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ABSTRACT

This paper is concerned with the weakly nonlinear inviscid dynamics of a marginally unstable baroclinic
wave near the point of minimum critical shear of a two-layer quasi-geostrophic model on the §-plane. In
previous studies by Pedlosky and by Warn and Gauthier (WG, the parameters of the model were chosen in a
specific way in order to be exactly at the minimum. They showed that at this particular point, a complete
inviscid coarse-grain homogenization of the potential vorticity occurs in the bottom layer causing the amplitude
of the unstable wave to equilibrate. It is the purpose of the present paper to investigate the behavior of the
dynamics when the problem is not exactly at the minimum and more specifically, to establish how one goes
from the analytical solution of WG to the single wave theory that one expects to be valid away from minimum
critical shear. The nonlinear evolution equations of WG are extended in order to include a “detuning parameter”
o associated with a perturbation of the aspect ratio of the periodic channel. An analytical solution not being
available when ¢ # 0, a spectral form of these equations similar to those found in Pedlosky is integrated
numerically at high resolution. The results show that for a fixed supercritical shear and arbitrary but sufficiently
small initial conditions, the size of the vortices is decreasing with o causing the potential vorticity to mix only
in part of the domain and the amplitude of the unstable wave to oscillate around a nonzero mean. When ¢ is
sufficiently large, closed streamlines are no longer possible and no vortices are developing. At that point, the
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single wave theory is becoming a better approximation to the dynamics.

1. Introduction

One of the main characteristics of atmospheric mo-
tion at middle latitudes is the emergence of synoptic
scale vortices in a flow that has initially a nearly zonal
configuration. By considering quasi-geostrophic mod-
els, Charney (1947) and Eady (1949) concluded that
the development of these systems could be explained
by a hydrodynamic instability that is now called baro-
clinic instability in which the growth of the perturbation
occurs through an energy transfer from the zonal part
of the flow towards synoptic-scale perturbations.

By creating a transport of heat and angular momen-
tum, these perturbations modify in turn the configu-
ration of the large-scale circulation by decreasing the
meridional temperature gradient. In general circulation
models, there is a need for a good parameterization of
these transports. One such parameterization has been
proposed by Stone (1978) who formulated the idea of
baroclinic adjustment by which these transports con-
stantly bring back the mean zonal flow to a neutral
configuration. However, as was pointed out by Vallis
(1988), the nonlinearity of the problem can sometimes
lead to an equilibrated state for which the mean zonal
flow may be quite different from a neutral basic state.
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The dynamics underlying this kind of development and
in particular the role of the nonlinearity is still not
understood.

The simplest model that can be used to study baro-
clinic instability is the quasi-geostrophic two-layer
model introduced by Phillips (1954). Linearizing the
governing equations, the solutions can be formulated
in terms of normal modes of the form e *“¢(x, y)
which are unstable when Im{c} > 0. In order to be
able to develop a weakly nonlinear theory, the param-
eters of the model must be chosen in such a way that
the growth rate of the unstable wave is small. The weak
instability then acts on a slow time scale. Eventually, -
the amplitude of the unstable wave approaches a small
but finite value. In that case, the flow remains close to
the basic state and the process of linearization is still
meaningful. This has been studied first by Pedlosky
(1970) and afterwards by many other authors who in-
vestigated this question in different contexts: the review
paper by Hart (1979) gives an extensive bibliography. -

When relatively strong dissipation is present, the di-
mension of the dynamical system can be reduced to
one that retains only the neutral and unstable modes
while the stable modes are entirely determined by those
modes. This is justified in bifurcation theory by the
center manifold theorem (Guckenheimer and Holmes
1983). The low-order models are correct in this context
but difficulties arise when dissipation becomes weak.
Moreover, the two-layer model is structurally unstable



1000

to weak dissipation in the sense that its behavior is
extremely dependent on the type of dissipation used.
For instance, Holopainen (1961) and later Newell
" (1972) and Romea (1977) pointed out that when
symmetric Ekman pumping is introduced in a S-plane

model, the inviscid limit of the neutral curve differs

from the inviscid neutral curve. But this behavior dis-
appears when potential vorticity dissipation is used
(Pedlosky 1982b).

To avoid the structural instability associated with
weak dissipation, one has to turn to the inviscid model
for which stable modes are in fact neutral. Conse-
quently, when forced through nonlinear interactions,
they do not disappear and are in a position to influence
the dynamics of the problem. However, it is intuitively
possible to consider only the neutral modes that interact
resonantly with the weakly unstable wave. One can
argue that the results obtained in this manner are an
accurate description of the evolution for intermediate
times although the long term behavior could only be
determined by considering also the nonresonant in-
teractions.

