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Up-down unification just above the supersymmetric threshold
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Abstract. Large corrections to the quark mass matrices at the supersymmetric threshold allow the theory
to have identical Yukawa matrices in the superpotential. We demonstrate that up–down unification can
take place in a moderate quark–squark alignment scenario with an average squark mass of the order 1TeV
and with tan β > 15.

1 Introduction

The observed hierarchical patterns in the masses of quarks
and leptons and in the Kobayashi–Maskawa mixing sug-
gest the existence of new physics beyond the standard
model, perhaps in the form of new symmetries. Neither
the character of these symmetries nor the scale of the new
physics is understood so far. Various theoretical attempts
have been made to construct a realistic explanation for
the observed mass spectrum and reproduce experimen-
tally observed values as closely as possible. Some of them
exploit horizontal symmetries [1,2], gauged or nongauged,
anomalous symmetries [3], possible compositeness [4], etc.

The mass problem in supersymmetry has attracted se-
rious theoretical attention in the last few years. Although
very helpful for solving some of the shortcomings of the
standard model, the supersymmetric framework by itself
does not explain the observed patterns displayed by
fermion masses. Yet it brings new phenomena in flavor
physics related to the possible mismatch between quark
and squark mass matrices. This mismatch, if significant,
may induce an unacceptable contribution to the neutral
kaon mixing and therefore is constrained if the masses of
the scalar quarks are not very far from the electroweak
scale.

Another theoretical goal, closely related to the mass
problem, is the possibility to reduce the number of the
free parameters in the fundamental theory in compari-
son with that of the standard model. The supersymmetric
grand unified theories (GUTs) offer this possibility [5].
The scale of the unification for Yukawa couplings in this
case is believed to coincide with the scale of the gauge
unification and therefore is very high, 1016 GeV or so.

In this article, we ask how low the scale of the flavor
unification could be. We attempt to construct a model

a hamzaoui@mercure.phy.uqam.ca
b pospelov@mercure.phy.uqam.ca

with a minimal number of free parameters in the superpo-
tential. This is a model with identical up and down quark
Yukawa matrices in the superpotential and the general
form of the soft-breaking parameters, not constrained by
the usual assumption of universality and proportionality.
The Kobayashi–Maskawa mixing itself in this situation
originates from the supersymmetric threshold corrections.
We show that at the present stage of knowledge about su-
persymmetry breaking parameters this possibility is not
excluded.

There are several possible physical motivations related
to the up-down (U–D) unification. For example, it can
be a consequence of a horizontal symmetry responsible
for the generation of the Yukawa couplings which “does
not feel hypercharge”, i.e. which does not distinguish be-
tween H1 and H2, U and D superfields and therefore can
only generate identical Yu and Yd. Another example is the
case of the supersymmetric left–right theory based on the
SU(3) × SU(2)L × SU(2)R × U(1)B−L group [6] where the
unification of U and D right-handed superfields is pro-
tected by an extra gauge symmetry.

2 U–D unification at low energy

The standard superpotential of the minimal supersymmet-
ric standard model (MSSM):

W = εij [−QIHj
2YuU + QIHj

1YdD

+LIHj
1YeE + µHI

1Hj
2], (1)

contains the same number of free dimensionless parame-
ters as the Yukawa sector of the standard model.

In addition, in the soft-breaking sector there are other
couplings which have a potential influence on flavor
physics. Among different scalar masses, the soft-breaking
sector has the squark mass terms

Ũ†M2
U Ũ + D̃†M2

DD̃ + Q̃†M2
QQ̃; (2)
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and the trilinear terms

εij

(
−Q̃iHj

2AuŨ + Q̃iHj
1AdD̃

)
+ h.c.; (3)

as the possible sources of flavor transitions.
Counting all free parameters in the model, one comes

to a huge number, 105 [7]. This enormous number of free
parameters originates mainly from the soft-breaking sec-
tor and cannot be reduced a priori, without knowledge of
the ways the supersymmetry breaking occurs. It is cus-
tomary to assume, at the scale of the breaking, that the
following, very restrictive conditions are fulfilled:

M2
Q = m2

Q1; M2
D = m2

D1; M2
U = m2

U1

“degeneracy” (4)
Au = AuYu; Ad = AdYd

“proportionality”, (5)

and similarly for leptons. These conditions, if held, ensure
that the physics of flavor comes entirely from the super-
potential. But it might not necessarily be the case. For
example, these conditions are not held in superstring in-
spired models (see [8] and references therein). Neither are
they, in the simplest flavor models, operating with hori-
zontal symmetries [9].

