
OCCUPATION TIMES OF INTERVALS UNTIL FIRST PASSAGE TIMES
FOR SPECTRALLY NEGATIVE LÉVY PROCESSES

RONNIE L. LOEFFEN, JEAN-FRANÇOIS RENAUD, AND XIAOWEN ZHOU

Abstract. In this paper, we identify Laplace transforms of occupation times of intervals until
first passage times for spectrally negative Lévy processes. New analytical identities for scale
functions are derived and therefore the results are explicitly stated in terms of the scale functions
of the process. Applications to option pricing and insurance risk models are also presented.

1. Introduction and main results

In this paper, we are interested in the joint Laplace transforms of(
τ−0 ,

∫ τ−0

0
1(a,b)(Xs)ds

)
and

(
τ+c ,

∫ τ+c

0
1(a,b)(Xs)ds

)
,

where X = (Xt)t≥0 is a spectrally negative Lévy process, where

τ−0 = inf{t > 0: Xt < 0} and τ+c = inf{t > 0: Xt > c},

and where 0 ≤ a ≤ b ≤ c. Recently, Landriault et al. [9] and Kyprianou et al. [8] have studied
occupation times of half lines for spectrally negative Lévy processes, though the latter article
considers a more general process, namely a refracted spectrally negative Lévy process. The main
difference between this paper and the papers [9] and [8] is that by using some of the techniques in
[7], we find considerably simpler expressions, which further allow us to establish a more general
set of identities involving occupation times of spectrally negative Lévy processes. Note that
occupation times appear both in option pricing and in insurance risk models; we will mention
two applications later on.

We now briefly introduce spectrally negative Lévy processes and the associated scale functions,
before stating our main results. Let X = (Xt)t≥0 on the filtered probability space (Ω, (Ft)t≥0,P)
be a spectrally negative Lévy process, that is a process with stationary and independent incre-
ments and no positive jumps. Hereby we exclude the case that X is the negative of a subordi-
nator, i.e. we exclude the case of X having decreasing paths. The law of X such that X0 = x is
denoted by Px and the corresponding expectation by Ex. We write P and E when x = 0. As the
Lévy process X has no positive jumps, its Laplace transform exists and is given by

E
[
eλXt

]
= etψ(λ),
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for λ, t ≥ 0, where

ψ(λ) = γλ+
1

2
σ2λ2 +

∫ ∞

0

(
e−λz − 1 + λz1(0,1](z)

)
Π(dz),

for γ ∈ R and σ ≥ 0, and where Π is a σ-finite measure on (0,∞) such that∫ ∞

0
(1 ∧ z2)Π(dz) <∞.

We call the measure Π the Lévy measure of X, while we refer to (γ, σ,Π) as the Lévy triplet of
X. Note that for convenience we define the Lévy measure in such a way that it is a measure on
the positive half line instead of the negative half line. Further, note that E [X1] = ψ′(0+). The
process X has paths of bounded variation if and only if σ = 0 and

∫ 1
0 zΠ(dz) <∞. In that case

we denote by d := γ +
∫ 1
0 zΠ(dz) the so-called drift of X.

For an arbitrary spectrally negative Lévy process, the Laplace exponent ψ is strictly convex
and limλ→∞ ψ(λ) = ∞. Thus, there exists a function Φ: [0,∞) → [0,∞) defined by Φ(q) =
sup{λ ≥ 0 | ψ(λ) = q} (its right-inverse) such that

ψ(Φ(q)) = q, q ≥ 0.

We have that Φ(q) = 0 if and only if q = 0 and ψ′(0+) ≥ 0.
We now recall the definition of the q-scale function W (q). For q ≥ 0, the q-scale function of

the process X is defined on [0,∞) as the continuous function with Laplace transform on [0,∞)
given by

(1)
∫ ∞

0
e−λyW (q)(y)dy =

1

ψ(λ)− q
, for λ > Φ(q).

This function is unique, positive and strictly increasing for x ≥ 0 and is further continuous for
q ≥ 0. We extend W (q) to the whole real line by setting W (q)(x) = 0 for x < 0. We write
W =W (0) when q = 0. We will also frequently use the following function

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy, x ∈ R.

We recall some of the properties of the q-scale function W (q) and its use in fluctuation theory.
Most results are taken, or can easily be derived, from [6]. The initial values of W (q) is known to
be

W (q)(0) =

{
1/d when σ = 0 and

∫ 1
0 zΠ(dz) <∞,

0 otherwise,

where we used the following definition: W (q)(0) = limx↓0W
(q)(x). Now, for a ∈ R, define

τ−a = inf{t > 0: Xt < a},
and

τ+a = inf{t > 0: Xt > a},
with the convention inf ∅ = ∞. It is well known that, if a > 0 and x ≤ a, then the solution to
the two-sided exit problem is given by

(2) Ex
[
e−qτ

+
a ; τ+a < τ−0

]
=
W (q)(x)

W (q)(a)
,
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(3) Ex
[
e−qτ

−
0 ; τ−0 < τ+a

]
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
,

where, for a random variable Y and an event A, E[Y ;A] := E[Y 1A]. Also, it is known that, for
a ≤ x ≤ b and f a positive, measurable function, we have

(4) Ex
[
e−qτ

−
a f(Xτ−a

); τ−a < τ+b

]
= f(a)

σ2

2

[
W (q)′(x− a)−W (q)(x− a)

W (q)′(b− a)

W (q)(b− a)

]

+

∫ b−a

0
dy

∫ ∞

y
f(y − θ + a)Π(dθ)

[
W (q)(b− a− y)

W (q)(b− a)
W (q)(x− a)−W (q)(x− a− y)

]
,

where W (q)′(x) is the derivative of W (q)(x), which is well-defined if σ > 0. The first term of this
identity corresponds to the case when Xτ−a

= a, a behaviour called creeping.
For more details on spectrally negative Lévy processes and fluctuation identities, the reader

is referred to [6]. Further information, examples and numerical techniques related to the com-
putation of scale functions can be found in [5].

1.1. Main results. For our main results we first need to introduce three auxiliary functions.
We note that by taking Laplace transforms on both sides and using (1) we can easily check that
the following two equalities hold:

(q − p)

∫ a

0
W (p)(a− y)W (q)(y)dy =W (q)(a)−W (p)(a),

(q − p)

∫ a

0
W (p)(a− y)Z(q)(y)dy =Z(q)(a)− Z(p)(a).

(5)

We now introduce the following two functions for p, q ≥ 0 and x ∈ R,

W(p,q)
a (x) :=W (p+q)(x)− q

∫ a

0
W (p+q)(x− y)W (p)(y)dy

=W (p)(x) + q

∫ x

a
W (p+q)(x− y)W (p)(y)dy,

Z(p,q)
a (x) :=Z(p+q)(x)− q

∫ a

0
W (p+q)(x− y)Z(p)(y)dy

=Z(p)(x) + q

∫ x

a
W (p+q)(x− y)Z(p)(y)dy,

(6)

where the second representations of W(p,q)
a (x) and Z(p,q)

a (x) follow from (5). We will use both
representations throughout the text. We further introduce, for p ≥ 0 and q ∈ R such that
p+ q ≥ 0, the function

H(p,q)(x) = eΦ(p)x

(
1 + q

∫ x

0
e−Φ(p)yW (p+q)(y)dy

)
, x ∈ R.

Note that H(p,q)(x) = eΦ(p)x for x ≤ 0 and that the Laplace transform of H(p,q) on [0,∞) is
explicitly given by∫ ∞

0
e−λxH(p,q)(x)dx =

1

λ− Φ(p)

(
1 +

q

ψ(λ)− p− q

)
, λ > Φ(p+ q).
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We now state our two main results.

Theorem 1. For 0 ≤ a ≤ b ≤ c, p, q ≥ 0 and 0 ≤ x ≤ c,

Ex
[
e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds; τ−0 < τ+c

]
= Z(p,q)

a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz

−
Z(p,q)
a (c)− q

∫ c
b W

(p)(c− z)Z(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

(
W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz

)
.

Theorem 2. For 0 ≤ a ≤ b ≤ c, p, q ≥ 0 and 0 ≤ x ≤ c,

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(a,b)(Xs)ds; τ+c < τ−0

]
=

W(p,q)
a (x)− q

∫ x
b W

(p)(x− z)W(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

.

Note that the two theorems generalise (2) and (3). From these two theorems we can derive
the following list of corollaries.