Being interested in midlatitude atmospheric motion,
the inviscid model considered in the present paper is
formulated on the S-plane and the flow is confined
within a periodic channel (in x) bounded by rigid walls
located at y = 0, 1. If the basic state is one of constant
but different zonal winds in the two layers (referred to
as Phillips’ model in the literature), a linear stability
analysis (see Pedlosky 1979) shows that a minimum
vertical shear is required to trigger instability. As in
Pedlosky (1982a,b) and Warn and Gauthier (1989,
WG hereafter), the problem is set in the vicinity of the
point of minimum critical shear, which is of particular
interest when the wavénumber is continuously varying
as in the wavepacket problem introduced by Pedlosky
(1972), for instance.

As stated in Pedlosky (1982a), when the problem
is set on the neutral curve but away from minimum
critical shear, the single wave theory of Pedlosky (1970)
should apply, the amplitude of the unstable wave S(7T°)
would be governed by

sz_ »
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and S(T') would have an oscillatory behavior. On the
other hand, when it is set exactly at minimum critical
shear, Pedlosky ( 1982a,b) showed that the marginally
unstable wave is interacting resonantly with an infinite
number of nondispersive modes. Instead of solving
numerically for a finite set of these as Pedlosky did,
Warn and Gauthier reformulated the problem in such
a way as to make it possible to solve it analytically.
This solution enabled them to show that S(T') equil-
ibrates to a constant value due to the coarse-grain ho-
mogenization of the potential vorticity that occurs in
the bottom layer. In this paper, the geometry of the
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channel is perturbed as to be slightly off the minimum.
This allows us to move on the neutral curve to inves-

‘tigate how one goes from the solution of WG to the

single wave theory. When the wavenumber is such that
the problem is exactly set at the minimum of the neu-
tral curve, the linear phase speed of the unstable wave
is exactly tuned to the one of the non-dispersive modes.
By moving away from this point, the phase speed of
the unstable wave. starts to differ slightly from the one
of the nondispersive modes: we will refer to this effect
as the “detuning effect” caused by the perturbation to
the aspect ratio of the channel.

In the next section, the results of the linear stability
analysis at the point of minimum critical shear are re-
called. In section 3, the derivation of the nonlinear
evolution equations presented in WG is generalized to
add the detuning effect. In the present case, it will not
be possible to solve analytically as in WG. In section
4, the spectral form of these evolution equations is given
and it is also shown that energy and potential enstrophy
are conserved for certain truncated sets of spectral
modes. The results obtained from the numerical in-
tegrations at high resolution are presented in section
5. If o is a measure of the detuning, the vortices which
occupy the whole domain when ¢ = 0 gradually shrink
as o is increased and eventually disappear when ¢ is
sufficiently large: in that case, the flow can be described
relatively well by the single wave theory. In appendix
A, the conservation of energy is expressed in terms of
the spectral components while in appendix B, it is
shown that potential enstrophy and energy are con-
served when the “truncation order” is even (see sec-
tion 5).

2. Description of the model

Asin WG, we consider the inviscid quasi-geostrophic
motion of two layers of homogeneous stably stratified
immiscible fluids rotating with angular velocity 2. The
variation of the Coriolis parameter is taken into ac-
count by making the §-plane approximation i.e. 2
=fo + B'y'. The flow is confined within a periodic
channel of width L, and length L, and is bounded
above and below by horizontal planes a distance D
apart. When at rest, the two layers have equal depths
(see Pedlosky 1970, 1979 for a complete description
of the two-layer model).

The subscripts » = 1, 2 referring to the upper and
bottom layer respectively, the governing nondimen-
sional equations are the potential vorticity equations
d
% s 3, 00 =0,

; (1)

where V¥, is the streamfunction, J(f, g) = f.g, — fygx'
the Jacobian while

On =V + (-1)"F(Yy — ¥2) + By

is the absolute potential vorticity of the corresponding
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layer. The rotational Froude number F and the pa-
rameter (3 are defined as

_ f02 Ly2

(Ap/p2)gD/2°
U* being a typical velocity scale, g the gravitational
acceleration and Ap = (p; — p;) > 0, the density dif-
ference between the two layers. On the side walls lo-

cated at y = 0, 1, the boundary conditions are
n "%,
dx > Jo dtdy

where L = L,/L, is the aspect ratio of the channel
(Phillips 1954).

Considering a purely baroclinic basic state, the
streamfunction is rewritten as

¥u=—U,y + pos,

with ¢, ~ O(1), the parameter u < 1 characterizing
the initial amplitude of the disturbance. The linearized
form of (1) is then

S,
ot

1Y) i)
afzf(ﬁ“FUT)gC(ﬁz:O,

B =B'L}?IU¥,

dx =0,

i) 9
Ura—)s“l +(B+FUr)— ¢, =0
X ox

(2)
where

g_n = v2¢n + (_l)nF(d’l - ¢2)

is the perturbation potential vorticity. Without loss of
generality, U, has been set to zero and U, = Uy is the
vertical shear of the basic state. Solutions of the form

1 ik(x—ct)
¢=[¢1]=a[ ]e sinNxy + C.C.

b2 Y 2
to (2) are possible if the dispersion relation
Ur B(a* + F) 1
ce=—— *
52 a*a*+2F) " 24*(a*+2F)

X [48%2F? — UAa*(4F? — a*)]'? (3)
is satisfied and

_. _(@+F) B+FUr
Y(Cs) =vs F F(U—¢)

Here, C.C. stands for complex conjugate, a?> = k2
+ N?x? is the square of the total wavenumber while k
=2n/L.

