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Abstract. We study the distribution of tax payments in the Lévy
insurance risk model of Kyprianou and Zhou [6], that is a Lévy insurance
risk model with a surplus-dependent tax rate. More precisely, after
a short discussion on the so-called tax identity, we derive a recursive
formula for arbitrary moments of the discounted tax payments until
ruin and we identify the distribution of the tax payments when there is
no force of interest.

1. Introduction

In a recent paper, Kyprianou and Zhou [6] extended both the models stud-
ied by Albrecher, Borst, Boxma and Resing [1] and by Albrecher, Renaud
and Zhou [3]. Indeed, they introduced a Lévy insurance risk process with
a surplus-dependent tax rate and obtained the following three fundamental
results: a solution to the two-sided exit problem, an expression of the ex-
pectation of the present value of tax paid until ruin, as well as an expression
for a generalized Gerber-Shiu function. In this follow-up paper, we further
analyze their model by studying the distribution of the tax payments made
over the lifetime of the company.

In their paper, Kyprianou and Zhou [6] have provided elegant proofs of
the abovementioned results using Itô’s excursion theory. This theory being
a rather sophisticated technology, we will use instead a methodology first
introduced by Zhou [8] and that can be considered as a Lévy analogue of
the conditioning on the time and size of the first claim technique, which is
widely used in Cramér-Lundberg type models (i.e., renewal risk models).
Our contributions consist of a new derivation of the expression for the ex-
pectation of the present value of tax paid until ruin, as obtained in [6], and
more importantly of a recursive formula for arbitrary moments of those tax
payments. We also identify the distribution of the tax payments until ruin
when there is no force of interest. Moreover, this paper strenghtens the fact
that Zhou’s methodology is now a well-established technique for the study
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2 J.-F. RENAUD

of Lévy insurance risk models. Finally, as we are using only elementary ar-
guments (assuming the solution to the two-sided exit problem), we hope to
bring our results, as well as those in [6], to a wider audience.

2. A Lévy insurance risk process under a general tax
structure

Let X = (X(t))t≥0 be a spectrally negative Lévy process or, in other
words, a Lévy process with no positive jumps. The law of X such that
X(0) = u will be denoted by Pu and the corresponding expectation by Eu.
We assume that X has differentiable scale functions W (q), which are the
unique, strictly increasing and continuous functions W (q) : [0,∞) → [0,∞)
with Laplace transform

∫ ∞

0
e−λzW (q)(z) dz =

1
ψ(λ)− q

,

for λ > Φ(q). Here, ψ is the Laplace exponent of X given through

E0

[
eλX(t)

]
= etψ(λ)

for λ ≥ 0 and t ≥ 0, and, since it is strictly convex and such that limλ→∞ ψ(λ) =
∞, there exists a function Φ : [0,∞)→ [0,∞) given by

ψ(Φ(λ)) = λ,λ ≥ 0.

We write W = W (0) when q = 0. Note that the assumption on the dif-
ferentiability of the scale functions is satisfied for most Lévy insurance risk
processes. For more details on Lévy processes and scale functions, the reader
is refered to [5].

Let S = (S(t))t≥0 denote the running maximum of X, i.e.,

S(t) = sup
0≤s≤t

X(s).

For a function γ : R+ → [0, 1), which stands for the surplus-dependent tax
rate, Kyprianou and Zhou [6] defined the taxed process Uγ = (Uγ(t))t≥0 as
follows:

(1) Uγ(t) = X(t)−
∫ t

0
γ(S(u)) dS(u),

for t ≥ 0, i.e., a process with the following dynamic:

dUγ(t) = dX(t)− γ(S(t)) dS(t).

The process Uγ indeed models the surplus process of an insurance company
that pays out taxes according to a loss-carried-forward tax scheme, using
a surplus-dependent rate γ(·). In other words, tax are collected when the
company has recovered from its previous losses, i.e., is in a so-called profitable
situation.

Finally, note that when γ(·) ≡ γ ∈ [0, 1), this model amounts to the
situation studied in [3] where the tax rate is constant, and when γ(·) ≡ 1,
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DISTRIBUTION OF TAX PAYMENTS 3

we retrieve the model where the company pays out as dividends any capital
above its initial value u as in a risk model with an horizontal barrier strategy
(see e.g. [7]).

For practical purposes, one would expect the function γ to be increasing;
however, this condition is not needed for the forthcoming analysis. On the
other hand, one should emphasize the fact that the range of the function γ
must lie in [0, 1): it would be rather unrealistic to have a tax rate greater
than the rate of increase of the company’s surplus. Mathematically speaking,
this means that the function

(2) γ̄u(x) = x−
∫ x

u
γ(y) dy,

defined for x ≥ u, must be a strictly increasing function since at an increase
time t, we have X(t) = S(t) (see [6], in particular Lemma 1). Hence, we
want γ̄′u(x) > 0, or equivalently, γ(x) < 1, for all x. Note that in this case
γ̄−1

u is well-defined.