Corollary 1. (i) For 0 ≤ a ≤ b and p, q, x ≥ 0,

Ex
[
e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds; τ−0 <∞

]
= Z(p,q)

a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz

−
p

Φ(p) + q
∫ b
a e

−Φ(p)yZ(p,q)
a (y)dy

1 + q
∫ b
a e

−Φ(p)yW(p,q)
a (y)dy

(
W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz

)
,

where limp→0 p/Φ(p) = ψ′(0+) ∨ 0 in the case p = 0.
(ii) For a, p, q, x ≥ 0,

Ex
[
e−pτ

−
0 −q

∫ τ−0
0 1(a,∞)(Xs)ds; τ−0 <∞

]
= Z(p,q)

a (x)−
p+q

Φ(p+q) − q
∫ a
0 e−Φ(p+q)yZ(p)(y)dy

1− q
∫ a
0 e−Φ(p+q)yW (p)(y)dy

W(p,q)
a (x).

Corollary 2. (i) For −∞ < a ≤ b ≤ c, p, q ≥ 0 and x ≤ c,

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(a,b)(Xs)ds; τ+c <∞

]
=

H(p,q)(x− a)− q
∫ x
b W

(p)(x− y)H(p,q)(y − a)dy

H(p,q)(c− a)− q
∫ c
b W

(p)(c− y)H(p,q)(y − a)dy
.

(ii) For b ≤ c, p, q ≥ 0 and x ≤ c,

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(−∞,b)(Xs)ds; τ+c <∞

]
=

H(p+q,−q)(x− b)

H(p+q,−q)(c− b)
.

Corollary 3. (i) Assume ψ′(0+) > 0. Then for −∞ < a ≤ b, q ≥ 0 and x ∈ R,

Ex
[
e−q

∫∞
0 1(a,b)(Xs)ds

]
=
Z(q)(x− a)− q

∫ x
b W (x− y)Z(q)(y − a)dy

1 + q
ψ′(0+)

∫ b−a
0 Z(q)(y)dy

.
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(ii) Assume ψ′(0+) > 0. Then for q ≥ 0 and b, x ∈ R,

Ex
[
e−q

∫∞
0 1(−∞,b)(Xs)ds

]
=
ψ′(0+)Φ(q)

q
H(q,−q)(x− b).

(iii) Assume ψ′(0+) < 0. Then for −∞ < a ≤ b, q ≥ 0 and x ∈ R,

Ex
[
e−q

∫∞
0 1(a,b)(Xs)ds

]
= Z(q)(x− a)− q

∫ x

b
W (x− y)Z(q)(y − a)dy

−
q
∫ b−a
0 e−Φ(0)yZ(q)(y)dy

ψ′(Φ(0)) + q
∫ b−a
0 e−Φ(0)yH(0,q)(y)dy

(
H(0,q)(x− a)− q

∫ x

b
W (x− y)H(0,q)(y − a)dy

)
.

(iv) Assume ψ′(0+) < 0. Then for q ≥ 0 and a, x ∈ R,

Ex
[
e−q

∫∞
0 1(a,∞)(Xs)ds

]
= Z(q)(x− a)− Φ(q)− Φ(0)

Φ(q)
H(0,q)(x− a).

We remark that Corollary 3(ii) was derived earlier in [9, Corollary 1]. Note that regarding
Corollary 3, due to the long-term behaviour of X, if ψ′(0+) ≤ 0, then

∫∞
0 1(−∞,b)(Xs)ds = ∞

a.s., if ψ′(0+) ≥ 0, then
∫∞
0 1(a,∞)(Xs)ds = ∞ a.s. and if ψ′(0+) = 0, then

∫∞
0 1(a,b)(Xs)ds = ∞

a.s..
We also mention the following useful identities,

W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz =W (p)(x) + q

∫ b

a
W (p)(x− z)W(p,q)

a (z)dz,

Z(p,q)
a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz =Z(p)(x) + q

∫ b

a
W (p)(x− z)Z(p,q)

a (z)dz.

(7)

These two identities can be proved easily by setting first x = a = b in Theorem 2 and comparing
with (2) and then setting x = a = b in Theorem 1 and comparing with (3). Similarly,

(8) H(p,q)(x−a)−q
∫ x

b
W (p)(x−y)H(p,q)(y−a)dy = eΦ(p)(x−a)+q

∫ b

a
W (p)(x−y)H(p,q)

a (y−a)dy,

which can be proved easily by setting x = a = b in Corollary 2(i) and comparing with the
identity in Corollary 2(i) for q = 0. Note that (7) and (8) lead to alternative identities for the
main theorems and corollaries. Further, (7) and (8) will also be used to prove Corollary 1(i) and
Corollary 3(i) respectively.

Remark 1.1. The expressions appearing in Theorems 1 and 2 and Corollaries 1-3 are all given
in terms of scale functions for which in general only the Laplace transform is known. However,
there are plenty of examples of spectrally negative Lévy processes for which an explicit formula
(though the degree of explicitness can vary case by case) exists for the scale function W (q), cf. [5].
For these examples one should then be able to get a more explicit expression for the functionals
appearing in the aforementioned theorems and corollaries. On the other hand, there are good
numerical methods for dealing with Laplace inversion of the scale function (cf. [5, Section 5]) and
these can be used to numerically evaluate the expressions in Theorems 1 and 2 and Corollaries
1-3. Although the Laplace transforms of Z(q) and H(p,q) are known and thus these functions can
be computed via a single Laplace inversion, this is not true in general for the functions W(p,q)

a

and Z(p,q)
a due to the appearance of incomplete convolutions. This also means that several of our
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indentities cannot be computed via a single Laplace inversion and more complicated numerical
procedures involving Laplace inversion and computation of iterated integrals are needed.

Our results improve the results from [9] and [8] (in the no refraction case) in several ways.
First, we consider occupation times of an arbitrary interval, not just intervals of the form (−∞, b).
Second, we deal with the case p > 0. Third, we deal with a general starting point x; note that
the expressions simplify when x ≤ b or x ≤ a. Finally, our expressions are considerably simpler
than the ones derived in [9] and [8]. To illustrate this consider Corollary 1(i) with p = 0, a = 0
and x = b. Then

Eb
[
e−q

∫ τ−0
0 1(0,b)(Xs)ds; τ−0 <∞

]
= Z(q)(b)−

(ψ′(0+) ∨ 0) + q
∫ b
0 e−Φ(0)yZ(q)(y)dy

1 + q
∫ b
0 e−Φ(0)yW (q)(y)dy

W (q)(b),

which is a more compact expression and easier to evaluate than the one in Theorem 2 of [9] and
Corollary 1(ii) of [8] (in the no refraction case).

The rest of the paper is organized as follows. The main lemma needed for the proofs, which
is based on some of the techniques used in [7], is given in the next section. It is this lemma
which allows us in the end to simplify the expressions obtained in [9] and [8]. Then in Sections
3-5 the proofs of the theorems and corollaries are given. The arguments used in Sections 3 and
4 (at least for the case where X has paths of bounded variation) are similar to the ones in [9].
Finally, in Section 6 we give two applications of our results.

2. Main lemma

Recall that X is a spectrally negative Lévy process with Lévy triplet (γ, σ,Π). For some
particular functions f associated with X, the right hand side of (4) can be written in a much
nicer form (namely, (9) below) and this observation is the starting point of what leads in the
end to the simple form, compared to the earlier works [9] and [8], of the identities in the main
theorems.

For a positive, measurable function v(q)(x), x ∈ (−∞,∞), consider the following condition:

(9) Ex
[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
= v(q)(x)− W (q)(x− a)

W (q)(b− a)
v(q)(b), 0 ≤ a ≤ x ≤ b.

Remark 2.1. Note that (9) implies via the Markov property, (2) and the lack of upward jumps
that the process

t 7→ e−q(t∧τ
−
a ∧τ+b )v(q)

(
Xt∧τ−a ∧τ+b

)
,

is a Px-martingale for all x ∈ [a, b]. Conversely, if the above displayed process is a Px-martingale
for x ∈ [a, b], then by taking expectations and the limit as t → ∞, one can show that (9) is
satisfied provided v(q) is sufficiently regular so that switching of the expectation and the limit is
justified.