As in Pedlosky (1982a,b) and WG, the problem is
set in the, vicinity of the point of minimum critical
shear by letting

UT=1%+ A, 4)

with A < 1.
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The linear properties of this model when U, = 8/
F are very particular. For instance, the dispersion re-
lation shows that the two vertical modes are such that

- _(@-F)
C— 0, Y- F ’
_ Bla* - 2F?) _F
“ TR +2F) @+ )’

the first one (c-) being nondispersive. The potential
vorticity associated with these two modes is

4 _ 2F2
(I— = _2F¢1—: ;2— == (—a—“F_) d1-,
a*(a®*+2F
o= - e b fe=0 ()

implying that only the nondispersive modes possess
potential vorticity in the bottom layer.

If (x2V2)/2 < F < 2V2x2, only the gravest merid-
ional mode (N = 1) can be unstable at minimum crit-
ical shear and a particular aspect ratio L = L,, is re-
quired since

A =kt + 7t = V2F

where k,, = 21/ L,,. The mode for which a2 = V2 Fis
marginally stable is of the form

p n ! e inmy + C.C
= — SIN®T L.,
“ Ym * '+ vt 2 Y

where v,, = V2-1andT =2F /iBk,,. Because of the
linear growth in time, this behavior has been called
“direct resonance” by Akylas and Benney (1980, 1982)
who pointed out that it can act as a selection mecha-
nism which results in the dominance of a single mode
in the leading order solution (see the discussion in
WG). As ¢ becomes large,

1
Ym

Even though the primary wave eventually dominates
the flow configuration, linear theory indicates that the
order of magnitude of the potential vorticity in the
bottom layer associated with this wave is determined
by the initial conditions and a detailed description of
it requires the non-dispersive modes to be retained.
This may also be seen by noting that these modes in-
teract resonantly with the primary wave.

In the present study, the problem will be set “off
resonance” by letting L = L,, + A\ with A\ < 1. The
zonal wavenumber is then k ~ k,, + K while

a? = V2F + 2k,,K + O(K?), (7)

where K = —(2w/L,2)\ < 1. From (4), (7) and the
dispersion relation, the neutral curve is characterized
by the relation

ikmx

sinry + C.C. (6)
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4 Bk :
F3

to leading order in K and A. If both effects are to in-
tervene at the same order, K must be of O(A'/?) in
which case, the real part of the phase speed is

k
cR~(2—V§_)%2—K

The presence of K both modifies the level of the critical
shear as well as the phase speed of the unstable wave.
Moreover, the dispersion relation and (4) indicate that
the nondispersive modes have a phase speed of O(A)
and are therefore slower. This implies that the resonant
interaction between these modes and the primary wave
is weakened and K will consequently be referred to as
the “detuning parameter”.

~ If e is a measure of the amplitude of the unstable
wave in its nonlinear stage, it will be seen in the next
section that the appropriate slow time scale is 7 = ef.
By choosing A ~ O(€?) and K ~ O(e), these effects

- will also be perceived on this time scale.

A~ K, (8)

(9)

'3. Derivation of the nonlinear evolution equations

The asymptotic development of WG is now gener-
alized to include the detuning effect. If ¢ < 1, the
streamfunction is expanded as

¥n = _Ur}y + €dp;

- .U, having been set to zero, the solutions depend on

the slow time scale 7 = e alone. To act on this time
scale, the vertical shear is Uy = 8/F + 2§ while the
detuning parameter is chosen to be K = ¢X'. From now
on, K will stand for X.

The easiest way to introduce the detuning in the
problem is to define the new variable X = kx and to
let k = k,, + K. Derivatives with respect to x are then
expanded as

a é]
i (km + €K) X’
62 A 62
s = (ky? + 2¢kn K + €K ek
Expanding ¢, as

bn ~ \bn(O) + f‘pn(l? +oeee,
~ the leading order problem is

Bkm 9

o (V@ + F(y @ +,0)) =

(10)
._a 0) ) 0)y —
o LD+ IR, &6 =0

with §'N =V 2\0)\/ + ("'I)NF(WI - \02) and V
=k, 2(62/6X2)+(32/3y ).

JOURNAL OF THE ATMOSPHERIC SCIENCES

(11) v

VoL. 47, No. 8

As discussed earlier, the leading order solution is

taken to be the primary wave alone and consequently,
1 iX

yo = A(T)[ ]5— sinty + C.C.  (12)
Ym) 2
Even though it is a fully nonlinear equation, (11) is
trivially satisfied at this order because {>® = 0.

This solution has to be properly matched to the early
time behavior, which is given by (6). For 7 < 1, (6)
and (12) give

gt = 9:-’ ~ A(0) + 74,(0)).