2.1. The tax identity. One of the main results derived in [6] is the solution
to the two-sided exit problem. Let q ≥ 0 and define the following two
stopping times: τ+

a = inf{t > 0: Uγ(t) = a} and τ−0 = inf{t > 0: Uγ(t) <
0}. Then, if 0 < u < a, we have that the discounted probability of hitting a
(the process being skip-free upward) before getting ruined is given by

(3) Eu

[
e−qτ+

a I{τ+
a <τ−0 }

]
= exp

{
−

∫ a

u

(
1− γ(γ̄−1

u (s))
)−1 W (q)′(s)

W (q)(s)
ds

}
,

where γ̄u is the function defined in Equation (2). First note that, if q = 0,
then Eu

[
e−qτ+

a I{τ+
a <τ−0 }

]
= Pu{τ+

a < τ−0 } is the genuine probability that
the surplus process Uγ will reach level a before getting ruined.

A direct application of this result gives us the probability of ruin in this
model with a surplus-dependent taxation scheme. Indeed, let

φγ(u) = Pu

{
inf
t≥0

Uγ(t) ≥ 0
}

denote the survival probability when the initial surplus is u, meaning that
φ0(u) is the survival probability in the risk model without taxation. If X
satisfies the net profit condition, which in our setup amounts to ψ′(0+) > 0,
it is known that φ0(u) = W (u)/W (∞), where W (∞) := limx→∞W (x) (see
[5]). Thus,

d

du
ln(φ0(u)) =

W ′(u)
W (u)

.

Consequently, as τ−0 is the time of ruin in this risk model, taking the limit
when a goes to infinity in Equation (3) yields the following relationship be-
tween the survival probabilities of the risk models with and without taxation:

φγ(u) = exp
{
−

∫ ∞

u

(
1− γ(γ̄−1

u (s))
)−1 d

ds
ln(φ0(s)) ds

}
.
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4 J.-F. RENAUD

This is an extension of the so-called tax identity (see [1], [2] and [3]). Even
though this result was not explicitely stated in [6], one clearly sees that this
is a direct consequence of Equation (3).

Remark 2.1. The model defined through Equation (1) has a taxation rate
depending on the underlying risk process X, not on the taxed process Uγ.
Therefore, the use of the function γ̄−1

u in the results takes care of this change
of scaling. Note that the rate used in [1] depends on the taxed process.

3. The distribution of tax payments

Within the model introduced in Equation (1), the process

t '→
∫ t

0
e−δsγ(S(s)) dS(s)

represents the cumulative discounted (at the force of interest δ ≥ 0) tax
payments made until time t. In [6], the following result was derived:
(4)

Eu

[∫ τ−0

0
e−δsγ(S(s)) dS(s)

]
=

∫ ∞

u
exp

{
−

∫ t

u

W (δ)′(γ̄u(s))
W (δ)(γ̄u(s))

ds

}
γ(t) dt.

3.1. Moments of the discounted tax payments. Let the discounted
amount of tax payments made until ruin be denoted by

Tγ,δ =
∫ τ−0

0
e−δsγ(S(s)) dS(s)

and, for an integer k ≥ 0, define

v(k)
γ,δ (u) = Eu

[
(Tγ,δ)k

]
.

Clearly, we have v(0)
γ,δ(u) = 1 and, to lighten the notation , we set vγ,δ(u) =

v(1)
γ,δ(u).

Theorem 3.1. If δ > 0, then
(5)

vγ,δ(u) =
∫ ∞

u
exp

{
−

∫ s

u

W (δ)′(t)
W (δ)(t)

(
1− γ(γ̄−1

u (t))
) dt

}
γ(γ̄−1

u (s))
1− γ(γ̄−1

u (s))
ds.

Proof. We first collect intermediate results. Define τn := τ+
u+1/n = inf{t >

0: Uγ(t) = u + 1/n}. Note that if X(0) = u, then on the event {τn < ∞},
we have that

(6)
∫ τn

0
γ(S(s)) dS(s) = γ̄−1

u (u + 1/n)− u− 1
n

.
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DISTRIBUTION OF TAX PAYMENTS 5

This is the amount of tax paid until the taxed surplus process reaches u+1/n.
Also, we have that

(7) lim
n→∞

γ̄−1
u (u + 1/n)− u− 1

n

1/n
=

(
γ̄−1

u (u)
)′ − 1 =

γ(γ̄−1
u (u))

1− γ(γ̄−1
u (u))

.