For q, a ≥ 0, we define V(q)
a to be the function space consisting of functions v(q)(x) that satisfy

(9) for all x and b such that a ≤ x ≤ b. We will now show that several type of functions lie in
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V(q)
a . Consider first the scale function W (q)(x). We have for all 0 ≤ a ≤ x ≤ b by the strong

Markov property and (2),

W (q)(x)

W (q)(b)
=Ex

[
e−qτ

+
b 1{τ+b <τ

−
0 }

]
=Ex

[
e−qτ

+
b 1{τ+b <τ

−
a }

]
+ Ex

[
Ex
[
e−qτ

+
b 1{τ−a <τ+b <τ

−
0 }

∣∣∣Fτ−a ]]
=
W (q)(x− a)

W (q)(b− a)
+ Ex

[
e−qτ

−
a EX

τ−a

[
e−qτ

+
b 1{τ+b <τ

−
0 }

]
1{τ−a <τ+b }

]
=
W (q)(x− a)

W (q)(b− a)
+ Ex

[
e−qτ

−
a
W (q)(Xτ−a

)

W (q)(b)
1{τ−a <τ+b }

]
,

from which it follows that W (q) satisfies (9) and thus W (q) ∈ V(q)
a for all q, a ≥ 0. By spatial

homogeneity it then follows that x 7→ W (q)(x − y) lies in V(q)
a for all q ≥ 0 and 0 ≤ y ≤ a. Let

now

(10) v(q)(x) = Ex
[
e−qτ

−
0 f(Xτ−0

)1{τ−0 <∞}

]
, x ∈ R,

for some measurable function f such that |v(q)(x)| < ∞. Note that v(q)(x) = f(x) for x < 0.
Then we have for 0 ≤ a ≤ x by using the strong Markov property,

v(q)(x) = Ex
[
Ex
[
e−qτ

−
0 f(Xτ−0

)1{τ−0 <∞}

∣∣∣Fτ−a ]] = Ex
[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <∞}

]
(11)

and therefore again by the strong Markov property and (2), we have for all 0 ≤ a ≤ x ≤ b,

v(q)(x) =Ex
[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <∞}

]
=Ex

[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
+ Ex

[
Ex
[
e−qτ

−
a v(q)(Xτ−a

)1{τ+b <τ
−
a <∞}

∣∣∣Fτ+b ]]
=Ex

[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
+ Ex

[
e−qτ

+
b 1{τ+b <τ

−
a }

]
Eb
[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <∞}

]
=Ex

[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
+
W (q)(x− a)

W (q)(b− a)
Eb
[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <∞}

]
.

Now using (11) for x = b for the last term on the right hand side of the previous computation,
we see that v(q)(·) of the form (10) satisfies (9). In particular, for f ≡ 1, v(q)(·) of the form (10)
lies in V(q)

a for all q, a ≥ 0. As V(q)
a is a linear space it follows via (3) that we also have for all

q, a ≥ 0,

Z(q)(x) =
q

Φ(q)
W (q)(x) + Ex

[
e−qτ

−
0 1{τ−0 <∞}

]
∈ V(q)

a .

The proofs of the theorems and corollaries in Section 1.1 and the next lemma in the case where
the process X has paths of unbounded variation use an approximation argument for which we
need to introduce a sequence (Xn)n≥1 of spectrally negative Lévy processes of bounded variation.
To this end, supposeX is a spectrally negative Lévy process having paths of unbounded variation.
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with Lévy triplet (γ, σ,Π). Form for n ≥ 1 the spectrally negative Lévy process Xn = (Xn
t )t≥0

with Lévy triplet (γ, 0,Πn), whereby

Πn(dθ) := 1{θ≥1/n}Π(dθ) + σ2n2δ1/n(dθ),

with δ1/n(dθ) standing for the Dirac point mass at 1/n. Note that Xn has paths of bounded
variation with the so-called drift given by dn := γ+

∫ 1
1/n θΠ(dθ)+σ2n2, which means that dn may

be negative for small n. Though we do have that Xn is a true spectrally negative Lévy process
for large enough n which is all that we need. By Bertoin [2, p.210], Xn converges almost surely
to X uniformly on compact time intervals. Denote by V(q)

a,n the function space V(q)
a corresponding

to Xn. The following lemma is the main result of this section.

Lemma 2.1. Let q, a ≥ 0 and v(q) be a positive, measurable function on R. Given a spectrally
negative Lévy process X, consider the following assumptions:

(i) If X has paths of bounded variation, assume that v(q) ∈ V(q)
a and

(12)
∫ ∞

0
e−λzv(q)(z)dz <∞, for λ large enough.

(ii) If X has paths of unbounded variation, assume that v(q) is continuous and that there
exists a sequence of functions v(q)n ∈ V(q)

a,n satisfying (12) such that v(q)n converges to v(q)
uniformly on compact subsets, i.e.,

(13) lim
n→∞

sup
x∈[x0,x1]

|v(q)n (x)− v(q)(x)| = 0, for all x0 < x1,

and such that for all x0 ≥ 0 there exists Kx0 > 0, n0 ≥ 1 such that

(14) |v(q)n (x)| ≤ Kx0 for all n ≥ n0, x ≤ x0.

If (i) or (ii) holds, then we have for all p ≥ 0 and x, b such that a ≤ x ≤ b,

Ex
[
e−pτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
=v(q)(x)− (q − p)

∫ x

a
W (p)(x− y)v(q)(y)dy

− W (p)(x− a)

W (p)(b− a)

(
v(q)(b)− (q − p)

∫ b

a
W (p)(b− y)v(q)(y)dy

)
.

(15)

Proof. We first prove (in three steps) the lemma for the case that X has paths of bounded
variation, i.e. σ = 0 and

∫ 1
0 θΠ(dθ) <∞. Recall that d = γ +

∫ 1
0 θΠ(dθ) > 0 is the drift of X.
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Step 1. We have by (9) and (4), for a ≤ x ≤ b,

v(q)(x)− W (q)(x− a)

W (q)(b− a)
v(q)(b) =Ex

[
e−qτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
=

∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)

×

[
W (q)(b− a− y)

W (q)(b− a)
W (q)(x− a)−W (q)(x− a− y)

]
dy

=

∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)
W (q)(b− a− y)

W (q)(b− a)
W (q)(x− a)dy

−
∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)W (q)(x− a− y)dy,

(16)

whereby the splitting of the integral in the last line is possible due to
∫ 1
0 θΠ(dθ) <∞. By putting

x = a in (16) and recalling W (q)(0) = 1/d, we get for all b ≥ a,

(17)
∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)W (q)(b− a− y)dy = dW (q)(b− a)v(q)(a)− v(q)(b).

Step 2. Let λ0 > 0 be large enough such that the Laplace transform of v(q)(x) exists for λ > λ0,
cf. condition (12). Taking Laplace transforms in b on both sides of (17) and using (1) leads to,
for λ > Φ(q) ∨ λ0,

(18)
∫ ∞

0
e−λy

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)dy = dv(q)(a)− (ψ(λ)− q)eλa
∫ ∞

a
e−λbv(q)(b)db.

Let p ≥ 0. Then using (18), we get for λ > Φ(q) ∨ Φ(p) ∨ λ0,∫ ∞

a
e−λb

∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)W (p)(b− a− y)dydb

=
e−λa

ψ(λ)− p

(
dv(q)(a)− (ψ(λ)− q)eλa

∫ ∞

a
e−λbv(q)(b)db

)
=

e−λa

ψ(λ)− p
dv(q)(a)−

∫ ∞

a
e−λbv(q)(b)db+

q − p

ψ(λ)− p

∫ ∞

a
e−λbv(q)(b)db.

Now by Laplace inversion, we get for all b ≥ a,

(19)
∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)W (p)(b− a− y)dy

= dv(q)(a)W (p)(b− a)− v(q)(b) + (q − p)

∫ b

a
W (p)(b− y)v(q)(y)dy.
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Step 3. We know by (4) that for a ≤ x ≤ b,

Ex
[
e−pτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
=

∫ ∞

0

∫
(y,∞)

v(q)(y − θ + a)Π(dθ)

[
W (p)(b− a− y)

W (p)(b− a)
W (p)(x− a)−W (p)(x− a− y)

]
dy.

Hence using (19) twice, we get the required identity

Ex
[
e−pτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
=v(q)(x)− (q − p)

∫ x

a
W (p)(x− y)v(q)(y)dy

− W (p)(x− a)

W (p)(b− a)

(
v(q)(b)− (q − p)

∫ b

a
W (p)(b− y)v(q)(y)dy

)
.

We now prove the lemma for the case that X has paths of unbounded variation. Hereby we
assume without loss of generality that p > 0 as the case p = 0 can be dealt with by taking limits
as p ↓ 0 using the fact that W (p)(x) is continuous and increasing (cf. (5)) in p ≥ 0. We denote
by W (p)

n the p-scale function corresponding to the spectrally negative Lévy process Xn. Further,
let

τ−a,n = inf{t > 0 : Xn
t < a}, τ+b,n = inf{t > 0 : Xn

t > b}.
Then since we have proved the lemma for the case of bounded variation,

(20) Ex
[
e−pτ

−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n}

]
= v(q)n (x)− (q − p)

∫ x

a
W (p)
n (x− y)v(q)n (y)dy

− W
(p)
n (x− a)

W
(p)
n (b− a)

(
v(q)n (b)− (q − p)

∫ b

a
W (p)
n (b− y)v(q)n (y)dy

)
.