This can be only if 4(0) = 0 while 4,(0) is arbitrarily
defined by the initial conditions. This also shows that
while the primary wave grows up to O(e), all the other
modes remain behind with an amplitude which is at
most of O(e?). Consequently, they would have to be
introduced at higher order. The reader is referred to
WG and Akylas and Benney (1980, 1982) for a com-
plete discussion of this point.
At the next order, the top-layer equation gives

B o (@200 + FO ™ + 42)
a K
= S"l(o) 2 LK\b(&xx
2f| H 4 ik Bk 2 e
= — ——sm-rrv+CC (13)
dr 2
while the bottom-layer one yields
(5 + 2 K9 B) + K (92, 55
+ 2k KYS0x) — 8 Fkom % @ =0. (14)

The absolute potential vorticity of the bottom layer
being Q> = €2Q'(X, y, 7) with

Q' = 6 + 2 K SRx — S Fy,
(13) can be rewritten as

3Q

'+k T ©, Q) =0 (15)

The deﬁninon of Q'(X, y, 7) implies that
Va2V + F( D — o)

iX
=0+ 2Kkm7m[A —+ c.c.] sinty + §'Fy, (16)

2
while integrating (13) with respect to X gives

2F?[dA
Bk,

sinty + C.C. + g(y, 7)

Vot O+ F O+ 92) = i

6k 2 iX
F2 A] 2

+ iK—35 (17)
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g bemg an arbltrary function of y and . Since (1,

vm)Te™ sinmy is a solution to the homogeneous form
of (16) and (17), these equations can only be solved
if the following solvability condition is satisfied:

Bk
d F?

(1+7m )4

—iX

YL e
= —4 2 'ym<Q > sm1ry> (18)

where {. . .) denotes the average over the whole domain

ie.
2
e

Q=n(Q +8F2), Y= w(y‘— 1), §=¢F,

(o=

The new variables

2
_ 2ﬁ 1/2 3 F2 1/2
T—’ymkm(Fz) T, S= (Zﬁ) wA,
bring (15) and (18) in the following final form:
a0
T + J(®,0)= (19)
das . ’
a7 TS = —2i{QW¢), (20)
where
®=SWy+CC., W= -;— e¥ cosY,

1/2
o= 2Kkm(—Fg2-) .

When o = 0, the unstable wave is located exactly at
the minimum and our (19) and (20) then correspond
to (19) and (20) of WG when the dissipation v vanishes
in their equations.

Expressing (8) in terms of these new variables, the
neutral curve is locally defined by the relation 8, = ¢
while from (9), the linear phase speed is Cgr = /2.
We will now prove that (19) and (20) imply that the
unstable wave always travel at its linear phase speed.
By differentiating (20) with respect to 7 and using (19),
one obtains that

d*s as :

dT2+ d—T=—ZS<'W0|2Qy>.
The effect of the linear phase speed can be removed
by making the substitution

S(T) = R(T)e 7/?
in (21) which becomes
d2 2

R
i +—R = — E—{chos2Y>.

(21)

(22)
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By translating the X coordinate, dR/dT can be chosen
to be real and positive initially. Since R(0) = 0, the
fact that (22) has real coefficients implies that R(7T")
will remain real for all times. Consequently, the pri-
mary wave is moving at the linear phase speed.
It is then appropriate to use the new coordinate £
— ¢T/2, which bring (19) and (20) in the following
form:

a0 (o aQ aQ
Fru (5 + R\I/y) % + RV, = ’% =0, (23a)
& - +(ow), (230)

where ¥ = cos£ cosY. Equation (23a) indicates that
the detuning adds a constant zonal component to the
streamfunction. When ¢ = 0, the streamfunction has
the configuration shown in Fig. 1a and variations in
R(T)result only in changes in the intensity and direc-
tion of the flow. Because of this, an exact solution can
be found for this case (see WG). However, when o
# 0, the flow configuration varies with the ratio ¢ /2 R.
To show this effect, the streamfunction has been rep-
resented for particular values of this ratio on Fig. 1.
The circulation has both open and closed streamlines

~ and an analytical solution does not seem to be possible

since variations of R(7) will result in dlﬁ'erent flow
configurations.

In the next section, a spectral form of (19) and (20)
is presented. It will be integrated to investigate the be-
havior of the unstable wave and of the vorticity field
when ¢ # 0. For the ‘subliminal case’ of WG, Q(X,
Y, 0) = —4Y and the development of strong gradients
in the vorticity field implies that due to the finite spatial
resolution, any numerical solution would be valid only
for a finite period of time. An analytical solution being
available, it will be useful to test the accuracy of the
numerical ones.

