref. [17], a charged lepton matrix of exactly

the same form was shown to represent the lepton mass matrix in the flavor basis with the right charged

lepton mass hierarchies, assuming just the ratios of the magnitudes of the vectors comparable to the

lepton mass ratios.

5.2 Neutrino mass hierarchies

The effective light LH neutrino mass matrix is generated through the seesaw mechanism formula

Mν = MD
ν M−1

R MDT

ν , (51)

where the Dirac neutrino mass matrix MD
ν comes from the Yukawa term

gij Li iτ2 Φ
∗νRj , (52)

upon the Higgs field acquiring a vev, whereas the symmetric Majorana neutrino mass matrix MR comes

from a term (C is the charge conjugation matrix)

1

2
νTRi C

−1 (MR)ij νRj . (53)
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We assume the RH neutrino to transform under S as:

νRj −→ SjrνRr, (54)

and thus the S-invariance leads to

ST g S = g , ST MR S = MR. (55)

This forces the following textures:

MD
ν = v





AD BD −BD

ED CD DD

−ED DD CD



 , MR = ΛR





AR BR −BR

BR CR DR

−BR DR CR



 , (56)

where the explicitly appearing scales ΛR and v characterize respectively the heavy RH Majorana neu-

trino masses and the electro-weak scale. Later, for numerical estimates, we shall take ΛR and v to be

respectively around 1014 GeV and 175 GeV, so the scale characterizing the effective light neutrino v2

ΛR

would be around 0.3 eV. Throughout the work, where no risk of confusion, these scales will not be written

explicitly in the formulae in order to simplify the notations. The resulting effective matrix Mν will have

the form of Eq.(29) with

Aν = [(C2
R −D2

R)A
2
D − 4BR (CR +DR)AD BD + 2AR (CR +DR)B

2
D]/detMR,

Bν = −(CR +DR) {(DD − CD)BD AR + (DR − CR)ED AD + [AD (CD −DD) + 2BD ED]BR}/detMR,

Cν = {(AR CR −B2
R)D

2
D + [−2 (AR DR +B2

R)CD + 2BR (CR +DR)ED]DD

+(AR CR −B2
R)C

2
D − 2BR (CR +DR)ED CD + E2

D (C2
R −D2

R)}/detMR,

Dν = {−(AR DR +B2
R)D

2
D + [−2 (−ARCR +B2

R)CD − 2BR (CR +DR)ED]DD

−(AR DR +B2
R)C

2
D + 2BR (CR +DR)ED CD − E2

D (C2
R −D2

R)}/detMR,

detMR = (CR +DR) [AR (CR −DR)− 2B2
R]. (57)

Concerning the mass spectrum of the light neutrinos, it can be related to that of the RH neutrinos

through the following equation connecting the product of the square eigenmasses of Mν to those of MD

and MR:

det (M∗
ν Mν) = det

(

MD†
ν MD

ν

)2
det (M∗

R MR)
−1 . (58)

As was the case for the effective neutrino squared mass matrix, we choose to write:

MD†
ν MD

ν =





aD bD −bD
b∗D cD dD
−b∗D dD cD



 , M∗
R MR =





aR bR bR
b∗R cR dR
−b∗R dR cR



 , (59)

with

aD = |AD|2 + 2 |ED|2 ,
bD = A∗

D BD + E∗
D CD − E∗

D DD,

cD = |BD|2 + |CD|2 + |DD|2 ,
dD = − |BD|2 + C∗

D DD +D∗
D CD,

aR = |AR|2 + 2 |BR|2 ,
bR = A∗

R BR +B∗
R CR −B∗

R DR,

cR = |BR|2 + |CR|2 + |DR|2 ,
dR = − |BR|2 + C∗

R DR +D∗
R CR.

(60)

so that one can write concisely the mass spectrum of M∗
ν Mν , M

∗
R MR and MD†

ν MD
ν as:

{

cν,R,D + dν,R,D,
aν,R,D + cν,R,D − dν,R,D

2
± 1

2

√

(aν,R,D + dν,R,D − cν,R,D)
2
+ 8 |bν,R,D|2

}

. (61)

The mass spectrum and its hierarchy type are determined by the eigenvaules presented in Eq.(61). One

of the simple realizations which can be inferred from Eq.(58) is to adjust the spectrum of M∗
R MR so that

to follow the same kind of hierarchy as M∗
ν Mν . However, this does not necessarily imply that MD†

ν MD
ν

will behave similarly. Also, this does not exhaust all possible realizations producing the desired hierarchy

and what is stated is just a mere simple possibility.
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5.3 Leptogenesis

In this kind of models, the unitary matrix diagonalizing MR is not necessarily diagonalizing MD
ν . In fact,

the Majorana and Dirac neutrino mass matrices have different forms dictated by the S-symmetry and the

angle ϕ in Eq.(35) depends on the corresponding mass parameters. This point is critical in generating

lepton asymmetry, in contrast to other symmetries [17] where no freedom was left for the mixing angles

leading to the same form on MR and MD
ν with identical diagonalizing matrices. This is important when

computing the CP asymmetry induced by the lightest RH neutrinos, say N1, since it involves explicitly

the unitary matrix diagonalizing MR:

ε1 =
1

8 π v2
1

(

M̃D†
ν M̃D

ν

)

11

∑

j=2,3

Im

{

[

(

M̃D†
ν M̃D

ν

)

1j

]2
}

F

(

m2
Rj

m2
R1

)

. (62)

where F (x) is the function containing the one loop vertex and self-energy corrections [23], and which, for

a hierarchical heavy neutrinos mass spectrum far from almost degenerate, is given by

F (x) =
√
x

[

1

1− x
+ 1− (1 + x) ln

(

1 +
1

x

)]

(63)

Assuming that there is a strong hierarchy among RH neutrino masses with mR1 << mR2 << mR3, the

CP asymmetry can be approximated as

ε1 ≃ −6× 10−2

Im

{

[(

M̃D†
ν M̃D

ν

)

12

]2
}

v2
(

M̃D†
ν M̃D

ν

)

11

mR1

mR2
. (64)

The matrix M̃D
ν is the Dirac neutrino mass matrix in the basis where the RH neutrinos are mass eigen-

states:

M̃D
ν = MD

ν VR F0 (65)

Here VR is the unitary matrix, defined up to a phase diagonal matrix, that diagonalizes the symmetric

matrix MR, and F0 is a phase diagonal matrix chosen such that the eigenvalues of MR are real and

positive.

The generated baryon asymmetry can be written as

YB :=
nB − nB̄

s
≃ 1.3× 10−3 × ε1 ×W(m̃,mR1), m̃ =

(

M̃D†
ν M̃D

ν

)

11

mR1
(66)

where nB, nB̄ and s are the number densities of baryons, anti-baryons, and entropy, respectively, and W
is a dilution factor which accounts for the wash-out of the total lepton asymmetry due to the ∆L = 1

inverse decays and the lepton violating 2-2 scattering processes, and its value can be determined by

solving the Boltzmann equation. However, analytical expressions for W have been obtained for the cases

where (m̃ > 1 eV ) and (1 eV > m̃ > 10−3 eV ), known as the strong and the weak wash-out regimes

respectively[24]. For instance, in the strong wash out regime (SW), W is approximated as

W(SW ) ≃
(

10−3 eV

2m̃

)1.2

(67)

In our case where the S-symmetry imposes a particular form on the symmetric MR (Eq. 56), we can

take VR as being the rotation matrix U+ of Eq.(31) corresponding to

θR 23 = π/4, θR 12 = ϕR =
1

2
tan−1

(

2
√
2 |bR|

cR − aR − dR

)

, θR 13 = 0, ξR = Arg (bR) . (68)
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As to the diagonal phase matrix, F0 = Diag
(

e−iα1 , e−iα2 , e−iα3
)

, it can be chosen according to Eq.(37)

to be

α1 =
1

2
Arg

[

AR c2ϕR
−
√
2 s2ϕR

e−i ξR BR + (CR −DR) s
2
ϕR

e−2 i ξR
]

,

α2 =
1

2
Arg

[

AR s2ϕR
+
√
2 s2ϕR

e−i ξR BR + (CR −DR) c
2
ϕR

e−2 i ξR
]

,

α3 =
1

2
Arg (cR + dR) . (69)

We assume here that the resulting mass spectrum ofMR via the diagonalizing matrix VRF0 is in increasing

order, otherwise one needs to apply a suitable permutation on the columns of the latter matrix in

order to get this. Note here that had the matrix VR diagonalized MD
ν , which would have meant that