We aim to prove (15) by taking limits as n→ ∞ on both sides of (20).
By p.210 of Bertoin [2], Xn converges almost surely to X uniformly on compact time intervals,

i.e. for all t > 0, limn→∞ sups∈[0,t] |Xn
s −Xs| = 0, Px-a.s.. Given ϵ > 0, observe that Px-a.s.,

τ−a+ϵ ≤ τ−a ≤ τ−a−ϵ

and
τ−a+ϵ ∧ t ≤ τ−a,n ∧ t ≤ τ−a−ϵ ∧ t

for n large enough. Since X has paths of of unbounded variation, we have Px-a.s.,

τ−a+ϵ ∧ t ↑ τ−a ∧ t and τ−a−ϵ ∧ t ↓ τ−a ∧ t
as ϵ→ 0+. This implies that for any t > 0, Px-a.s.,

τ−a,n ∧ t→ τ−a ∧ t.
Similarly,

τ+b,n ∧ t→ τ+b ∧ t Px-a.s..

Further, observe that τ−a,n = τ−a for n large enough if Xτ−a
< a, τ−a ≤ t, and Xτ−a,n

> a ≥ Xn
τ−a,n

if

Xτ−a
= a, τ−a,n < τ−a ≤ t. Then by the uniform convergence of Xn and the right continuity of X

we have
Xn
τ−a,n∧t

→ Xτ−a ∧t Px-a.s..
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Thus, by (13) we have for any t > 0, Px-a.s.,

e−p(τ
−
a,n∧t)v(q)n (Xn

τ−a,n∧t
)1{τ−a,n∧t<τ+b,n∧t}

→ e−p(τ
−
a ∧t)v(q)(Xτ−a ∧t)1{τ−a ∧t<τ+b ∧t}.

or equivalently

(21) e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n∧t}

→ e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b ∧t}.

Notice that Px-a.s.,

(22) Xn
τ−a,n

1{τ−a,n<τ+b,n}
≤ a, Xτ−a

1{τ−a <τ+b } ≤ a,

which implies further in combination with the triangle inequality,

|e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n}

− e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b }|

≤|e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n}

− e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n∧t}

|

+ |e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n∧t}

− e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b ∧t}|

+ |e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b ∧t} − e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b }|

=|e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n}

1{t≤τ−a,n}|

+ |e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n∧t}

− e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b ∧t}|

+ |e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b }1{t≤τ−a }|

≤e−pt

(
1{t≤τ−a,n} sup

y≤a
|v(q)n (y)|+ 1{t≤τ−a } sup

y≤a
|v(q)(y)|

)
+ |e−pτ

−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n∧t}

− e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b ∧t}|.

(23)

By (14) and (21) we can (since we assumed p > 0) first choose a t large enough and then choose
n large to make the right hand side of (23) arbitrarily small, which means that Px-a.s.,

e−pτ
−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n}

→ e−pτ
−
a v(q)(Xτ−a

)1{τ−a <τ+b }.

By (22) and (14) in combination with the dominated convergence theorem we can then conclude
that

lim
n→∞

Ex
[
e−pτ

−
a,nv(q)n (Xn

τ−a,n
)1{τ−a,n<τ+b,n}

]
= Ex

[
e−pτ

−
a v(q)(Xτ−a

)1{τ−a <τ+b }

]
.

It remains to show that the right hand side of (20) converges to the right hand side of (15). It
is an easy exercise to show that the Laplace exponent of Xn converges to the Laplace exponent
of X which means via (1) that the Laplace transform of W (p)

n converges to the Laplace transform
of W (p). Hence by the continuity theorem of Laplace transforms (cf. [3, Theorem 2a in Section
XIII.1]), W (p)

n (x) →W (p)(x) for all x ≥ 0 and p ≥ 0. Using the dominated convergence theorem
in combination with (13), (14) and the fact that scale functions are increasing, we deduce that
indeed the right hand side of (20) converges to the right hand side of (15). �
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Lemma 2.2. The conclusion of Lemma 2.1 holds for (i) v(q)(x) =W (q)(x) for any q, a ≥ 0, (ii)
v(q)(x) = Z(q)(x) for any q, a ≥ 0 and (iii) v(q)(x) =W (q)(x− y) for any q ≥ 0 and 0 ≤ y ≤ a.

Proof. Note that case (iii) will follow from case (i) by spatial homogeneity of a Lévy process. For
cases (i) and (ii), from the considerations in the beginning of Section 2 and (1), the assumptions
in Lemma 2.1 are clearly satisfied when X has paths of bounded variation. When X has paths
of unbounded variation, we let the function v(q)n ∈ V(q)

a,n in case (i), respectively case (ii), be W (q)
n

(the q-scale function corresponding to Xn), respectively Z(q)
n (x) := 1+ q

∫ x
0 W

(q)
n (y)dy. We have

seen in the proof of Lemma 2.1 that W (q)
n (x) converges to W (q)(x) and since the q-scale function

is increasing and positive, it follows that (14) is satisfied in case (i). This implies further by the
dominated convergence theorem, that Z(q)

n (x) converges to Z(q)(x) and as Z(q)
n is also positive

and increasing, (14) is also satisfied in case (ii).
What remains to show is that the convergence of W (q)

n to W (q) and Z
(q)
n to Z(q) is actually

uniform on compact subsets. Since x 7→ logW
(q)
n (x) is a concave function (cf. [10, p.89]) and

converges pointwise to logW (q)(x), it follows that logW
(q)
n converges uniformly on compact

subsets to logW (q), cf. [12, p.17, Theorem E]. As the exponential function is locally Lipschitz,
it is then easy to show that also W (q)

n converges to W (q) uniformly on compact subsets. It then
easily follows that also Z(q)

n converges to Z(q) uniformly on compact subsets. �

Remark 2.2. The proof of Lemma 2.1 in the bounded variation case uses very similar steps
as the proof of Theorem 16 in [7]. In order to make the connection clear between these two
results, let us reformulate the left hand side of (15) in a different setting. Let Y be a spectrally
negative Lévy process with Lévy triplet (γ, σ,Π) and killing rate p ≥ 0, which means that Y is
a spectrally negative Lévy process killed at an independent exponentially distributed amount of
time with parameter p. Further, let Z be another spectrally negative Lévy process with Lévy
triplet (γ′, σ′,Π′) and killing rate q ≥ 0. Define the first passage times,

τ−a = inf{t > 0: Yt < a}, τ+b = inf{t > 0: Yt > b},
κ−a = inf{t > 0: Zt < a}, κ+b = inf{t > 0: Zt > b}.

and denote by WY the scale function associated to Y , which is defined as the p-scale function
W (p) corresponding to the unkilled spectrally negative Lévy process with Lévy triplet (γ, σ,Π).
Similarly, define WZ . Also, let v be a positive, measurable function satisfying

Ex
[
v(Zκ−a )1{κ−a <κ+b }

]
= v(x)− WZ(x− a)

WZ(b− a)
v(b).

Then Lemma 2.1 provides, under some additional regularity assumptions on v, an expression for
the quantity

(24) Ex
[
v(Yτ−a )1{τ−a <τ+b }

]
in the case where γ = γ′, σ = σ′ and Π = Π′ (i.e. only the killing rates differ), whereas Kyprianou
and Loeffen [7, Theorem 16] provide a similar-looking expression for (24) with v = WZ in the
case where σ = σ′, Π = Π′ and p = q (i.e. only the first parameters of the Lévy triplets differ).
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3. Proof of Theorem 1

We first prove the theorem in the case where X has paths of bounded variation. Fix 0 ≤ a < b
and p, q ≥ 0. For x ≤ c, define

w(x) = Ex
[
e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds; τ−0 < τ+c

]
.