4. The spectral equations
If Qis replaced by { — 6Y, (19) and (20) become

as _
19—7-_,4' J(®,§)— 6y =0, (24)
ds .
ﬁ+las_—21<§'W0>. (25)

Next, the perturbation potential vorticity ¢ is expanded
as

imX

¢=4 Bm,, sinn(Y + n/2),

m,n

(26)

where the notation

+o0

z

M8

mn m

oo n=1
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F1G. 1. Representation of the streamfunction

Y= % Y + R(T) cosk cosY

when (a) 6/2R =0, (b) 6/2R = 0.6, (c) /2R = 1.5. The domain
is such that —7/2 < £ < 3w/2 and —7/2 < Y < /2. Dashed lines
indicate negative values.

has been used. Using the fact that

otiX o'mX
J(T sin(Y + w/2), = sinn(Y + 7r/2))

é—e“mi”x [(m = n)sin(n — 1)(Y + 7/2)
+(mF n)sin(n+ 1)(Y+ «n/2)],

the introduction of (26) in (24) yields the following

result:

L B = L1+ W)(SBartps + S Brrssnt)

dr ™" 4 - ’

+ (m — n)(SBu_in1 + S*Br1r1)],  (27)
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when (m, n) # (%1, 1). In this last case,

d i )
E_,BL[ = E SB(),? + i Z S. (28)
Finally, (25) becomes
as . .
d_T‘"" ioS = _lBl,[ (29)

and the complete spectral system is formed of (27),
(28) and (29). With this last relation, .3; ; can be elim-
inated from (28) to give

d*s L3S 01

drt " dr " a” T2 _
showing that the unstable wave interacts directly with
only the zonal mode By,: the minimal truncation is
therefore formed of S, B, and By ; and will accordingly
be called the zeroth order truncation.

Remark. This system is similar to the one found in
Pedlosky (1982a,b) when é = 1 and ¢ = 0 in our equa-
tions and if dissipation and spatial variations are ig-
nored in his. The comparison is easily made by noticing
that his variables P,, Xy, Ymn and R are related to
ours in the following manner: By, = P,/2, Bun
= Xyunt i¥myand S= R. One should also notice that
our time scale (the same as in WQG) is twice his.:

The order (K + 1) truncation is defined recursively
as all members of the order K truncation to which are
added the modes that interact directly with them. Table
1 gives the definition of the order-K truncation for a
few orders. One notices that all modes that -interact
directly or indirectly with the unstable wave are such
that (m + n) is even. So, even if they are initially very
small, those modes would be recreated by the nonlinear
interactions while the others would remain small.

This system has two quadratic global invariants: po-
tential enstrophy and energy. In appendix A, it is shown
that conservation of total energy implies that

SBO,Z s

n=1

is conserved. However, it is shown in appendix B that
for truncated systems,
L

By,
Ex=|S]?+2 3 —*= (30)

n=1

TABLE 1.

K
(truncation order) Truncated set
Ss Bl.l 3 BO,Z
S, Bi,1, Boy, B3

S, Bi1, Boz, B13, Boa, By
S, B1,1, Boa, B3, Boa, Bag, B3y, B,
By, By s

RN = O
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1s conserved only if the truncation order K is even in
whichcase L = K/2 + 1.

Conservation of the potential enstrophy follows im-
mediately from (19). Since

9 vorn=9 ey -
20 = 5H (2 = 26(¥)) = 0
This implies that

( 1n+1
Z=2 z IBm,n|2 z ) O,n

m,n n=1

is conserved. This shows that while energy exchanges
occurs only between the unstable wave and the zonal
part of the flow, all modes are involved when it comes
to potential enstrophy partitioning,

It is shown in appendix B that for truncated systems,

Zk=2 3 |Bmnl?+ 26 z Foa

{m,n]

(31)

is also conserved with K even. Here [ m, n] means that
the sum is carried over the modes that belong to the
truncated set. The two summations of (31) can be re-
grouped in a single one by making the substitution

)
= Bosn + —

Bb,Zn 2n

which brings (31) to

62 L
Zx+ 5 2 1/n*=2 Z |Bual’

2 n=1 [m,n]

therefore placing a bound on the growth of the B,,,
but none on S. If energy is also conserved in the trun-
cated set as is the case when K is even, .S has to be
bounded since the By ,, are; this insures that the trun-
cated system is globally stable. Numerical integrations
with odd truncation orders lead to unbounded growth
in many cases while the growth was always found to
be bounded when the truncation order was even. This
does not guarantee that the numerical results are ac-
curate but at least, the truncated system has some
properties of the complete one. The results from the
numerical integrations presented in the next section
were obtained with truncation orders that were always
even.

5. Results

A multistep predictor—corrector method was used
to integrate (27), (28) and (29); the predictor was a
second-order centered difference scheme and the cor-
rector was a fourth-order Adams-Moulton scheme. The
initial steps were integrated with a fourth-order Runge-
Kutta scheme. Compared to the Runge-Kutta scheme
that requires four evaluations per time step and to the
second-order centered difference scheme that needs
very small time steps, this method was found to be
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more economical. This is an important factor since we
intended to perform integrations at high resolutions
i.e. with K = 128 which involves 8386 modes.