One has to be careful with the latter differential quotient and resist the
temptation of using the fact that γ̄u(u) = u; the index u in the expression
of the function γ̄−1

u is fixed and must be seen as a parameter.
Also, from Equation (3), it is clear that

(8) lim
n→∞

Eu

[
e−δτnI{τn<τ−0 }

]
= 1.

Finally, using the Lebesgue-Stieltjes integration by parts formula (see The-
orem 18.4 in Billingsley [4]), we get

(9)
∫ t

0
e−δsγ(S(s)) dSs

= e−δt
∫ t

0
γ(S(s)) dSs + δ

∫ t

0
e−δs

(∫ s

0
γ(S(r)) dSr

)
ds.

The rest of the proof follows the proof of Theorem 3.2 in [3], adapting
the arguments to take into account that the tax rate is surplus-dependent.
Considering whether τn < τ−0 or τn > τ−0 , one can write

vγ,δ(u) = Eu

[∫ τn

0
e−δsγ(S(s)) dS(s) I{τn<τ−0 }

]

+ Eu

[∫ τ−0

τn

e−δsγ(S(s)) dS(s) I{τn<τ−0 }

]
+ o(1/n).

Intuitively, for large values of n, if τn > τ−0 , almost no taxes will be paid
before ruin.

We treat the other two expectations one at the time. Using Equation (9)
and Equation (6), one gets

Eu

[∫ τn

0
e−δsγ(S(s)) dS(s) I{τn<τ−0 }

]

=
(

γ̄−1
u (u + 1/n)− u− 1

n

)
Eu

[
e−δτnI{τn<τ−0 }

]

+ Eu

[
δ

∫ τn

0
e−δs

∫ s

0
γ(S(r)) dSr ds I{τn<τ−0 }

]
,

where

Eu

[
δ

∫ τn

0
e−δs

∫ s

0
γ(S(r)) dSr ds I{τn<τ−0 }

]

≤
(

γ̄−1
u (u + 1/n)− u− 1

n

)
Eu

[(
1− e−δτn

)
I{τn<τ−0 }

]
.
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6 J.-F. RENAUD

Using Equation (7) and Equation (8), we have that

(10) Eu

[
δ

∫ τn

0
e−δs

∫ s

0
γ(S(r)) dSr ds I{τn<τ−0 }

]
= o(1/n)

and hence

Eu

[∫ τn

0
e−δsγ(S(s)) dS(s) I{τn<τ−0 }

]

=
(

γ̄−1
u (u + 1/n)− u− 1

n

)
Eu

[
e−δτnI{τn<τ−0 }

]
+ o(1/n).

On the other hand, using the strong Markov property, we get

Eu

[∫ τ−0

τn

e−δsγ(S(s)) dS(s) I{τn<τ−0 }

]
= Eu

[
e−δτnI{τn<τ−0 }

]
vγ,δ(u+1/n).

In other words, we start collecting taxes only at time τn, at which time the
surplus process will be at level u + 1/n, but we must take into account the
discounted probability of reaching that level.

Finally, putting all of the above together, we obtain

vγ,δ(u) = o(1/n)

+ Eu

[
e−δτnI{τn<τ−0 }

] (
vγ,δ(u + 1/n) +

(
γ̄−1

u (u + 1/n)− u− 1
n

))
.

Using Equation (7) once again, we get the following differential equation

v′γ,δ(u) =
W (δ)′(u)

W (δ)(u)(1− γ(γ̄−1
u (u)))

vγ,δ(u)− γ(γ̄−1
u (u))

1− γ(γ̄−1
u (u))

.

Its solution is then given by

vγ,δ(u) =
∫ ∞

u
exp

{
−

∫ s

u

W (δ)′(t)
W (δ)(t)

(
1− γ(γ̄−1

u (t))
) dt

}
γ(γ̄−1

u (s))
1− γ(γ̄−1

u (s))
ds.

!

Note that changing variables twice (letting z = γ̄u(x)), we get
∫ ∞

u
exp

{
−

∫ s

u

W (δ)′(t)
W (δ)(t)

(
1− γ(γ̄−1

u (t))
) dt

}
γ(γ̄−1

u (s))
1− γ(γ̄−1

u (s))
ds

=
∫ ∞

u
exp

{
−

∫ t

u

W (δ)′(γ̄u(s))
W (δ)(γ̄u(s))

ds

}
γ(t) dt,

therefore recovering Equation (4).
We now look at the higher moments of Tγ,δ . Note that the previous

result/proof was presented separately from the next one for the sake of clarity
only; it is clearly embedded in the following:
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Theorem 3.2. If δ > 0, then the k-th moment of the present value of tax
payments made until ruin can be expressed in term of the (k−1)-th moment:

v(k)
γ,δ (u) = k

∫ ∞

u
exp

{
−

∫ s

u

W (kδ)′(t)
W (kδ)(t)

(
1− γ(γ̄−1

u (t))
) dt

}

× v(k−1)
γ,δ (s)

γ(γ̄−1
u (s))

1− γ(γ̄−1
u (s))

ds.