Using the strong Markov property of X, the fact that X is skip-free upward and (2) and (3), we
can write, for x < a,

w(x) =Ex
[
e−pτ

−
0 ; τ−0 < τ+a

]
+ w(a)Ex

[
e−pτ

+
a ; τ+a < τ−0

]
=Z(p)(x) +

(
w(a)− Z(p)(a)

W (p)(a)

)
W (p)(x).(25)

Similarly, for a ≤ x < b, using (25), we have

w(x) =w(b)Ex
[
e−(p+q)τ+b ; τ+b < τ−a

]
+ Ex

[
e−(p+q)τ−a w

(
Xτ−a

)
; τ−a < τ+b

]
=w(b)

W (p+q)(x− a)

W (p+q)(b− a)
+ Ex

[
e−(p+q)τ−a Z(p)

(
Xτ−a

)
; τ−a < τ+b

]
+

(
w(a)− Z(p)(a)

W (p)(a)

)
Ex
[
e−(p+q)τ−a W (p)

(
Xτ−a

)
; τ−a < τ+b

]
.(26)

Since one can show by the lemmas in Section 2 that

(27) Ex
[
e−(p+q)τ−a W (p)

(
Xτ−a

)
; τ−a < τ+b

]
= W(p,q)

a (x)− W (p+q)(x− a)

W (p+q)(b− a)
W(p,q)
a (b)

and

Ex
[
e−(p+q)τ−a Z(p)

(
Xτ−a

)
; τ−a < τ+b

]
= Z(p,q)

a (x)− W (p+q)(x− a)

W (p+q)(b− a)
Z(p,q)
a (b),

we get, for a ≤ x < b,

(28) w(x) =
W (p+q)(x− a)

W (p+q)(b− a)

(
w(b)−Z(p,q)

a (b)−

(
w(a)− Z(p)(a)

W (p)(a)

)
W(p,q)
a (b)

)

+ Z(p,q)
a (x) +

(
w(a)− Z(p)(a)

W (p)(a)

)
W(p,q)
a (x).
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Recalling (6) one easily sees that (28) also holds for x < a. Finally, for b ≤ x ≤ c, we have using
(28),

w(x) =Ex
[
e−pτ

−
b w

(
Xτ−b

)
; τ−b < τ+c

]
=Ex

[
e−pτ

−
b W (p+q)

(
Xτ−b

− a
)
; τ−b < τ+c

] w(b)−Z(p,q)
a (b)−

(
w(a)−Z(p)(a)

W (p)(a)

)
W(p,q)
a (b)

W (p+q)(b− a)

+ Ex
[
e−pτ

−
b Z(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
(29)

+

(
w(a)− Z(p)(a)

W (p)(a)

)
Ex
[
e−pτ

−
b W(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
.(30)

By the lemmas in Section 2 and Fubini’s theorem, we have,

Ex
[
e−pτ

−
b W(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
=Ex

[
e−pτ

−
b W (p+q)

(
Xτ−b

)
; τ−b < τ+c

]
− q

∫ a

0
W (p)(y)Ex

[
e−pτ

−
b W (p+q)

(
Xτ−b

− y
)
; τ−b < τ+c

]
dy

=W (p+q)(x)− q

∫ x

b
W (p)(x− y)W (p+q)(y)dy

− W (p)(x− b)

W (p)(c− b)

(
W (p+q)(c)− q

∫ c

b
W (p)(c− y)W (p+q)(y)dy

)
− q

∫ a

0
W (p)(y)

{
W (p+q)(x− y)− q

∫ x

b
W (p)(x− z)W (p+q)(z − y)dz

− W (p)(x− b)

W (p)(c− b)

(
W (p+q)(c− y)− q

∫ c

b
W (p)(c− z)W (p+q)(z − y)dz

)}
dy

=W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz

− W (p)(x− b)

W (p)(c− b)

(
W(p,q)
a (c)− q

∫ c

b
W (p)(c− z)W(p,q)

a (z)dz

)

(31)
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and, similarly,

Ex
[
e−pτ

−
b Z(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
=Z(p+q)(x)− q

∫ x

b
W (p)(x− y)Z(p+q)(y)dy

− W (p)(x− b)

W (p)(c− b)

(
Z(p+q)(c)− q

∫ c

b
W (p)(c− y)Z(p+q)(y)dy

)
− q

∫ a

0
Z(p)(y)

{
W (p+q)(x− y)− q

∫ x

b
W (p)(x− z)W (p+q)(z − y)dz

− W (p)(x− b)

W (p)(c− b)

(
W (p+q)(c− y)− q

∫ c

b
W (p)(c− z)W (p+q)(z − y)dz

)}
dy

=Z(p,q)
a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz

− W (p)(x− b)

W (p)(c− b)

(
Z(p,q)
a (c)− q

∫ c

b
W (p)(c− z)Z(p,q)

a (z)dz

)
.

(32)

All is left to obtain are the expressions for w(a) and w(b). It is here that we need the
assumption that X has paths of bounded variation. Setting x = a in (28), using that W (q)(0) ̸= 0
because X has paths of bounded variation and noticing that (cf. (6))

W(p,q)
a (a) =W (p)(a) and Z(p,q)

a (a) = Z(p)(a),

leads to
w(b)−Z(p,q)

a (b)

W(p,q)
a (b)

=
w(a)− Z(p)(a)

W (p)(a)
.

Using the above equation once in (28) and twice in (29),

(33) w(x) = Ex
[
e−pτ

−
b Z(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
+

(
w(b)−Z(p,q)

a (b)

W(p,q)
a (b)

)
Ex
[
e−pτ

−
b W(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
,

for x ≤ c. Setting x = b in (33) and using (31) and (32) then yields

w(b) =Z(p,q)
a (b)− W (p)(0)

W (p)(c− b)

(
Z(p,q)
a (c)− q

∫ c

b
W (p)(c− z)Z(p,q)

a (z)dz

)
+

(
w(b)−Z(p,q)

a (b)

W(p,q)
a (b)

)

×

(
W(p,q)
a (b)− W (p)(0)

W (p)(c− b)

(
W(p,q)
a (c)− q

∫ c

b
W (p)(c− z)W(p,q)

a (z)dz

))
.

(34)

Solving (33) for w(b) leads to

w(b) = Z(p,q)
a (b)−

Z(p,q)
a (c)− q

∫ c
b W

(p)(c− z)Z(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

W(p,q)
a (b).



16 LOEFFEN, RENAUD AND ZHOU

Plugging this into (33), using (31)-(32), cancelling out a few terms and rearranging, we get for
all x ≤ c,

w(x) = Z(p,q)
a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz

−
Z(p,q)
a (c)− q

∫ c
b W

(p)(c− z)Z(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

(
W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz

)
,

which proves Theorem 1 when X has paths of bounded variation.
Now we assume that X has paths of unbounded variation. We assume here without loss of

generality that p > 0 as the boundary case p = 0 can be dealt with by taking limits as p ↓ 0.
In order to prove this case, we use a similar argument as in the proof of Lemma 2.1. Using
the notation in that proof, we have since Theorem 1 has been proved for the case where the
spectrally negative Lévy process has paths of bounded variation,

(35) Ex

[
e−pτ

−
0,n−q

∫ τ−0,n
0 1(a,b)(X

n
s )ds; τ−0,n < τ+c,n

]
= Z(p,q)

a,n (x)− q

∫ x

b
W (p)
n (x− z)Z(p,q)

a,n (z)dz

−
Z(p,q)
a,n (c)− q

∫ c
b W

(p)
n (c− z)Z(p,q)

a,n (z)dz

W(p,q)
a,n (c)− q

∫ c
b W

(p)
n (c− z)W(p,q)

a,n (z)dz

(
W(p,q)
a,n (x)− q

∫ x

b
W (p)
n (x− z)W(p,q)

a,n (z)dz

)
,

where

W(p,q)
a,n (x) :=W (p+q)

n (x)− q

∫ a

0
W (p+q)
n (x− y)W (p)

n (y)dy,

Z(p,q)
a,n (x) :=Z(p+q)

n (x)− q

∫ a

0
W (p+q)
n (x− y)Z(p)

n (y)dy.

As Xn converges Px-almost surely to X uniformly on compact time intervals, we have, similarly
to (21), for all t > 0, Px-a.s.,

e−pτ
−
0,n−q

∫ τ−0,n
0 1(a,b)(X

n
s )ds1{τ−0,n<τ

+
c,n∧t} → e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds1{τ−0 <τ

+
c ∧t}.

Further, one can show similarly to (23),∣∣∣∣∣e−pτ−0,n−q ∫ τ−0,n
0 1(a,b)(X

n
s )ds1{τ−0,n<τ

+
c,n} − e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds1{τ−0 <τ

+
c }

∣∣∣∣∣
≤ 2e−pt +

∣∣∣∣∣e−pτ−0,n−q ∫ τ−0,n
0 1(a,b)(X

n
s )ds1{τ−0,n<τ

+
c,n∧t} → e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds1{τ−0 <τ

+
c ∧t}

∣∣∣∣∣ ,
which yields (because p > 0),

e−pτ
−
0,n−q

∫ τ−0,n
0 1(a,b)(X

n
s )ds1{τ−0,n<τ

+
c,n} → e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds1{τ−0 <τ

+
c }.
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Thus by the dominated convergence theorem it follows that the left hand side of (35) converges,
as n→ ∞, to

Ex
[
e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds; τ−0 < τ+c

]
.