N = V †
R MD

ν VR is diagonal, then we would have reached a diagonal M̃D†
ν M̃D

ν equaling a product of

diagonal matrices, and no leptogenesis:

M̃D†
ν M̃D

ν = F †
0

(

V †
RM

D†
ν VR

)(

V †
RM

D
ν VR

)

F0 = F †
0N

†NF0 (70)

In contrast, we get in our case:
(

M̃D†
ν M̃D

ν

)

12
= ei(α1−α2)

[

−
√
2 ei ξR (AD B∗

D + ED C∗
D − ED D∗

D) s2ϕR

+
√
2 e−i ξR (A∗

D BD − E∗
D DD + E∗

D CD)

+sϕR
cϕR

(

−2 |BD|2 − |CD|2 − |DD|2 + 2 |ED|2 + |AD|2 + C∗
D DD +D∗

D CD

)]

(

M̃D†
ν M̃D

ν

)

13
= 0

(

M̃D†
ν M̃D

ν

)

11
= c2ϕR

(

|AD|2 + 2 |ED|2
)

+s2ϕR

(

2 |BD|2 + |CD|2 + |DD|2 − C∗
D DD − CD D∗

D

)

−
√
2 sϕR

cϕR

(

AD B∗
D ei ξR − ED D∗

D ei ξR + ED C∗
D ei ξR + h.c

)

. (71)

We see that
(

M̃D†
ν M̃D

)

12
is complex in general, and the question is asked whether or not one can tune

it to produce the correct CP asymmetry. Clearly, the phase of
(

M̃D†
ν M̃D

ν

)

12
would be the triggering

factor in producing the baryon asymmetry. More explicitly,

Im[
(

M †D
ν MD

ν

)

12
]2 ∝ sin [2 (φ+ α1 − α2)], (72)

where φ is the phase of the entry
(

V †
R MD

ν VR

)

12
.

Considering that mR1 < 1014 GeV and the Yukawa neutrino couplings to be not too small compared

to the one which makes the see-saw mechanism more natural, which corresponds to m̃ > 10−3 eV , and

hence the baryon asymmetry can be expressed as

YB ≃ 1.1× 10−9
(r12
0.1

)( mR1

1013 GeV

)

(

10−3eV

m̃

)0.2
[

|(MD†
ν MD

ν )12|
(MD†

ν MD
ν )11

]2

sin [2 (φ+ α1 − α2)] (73)

with r12 = mR1/mR2 which parametrizes how strong is the hierarchy of the RH neutrinos mass spectrum.

If the matrix elements
(

MD†
ν MD

ν

)

11
and

(

MD†
ν MD

ν

)

12
are of the same order, then, for m̃ of the order of

v2

ΛR
≃ 0.3 eV , we have

YB ≃ 0.35× 10−9
(r12
0.1

)( mR1

1013 GeV

)

sin [2 (φ+ α1 − α2)] (74)

So, for hierarchical heavy RH neutrino mass spectrum and with mR1 > 1013 GeV one can adjust the

value of Majorana phase difference (α1 − α2) to obtain YB equals to the observed value[25].

The above estimate for the baryon asymmetry assumed |(MD†
ν MD

ν )12|/(MD†
ν MD

ν )11 ∼ 1, and it is

not generic by any mean. However, from the equation (73) it is clear that one can easily obtain a value

of YB, that is in agreement with the observation, corresponding to many other possible choices for the

values of the matrix elements of (MD†
ν MD

ν ), and the mass of the lightest RH neutrino [17].
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6 A possible deviation from the µ–τ symmetry through S+ and

its consequences

We saw that exact µ–τ -symmetry implied a vanishing value for the mixing angle θ13. Recent oscillation

data pointing to a small but non-vanishing value for this angle suggest then a deviation on the exact

symmetry texture in order to account for the observed mixing. We showed in [16] how “minimal”

perturbed textures disentangling the effects of the perturbations can account for phenomenology. We

shall consider now, within the scheme of type-I seesaw, a specific perturbed texture imposed on Dirac

neutrino mass matrix MD
ν , and parameterized by only one small parameter α, and show how it can

resurface on the effective neutrino mass matrix Mν , which is known to be phenomenologically viable. We

compute then the “perturbed” eigenmasses and mixing angles to first order in α, whereas we address

in the next section the question of finding numerically a viable pattern for MD
ν and MR leading to Mν

consistent with the phenomenology. Thus, we assume a perturbed MD
ν of the form

MD
ν =





AD BD (1 + α) −BD

ED CD DD

−ED DD CD



 (75)

The small parameter α affects only one condition defining the exact S-symmetry texture, and can be

expressed as:

α = −
(

MD
ν

)

12
+
(

MD
ν

)

13

(MD
ν )13

. (76)

Applying the seesaw formula of Eq.(51) with MR given by Eq.(56) we get then:

Mν (1, 1) = M0
ν (1, 1) + α2B

2
D

(

CRAR −B2
R

)

detMR

+ α
2BD (CR +DR) (ARBD −BRAD)

detMR

Mν (1, 2) = M0
ν (1, 2) + α

BD

[

AR (CRCD −DRDD)−B2
R (DD + CD)− EDBR (DR + CR)

]

detMR

Mν (1, 3) = M0
ν (1, 3) + α

BD

[

AR (CRDD −DRCD)−B2
R (DD + CD) + EDBR (DR + CR)

]

detMR

Mν (2, 2) = M0
ν (2, 2) = M0

ν (3, 3) = Mν (3, 3)

Mν (2, 3) = M0
ν (2, 3) (77)

where M0
ν is the ‘unperturbed’ effective neutrino mass matrix (corresponding to α = 0) and thus can be

diagonalized by U0
+ of Eq.(31) corresponding to the following angles,

θ023 = π/4, θ012 = ϕ0 =
1

2
tan−1

(

2
√
2
∣

∣b0ν
∣

∣

c0ν − a0ν − d0ν

)

, θ013 = 0, and ξ0 = Arg
(

b0ν
)

, (78)

Here, the superscript 0 denotes quantities corresponding to the unperturbed effective neutrino mass

matrix M0
ν .

The mass matrix Mν can be organized in the following form,

Mν =





Aν Bν (1 + χ) −Bν

Bν (1 + χ) Cν Dν

−Bν Dν Cν



 (79)

where the perturbation parameter χ is given by:

χ = − (Mν)12 + (Mν)13
(Mν)13

. (80)

The two parameters χ and α are generally complex and of the same order provided we do not have

unnatural cancelations between the mass parameters of MD
ν and MR. Nevertheless and without loss of
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generality, α can be made positive and real. Furthermore, as will be explained later in our numerical

investigation, α can be adjusted to have the same value as |χ|.
In order to compute the new eigenmasses and mixing angles of Mν, we write it in the following form

working only to first order in α:

Mν = M0
ν +Mα, (81)

where the matrix Mα is given as,

Mα =





α11 α12 α13

α12 0 0

α13 0 0



 , (82)

and the non-vanishing entries of Mα are found to be,

α11 =
2αBD (CR +DR) (ARBD −BRAD)

detMR

,

α12 =
αBD

[

AR (CRCD −DRDD)−B2
R (DD + CD)− EDBR (DR + CR)

]

detMR

,

α13 =
αBD

[

AR (CRDD −DRCD)−B2
R (DD + CD) + EDBR (DR + CR)

]

detMR

. (83)

Note here that Mν (1, 1) gets distorted by terms of order α and α2. However, this will not “perturb”

the relations defining µ–τ symmetry, which are expressed only through Mν (1, 2) ,Mν (1, 3) ,Mν (2, 2) and

Mν (3, 3).