To this end, it is interesting to abandon strict condi-
tions (4) –(5) in the soft-breaking sector and to explore the
possibility of having a smaller number of free parameters
in the superpotential. As an ultimate example of this, let
us analyze the theory with the low-energy unification of up
and down Yukawa matrices. Instead of working with the
superpotential in the form (1) with two independent ma-
trices Yu and Yd, we consider the theory with Yu ≡ Yd
so that the superpotenial can be written in the following
compact form:

W = εijεkl[QiΦjkYQl
R +

1
2
µΦjkΦil] (6)

where QR = (U, D)T and Φ = (H1;H2). From here on we
consistently omit the leptonic part. At the same time we
assume similar U–D unification in the soft-breaking sector
as well:

. . . + Q̃†M2
LQ̃ + Q̃†

RM2
RQ̃R

+εijεklQ̃iΦjkAQ̃l
R + H.c . . . . (7)

At the scale of the breaking, matrix Y can be chosen in
the diagonal form and it will not develop any off-diagonal
elements in the course of renormalization down to the su-
persymmetric threshold scale. This means that, at the tree
level plus logarithmic renormalization, Mu ∼ Md and all
Kobayashi–Maskawa mixing angles are zero. This might
be considered, with a certain degree of optimism, as a
good zeroth-order approximation to the realistic mass ma-
trices and mixing. In this case the observed mixing an-
gles and masses come from the supersymmetric threshold
corrections. These corrections induce additional terms in
the Yukawa interaction containing the conjugated Higgs

fields, H∗
1 , H∗

2 , and in our case Φ∗. As a result, below the
threshold, the effective interaction of fermions with Higgs
doublets can be written in the form

Leff = Q̄Y1τ2Φτ2QR + Q̄Y2Φ
∗QR + . . . . (8)

The ellipsis stands here for the possible terms of bigger
dimension which may also influence the fermion spectrum
(for example, M−2

sq Q̄RY1τ2Φτ2QTr(Φ†Φ)). In Fig. 1 we
list the diagrams which contribute to the matrices Y1 and
Y2.

To some extent, one can view this unification as being
inspired by supersymmetric left–right models where the
relevant part of the superpotential is usually written in
the following form:

W = QY1τ2Φ1τ2QR + QY2τ2Φ2τ2QR

+
∑

i,j=1,2

µijTrτ2Φiτ2Φ
T
j . (9)

If the analysis of the threshold correction can generate
realistic Mu and Md then one can eliminate one of the
bi-doublets, reducing (9) to the more economic form (6).

The supersymmetric threshold corrections to the mass
matrices and mixing have been considered before in a
number of papers [10]. In most of these analyses, the con-
ditions (4)–(5) were imposed on the soft-breaking sector.
In some specific variants of the unified models [11], how-
ever, the departure from these conditions can reproduce
masses of first generation and the Cabbibo angle. For a
recent discussion of the radiative mechanism for fermion
masses in the presence of chiral symmetry violating soft-
breaking terms see also [12].

The typical size of the corrections to the mass of the b-
quark when the mass of the gluino is equal to the masses
of the squarks is of the order of mb itself, ∆mb/mb ∼
0.4µ/msquark. The ratio µ/msquark is presumably of the
order 1 but can be larger. For msquark ∼ 1TeV, µ/msq can
be as large as

√
2msq/v ∼ 5. In this case mb, as well as the

other quark masses and mixing angles, can be completely
of radiative origin. In the following we consider the possi-
bility of the low-energy unification of Yukawa couplings,
not confining our analysis to the case of µ ' msquark and
not specifying the details of a particular model which lies
behind the origin of hierarchy. In particular, we have to
check if the following three conditions are satisfied:

1. The matrix A is consistent with scale-independent
constraints resulting from the absence of color-breaking
minima.

2. Radiatively generated masses and mixing angles cor-
respond to the observed hierarchy.

3. The predictions for FCNC are acceptable.

3 Phenomenological consequences
of U–D unification

It is convenient to choose the basis in which matrix Y is
diagonal. In this case, superpotential contains only three
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Fig. 1. The diagrams generating threshold cor-
rections for Mu and Md.

dimensionless parameters in the quark sector

Y = diag(y1; y2; y3) (10)

and y3 basically coincides with the top quark Yukawa cou-
pling, y3 ' mt

√
2/v ' 1.