On the other hand, we have seen that W (q)
n (x) and Z

(q)
n (x) converge to W (q)(x) and Z(q)(x)

respectively for all q ≥ 0 and since W (q)
n (x), Z

(q)
n (x) are increasing, positive functions it follows

by the dominated convergence theorem that W(p,q)
a,n (x) → W(p,q)

a (x) and Z(p,q)
a,n (x) → Z(p,q)

a (x)

for any x. Since W(p,q)
a,n (x),Z(p,q)

a,n (x) are also increasing, positive functions, it then follows by the
dominated convergence theorem that the right hand side of (35) converges to

Z(p,q)
a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz

−
Z(p,q)
a (c)− q

∫ c
b W

(p)(c− z)Z(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

(
W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz

)
.

This proves Theorem 1 also for the case that X has paths of unbounded variation.

4. Proof of Theorem 2

The proof of this theorem is very similar to the proof of Theorem 1. We first prove it in the
case where X has paths of bounded variation. Fix 0 ≤ a < b ≤ c and p, q ≥ 0. For x ≤ c, define

w(x) = Ex
[
e−pτ

+
c −q

∫ τ+c
0 I(a,b)(Xs)ds; τ+c < τ−0

]
.

Using the strong Markov property of X, the fact that X is skip-free upward and (2), we can
write, for 0 ≤ x < a,

(36) w(x) = w(a)Ex
[
e−pτ

+
a ; τ+a < τ−0

]
= w(a)

W (p)(x)

W (p)(a)
.

Similarly, for a ≤ x < b, using (36) and (27), we have

w(x) =w(b)Ex
[
e−(p+q)τ+b ; τ+b < τ−a

]
+ Ex

[
e−(p+q)τ−a w

(
Xτ−a

)
; τ−a < τ+b

]
=w(b)

W (p+q)(x− a)

W (p+q)(b− a)
+

w(a)

W (p)(a)
Ex
[
e−(p+q)τ−a W (p)

(
Xτ−a

)
; τ−a < τ+b

]
=w(b)

W (p+q)(x− a)

W (p+q)(b− a)
+

w(a)

W (p)(a)

(
W(p,q)
a (x)− W (p+q)(x− a)

W (p+q)(b− a)
W(p,q)
a (b)

)
.(37)



18 LOEFFEN, RENAUD AND ZHOU

Note that via (6) one can easily show that (37) holds also for x < a. Finally, for b ≤ x ≤ c, we
have

w(x) =Ex
[
e−pτ

+
c ; τ+c < τ−b

]
+ Ex

[
e−pτ

−
b w

(
Xτ−b

)
; τ−b < τ+c

]
=
W (p)(x− b)

W (p)(c− b)
+
w(b)− w(a)

W (p)(a)
W(p,q)
a (b)

W (p+q)(b− a)
Ex
[
e−pτ

−
b W (p+q)

(
Xτ−b

− a
)
; τ−b < τ+c

]
+

w(a)

W (p)(a)
Ex
[
e−pτ

−
b W(p,q)

a

(
Xτ−b

)
; τ−b < τ+c

]
.(38)

We need to obtain the expressions for w(a) and w(b). As we assumed that X has paths of
bounded variation, we have W (q)(0) ̸= 0 and thus setting x = a in (37) yields

w(b)

W(p,q)
a (b)

=
w(a)

W (p)(a)
.

Plugging this into (37) and (38) using (31) yields,

w(x) =w(b)
W(p,q)
a (x)

W(p,q)
a (b)

, x < b,

w(x) =
W (p)(x− b)

W (p)(c− b)
+

w(b)

W(p,q)
a (b)

{
W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz

− W (p)(x− b)

W (p)(c− b)

(
W(p,q)
a (c)− q

∫ c

b
W (p)(c− z)W(p,q)

a (z)dz

)}
, b ≤ x ≤ c.

(39)

Setting x = b in (39) gives us

w(b) =
W(p,q)
a (b)

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

and plugging this into (39) leads to

w(x) =
W(p,q)
a (x)− q

∫ x
b W

(p)(x− z)W(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

,

for all x ≤ c. This proves Theorem 2 when X has paths of bounded variation. The case where X
has paths of unbounded variation follows using the same arguments as in the proof of Theorem
1.

5. Proof of corollaries

We will prove the corollaries only for p > 0 and q > 0. The cases where p = 0 or q = 0, then
follow by taking limits as p ↓ 0 or q ↓ 0. For the proofs we will make heavy use of the fact that
(cf. [6, Lemma 8.4]) the scale function can be written for q, x ≥ 0 as

(40) W (q)(x) = eΦ(q)xWΦ(q)(x),
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where WΦ(q)(x) is the 0-scale function of the spectrally negative Lévy process with Laplace
exponent ψΦ(q)(θ) := ψ(Φ(q) + θ)− q. Further (cf. [6, 8.7]),

WΦ(q)(∞) := lim
x→∞

WΦ(q)(x) =
1

ψ′
Φ(q)(0+)

=
1

ψ′(Φ(q))
,

which implies that WΦ(q)(∞) <∞ except if simultaneously q = 0 and ψ′(0+) = 0.

5.1. Proof of Corollary 1. (i). Taking limits as c→ ∞ in Theorem 1, we see that we need to
show

(41) lim
c→∞

Z(p,q)
a (c)− q

∫ c
b W

(p)(c− z)Z(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

=

p
Φ(p) + q

∫ b
a e

−Φ(p)yZ(p,q)
a (y)dy

1 + q
∫ b
a e

−Φ(p)yW(p,q)
a (y)dy

.

Using (7) and (40), it follows by the dominated convergence theorem (recalling that we assumed
without loss of generality p > 0),

lim
c→∞

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

W (p)(c)
= 1 + q

∫ b

a
e−Φ(p)yW(p,q)

a (y)dy

and similarly, using also [6, Exercise 8.5(i)],

lim
c→∞

Z(p,q)
a (c)− q

∫ c
b W

(p)(c− z)Z(p,q)
a (z)dz

W (p)(c)
=

p

Φ(p)
+ q

∫ b

a
e−Φ(p)yZ(p,q)

a (y)dy.

Now (41) follows.

(ii). Setting b = c and taking limits as c→ ∞ in Theorem 1, we see that we need to show

(42) lim
c→∞

Z(p,q)
a (c)

W(p,q)
a (c)

=

p+q
Φ(p+q) − q

∫ a
0 e−Φ(p+q)yZ(p)(y)dy

1− q
∫ a
0 e−Φ(p+q)yW (p)(y)dy

.

Recalling (6) and (40), it follows by the dominated convergence theorem (recalling that we
assumed without loss of generality p, q > 0),

lim
c→∞

W(p,q)
a (c)

W (p+q)(c)
= 1− q

∫ a

0
e−Φ(p+q)yW (p)(y)dy

and similarly, using again [6, Exercise 8.5(i)],

lim
c→∞

Z(p,q)
a (c)

W (p+q)(c)
=

p+ q

Φ(p+ q)
− q

∫ a

0
e−Φ(p+q)yZ(p)(y)dy.

Now (42) follows.
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5.2. Proof of Corollary 2. (i). Using spatial homogeneity and Theorem 2 for sufficiently large
m,

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(a,b)(Xs)ds; τ+c <∞

]
= lim
m→∞

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(a,b)(Xs)ds; τ+c < τ−−m

]
= lim
m→∞

Ex+m

[
e−pτ

+
c+m−q

∫ τ+c+m
0 1(a+m,b+m)(Xs)ds; τ+c+m < τ−0

]

= lim
m→∞

W(p,q)
a+m(x+m)− q

∫ x+m
b+m W (p)(x+m− z)W(p,q)

a+m(z)dz

W(p,q)
a+m(c+m)− q

∫ c+m
b+m W (p)(c+m− z)W(p,q)

a+m(z)dz

= lim
m→∞

W(p,q)
a+m(x+m)− q

∫ x
b W

(p)(x− y)W(p,q)
a+m(y +m)dy

W(p,q)
a+m(c+m)− q

∫ c
b W

(p)(c− y)W(p,q)
a+m(y +m)dy

=
H(p,q)(x− a)− q

∫ x
b W

(p)(x− y)H(p,q)(y − a)dy

H(p,q)(c− a)− q
∫ c
b W

(p)(c− y)H(p,q)(y − a)dy
,

where the last line follows by the dominated convergence theorem (noting that H(p,q) is an
increasing function) and

lim
m→∞

W(p,q)
a+m(x+m)

W (p)(m)
= lim
m→∞

W (p)(x+m) + q
∫ x
a W

(p+q)(x− y)W (p)(y +m)dy

W (p)(m)

=eΦ(p)x + q

∫ x

a
W (p+q)(x− y)eΦ(p)ydy

=eΦ(p)aH(p,q)(x− a),

which follows by again the dominated convergence theorem and (40).