To test our numerical results, the case where 6 = 1
and ¢ = 0 was compared against the analytical results
found in WG for “subliminal initial conditions” for
which the perturbation potential vorticity is initially
very small: By (0) = 0.01 while all other modes are
set to zero. Due to potential vorticity mixing, the anal-
ysis of WG shows that the amplitude of the unstable
wave should equilibrate at a constant value of =/ Ve.
Figure 2 shows that for K = 16, a truncation similar
to the one used in Pedlosky (1982b), the unstable wave
oscillates irregularly around the equilibration value. If
the resolution is increased to K = 128, this oscillation
has nearly disappeared and the unstable wave is equil-
ibrating at the correct value.

The absolute potential vorticity fields Q(X, Y, T)
for this case are shown at 7" = 10 and 20 on Figs. 3
and 4 when K = 16 and 128, respectively. As can be
seen, the general picture of the wrap-up of the vorticity
is discernible even at low resolution. The low resolution
run involves a significant error even on the large scale
reflected by the error on S(T'). Increasing the resolution
to K = 128 corrects this deficiency. As may be seen by
comparing Fig. 4b with the analytical solution of WG
(their Fig. 2¢), the latter resolution seems sufficient to
give a reasonable picture of what is going on when ¢
# 0.

Using the same initial conditions as for the case o
= 0, experiments were conducted with different values
of ¢ and a constant supercritical shear of 1. This means
that in all cases, 6 = | + o2 Figure 5 shows the evo-
lution in time of | S(7")| when ¢ = 0.25, 0.5 and 1.0.
In the early stages, the evolution is identical in all cases,
the initial conditions and the linear growth rate being
the same. In the nonlinear stage, the solutions evolve
differently going from a complete equilibration at o
= () towards an oscillatory behavior that becomes more
and more pronounced as o increases. Since the linear
phase speed remains constant to a value of ¢/2, the
potential vorticity field is then best represented in a

2.0

sl

0.5 4 — Ke16

0.0 T T T T T T v J

F1G. 2. Evolution in time of | S(T)| for two different truncation
orders (K = 16 and K = 128) when ¢ = 0 and 6 = 1. The constant
level of | S| = w/VE corresponding to the equilibration value of
Warn and Gauthier ( 1989) has also been indicated.



FIG. 3. Absolute potential vorticity ﬁeld Q(X, Y, T) when K
=16 at(a) T = 10,(b) T = 20. The domain is such that —7/2 < X
<3r/2and -7/2 <Y< 7w/2.

reference frame moving with the unstable wave. On
Fig. 6, it is shown at 7" = 20 for increasing values of ¢.
* While closed vortices are still developing in the flow,
the area over which they extend is shrinking as ¢ in-
creases and for ¢ = 4, no development occurs. Closed

FIG. 4. As in Fig. 3 but for K = 128.
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IsMi

FIG. 5. Evolution of | S(T")| as a function of time for 6 = 1 + ¢
and increasing values of o. The constant level corresponds to the
equilibration value when o = 0.
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FIG. 6. Q(¢, Y, T)at T = 20 when (a) o = 0.5, (b) ¢ = 1, (¢)
¢ =2,(d) ¢ = 4. In all cases, 8 = | + ¢* and the domain is as in
Fig. 1.
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FIG. 7. Plot of 2| S(T)}/ o as a function of time. Values
below 1 indicate that no closed streamlines are present.

vortices would normally be associated with a closed
circulation. If £ = X — ¢7/2, the streamfunction is

12 =§Y+ | S(T)| cosé cosY

and closed streamlines are only possible if | S(T)|
> ¢/2. It is important to point out that variations in
S(T) imply that the pattern of the streamfunction is
not steady, its configuration depending on the ratio
2| S(T)|/ o (see Fig. 1). This ratio has been plotted as
a function of time on Fig. 7 for ¢ = 1, 2 and 4. It shows
that when o = 4, closed streamlines never appear and
as was observed on Fig. 6d, no closed vortices are pres-
ent either. The configuration of the vorticity field sug-
gest that a low order model should be a better approx-
imation of the dynamics for this case. To verify this,
an experiment using a very low truncation order (K
= 2) was run and the resulting | S(T)| is in good
agreement with the one obtained from the high reso-
lution run (Fig. 8b). By comparison, Fig. 8a shows
that when o = 0, the low order model becomes inac-
curate as soon as the evolution enters its nonlinear
stage. Although a substantial improvement is observed,
Fig. 8b shows that the two models start again to differ
after a finite period of time.

As o becomes large, one should expect the single
wave theory to be a valid approximation to the dy-
namics (Pedlosky 1970, 1979, 1982a). In that case,
the governing equation for | S(7T)| would be

a’{s| _ || 2y _

ds = & — o being the supercritical shear: (32) can be
obtained from the spectral equations (27), (28) and
(29) truncated at zeroth order. Since §5 was kept con-
stant in all the experiments reported here, (32 ) implies
that the evolution of | S(7)| is independent of o. It
can also be shown (analytically) that the maximum
value attained by |S] is V28s. For 65 = 1, | S|max

(32)

= V2, a value that is lower than the maximum of 1.5 _

attained when o = 4. When ¢ = 10, Fig. 9 compares
the evolution of | S(7")| as predicted by (32) against
the result from a high resolution run (K = 128): it
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IS(T)

b)

1s(MI

FiG. 8. Evolution in time of | S(7')] for K = 2 and K = 128
when (a) ¢ = 0, (b) o = 4. In both cases, § = | + o2

indicates very clearly that single wave theory is correct
during the time interval 0 < 7' < 20.