We seek now a unitary matrix Q diagonalizing M∗
ν Mν , and we write it in the form:

Q = U0
+ (1 + Iǫ) , Iǫ =





0 ǫ1 ǫ2
−ǫ∗1 0 ǫ3
−ǫ∗2 −ǫ∗3 0



 , (84)

where Iǫ is an antihermitian matrix due to the unitarity of Q. Imposing the diagonalization condition on

M∗
ν Mν , and knowing that U0

+ diagonalizes M0∗
ν M0

ν , we have:

Q†M∗
ν MνQ = Diag

(

|MDiag

ν 11 |
2
, |MDiag

ν 22 |
2
, |MDiag

ν 33 |
2
)

,

U0†
+ M0∗

ν M0
ν U

0
+ = Diag

(

∣

∣M0Diag

ν 11

∣

∣

2
,
∣

∣M0Diag

ν 22

∣

∣

2
,
∣

∣M0Diag

ν 33

∣

∣

2
)

. (85)

Keeping only terms up to first order in α, which is consistent with aiming to compute Iǫ up to this order

in α and thus with dropping higher orders of Iǫ, we get the condition:

i, j ∈ {1, 2, 3}, i 6= j,
(

Q†M∗
ν Mν Q

)

ij
= 0 =⇒

[

Iǫ , M
0Diag∗
ν M0Diag

ν

]

ij
=
[

U0†
+

(

M0∗
ν Mα +M∗

α M0
ν

)

U0
+

]

ij
. (86)

One can solve analytically for ǫ1, ǫ2, ǫ3 to get:

ǫ1 =
1

∣

∣M0Diag

ν 22

∣

∣

2 −
∣

∣M0Diag

ν 11

∣

∣

2

{

1√
2
e−i ξ0

[

(α∗
13 − α∗

12)
(

D0
ν − C0

ν

)

−A0∗
ν (α13 − α12) + 2α∗

11B
0
ν

]

c2ϕ+

2Re
(

α∗
11 A

0
ν

)

sϕ cϕ − 1√
2
ei ξ

0 [

(α13 − α12)
(

D0∗
ν − C0∗

ν

)

−A0
ν (α∗

13 − α∗
12) + 2α11B

0∗
ν

]

s2ϕ } ,

ǫ2 =
1

∣

∣M0Diag

ν 33

∣

∣

2 −
∣

∣M0Diag

ν 11

∣

∣

2

{

1√
2

[

(α13 + α12) A
0∗
ν +

(

C0
ν +D0

ν

)

(α∗
13 + α∗

12)
]

cϕ− ei ξ
0

B0∗
ν (α12 + α13) sϕ

}

,

ǫ3 =
1

∣

∣M0Diag

ν 33

∣

∣

2 −
∣

∣M0Diag

ν 22

∣

∣

2

{

1√
2

[

(α13 + α12) A
0∗
ν +

(

C0
ν +D0

ν

)

(α∗
13 + α∗

12)
]

sϕ+ e−i ξ0 B0∗
ν (α12 + α13) cϕ

}

,

(87)

and the resulting diagonal matrix MDiag
ν = QTMνQ is such that

MDiag

ν 11 = M0Diag

ν 11 + c2ϕ0α11 −
√
2 sϕ0 cϕ0 (α12 − α13) e

−i ξ0 ,

MDiag

ν 22 = M0Diag

ν 22 + s2ϕ0α11 +
√
2 sϕ0 cϕ0 (α12 − α13) e

−i ξ0 ,

MDiag

ν 33 = M0Diag

ν 33 . (88)
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where the diagonalized mass matrix entries M0Diag

ν 11 , M0Diag

ν 22 and M0Diag

ν 33 can be inferred from those in

Eq.(37) to be,

M0Diag

ν 11 = A0
ν c

2
ϕ0 −

√
2 s2ϕ0 e−i ξ0 B0

ν +
(

C0
ν −D0

ν

)

s2ϕ0 e−2 i ξ0 ,

M0Diag

ν 22 = A0
ν s

2
ϕ0 +

√
2 s2ϕ0 e−i ξ0 B0

ν +
(

C0
ν −D0

ν

)

c2ϕ0 e−2 i ξ0 ,

M0Diag

ν 33 = C0
ν +D0

ν . (89)

Thus one can obtain the squared masses up to order α as,

m2
1 =

∣

∣M0Diag

ν 11

∣

∣

2 −
√
2Re

{

e−i ξ0
[

(α∗
13 − α∗

12)
(

D0
ν − C0

ν

)

−A0∗
ν (α13 − α12) + 2α∗

11B
0
ν

]

sϕ cϕ

}

+

2Re
[

A0
ν α

∗
11 c

2
ϕ + (α∗

12 − α∗
13) B

0
ν

]

,

m2
2 =

∣

∣M0Diag

ν 22

∣

∣

2
+
√
2Re

{

e−i ξ0
[

(α∗
13 − α∗

12)
(

D0
ν − C0

ν

)

−A0∗
ν (α13 − α12) + 2α∗

11B
0
ν

]

sϕ cϕ

}

+

2Re
[

A0
ν α

∗
11 c

2
ϕ + (α∗

12 − α∗
13) B

0
ν

]

,

m2
3 =

∣

∣M0Diag

ν 33

∣

∣

2
. (90)

In order to extract the mixing and phase angles corresponding to Q = U0
+ (1 + Iǫ), the matrix Q

should be multiplied by a suitable diagonal phase matrix to ensure that the eigenvalues of Mν are real

and positive. Moreover, as mentioned before, the charged lepton fields should be properly re-phased in

order that one can match the adopted parameterization in Eq.(4). Thus, identifying Q, after having been

multiplied by the diagonal phase matrix and made to have a third column of real values, with the VPMNS

one can get the “perturbed” mixing angles,

t12 ≈ tϕ0

∣

∣

∣

∣

1 +
ǫ1
tϕ0

+ ǫ∗1 tϕ0

∣

∣

∣

∣

, t13 ≈
∣

∣ǫ2 cϕ0 + ǫ3 sϕ0

∣

∣ , t23 ≈
∣

∣

∣1− 2 ǫ2 sϕ0 e−i ξ0 + 2 ǫ3 cϕ0 e−i ξ0
∣

∣

∣ , (91)

and the “perturbed” phases

δ ≈ 2 π − ξ0 −Arg
(

ǫ∗1 cϕ0 e−i ξ0 + ǫ∗2

)

,

ρ ≈ π −Arg
[(

cϕ0 − ǫ∗1 sϕ0

) (

ǫ∗2 cϕ0 + ǫ∗3 sϕ0

)]

− 1

2
Arg (MDiag

ν 33 MDiag∗
ν 11 ) ,

σ ≈ π −Arg
[(

sϕ0 + ǫ1 cϕ0

) (

ǫ∗2 cϕ0 + ǫ∗3 sϕ0

)]

− 1

2
Arg (MDiag

ν 33 MDiag∗
ν 22 ) . (92)

7 Numerical investigation for the deviation from the S+-realized

µ–τ symmetry

The numerical investigation turns out to be quite subtle due to the huge number of involved parameters

which describe the relevant mass matrices and the possible deviation. Therefore, we start by studying

numerically the perturbed mass matrix texture at the level of the effective light neutrino mass matrix,

then, working backward, we reconstruct the Dirac and Majorana neutrino mass matrices together with

the parameter α. For our numerical purpose, it is convenient to recast the effective neutrino light mass

matrix, by using Eqs.(2-5), into the form,

Mν ab =

3
∑

j=1

Uaj Ubj λj , (93)

where λ1, λ2 and λ3 are defined as,

λ1 = m1 e
2iρ, λ2 = m2 e

2iσ, λ3 = m3. (94)

Then the texture characterized by the deviation χ, where χ is a complex parameter equal to |χ| eiθ, can
be written as

Mν 12 +Mν 13 (1 + χ) = 0 ⇒
3
∑

j=1

[U1j U2j + (U1j U3j) (1 + χ)] λj = 0,
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⇒ A1 λ1 +A2 λ2 +A3 λ3 = 0,

Mν 22 −Mν 33 = 0 ⇒
3
∑

j=1

(U2j U2j − U3j U3j) λj = 0,

⇒ B1 λ1 +B2 λ2 +B3 λ3 = 0, (95)

where

Aj = U1j U2j + U1j U3j (1 + χ) , and Bj = U2
2j − U2

3j , (no sum over j). (96)

Then the coefficients A and B can be written explicitly in terms of mixing angles and Dirac phase as,

A1 = −cθ12 cθ13
(

cθ12cθ23sθ13 − sθ12sθ23e
−i δ
)

(1 + χ)− cθ12cθ13
(

cθ12sθ23sθ13 + sθ12cθ23e
−i δ
)

,

A2 = −sθ12 cθ13
(

sθ12cθ23sθ13 + cθ12sθ23e
−i δ
)

(1 + χ)− sθ12cθ13
(

sθ12sθ23sθ13 − cθ12cθ23e
−i δ
)

,

A3 = sθ13cθ23cθ13 (1 + χ) + sθ13sθ23cθ13 ,

B1 =
(

−cθ12cθ23sθ13 + sθ12sθ23e
−i δ
)2 −

(

cθ12sθ23sθ13 + sθ12cθ23e
−i δ
)2

,

B2 =
(

sθ12cθ23sθ13 + cθ12sθ23e
−i δ
)2 −

(

sθ12sθ23sθ13 − cθ12cθ23e
−i δ
)2

,

B3 = c2θ23c
2
θ13

− s2θ23c
2
θ13

. (97)

Assuming λ3 6= 0, Eqs.(95) can be solved to yield λ’s ratios as,

λ1

λ3
=

A3 B2 −A2 B3

A2 B1 −A1 B2
,

λ2

λ3
=

A1 B3 −A3 B1

A2 B1 −A1 B2
, (98)

From the λ’s ratios, one can get exact results for the mass ratios m13 ≡ m1

m3
and m23 ≡ m2

m3
as well as

for the phases ρ and σ in terms of the mixing angles, remaining Dirac phase δ and the parameter χ. In

addition, one can compute the expressions for many phenomenologically relevant quantities such as:

Rν ≡ δm2

|∆m2| , Σ =
3
∑

i=1

mi.