The value of tan β ≡ vu/vd has to be large but it is not
fixed to mt/mb due to the substantial renormalization of
mb. Therefore, to O(tan−1 β) accuracy we can adopt the
following approximation for the squark mass matrices:

M2
ũ =




M2
L + v2

2 Y†Y v√
2
A†

v√
2
A M2

R + v2

2 YY†


 (11)

M2
d̃

=




M2
L + v2

2 Y†Y v√
2
µ∗Y†

v√
2
µY M2

R + v2

2 YY†


 (12)

The general formulae for the mass matrices, tree-level
plus radiative corrections, can be presented in the follow-
ing form:

√
2

v
Muij = Yij +

2αsmλ

3π

∫
d4p

(2π)4(p2 − m2
λ)

×
[

1
p2 − M2

L
A

1
p2 − M2

R

]
ij

+ . . . .

√
2

v
Mdij =

Yij

tanβ
+

2αsµmλ

3π

∫
d4p

(2π)4(p2 − m2
λ)

×
[

1
p2 − M2

L
Y

1
p2 − M2

R

]
ij

+ . . . . (13)

Here, ellipses stand for the chargino and neutralino cor-
rections and next- order corrections in v2/m2 which we
neglect at the moment.

The form of the matrix A suggested by the absence of
unwanted directions in the field space along which color-
breaking minima can emerge is the following [13]:

A =


 0 0 A13

0 0 A23
A31 A32 A33


 (14)
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Fig. 2. Allowed area on the |µ| − tan β plane in the case of
maximal threshold corrections.

In this way it can easily satisfy the required bound:

|Aij |2 ≤ |yk|2 (
(M2

L)ii + (M2
R)jj

)
, k = max(i, j). (15)

The same form is suggested by the analysis of the FCNC
processes [14]. Restricting our analysis only to this form
of matrix A, we satisfy the first condition on the absence
of “wrong” vacua mentioned in the previous section.

Let us consider the corrections to the mass of the b-
quark. Neglecting for a moment all flavor-changing effects
in the squark sector, we can identify mb with the (Md)33
matrix element of Md and write the relation among ob-
servable mb taken at the scale of the squark mass, tan β
and dimensionless ratios µ/msq, x = mλ/msq. For simplic-
ity we assume also the approximate equality of the left-
and right-handed squark masses:

2m2
b

v2 = |y3|2
∣∣∣∣ 1
tanβ

+
2αs

3π
eiφ |µ|

msq
F (mλ/msq)

∣∣∣∣
2

(16)

F (x) =
x

1 − x2 +
x3 lnx2

(1 − x2)2
.

Taking y3 ∼ 1, mb(1 TeV) ∼ 2.8 GeV and F = Fmax =
F (2.1) = 0.57, we plot the allowed values of tan β and |µ|
in Fig. 2. The phase φ between the tree-level contribution
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and the radiative corrections to mb is unknown1 which
leads to a certain allowed area in the tanβ–|µ| plane. The
case of relatively low tan β corresponds to the destructive
interference between the tree-level contribution and the
loop correction. tanβ ∼ 15 corresponds to the 80% mutual
cancellation between the tree-level value and the radiative
correction which we take as the maximally allowed degree
of fine- tuning.

The necessity for the off-diagonal entries in the squark
mass matrices to be nonzero comes from two reasons.
First, they can be the only source for the off-diagonal mass
matrices leading to nonvanishing Kobayashi–Maskawa
mixing angles. Second, their existence leads to the sub-
stantial renormalization of u, d, s, c quark masses which
is needed to account for the relations ms/mc > mb/mt;
md/mu � mb/mt. The 100% renormalization of the
charm mass, for example, may result from the combination
of the flavor- changing entries in A and M2

R, and so on.
At the same time, it is preferable to keep the off-diagonal
elements of the squark mass matrices at the lowest possi-
ble level to avoid large FCNC contributions from the box
diagrams. Treating these flavor transitions as the mass in-
sertions, i.e. assuming that they are small in some sense,
we arrive at the following set of order-of-magnitude rela-
tions connecting observable masses and mixing angles to
the flavor structure of the soft-breaking sector:

√
2

v
∆mc ∼ ηc

A23(M2
R)23

m3
sq√

2
v

∆ms ∼ ηs
(M2

L)23(M2
R)23

m4
sq√

2
v

∆md ∼ ηd
(M2

L)13(M2
R)13

m4
sq

(17)

θ23 ∼ (M2
L)23

m2
sq

θ13 ∼ (M2
L)13

m2
sq

.