In Shepherd (1988), a bound is put on the maximum
value of the wavy part of the flow (see eq. (5.6 in his
paper): in the present case, this implies that the peak
amplitude of | S| must be such that

55+O’2 1/2
) -

For a constant supercritical shear value of 1, this bound
implies that when o = 0, | S| max < 1rV§/3 ~ 1.81.
Our results show (see Fig. 2) that | S| max ~ 1.60 which
is very close to Shepherd’s bound. In all cases, the peak
amplitudes, are in agreement with his result.

It is important to point out that for inviscid models,
the resolution needed to describe a given situation de-
pends on the time period Ts over which an accurate
description is required. The results presented here show

|S|max<w(

204

0,5

FiG. 9. Evolution in time of | S(7")| for K =0and K = 128
when o = 10.
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that for a fixed value of T, the resolution needed would
decrease as o increases and at some point, the single
wave theory would be sufficient. The results show also
how one goes from the equilibration due to a complete
potential vorticity mixing as in WG to the wave-mean
flow interaction model of Pedlosky (1970).

6. Conclusion

The purpose of the present study was to investigate
the changes in the dynamics caused by the detuning
_in the vicinity of the point of minimum critical shear.
These issues are of importance when the wavenumber
has a continuous spectrum. This is the case when the
parameters of the model are not considered to be uni-
form in space or when the channel is of infinite extent
in the zonal direction: this last situation has been con-
sidered in the study of the wavepacket problem pre-
sented in Pedlosky (1972), Gibbon et al. (1979) and
Moroz and Brindley (1984). As pointed out by Ped-
losky (1982a), this problem would have to be refor-
mulated to take into account the effect of the nondis-
_persive modes.
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When it is set exactly at the point of minimum crit-
ical shear, the problem can be solved analytically. In
that case, Warn and Gauthier showed that the stream-
wise potential vorticity mixing leads to the equilibration
of the unstable wave. On the other hand (Pedlosky
1982a), when the problem is way off the minimum,
the dynamics is that of a weakly unstable wave inter-
acting with the zonal part of the flow and the amplitude
S(T) of the unstable wave is then seen to have an
oscillatory behavior. Our results show how one goes
from one situation to the other. Potential vorticity
mixing occurs within the closed vortices but as the de-
tuning o is increased, their size is decreasing while
| S(T)| oscillates with increasing amplitude around a
nonzero mean. The emergence of vortices is related to
the presence of closed streamlines that exist when the
ratio 2| S(T)|/o > 1. Since the maximum value at-
tained by | S(T)| depends on the supercritical shear,
this implies that larger supercritical shears would be
necessary for closed vortices to exist as ¢ increases.
However, for o sufficiently large, one would reach a
situation where many unstable waves may coexist: this

. 10. The 500-mb height field (solid lines) and absolute vorticity (dashed lines)
24 February 1989 on the east coast of North America 0000 UTC.
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question has been investigated in other contexts by Hart
(1981), Moroz and Holmes (1984), Klein and Ped-

losky (1986) and Pedlosky and Polvani (1987). The .

whole asymptotic analysis presented here would have
to be redone for such situations.

The development of strong potential vorticity gra-
dients cannot go on forever; this is, in fact, the limit
of validity of the evolution equations as given by (19)
and (20). Rhines and Young (1983) mention that

those gradients can be destroyed by the presence of

diffusion of heat and momentum ‘that becomes im-
portant at that point. On the other hand, the emergence
of these gradients may very well cause local barotropic
instabilities which would lead to horizontal transport
of vorticity that would in turn enhance potential vor-
ticity mixing: this point has been studied by Killworth
and Mclntyre (1985) and Haynes (1985) for the prob-
lem of forced barotropic Rossby waves.

One striking feature of our results is the development
of strong gradients in the absolute potential vorticity
field. This is reminiscent of what is observed in real
synoptic systems as can be seen on Fig. 10. It shows
the 500-mb height field and the absolute vorticity field
on 24 February 1989 on the east coast of North Amer-
ica at 0000 UTC. It clearly indicates that there is a
wrap-up of the absolute vorticity field by the 500-mb
circulation in a way that resembles the one obtained
from our simple model.