〈m〉e =

√

√

√

√

3
∑

i=1

(

|Vei|2m2
i

)

, 〈m〉ee =
∣

∣m1V
2
e1 +m2V

2
e2 +m3V

2
e3

∣

∣ = |Mν11| . (99)

Here, Rν characterizes the hierarchy of the solar and atmospheric mass square differences, while the

effective electron-neutrino mass 〈m〉e and the effective Majorana mass term 〈m〉ee are sensitive to the

absolute neutrino mass scales and can be respectively constrained from reactor nuclear experiments on

beta-decay kinematics and neutrinoless double-beta decay. As to the mass ‘sum’ parameter Σ, its upper

bound can be constrained from cosmological observations. As regards the values of the non oscillation

parameters 〈m〉e, 〈m〉ee and Σ, we adopt the less conservative 2-σ range, as reported in [18] for 〈m〉e and

Σ, and in [19] for 〈m〉ee.

〈m〉e < 1.8 eV,

Σ < 1.19 eV,

〈m〉ee < 0.34− 0.78 eV. (100)

The exact expressions turn out to be cumbersome to be presented, but for the sake of illustration, we

state the relevant expressions up to leading order in sθ13 as

m13 ≈ 1 +
2 sδsθ |χ| sθ13

tθ12T
, m23 ≈ 1− 2 tθ12sδsθ |χ| sθ13

T
,

ρ ≈ δ +
sδ sθ13

(

sθ23cθ23 |χ|2 + |χ| cθ (−c2θ23 + s2θ23)− c2θ23

)

tθ12 T
, Rν ≈ −8 sδ sθ |χ| sθ13

s2θ12 T
, (101)
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σ ≈ δ −
sδ tθ12 sθ13

(

sθ23cθ23 |χ|2 + |χ| cθ (−c2θ23 + s2θ23)− c2θ23

)

T
, m2

23 −m2
13 ≈ −8 sδ sθ |χ| sθ13

s2θ12 T
,

〈m〉e ≈ m3

[

1 +
4 sθ sδ |χ| sθ13

t2θ12 T

]

, 〈m〉ee ≈ m3

[

1 +
4 sθ sδ |χ| sθ13

t2θ12 T1

]

.

where T is defined as,

T = |χ|2 s2θ23 + 2 |χ| cθ sθ23 (sθ23 − cθ23) + 1− s2θ23 . (102)

Our expansion in terms of sθ13 is justified since sθ13 is typically small for phenomenological acceptable

values where the best fit for sθ13 ≈ 0.15. This kind of expansion in terms of sθ13 , in the case of partial

µ–τ symmetry, has many subtle properties which were fully discussed in [16] and no need to repeat them

here.

For the numerical generation ofMν consistent with those relations in Eq.(95), we vary θ12, θ13 and δm2

within their allowed ranges at the 3–σ level precision reported in Table (1), while θ23 is varied in the range
[

430, 470
]

in order to keep it not far away from the value predicted upon imposing exact µ–τ symmetry.

The Dirac phase δ and the phase θ are varied in their full ranges, while the parameter |χ| characterizing
the small deviation from the exact µ–τ symmetry is consistently kept small satisfying |χ| ≤ 0.3. Scanning

randomly the 7-dim free parameter space (reading “random” values of θ12, θ23, θ13, δ, δm
2, θ, |χ| in their

prescribed ranges), then determining the A,B’s coefficients (Eq. 97) and producing the mass ratios

and Majorana phases as determined by Eqs.(98) allow us, after computing the quantities of Eq.(99), to

confront the theoretical predictions of the texture versus the experimental constraints in Table (1), and

whence to figure out the admissible 7-dim parameter space region. Knowing the masses and the angles

in the admissible region allows us to reconstruct the whole neutrino mass matrix Mν which, as should be

stressed, is based on numerical calculations using the exact formulas in Eqs.(98–99).

The resulting mass patterns are found to be classifiable into three categories:

• Normal hierarchy: characterized by m1 < m2 < m3 and is denoted by N satisfying numerically the

bound:
m1

m3
<

m2

m3
< 0.7 (103)

• Inverted hierarchy: characterized by m3 < m1 < m2 and is denoted by I satisfying the bound:

m2

m3
>

m1

m3
> 1.3 (104)

• Degenerate hierarchy (meaning quasi- degeneracy): characterized by m1 ≈ m2 ≈ m3 and is denoted

by D. The corresponding numeric bound is taken to be:

0.7 <
m1

m3
<

m2

m3
< 1.3 (105)

Moreover, we studied for each pattern the possibility of having a singular (non-invertible) mass matrix

characterized by one of the masses (m1, and m3) being equal to zero (the data prohibits the simultaneous

vanishing of two masses and thus m2 can not vanish). It turns out that the violation of exact µ–

τ symmetry does not allow for the singular neutrino mass matrix. The reason behind this is rather

simple and can be clarified through examining the mass ratio expressions m2

m3
and m2

m1
which respectively

characterize the cases m1 = 0 and m3 = 0. The mass ratio expressions can be evaluated in terms of A’s

or B’s coefficients defined in Eq.(97) and can also be related to Rν leading to the following results, for

the case m1 = 0:

m2

m3
=







































∣

∣

∣

A3

A2

∣

∣

∣
≈

√

|χ|2 c2
θ23

+2 |χ| cθ cθ23(sθ23+cθ23)+1+s2θ23

|χ|2 s2
θ23

+2 |χ| cθ cθ23(sθ23−cθ23)+1−s2θ23

sθ13
sθ12 cθ12

+O(s2θ13),

≈
√

1+s2θ23
1−s2θ23

sθ13
sθ12 cθ12

+O(sθ13 |χ|),

∣

∣

∣

B3

B2

∣

∣

∣ ≈ 1
c2
θ12

(1 + 2 tθ12 t2θ23 cδ sθ13) +O(s2θ13),







































≈
√
Rν , (106)
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and for the case m3 = 0:

m2

m1
=







































∣

∣

∣

A1

A2

∣

∣

∣ ≈ 1− |χ|2 sθ23 cθ23 cδ+|χ| [cδ cθ(s2θ23−c2θ23)+sθ sδ]−cδ c2θ23

|χ|2 s2
θ23

+2 |χ| cθ sθ23(sθ23−cθ23)+1−s2θ23

sθ13
sθ12 cθ12

+O(s2θ13),

≈ 1 +
cδ c2θ23 sθ13

sθ12 cθ12 (1−s2θ23 )
+O(sθ13 |χ|),

∣

∣

∣

B1

B2

∣

∣

∣ ≈ t2θ12

(

1 +
2 t2θ23 cδ sθ13

sθ12cθ12

)

+O(s2θ13),







































≈ 1 + Rν

2 . (107)

The mass ratio m2

m3
for the case m1 = 0 should be approximately equal to

√
Rν , which means that it

should be much less than one. The expression obtained from the A’s, although it starts from O(sθ13 ),

can not be tuned to a small value compatible with
√
Rν for any admissible values for the mixing angles.

The mixing angle θ13 plays the decisive role in this failure for not being small enough as Table (1) shows.