Proof. After having used the Binomial Theorem twice to expand powers (as
in [7]), we proceed as in the proof of Theorem 5 and, in particular, we use
the intermediate results and as well as the estimates to identify terms of
order o(1/n) (e.g., Equation (10)). For example, for an integer j ≥ 2, using
Equation (7), we clearly have

(
γ̄−1

u (u + 1/n)− u− 1
n

)j

= o(1/n).

Consequently, one obtains

v(k)
γ,δ (u) = o(1/n) + Eu

[
e−kδτnI{τn<τ−0 }

]

×
(

v(k)
γ,δ (u + 1/n) + kv(k−1)

γ,δ (u + 1/n)
(

γ̄−1
u (u + 1/n)− u− 1

n

))
.

Then, we get that

v(k)′
γ,δ (u) =

W (kδ)′(u)
W (kδ)(u)(1− γ(γ̄−1

u (u)))
v(k)
γ,δ (u) − kv(k−1)

γ,δ (u)
γ(γ̄−1

u (u))
1− γ(γ̄−1

u (u))
.

Solving this ordinary differential equation leads to

v(k)
γ,δ (u) = k

∫ ∞

u
exp

{
−

∫ s

u

W (kδ)′(t)
W (kδ)(t)

(
1− γ(γ̄−1

u (t))
) dt

}

× v(k−1)
γ,δ (s)

γ(γ̄−1
u (s))

1− γ(γ̄−1
u (s))

ds.

!

When γ(·) ≡ γ ∈ [0, 1), and up to some elementary algebraic manipula-
tions, these expressions for the moments agree with those in [3].

Finally, note that both the proofs of Theorem 3.1 and Theorem 3.2 used
the fact that δ > 0.

3.2. Tax payments with no force of interest. In [6], the expected dis-
counted tax payments until ruin are computed even if there is no force of
interest, i.e., if δ = 0. We now consider this case.

First, define αu(x) =
∫ x
u γ(y) dy for x ≥ u. Note that if γ(y) > 0 for all y,

then αu is strictly increasing and, therefore, α−1
u is well-defined.
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Proposition 3.1. If the range of the tax rate function γ lies in (0, 1), then,
for all x ≥ 0,

Pu

{∫ τ−0

0
γ(Ss) dSs ≥ x

}
= exp

{
−

∫ γ̄u(α−1
u (x))

u

W ′(s)
W (s)

(
1− γ(γ̄−1

u (s))
) ds

}

and, consequently, Equation (4) holds for δ = 0.

Proof. Note that the sum of tax payments first reaches level x when X is at
a new maximum at level α−1

u (x), which means that γ̄u
(
α−1

u (x)
)

represents
the level of the corresponding new maximum attained by Uγ (see Lemma 1
in [6]). Consequently,

{∫ τ−0

0
γ(Ss) dSs ≥ x

}
=

{
τ+
γ̄u(α−1

u (x)) < τ−0

}

and, by the solution of the two-sided exit problem given in Equation (3), we
have

Pu

{∫ τ−0

0
γ(Ss) dSs ≥ x

}
= exp

{
−

∫ γ̄u(α−1
u (x))

u

W ′(s)
W (s)

(
1− γ(γ̄−1

u (s))
) ds

}
.

Henceforth, we compute the expectation of the tax payments as follows:

Eu

[∫ τ−0

0
γ(Ss) dSs

]
=

∫ ∞

0
exp

{
−

∫ γ̄u(α−1
u (x))

u

W ′(s)
W (s)

(
1− γ(γ̄−1

u (s))
) ds

}
dx

=
∫ ∞

u
exp

{
−

∫ γ̄u(α−1
u (x−u))

u

W ′(s)
W (s)

(
1− γ(γ̄−1

u (s))
) ds

}
dx

=
∫ ∞

u
exp

{
−

∫ α−1
u (x−u)

u

W ′(γ̄u(s))
W (γ̄u(s))

ds

}
dx

=
∫ ∞

u
exp

{
−

∫ x

u

W (δ)′(γ̄u(s))
W (δ)(γ̄u(s))

ds

}
γ(x) dx,

where we have changed variables first in the inside integral (letting t =
γ̄−1

u (s)) and then in the outside one (letting t = α−1
u (x− u)). !
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