OCCUPATION TIMES OF LÉVY PROCESSES 21

(ii). Using spatial homogeneity and Theorem 2,

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(−∞,b)(Xs)ds; τ+c <∞

]
= lim
m→∞

Ex
[
e−pτ

+
c −q

∫ τ+c
0 1(−m,b)(Xs)ds; τ+c < τ−−m

]
= lim
m→∞

Ex+m

[
e−pτ

+
c+m−q

∫ τ+c+m
0 1(0,b+m)(Xs)ds; τ+c+m < τ−0

]

= lim
m→∞

W (p+q)(x+m)− q
∫ x+m
b+m W (p)(x+m− z)W (p+q)(z)dz

W (p+q)(c+m)− q
∫ c+m
b+m W (p)(c+m− z)W (p+q)(z)dz

= lim
m→∞

W (p+q)(x+m)− q
∫ x
b W

(p)(x− y)W (p+q)(y +m)dy

W (p+q)(c+m)− q
∫ c
b W

(p)(c− y)W (p+q)(y +m)dy

=
eΦ(p+q)x

(
1− q

∫ x−b
0 e−Φ(p+q)yW (p)(y)dy

)
eΦ(p+q)c

(
1− q

∫ c−b
0 e−Φ(p+q)yW (p)(y)dy

) ,
where the last equality is due to

lim
m→∞

W (p+q)(x+m)− q
∫ x
b W

(p)(x− y)W (p+q)(y +m)dy

W (p+q)(m)

= eΦ(p+q)x − q

∫ x

b
W (p)(x− y)eΦ(p+q)ydy,

which follows from the dominated convergence theorem and (40).

5.3. Proof of Corollary 3. (i). Assume ψ′(0+) > 0, which implies Φ(0) = 0. Then since
τ+c <∞ almost surely, we get using Corollary 2(i) with p = 0, noting that H(0,q)(x) = Z(q)(x),

Ex
[
e−q

∫∞
0 1(a,b)(Xs)ds

]
= lim
c→∞

Ex
[
e−q

∫ τ+c
0 1(a,b)(Xs)ds; τ+c <∞

]
= lim
c→∞

Z(q)(x− a)− q
∫ x
b W (x− y)Z(q)(y − a)dy

Z(q)(c− a)− q
∫ c
b W (c− y)Z(q)(y − a)dy

.

Using (8), we deduce using the dominated convergence theorem,

lim
c→∞

(
Z(q)(c− a)− q

∫ c

b
W (c− y)Z(q)(y − a)dy

)
= lim
c→∞

(
1 + q

∫ b

a
W (c− y)Z(q)(y − a)dy

)
=1 + qW (∞)

∫ b

a
Z(q)(y − a)dy

=1 +
q

ψ′(0+)

∫ b−a

0
Z(q)(y)dy,

which proves Corollary 3(i).
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(ii). Similarly as for part (i), we have now using Corollary 2(ii) with p = 0,

Ex
[
e−q

∫∞
0 1(−∞,b)(Xs)ds

]
= lim
c→∞

Ex
[
e−q

∫ τ+c
0 1(−∞,b)(Xs)ds; τ+c <∞

]
= lim
c→∞

H(q,−q)(x− b)

H(q,−q)(c− b)
.

Further, using (1) and l’Hôpital’s rule,

lim
c→∞

H(q,−q)(c− b) = lim
c→∞

eΦ(q)(c−b)
(
1− q

∫ c−b

0
e−Φ(q)yW (y)dy

)
= lim
c→∞

q
∫∞
c−b e

−Φ(q)yW (y)dy

e−Φ(q)(c−b)

=
qW (∞)

Φ(q)

=
q

ψ′(0+)Φ(q)
,

which proves Corollary 3(ii).

(iii). Assume ψ′(0+) < 0, which implies Φ(0) > 0. Then since τ−−m <∞ almost surely for any
m > 0, we get using spatial homogeneity and Corollary 1(i) for p = 0 and sufficiently large m,

Ex
[
e−q

∫∞
0 1(a,b)(Xs)ds

]
= lim
m→∞

Ex

[
e−q

∫ τ−−m
0 1(a,b)(Xs)ds; τ−−m <∞

]

= lim
m→∞

Ex+m
[
e−q

∫ τ−0
0 1(a+m,b+m)(Xs)ds; τ−0 <∞

]
=Z(q)(x− a)− q

∫ x

b
W (x− y)Z(q)(y − a)dy

− lim
m→∞

e−Φ(0)mqe−Φ(0)a
∫ b−a
0 e−Φ(0)yZ(q)(y)dy

1 + e−Φ(0)mq
∫ b
a e

−Φ(0)zW(0,q)
a+m(z +m)dz

×
(
W(0,q)
a+m(x+m)− q

∫ x

b
W (x− z)W(0,q)

a+m(z +m)dz

)
.

Note that in the above we used that Z(0,q)
a (x) = Z(q)(x − a). Now we have by the dominated

convergence theorem and (40),

lim
m→∞

W(0,q)
a+m(x+m)

W (m)
= lim
m→∞

W (x+m) + q
∫ x
a W

(q)(x− y)W (y +m)dy

W (m)

=eΦ(0)x + q

∫ x

a
W (q)(x− y)eΦ(0)ydy

=eΦ(0)aH(0,q)(x− a)

(43)
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and thus also,

lim
m→∞

eΦ(0)m + q
∫ b
a e

−Φ(0)zW(0,q)
a+m(z +m)dz

W (m)
=

1

WΦ(0)(∞)
+ q

∫ b

a
e−Φ(0)zeΦ(0)aH(0,q)(z − a)dz

=ψ′(Φ(0)) + q

∫ b−a

0
e−Φ(0)yH(0,q)(y)dy.

Combining all three computations gives us Corollary 3(iii).

(iv). Similarly, as for part (iii), we have now using Corollary 1(ii) with p = 0 and noting that
Z(0,q)
a (x) = Z(q)(x− a),

Ex
[
e−q

∫∞
0 1(a,∞)(Xs)ds

]
= lim
m→∞

Ex

[
e−q

∫ τ−−m
0 1(a,∞)(Xs)ds; τ−−m <∞

]

= lim
m→∞

Ex+m
[
e−q

∫ τ−0
0 1(a+m,∞)(Xs)ds; τ−0 <∞

]
=Z(q)(x− a)− lim

m→∞

q
Φ(q) − q

∫ a+m
0 e−Φ(q)ydy

1− q
∫ a+m
0 e−Φ(q)yW (y)dy

W(0,q)
a+m(x+m)

=Z(q)(x− a)− eΦ(0)aH(0,q)(x− a) lim
m→∞

W (m) 1
Φ(q)e

−Φ(q)(a+m)∫∞
a+m e−Φ(q)yW (y)dy

,

where in the last line we used (1) and (43). By (40) and l’Hôpital’s rule,

lim
m→∞

W (m) 1
Φ(q)e

−Φ(q)(a+m)∫∞
a+m e−Φ(q)yW (y)dy

=
WΦ(0)(∞)e−Φ(q)a

Φ(q)
lim
m→∞

e−(Φ(q)−Φ(0))m∫∞
a+m e−(Φ(q)−Φ(0))yWΦ(0)(y)dy

=
Φ(q)− Φ(0)

Φ(q)
e−Φ(0)a

and in combination with the previous computation, this proves Corollary 3(iv).