Thus no need to examine the second expression derived from the B’s, and we conclude the impossibility

of having m1 = 0 with an approximate µ− τ -symmetry. Regarding the case m3 = 0, the mass ratio m2

m1

should be approximately equal to
(

1 + Rν

2

)

and accordingly would be slightly greater than one. Each one

of the two available expressions providing the mass ratio can be separately tuned to fit the desired value

within the admissible ranges for the mixing angles and the Dirac phase δ. However, the compatibility of

the two expressions purports the condition,
c2θ23

2s2θ23(1−s2θ23)
≈ Rν , which can not be met for any admissible

choice for θ23. Our numerical study confirms this conclusion where all the phenomenologically acceptable

ranges for mixing angles and Dirac phase are scanned, but no solutions could be found satisfying the mass

constraint expressed in Eqs. (106–107). Obviously, our conclusions remain the same when we consider

the exact µ–τ symmetry corresponding to χ = 0.
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Figure 1: The correlations of 〈m〉ee against θ, δ, |χ| and J are depicted in the first four rows, wheras the last two rows

are reserved for the correlations of mass ratios m23 and m21 against m3.
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The pattern: Mν 12 + Mν 13 (1 + χ) = 0, and Mν 22 − Mν 33 = 0

θ12 θ23 θ13 m1 m2 m3 ρ σ δ 〈m〉e 〈m〉ee J |χ| θ

Degenerate Hierarchy

30.98 − 36.2 [43, 44.9]
⋃

7.67 − 9.94 0.0521 − 0.3955 00.0529 − 0.3955 0.0590 − 0.3960 [0.003 − 14.12]
⋃

[0.55 − 31]
⋃

[18.3 − 168.1]
⋃

0.0528 − 0.3954 0.0452 − 0.3941 [−0.0390 − −0.0082]
⋃

0.01 − 0.2 [2.19 − 83.3]
⋃

[45.1 − 47] [166.3 − 179.89] [154.4 − 179.45] [197.7 − 345.61] [0.0064 − 0.0397] [119 − 178.9]
⋃

[181.5 − 248.3]
⋃

[282.3 − 358.82]

Normal Hierarchy

30.98 − 36.11 [43, 43.78]
⋃

7.66 − 9.87 0.0329 − 0.0487 0.0329 − 0.0487 0.0580 − 0.0708 [0.003 − 19.47]
⋃

[11.04 − 35.59]
⋃

[40.44 − 126.3]
⋃

0.0339 − 0.0495 0.0261 − 0.0453 [−0.0379 − −0.0168]
⋃

0.2 − 0.3 [2.8 − 4.6]
⋃

[46.61 − 47] [160.2 − 179.72] [144.9 − 169.34] [230.7 − 326.22] [0.0196 − 0.0382] [175.6 − 178.6]
⋃

[181.8 − 185]
⋃

[355.6 − 358.9]

Inverted Hierarchy

30.99 − 36.08 [43, 43.31]
⋃

7.66 − 9.37 0.0660 − 0.0790 0.0666 − 0.0795 0.0459 − 0.0607 [3.35 − 10.76]
⋃

[12.68 − 22.76]
⋃

[62.73 − 127.9]
⋃

0.0659 − 0.0788 0.0602 − 0.0738 [−0.0349 − −0.0243]
⋃

0.15 − 0.2 [3.4 − 4.33]
⋃

[46.38 − 47] [169.8 − 176.88] [157.8 − 168.64] [233.2 − 299.14] [0.0232 − 0.0354] [175.5 − 177.6]
⋃

[182.4 − 184.7]
⋃

[355.5 − 356.91]

Table 2: Various predictions of allowed ranges for one pattern violating the exact µ–τ symmetry. All the angles (masses) are evaluated in degrees (eV ).

Degenerate Hierarchy

Aν Bν Cν Dν AR BR CR DR AD BD CD DD ED χ α θ12 ϕ θ23 θ13
0.8187 + 0.0085 i −0.0278 − 0.0300 i 0.4165 − 0.4094 i 0.3890 + 0.4097 i 0.8188 + 0.0086 i −0.0297 − 0.0313 i 0.4165 − 0.4094 i 0.3890 + 0.4097 i 0.8187 + 0.0086 i −0.0337 − 0.0232 i 0.4165 − 0.4093 i 0.3890 + 0.4096 i −0.0238 − 0.0380 i 0.1089 − 0.0243 i 0.1116 32.63 34.33 44.49 9.44

0.8045 − 0.0260 i −0.0229 + 0.0331 i 0.5365 + 0.3771 i 0.2557 − 0.3780 i 0.8046 − 0.0259 i −0.0248 + 0.0366 i 0.5365 + 0.3771 i 0.2557 − 0.3780 i 0.8046 − 0.0259 i −0.0185 + 0.0358 i 0.5365 + 0.3771 i 0.2557 − 0.3780 i −0.0293 + 0.0339 i 0.1960 − 0.0257i 0.1977 35.81 34.53 44.33 9.64

0.5440 + 0.0119 i −0.0351 − 0.0074 i 0.0152 − 0.1167 i 0.5077 + 0.1169 i 0.5441 + 0.0118 i −0.0376 − 0.0087 i 0.0152 − 0.1167 i 0.5077 + 0.1169 i 0.5440 + 0.0118 i −0.0320 − 0.0162 i 0.0152 − 0.1166 i 0.5076 + 0.1169 i −0.0407 + 0.0002 i 0.1558 + 0.0417 i 0.1613 32.50 34.60 44.55 8.43

δν δ0ν ρexa. ρper σexa σper. m0
1 m0

2 m0
3 m1 m2 m3 mR3 mR2 mR1 mD1 mD2 mD3

42.36 42.76 1.69 2.31 176.94 178.04 0.2511 0.2517 0.2466 0.2515 0.2517 0.2465 8.22 8.21 8.06 144.22 143.23 140.96

142.75 142.72 0.68 1.23 175.93 176.79 0.2469 0.2475 0.2426 0.2473 0.2475 0.2424 8.0813 8.0735 7.9223 141.88 140.75 138.64

260.66 259.97 178.79 177.89 5.18 3.63 0.1671 0.1679 0.1601 0.1676 0.1678 0.1599 5.48 5.47 5.23 96.37 95.15 91.50

Normal Hierarchy

Aν Bν Cν Dν AR BR CR DR AD BD CD DD ED χ α θ12 ϕ θ23 θ13
0.1287 − 0.0021 i 0.0538 + 0.0038 i 0.0485 − 0.0115 i 0.1758 + 0.0115 i 0.1297 − 0.0016 i 0.0611 + 0.0040 i 0.0485 − 0.0115 i 0.1758 + 0.0115 i 0.1294 − 0.0016 i 0.0540 + 0.0001 i 0.0485 − 0.0115 i 0.1758 + 0.0115 i 0.0609 + 0.0078 i 0.2700 − 0.0192 i 0.2707 35.75 33.03 46.94 7.86

0.1333 − 0.0148 i 0.0480 + 0.0104 i 0.0544 − 0.0355 i 0.1689 + 0.0353 i 0.1344 − 0.0142 i 0.0553 + 0.0115 i 0.0544 − 0.0355 i 0.1689 + 0.0353 i 0.1341 − 0.0143 i 0.0486 + 0.0070 i 0.0544 − 0.0355 i 0.1689 + 0.0353 i 0.0546 + 0.0150 i 0.2985 − 0.0213 i 0.2992 35.44 32.62 46.87 8.08

0.1325 + 0.0127 i 0.0488 − 0.0093 i 0.0537 + 0.0318 i 0.1716 − 0.0316 i 0.1337 + 0.0122 i 0.0562 − 0.0103 i 0.0537 + 0.0318 i 0.1716 − 0.0316 i 0.1334 + 0.0122 i 0.0494 − 0.0058 i 0.0538 + 0.0317 i 0.1715 − 0.0316 i 0.0555 − 0.0140 i 0.2978 + 0.0221 i 0.2986 36.08 33.02 46.84 7.93

δν δ0ν ρexa. ρper σexa σper. m0
1 m0

2 m0
3 m1 m2 m3 mR2 mR1 mR3 mD1 mD2 mD3

97.63 99.65 167.90 177.15 24.17 78.78 0.0457 0.0461 0.0687 0.0471 0.0479 0.0691 1.57 1.55 2.24 27.71 25.82 39.24

82.97 84.76 166.26 175.94 19.23 99.86 0.0461 0.0465 0.0684 0.0474 0.0482 0.0688 1.58 1.55 2.23 27.91 26.02 39.08

275.52 273.35 13.75 4.18 160.58 88.91 0.0460 0.0464 0.0690 0.0473 0.0481 0.0694 1.58 1.55 2.25 27.86 25.94 39.43

Inverted Hierarchy

Aν Bν Cν Dν AR BR CR DR AD BD CD DD ED χ α θ12 ϕ θ23 θ13
0.2322 + 0.0012 i −0.0613 − 0.0085 i −0.0165 − 0.0282 i 0.2113 + 0.0283 i 0.2329 + 0.0016 i −0.0674 − 0.0090 i −0.0165 − 0.0282 i 0.2113 + 0.0283 i 0.2326 + 0.0016 i −0.0617 − 0.0046 i −0.0164 − 0.0282 i 0.2113 + 0.0283 i −0.0669 − 0.0131 i 0.1960 − 0.0129 i 0.1964 33.63 23.15 43.17 8.03