Once strong gradients have developed, the evolution
enters a fully nonlinear stage that could lead to tur-
bulence. At that point, geostrophic turbulence theory
(Salmon 1980) provides another approach to the
problem while recent work by Shepherd (1988, 1989)
establishes a nonlinear stability theorem that is able to
put a bound on the wavy part of the flow. The solutions
presented here describe the flow in a transition period
when it is going from its marginally stable zonal basic
state configuration towards a full nonlinear stage.
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APPENDIX A
Conservation of Total Energy

The sum of kinetic and available potential energy
in the two-layer system described by (1) is

PIERRE GAUTHIER
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= 2V 2 + 19912 + F( = ¥2)),

the total energy (see Pedlosky 1979). In terms of the
asymptotic expansion used in section 3, the conser-
vation of total energy gives

J
§(<Eo> +({E)) =0,
at leading order in ¢, E; and E| being
Eo = 2 (19912 + V9,2
+ F(4 @ = @),

E = =L sy - ),

Using (12) and the definition ( 19) of the rescaled vari-
able S(T), it is straightforward to show that

(Eoy =55 1512

However, one must know the form of the zonal com-
ponent of ¥ (! in order to be able to calculate E,. If
@ U stands for the zonal part of ¢ ¢!, the zonal average
of (26) gives

(A1)

F
@é‘#ﬁ;(w”— $,M)

S
8

Boan sin2n(Y + 7/2). (A2)
1

n

This is not enough to determine ® ‘. As in Pedlosky
(1970), the imposition of a secularity condition at the
next order ( the removal of an X-independent term that
appears in the top layer equation ) supplies the required
supplementary equation, which is

2
Yy — F(&,V — 8,1 = |S3| sin2(Y + 7/2).
™
(A3)
Solving (A2) and (A3) with the boundary conditions
9°®,V 7
——=0 Y=+—,
aroy 2
the solution is found to be
’ 1
<1>“>=2a(T)eVF_ﬂsinhaY[ 1]
NE 472+ F] . 2T + ‘/2)
—— in
83+ R F o |° i
1 s Bow F
473 ! n*(2n*x* + F)|4n?x2 + F
X sin2n(Y + w/2), (A4)
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where o = (2F)'/?/x and

1
V2F (1 + &™)

o[ ISP g
227+ F) = (2n21r2 + F)

a(T) =

BO Zn]

The introduction of this result in the expression for E,
gives finally that

(E

ﬁ 2_i S l
zF |S| 47"2F,,§1 n BO,Zn- (A5)

(Al) and (A5) are combined to give

53 (¢
par 1517+ 2 2 5 Buar)

d
7 <E0 + E 1> =
which proves that the spectral quantity
g |
Er=|S*+2 2% ;BO,Zn

n=1

represents the total energy to leadirig order and is a
global invariant.

APPENDIX B
Invariants of the Truncated Systems
Referring to Appendix A, the total energy of a system
truncated at order K is
: L
Ex=1S1>+2 2 — By
n=1 n

where L = K/2 + 1 (L = (K + 1)/2) when K is even
(odd). Differentiation of (B1) with respect to 7 gives

(B1)

dEx ., dS , . ds* L1d
dT—S dT+SdT+2E BOZn (B2)
From (27), one has that
d i
Zﬁ:Bo,zn =5 n[S(BY2ne1 — BT 2n1)
— S*(Bi2n+1 — Bi2n-1)]  (B3)
forn=1, » -+, L — 1. Therefore,
d '
re= Z B02n =‘(S(anL 1 — BT))
dar ,
_ = S*(Byar-1 — Bi1)).
Using (29), one has
as* « 9S _ o
S a7 + S dT-’ ISB —iS Bl,l
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and (B2) reduces to
dE 2 d .
d]f LdTBOZL + iSBT 11 IS*BI,Z‘L—I- (B4)
From the definition of a Kth order truncation set,
14 — B, (—SB* + S*B )
L dT 02L 1,2L~1 ‘ 1,2L-1
if K is even and (B4) reduces to
dEx
ar

On the other hand, when K is odd (B3) applies with n
= L and (B4) becomes

dEy
dar

Total energy is therefore conserved only when the
truncation order is even.

To show that potential enstrophy is conserved in
truncated sets proceeds much in the same way as for
the total energy except that the algebra is a little bit
more involved. When the truncation order is even, dif-
ferentiation of (31) with respect to time yields

dZg
ar T2

= iSBT,2L+l - iS*Bl,2L+1 # 0.

(B:':,,,i

- 2 (BS
dTB,,,,,,Jrc.c.) 8| S1% (BS)

where (B1 ) and the fact that Ex is conserved have been
used. From (27), one has

d

B:‘nn_
dr

Bm,n

i .
= Z B:‘n,n[(m + n)(SBm—l,n+1 + S*Bm+l,n+l)'

+(m— n)(SBm—l,n—l + S*Bm+l,n+l)]-

The two terms

(B6)

d
Bmit,mrl ’d_j- B;kn-?l,n-_tl

have counterparts of opposite signs to the first two
terms of (B6) while

Bm+l ntl B;kn+ln+l
+1,n+ dT +1,nt

generate terms that will cancel the last two. This occurs
for all terms except for those related to By, who gen-
erate some extra terms; it is found that

d B
ﬁ(Bl'lBtl + CC) - 5 |S|2 +

and therefore,
dZg

ar
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