6. Applications

6.1. Perpetual double knock-out corridor options in an exponential spectrally neg-
ative Lévy model. We assume that the price process of an underlying security is given by
(eXt)t≥0 under the risk-neutral measure P. For this model (which includes the Black-Scholes
model) we would like to price a so-called (European) perpetual double knock-out corridor op-
tion. In a corridor option (see e.g. Pechtl [11]), the payoff function is the amount of time the
underlying spends in a given interval, the so-called corridor. For our option we include the
feature, similar to barrier options, that the option expires when the price process leaves a prede-
termined interval. In particular, if we assume that the corridor is given by (ea, eb) and the option
gets knocked out when the price process leaves the interval [e0, ec] with 0 ≤ a < b ≤ c < ∞,
then the price of the option equals

V (x) := Ex

[
e−p(τ

−
0 ∧τ+c )

∫ τ−0 ∧τ+c

0
1(a,b)(Xs)ds

]
,
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where p ≥ 0 is the risk-free interest rate and ex is the initial price of the security.
From Theorem 1 and Theorem 2 in combination with the dominated convergence theorem

(which justifies switching derivative and expectation), we have for x ∈ [0, c],

V (x)

=Ex

[
e−pτ

−
0

∫ τ−0

0
1(a,b)(Xs)ds; τ

−
0 < τ+c

]
+ Ex

[
e−pτ

+
c

∫ τ+c

0
1(a,b)(Xs)ds; τ

+
c < τ−0

]

=
−d

dq

∣∣∣∣
q=0

(
Ex
[
e−pτ

−
0 −q

∫ τ−0
0 1(a,b)(Xs)ds; τ−0 < τ+c

]
+ Ex

[
e−pτ

+
c −q

∫ τ+c
0 1(a,b)(Xs)ds; τ+c < τ−0

])

=
−d

dq

∣∣∣∣
q=0

(
Z(p,q)
a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz

−
W(p,q)
a (x)− q

∫ x
b W

(p)(x− z)W(p,q)
a (z)dz

W(p,q)
a (c)− q

∫ c
b W

(p)(c− z)W(p,q)
a (z)dz

×
(
Z(p,q)
a (c)− q

∫ c

b
W (p)(c− z)Z(p,q)

a (z)dz − 1

))
.

From (5), we deduce with help of the dominated convergence theorem

d

dq

(
W (p+q)(x)

)
q=0

= lim
q↓0

W (p+q)(x)−W (p)(x)

q
=

∫ x

0
W (p)(x− y)W (p)(y)dy

and thus using (6) and again the dominated convergence theorem and noting that W (p)(z) = 0
for z < 0,

d

dq

(
W(p,q)
a (x)− q

∫ x

b
W (p)(x− z)W(p,q)

a (z)dz
)
q=0

=

∫ x

a
W (p)(x− y)W (p)(y)dy −

∫ x

b
W (p)(x− y)W(p,0)

a (y)dy

=

∫ b

a
W (p)(x− y)W (p)(y)dy

and
d

dq

(
Z(p,q)
a (x)− q

∫ x

b
W (p)(x− z)Z(p,q)

a (z)dz
)
q=0

=

∫ x

a
W (p)(x− y)Z(p)(y)dy −

∫ x

b
W (p)(x− y)Z(p,0)

a (y)dy

=

∫ b

a
W (p)(x− y)Z(p)(y)dy.

Hence using all of the above, we get in the end

V (x) =

∫ b

a

(
Z(p)(y)− Z(p)(c)− 1

W (p)(c)
W (p)(y)

)(
W (p)(x)

W (p)(c)
W (p)(c− y)−W (p)(x− y)

)
dy.(44)
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The identity (44) can also be derived as follows. Using Fubini’s theorem and the Markov property,
we get

V (x) =

∫ ∞

0
e−pt

∫ t

0
Px
(
τ−0 ∧ τ+c ∈ dt,Xs ∈ (a, b)

)
ds

=

∫ ∞

0

(∫ ∞

s
e−ptPx(τ−0 ∧ τ+c ∈ dt,Xs ∈ (a, b))

)
ds

=

∫ ∞

0

(
Ex
[∫ ∞

0
e−ptPx

(
τ−0 ∧ τ+c ∈ dt, s < τ−0 ∧ τ+c , Xs ∈ (a, b)|Fs

)])
ds

=

∫ ∞

0

(
Ex
[
e−ps1{s<τ−0 ∧τ+c ,Xs∈(a,b)}

∫ ∞

0
e−ptPXs(τ

−
0 ∧ τ+c ∈ dt)

])
ds

=

∫ b

a
Ey
[
e−p(τ

−
0 ∧τ+c )

] ∫ ∞

0
e−psPx(s < τ−0 ∧ τ+c , Xs ∈ dy)ds.

Now (44) follows using (2) and (3) together with the following known formula for the potential
measure of X killed on exiting [0, c]:∫ ∞

0
e−psPx(s < τ−0 ∧ τ+c , Xs ∈ dy)ds =

(
W (p)(x)

W (p)(c)
W (p)(c− y)−W (p)(x− y)

)
dy,

c.f. [6, Theorem 8.7].
Using the above methods, we can of course also price corridor options with a single knock-out

feature or with the corridor being an interval of infinite length.

6.2. Probability of bankruptcy for an Omega Lévy risk process. Our results can also
be applied to the so-called Omega model (for some specific rate functions) introduced in [1] and
further investigated in [4]. Intuitively in such a model bankruptcy (instead of ruin) occurs at
rate ω(x) when the surplus process X = (Xs)s≥0 is at level x. To be more precise, given the
rate function ω : R → [0,∞) the bankruptcy time Tω can be defined as

Tω = inf{t > 0 :

∫ t

0
ω(Xs)ds > e1},

where e1 is an independent exponentially distributed random variable with parameter 1. Typ-
ically, the rate function ω is chosen to be a decreasing function equalling zero on the positive
half line so that bankruptcy does not occur when the surplus is positive.

In order to connect with the results in Section 1.1, we choose for some b, q > 0 the bankruptcy
rate as

ω(x) =


0 if x ≥ 0,

q if −b ≤ x < 0,

∞ if x < −b.

Then bankruptcy occurs at rate q when X is between −b and 0 and bankruptcy occurs im-
mediately when X is below level −b. Suppose that the positive loading condition holds, i.e.
E[X1] = ψ′(0+) > 0; this implies that bankruptcy does not happen almost surely. Then for any
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x ∈ R, the probability that bankruptcy never occurs is

Px(Tω = ∞) =Px
(∫ ∞

0
ω(Xs)ds ≤ e1

)
=Ex

[
e−

∫∞
0 ω(Xs)ds

]
=Ex

[
e−q

∫∞
0 1(−b,0)(Xs)ds; τ−−b = ∞

]
.

Hence by spatial homogeneity, Theorem 2, (7) and (40) in combination with the dominated
convergence theorem,

Px(Tω = ∞) = lim
c→∞

Ex
[
e−q

∫ τ+c
0 1(−b,0)(Xs)ds; τ+c < τ−−b

]
= lim
c→∞

Ex+b

[
e−q

∫ τ+
c+b

0 1(0,b)(Xs)ds; τ+c+b < τ−0

]

= lim
c→∞

W (q)(x+ b)− q
∫ b+x
b W (x+ b− z)W (q)(z)dz

W (q)(c+ b)− q
∫ c+b
b W (c+ b− z)W (q)(z)dz

= lim
c→∞

W (x+ b) + q
∫ b
0 W (x+ b− z)W (q)(z)dz

W (c+ b) + q
∫ b
0 W (c+ b− z)W (q)(z)dz

=
W (x+ b) + q

∫ b
0 W (x+ b− z)W (q)(z)dz

1
ψ′(0+) +

q
ψ′(0+)

∫ b
0 W

(q)(z)dz

=ψ′(0+)
W (x+ b) + q

∫ b
0 W (x+ b− z)W (q)(z)dz

Z(q)(b)
.

Similarly, the probability that bankruptcy occurs due to the surplus process dropping below the
level −b is given by

Px(XTω < −b, Tω <∞) =Px

(∫ τ−−b

0
ω(Xs)ds ≤ e1, τ

−
−b <∞

)

=Ex

[
e−q

∫ τ−−b
0 1(−b,0)(Xs)ds; τ−−b <∞

]

=Ex+b
[
e−q

∫ τ−0
0 1(0,b)(Xs)ds; τ−0 <∞

]
,
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which, by Corollary 1 and (7), equals

Px(XTω < −b,Tω <∞)

=Z(q)(x+ b)− q

∫ x+b

b
W (x+ b− z)Z(q)(z)dz

−
ψ′(0+) + q

∫ b
0 Z

(q)(y)dy

1 + q
∫ b
0 W

(q)(y)dy

(
W (q)(x+ b)− q

∫ b+x

b
W (x+ b− z)W (q)(z)dz

)
=1 + q

∫ b

0
W (x+ b− z)Z(q)(z)dz

−
ψ′(0+) + q

∫ b
0 Z

(q)(y)dy

Z(q)(b)

(
W (x+ b) + q

∫ b

0
W (x+ b− z)W (q)(z)dz

)
.

In addition, the probability that bankruptcy occurs while the surplus is between −b and 0 is

Px(−b ≤ XTω < 0, Tω <∞) =1− Px(Tω = ∞)− Px(XTω < −b, Tω <∞)

=− q

∫ b

0
W (x+ b− z)Z(q)(z)dz

+
q
∫ b
0 Z

(q)(y)dy

Z(q)(b)

(
W (x+ b) + q

∫ b

0
W (x+ b− z)W (q)(z)dz

)
.
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