0.2158 − 0.0033 i −0.0600 − 0.0021 i −0.0194 − 0.0058 i 0.1987 + 0.0058 i 0.2165 − 0.0030 i −0.0658 − 0.0019 i −0.0194 − 0.0058 i 0.1987 + 0.0058 i 0.2162 − 0.0029 i −0.0600 + 0.0023 i −0.0194 − 0.0058 i 0.1987 + 0.0058 i −0.0657 − 0.0064 i 0.1909 − 0.0142 i 0.1914 32.66 24.02 43.18 7.69

0.2219 − 0.0043 i −0.0603 − 0.0002 i −0.0200 + 0.0003 i 0.2044 − 0.0004 i 0.2226 − 0.0040 i −0.0663 + 0.0001 i −0.0200 + 0.0003 i 0.2044 − 0.0004 i 0.2223 − 0.0039 i −0.0602 + 0.0040 i −0.0199 + 0.0003 i 0.2043 − 0.0004 i −0.0664 − 0.0041 i 0.1990 − 0.0140 i 0.1995 35.68 24.00 43.16 7.93

δν δ0ν ρexa. ρper σexa σper. m0
1 m0

2 m0
3 m1 m2 m3 mR3 mR2 mR1 mD1 mD2 mD3

73.18 62.18 7.52 5.98 162.91 158.33 0.0758 0.0769 0.0597 0.0773 0.0778 0.0593 2.54 2.52 1.95 44.75 43.14 34.10

76.62 67.45 6.86 5.94 160.97 157.89 0.0708 0.0719 0.0549 0.0723 0.0729 0.0546 2.38 2.35 1.79 41.88 40.33 31.38

81.34 69.41 7.58 5.69 163.23 158.12 0.0726 0.0737 0.0565 0.0741 0.0746 0.0561 2.44 2.41 1.84 42.91 41.31 32.27

Table 3: Numerically generated relevant parameters for Mν , MR and MD

ν . Light neutrino masses are evaluated in units of eV, Dirac neutrino masses in units of GeV, and

Majorana masses in units of 1013 Gev. The angles are evaluated in degrees.
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Regarding the non-singular pattern, one can deduce some restrictions concerning mixing angles and

phase just by considering the approximate expression for Rν as given in Eq.(102). The parameter Rν

must be positive, non-vanishing (Rν ≈ 0.03) and its valued at the 3−σ level is reported in Table (1). This

clearly requires non-vanishing values for sθ13 , sδ, sθ and |χ|. The nonvanishing of sθ13 implies θ13 6= 0

which is phenomenologically favorable, while the nonvanishing of sδ and sθ excludes 0, π and 2π for both

δ and θ. The reported allowed range for θ and δ in Table (2) confirms these exclusions. The nonvanishing

of |χ| is naturally expected otherwise there would not be a deviation from exact µ – τ symmetry. These

conclusions remain valid if one used the exact expression for Rν instead of the first order expression.

Explicit computations of Rν using its exact expression reveal that θ23 cannot be exactly equal to π
4 ,

otherwise Rν would be zero, but nevertheless θ23 can possibly stay very close to π
4 , and this again is

confirmed by the reported allowed values for θ23 in Table (2).

For the sake of illustration, we show correlations involving 〈m〉ee against θ, δ, |χ| and J where J is

the Jarlskog rephasing invariant quantity which is given by J = sθ12 cθ12 sθ23 cθ23 sθ13 c
2
θ13

sin δ [27]. The

quantity 〈m〉ee is extremely important as a measure of neutrinoless double beta decay and provides a

clear signature for the true nature of neutrino. The non-vanishing value for 〈m〉ee, if experimentally

confirmed, will definitely establish the nature of neutrino as being Majorana particle. But so far, no

convincing experimental evidence of the decay exists. Other important correlations are also displayed for

those involving the mass ratios m12 and m23 against m3 which could reveal the hierarchy strength.

In Fig. 1, the plots (a) and (b) clearly reveal the allowed band regions for both θ and δ which are quite

distinct in the case of normal and inverted hierarchy, and in addition they show also the excluded region

around 0 and π. This behavior can be mainly attributed to the constraint imposed by the parameter Rν .

As to the plots (c), they do not point out any clear correlation between 〈m〉ee and |χ|, but remarkably one

can realize that in case of inverted and normal hierarchy the parameter |χ| generally tends to be larger

than what is required to be in the quasi degenerate case. Regarding the correlation of 〈m〉ee against

J (plots (d)), it is, as expected, another manifestation of the correlation 〈m〉ee against δ, since in our

investigation the size of J is only controlled by δ while it is apparently insensitive to the other mixing

angles. The values of 〈m〉ee can not attain the zero-limit in all types of hierarchy, which is evident from

the graphs or explicitly from the corresponding covered ranges in Table (2). There are some characteristic

features for the possible hierarchies as can be observed from the plots (e) and (f), and which turn out to

be crucial in deriving a simple formula for 〈m〉ee. First, the masses m1 and m2 are approximately equal,

as is clear in Fig. 1 (plots: f); second, the hierarchy is mild in both normal and inverted cases, as is

evident from Fig. 1 (plots: e-N, e-I). The simple approximate formula for 〈m〉ee, capturing the essential

observed features for all kinds of hierarchies, can be deduced, assuming m1 ≈ m2, from Eq. (99) to be in

the form:

〈m〉ee ≈ m1 c
2
θ13

√

[

1− s22θ12 sin2 (ρ− σ)
]

. (108)

The formula clearly points out that the 〈m〉ee scale is of the order of the scale ofm1(≈ m2) as is confirmed

from the corresponding covered ranges stated in Table 2.

The numerical generation for possible MR and MD
ν for a given numerically generated Mν proceeds

through the following routine (Again, this does not exhaust all possibleMD
ν ,MR leading to the givenMν).

The first step consists in assuming that MR is “proportional” to Mν but obeying exact µ–τ symmetry.

Thus the entries of MR can be assumed to be:

AR = ΛR Mν 11/v
2 = Aν , BR = ΛR (Mν 11 −Mν 13) /(2v

2) ≈ Bν ,

CR = ΛR Mν 22/v
2 = Cν , DR = ΛR Mν 23/v

2 = Dν , (109)

As said before, we took v the electroweak scale characterizing the Dirac neutrino to be 175 GeV (around

the top quark mass), whereas ΛR the high energy scale characterizing the heavy RH Majorana neutrino

is taken to be around 1014 GeV, so the scale characterizing the effective light neutrino v2/ΛR would

be around 0.3 eV in agreement with data. In the second step, we assume the equality of α and |χ|.
Consequently, the system of five equations given by the seesaw formula (Eq. 51) applied to the symmetric

matrix Mν with (Mν22 = Mν33) can then be solved for the five unknowns residing in the Dirac mass

matrix having the form described in Eq.(75). We have solved this non-linear system of equations by

iteration starting with the initial guess (AD = AR, BD = BR, CD = CR and ED = BR).
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Having all parameters AR, · · · , DR, AD, · · · , ED and α enables us to numerically produce the neutrino

relevant quantities. In Table (3), we report for each possible type of hierarchy three representative points

containing all the parameters describing Mν , MR and MD
ν . In addition, the same table also contains the

values of the mixing angles, the phase angles and the masses of the light neutrinos, computed on one

hand according to the exact formulae and on the other hand according to the perturbative formulae, and

the two ways of computing showed good agreement. We did the perturbative calculations starting from

(MR,M
D
ν , α), deduced in turn from Mν and the corresponding χ, by computing Mα (Eqs. 83 and 82)

and M0
ν (Eq. 81) and then deducing the ǫ’s (Eq. 87), followed by plugging them into the perturbative

formulae for the mixing angles (Eq. 91), the phases (Eq. 92) and the masses (Eq. 90).

Furthermore, the eigen masses forMR and unperturbed MD
ν are as well reported in Table (3). We note

here that we get an almost degenerate RH neutrino mass spectrum. Actually, we get for the degenerate-

and inverted-hierarchy examples a mild hierarchy in the RH eigenmasses (mR1 ≤ mR2 ≃ mR3), and

so one would expect a scenario where a considerable part of the CP asymmetry is due to the decay

of the lightest RH neutrino N1. In order to estimate the baryon asymmetry in these examples one

can follow the analysis of subsection 5.3 but with caution considering that we assumed there a strong

hierarchy in the RH neutrino eigen masses leading often to N1-dominated scenario. On the other hand,

we obtain for the normal-hierarchy examples a mild hierarchy where the two lightest RH neutrinos are

the almost degenerate ones (mR1 ≃ mR2 ≤ mR3), and so we would expect a scenario where the CP

asymmetry is due to the decay of, at least, both N1 and N2. Here, one should go beyond the hierarchical

limit assumed in subsection 5.3 to estimate the baryon asymmetry. In [28, 29], analytical formulae

for the baryon asymmetry, corresponding to the case mR1 ≃ mR2 ≪ mR3, were obtained, and in [30]

other approximate expressions, which were shown [31] to agree well with the former ones, were derived.

Although the extrapolation from the almost-degenerate two RH neutrinos case to the case of three RH

neutrinos of approximately similar masses may plausibly be smooth regarding the fit to the Boltzmann

equations, however we did not carry out the estimation of the baryon asymmetry in Table 3 in any of

the numerical examples we had, as the precise calculations go beyond the scope of the paper and the

formulated expressions are approximate, so one needs a more refined analysis in order to draw conclusions.

Nonetheless, we have checked our assumption that the ǫ’s (Eqs. 87) are far smaller than 1 in accordance

with them being as perturbative factors.

8 Realization of perturbed texture

As we saw, perturbed textures are needed in order to account for phenomenology. We have two ways

to seek models for achieving these perturbations. The first method consists of introducing a term in the

Lagrangian which breaks explicitly the symmetry [21], and then of expressing the new perturbed texture

in terms of this breaking term. The second method is to keep assuming the exact symmetry, but then

we break it spontaneously by introducing new matter and enlarging the symmetry. We follow here the

second approach in order to find a realization of the forms given in Eq.(75) for MD and in Eq.(56) for

MR, while assuring that we work in the flavor basis. However, for the sake of minimum added matter, we

shall not force the most general forms of MR and MD, but rather be content with special forms of them

leading to an effective mass matrix Mν of the desired perturbed texture (Eq. 79). In [16] a realization

was given for a perturbed texture corresponding to the S−-symmetry, whereas here we treat the more

phenomenologically motivated S+-symmetry (we shall drop henceforth the +suffix). We present two

ways, not meant by whatsoever to be restrictive but rather should be looked at as proof of existence

tools, to get the three required conditions of a “perturbed” MD, non-perturbed MR and diagonal MlM
†
l .

Both ways add new matter, but whereas the first approach adds just a (Z2)
2 factor to the S−symmetry

while requiring some Yukawa couplings to vanish, the second approach enlarges the symmetry larger to

S ×Z8 but without need to equate Yukawa couplings to zero by hand. Some “form invariance” relations

are in order:

{(

M = Mt

)

∧
[

St ·M · S = M
]}

⇔



M =





A B −B

B C D

−B D C







, (110)
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{(

M = Mt

)

∧
[

St ·M · S = −M
]}

⇔



M =





0 B B

B C 0

B 0 −C







, (111)

[

St ·M · S = M
]

⇔



M =





A B −B

E C D

−E D C







, (112)

[

St ·M · S = −M
]

⇔



M =





0 B B

E C D

E −D −C







, (113)

We denote Lt = (L1, L2, L3) with Li’s,(i = 1, 2, 3) are the components of the ith-family LH lepton

doublets (we shall adopt this notation of ‘vectors’ in flavor space even for other fields, like lc the RH

charged lepton singlets, νR the RH neutrinos, . . .).

8.1 S × Z2 × Z ′
2-flavor symmetry

• Matter content and symmetry transformations

We have three SM-like Higgs doublets (φi, i = 1, 2, 3) which would give mass to the charged leptons

and another three Higgs doublets (φ′
i, i = 1, 2, 3) for the Dirac neutrino mass matrix. All the fields

are invariant under Z ′
2 except the fields φ′ and νR which are multiplied by −1, so that we assure

that neither φ can contribute to MD, nor φ′ to Ml. The fields transformatios are as follows.

νR
Z2−→ diag (1,−1,−1)νR, φ′ Z2−→ diag (1,−1,−1)φ′, (114)

L
Z2−→ diag (1,−1,−1)L, lc

Z2−→ diag (1, 1,−1) lc, φ
Z2−→ diag (1,−1,−1)φ, (115)

νR
S−→ SνR, φ′ S−→ diag (1, 1,−1)φ′, (116)

L
S−→ SL, lc

S−→ lc, φ
S−→ Sφ, (117)

• Charged lepton mass matrix-flavor basis

The Lagrangian responsible for Ml is given by:

L2 = f j
ikLiφkl

c
j (118)

The transformations under S and Z2, with the “form invariance” relations Eqs. (110–113), lead to:

f (1) =





A1 0 0

0 C1 D1

0 D1 C1



 , f (2) =





A2 0 0

0 C2 D2

0 D2 C2



 , f (3) =





0 B3 −B3

E3 0 0

−E3 0 0



 (119)

where f j
ik is the (i, k)th-entry of the matrix f (j). Assuming (v3 ≫ v1, v2) we get:

Ml = v3





0 0 −B3

D1 D2 0

C1 C2 0



 ⇒ Ml M
†
l = v23





|B|2 0 0

0 |D|2 D ·C
0 C ·D |C|2



 , (120)

where B =
(

0, 0,−B3
)T

, D =
(

D1, D2, 0
)T

and C =
(

C1, C2, 0
)T

, and where the dot product

is defined as D · C =
∑i=3

i=1 D
iCi∗. Under the reasonable assumption that the magnitudes of the

Yaukawa couplings come in ratios proportional to the lepton mass ratios as |B| : |C| : |D| ∼ me :

mµ : µτ , one can show, as was done in [16], that the diagonalization of the charged lepton mass

matrix can be achieved by infinitesimally rotating the LH charged lepton fields, which justifies

working in the flavor basis to a good approximation.
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• Majorana neutrino mass matrix

The mass term is directly present in the Lagrangian

LR = MR ij νRi νRj . (121)

The invariance under Z ′
2 is trivially satisfied while the one under S × Z2 is more involved. The

symmetry S constrains MR to satisfy

ST MR S = MR, (122)

whereas the restrictions due to Z2 are imprinted in the bilinear of νRi νRj determining their trans-

formations under Z2 as:

νRi νRj
Z2∼ B =





1 −1 −1

−1 1 1

−1 1 1



 (123)

which means:

νRi νRj
Z2−→ Z2(νRi νRj) = BijνRi νRj(no sum) (124)

Thus the symmetry through Eqs.(110,122,123) entails that MR would assume the following form,

MR =





AR 0 0

0 CR DR

0 DR CR



 . (125)

which is of the general form (Eq. 56) with BR = 0.

• Dirac neutrino mass matrix

The Lagrangian responsible for the neutrino mass matrix is

LD = gkijLiφ̃′
kνRj , where φ̃′ = iσ2φ

′∗ (126)

Because of the fields transformations under S and Z2 we get:

Stg(k=1,2)S = g(k=1,2) , Stg(k=3)S = −g(k=3), LiνRj
Z2∼





1 −1 −1

−1 1 1

−1 1 1



 (127)

where g(k) is the matrix whose (i, j)th-entry is the Yukawa coupling gkij . Then, the “form invariance”

relations (Eqs.110–113) lead to:

g(1) =





A1 0 0

0 C1 D1

0 D1 C1



 , g(2) =





0 B2 −B2

E2 0 0

−E2 0 0



 , g(3) =





0 B3 B3

E3 0 0

E3 0 0



 (128)

Upon acquiring vevs (v′i, i = 1, 2, 3) for the Higgs fields (φ′
i), we get for Dirac neutrino mass matrix

the form:

MD =





v′1 A1 v′2 B2 + v′3 B3 −v′2 B2 + v′3 B3

v′2 E2 + v′3 E3 v′1 C1 v′1 D1

−v′2 E2 + v′3 E3 v′1 D1 v′1 C1



 , (129)

which can be put into the form,

MD =





AD BD (1 + α) −BD

ED (1 + β) CD DD

−ED DD CD



 . (130)
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with

α =
2v′3B3

v′2B2 − v′3B3
, β =

2v′3E3

v′2E2 − v′3E3
. (131)

If the vevs satisfy v′3 ≪ v′2 and the Yukawa couplings are of the same order, then we get perturbative

parameters α, β ≪ 1.

The deformations appearing in the Dirac mass matrix as described in Eqs.(129–131) would resurface

in the effective light neutrino mass matrix Mν through the seesaw formula (Eq.51) with MR given

in Eq.(125). The resulting deformations in Mν can be described by two parameters:

χ ≡ −Mν (1, 2) +Mν (1, 3)

Mν (1, 3)
, ξ ≡ Mν (2, 2)−Mν (3, 3)

Mν (3, 3)
. (132)

One can repeat now the analysis of the last subsection in order to compute χ, ξ in terms of α, β

and other mass parameters to get:

χ = − αARBD (CR −DR) (CD +DD) + βADED

(

C2
R −D2

R

)

αARBD (CRDD −DRCD) +BDAR (DR + CR) (DD − CD)− EDAD (C2
R −D2

R)

ξ =
β (β − 2)E2

D

(

C2
R −D2

R

)

AR [CR (D2
D + C2

D)− 2CDDDDR] + E2
D (C2

R −D2
R)

, (133)

We note here that we do not get in general the desired pattern (Eq. 79) corresponding to disen-

tanglement of the perturbations (ξ = 0). However, for specific choices of Yukawa couplings, for e.g.

E3 = 0 leading to β = 0 and hence ξ = 0, we get this form, in which case MD is of the form (Eq.75)

and χ of Eq.(133) would also be given by Eq.(80) with BR = 0.

8.2 S × Z8-flavor symmetry

• Matter content and symmetry transformations

In addition to the left doublets (Li, i = 1, 2, 3), the RH charged singlets (lcj , j = 1, 2, 3), the

RH neutrinos (νRj , j = 1, 2, 3) and the SM-Higgs three doublets (φi, i = 1, 2, 3) responsible for

the charged lepton masses, we have now four Higgs doublets (φ′
j , j = 1, 2, 3, 4) giving rise when

acquiring a vev to Dirac neutrino mass matrix, and also two Higgs singlet scalars (∆k, k = 1, 2)

related to Majorana neutrino mass matrix. We denote the octic root of the unity by ω = e
iπ
4 . The

fields transform as follows.

L
S−→ SL, lc

S−→ lc, φ
S−→ Sφ, (134)

νR
S−→ SνR, φ′ S−→ diag (1, 1, 1,−1)φ′, ∆

S−→ ∆ (135)

L
Z8−→ diag (1,−1,−1)L, lc

Z8−→ diag (1, 1,−1) lc, φ
Z8−→ diag (1,−1,−1)φ, (136)

νR
Z8−→ diag

(

ω, ω3, ω3
)

νR, φ′ Z8−→ diag
(

ω, ω3, ω7, ω3
)

φ′, ∆
Z8−→ diag

(

ω6, ω2
)

∆ (137)

Note here that we have the following transformation rule for φ̃′ ≡ iσ2φ
′∗:

φ̃′ S−→ diag(1, 1, 1,−1)φ̃′ , φ̃′ Z8−→ diag(ω7, ω5, ω, ω5)φ̃′ (138)

• Charged lepton mass matrix-flavor basis

The symmetry restriction in constructing the charged lepton mass Lagrangian as given by Eq.(118)

is similar to what is obtained in the case of (S × Z2 × Z ′
2). The similarity orginates from the fact

that the charges assigned to the fields (L, lc, φ) corresponding to the factor Z2 (of S × Z2 × Z ′
2 )

and that of Z8 (of S ×Z8) are the same. Thus we end up, assuming again a hierarchy in the Higgs

φ’s fields vevs (v3 ≫ v2, v1), with a charged lepton mass matrix adjustable to be approximately in

the flavor basis. Note also here that the symmetry forbids the term Liφ
′
kl

c
j since we have:

Lil
c
j

Z8∼





1 1 −1

−1 −1 1

−1 −1 1





Eq.137
=⇒ ∄i, j, k : Liφ

′
kl

c
j = Z8(Liφ

′
kl

c
j) (139)
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• Dirac neutrino mass matrix

The Lagrangian responsible for the Dirac neutrino mass matrix is given by Eq. (126). By means

of fields transformations we have:

Stg(k=1,2,3)S = g(k=1,2,3) , Stg(k=4)S = −g(k=4), LiνRj
Z8∼





ω ω3 ω3

ω5 ω7 ω7

ω5 ω7 ω7



 (140)

where g(k) is the matrix whose (i, j)th-entry is the Yukawa coupling gkij . Then, the “form invariance”

relations impose the following forms:

g(1) =





A1 0 0

0 0 0

0 0 0



 , g(2) =





0 B2 −B2

0 0 0

0 0 0



 , g(3) =





0 0 0

0 C3 D3

0 D3 C3



 ,

g(4) =





0 B4 B4

0 0 0

0 0 0



 , (141)

When the Higgs fields (φ′
i) get vevs (v

′
i, i = 1, 2, 3, 4), we obtain:

MD = Σk=4
k=1v

′
kg

(k) =





v′1A1 v′2B2 + v′4B4 −v′2B2 + v′4B4

0 v′3C3 v′3D3

0 v′3D3 v′3C3



 , (142)

which is of the form of Eq.(75) with ED = 0:

MD =





AD BD (1 + α) −BD

0 CD DD

0 DD CD



 , (143)

where

α =
2v′4B4

v′2B2 − v′4B4
(144)

If the vevs satisfy v′4 ≪ v′2 and the Yukawa couplings are of the same order then we get a perturbative

parameter α ≪ 1.

• Majorana neutrino mass matrix

The mass term is generated from the Lagrangian

LR = hk
ij ∆k νRi νRj (145)

Under Z8 we have the bilinear:

νRi νRj
Z8∼





ω2 ω4 ω4

ω4 ω6 ω6

ω4 ω6 ω6





Eq.137
=⇒

LR = h1
11 ∆1 νR1 νR1 + h2

22 ∆2 νR2 νR2 + h2
23 ∆2 νR2 νR3 + h2

32 ∆2 νR3 νR2 + h2
33 ∆2 νR3 νR3 (146)

If we call h(k) the matrix whose (i, j)th-entry is the coupling hk
ij then we have (the cross sign denote

a non-vanishing entry):

h(1) =





× 0 0

0 0 0

0 0 0



 , h(2) =





0 0 0

0 × ×
0 × ×



 , (147)
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Then the “form invariance” relations lead to:

Sth(k)S = h(k),
Eqs.110,147

=⇒

h(1) =





aR 0 0

0 0 0

0 0 0



 , h(2) =





0 0 0

0 cR dR
0 dR cR



 , (148)

Thus when the Higgs singlets ∆ acquire vevs
(

∆0
1,∆

0
2

)

we get the following form for MR,

MR =





∆0
1 aR 0 0

0 ∆0
2 cR ∆0

2 dR
0 ∆0

2 dR ∆0
2 cR



 . (149)

which of the form of Eq.(56) with BR = 0. The analysis of the last subsection shows then that the

deformation α in MD resurfaces as a ‘sole’ perturbation χ in Mν which would get the desired form of

Eq.(79) with χ given by Eq.(80) after putting BR = ED = 0:

χ =
α (dR − cR) (CD +DD)

(DD − CD) (cR + dR) + α (cRDD − dRCD)
. (150)

Before ending this section, we would like to mention that having multiple Higgs doublets in our

constructions might display flavor-changing neutral currents. However, the effects are calculable and in

principle one can adjust the Yukawa couplings so that to suppress processes like µ → eγ [26]. Moreover,

the constructions are carried out at the seesaw high scale, but the RG running effects are expected to be

small when multiple Higgs doublets are present, and so we expect the predictions of the symmetry will

still be valid at low scale.

9 Discussion and summary

We studied the properties of the Z2 symmetry behind the µ− τ neutrino universality. We singled out the

texture (S+) which imposes naturally a maximal atmospheric mixing θ23 = π/4 and vanishing θ13. The

remaining mixing angle θ12 remains free, and the other Z2 necessary to characterize the neutrino mass

matrix can be used to fix it at its experimentally measured value (∼ 330). We showed how the S+-texture

accommodates all the neutrino mass hierarchies. Later, we implemented the S+-symmetry in the whole

lepton sector, and showed how it can accommodate the charged lepton mass hierarchies with small mixing

angles of order of the ‘acute’ charged lepton mass hierarchies. We computed, within type-I seesaw, the

CP asymmetry generated by the symmetry and found that the phases of the RH Majorana fields may

be adjusted to produce enough baryon asymmetry. The fact that the µ–τ symmetry does not determine

fully the mixing angles, but leaves θ12 as a free parameter able to take different values in MR and MD is

crucial for obtaining leptogenesis within type-I seesaw scenarios. We found also that “complex-valued”

perturbations on Dirac neutrino mass matrix can account for the correct neutrino mixing angles.

We carried out a complete numerical study to find phenomenologically acceptable Mν respecting

the approximate S+, and we generated possible corresponding MR and MD
ν . Crucially, we found in

our numerical scanning that no “real-valued” neutrino mass matrices can account for the experimental

constraints, and so one has to take complex matrices from the outset. The perturbation at the level of

Mν should also be complex in order to account for phenomenology. .

Finally, we presented a theoretical realization of the perturbed Dirac mass matrix, where the symmetry

is broken spontaneously and the perturbation parameter originates from ratios of different Higgs fields

vevs.
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