Here msq is the average squark mass and numerical co-
efficients ηi represent loop factors. For our estimates we
take ηi to be of the order of ηb ∼ √

2mb/v. As to the
mixing angle between first and second generations, it can
be generated either in the down sector [11], or in the
up sector through the correction to the matrix element
(Mu)12 ∼

√
2

v ηA13(M2
R)23/m3

sq.
If the squark masses were diagonal, one would ob-

serve an approximate relation mb/mt ' ms/mc which
is violated in reality. There are several possible ways to
avoid this problem depending on which part of the al-
lowed values in the µ - tan β plane we choose. If tan β is
in the neighbourhood of mt/mb, it is preferable to have
y2v/

√
2 ' mc and the strange quark mass being com-

pletely of radiative origin. The latter condition requires
(M2

L)23/m2
sq ∼ λ2 and (M2

R)23/m2
sq ∼ 1. For lower val-

ues of tan β, when the tree-level contribution to the mass
1 Possible constraints on φ from the limits on the neutron

EDM are relaxed when squark mass ∼1TeV

of the bottom quark is compensated by loop corrections
to give observable mb, the element (M2

R)23 can be made
smaller and y2v/

√
2 ' ms.

Even with the assumptions of the low-energy U–D uni-
fication, the number of free parameters is large enough to
reproduce the observed masses and mixings. Combining
relations (18), we write the phenomenologically accept-
able form of the squark mass matrices which can produce
the correct flavor physics through the loop mechanism:

M2
L ∼ m2


 1 λ4 λ2

λ4 1 λ2

λ2 λ2 1


 ;

M2
R ∼ m2


 1 λ2 λ2

λ2 1 1
λ2 1 1


 . (18)

Every entry in (18) denotes an order of magnitude of the
corresponding matrix element in terms of the power of
the Wolfenstein parameter λ. Squark masses chosen in
the form (18), plugged in the general formula (13), re-
produce correctly the hierarchy among quark masses and
mixing angles and therefore satisfy the second condition
formulated at the end of the previous section. (M2

L(R))12
is not fixed by (17) and for its value we take (M2

L(R))12 ∼
(M2

L(R))13(M
2
L(R))23/m2

sq. One should note also that the
choice of the squark mass matrices (18) is not unique and
other possibilities are plausible.

Similar forms of the squark mass matrices can appear
in supersymmetric theories with horizontal symmetries re-
sponsible for mass hierarchy [9] (quark–squark alignment).
We can invert the set of arguments and conclude that in
the quark–squark alignment picture with large tanβ and
µmλ ∼ m2

sq the radiative corrections to the mass matrices
and mixings are important. At the same time, the bare
superpotential of the model can be of the form (6), i.e.
simpler than that of the conventional MSSM.

The significant FCNC processes are generated in the
model by various SUSY diagrams. When the FCNC con-
tribution of the supersymmetric box diagrams with the
squark mass matrices (18) is considered, the constraints
[15] implies that the lowest possible value for the squark
mass has to be at least 1 TeV. The splitting in the neu-
tral B-meson sector requires (M2

L(R))13 to be smaller than
∼ 0.2 for a 1 TeV squark and gluino mass [15], which
is fulfilled in the ansatz (18). The splitting in the neu-
tral K-mesons is barely acceptable, whereas the ε param-
eter is too large even for 1 TeV squarks. Therefore, the
ε-constraint in the ansatz (18) requires either accidental
cancellation among different contributions or the scale of
the soft-breaking masses to be in the region of 3- -5 TeV.
A similar mass scale arises from the analysis of the b → sγ
process [16] due to the large value for (M2

R)23 in (18).
Perhaps the most serious consequence of the low-

energy unification of up and uown Yukawa matrices and
the radiative mechanism for Kobayashi–Maskawa mixing
is the appearence of the FCNC transitions mediated by
the Hd field. Since the resulting Yukawa interaction re-
sembles that of a generic left–right model with the right-
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handed mixing angles not smaller than left-handed ones,
|VRij | > |VLij |, we can use the limits on the FCNC Higgs
masses obtained in [17]:

MA > 10 TeV (19)

We would like to emphasize here that in the generic MSSM
with large tanβ the tree-level FCNC induced by the
threshold corrections to the mass matrices may exceed
contributions from box diagrams and therefore should be
properly accounted for in the general analysis [18].

We believe that an elaborate calculation of the FCNC
amplitudes in the model is not instructive, because the re-
sults will depend on too many details of the soft-breaking
sector, which we cannot uniquely determine from the ob-
servable quark masses and mixings. Instead, one can ask
the question of what acceptable forms of the squark ma-
trices can bring FCNC amplitudes to the lowest possible
value and therefore would allow us to lower a common
squark mass. The answer is that we have to minimize the
presence of the off-diagonal elements in M2

L(R), fixing the
“problems” in the observable quark mass sector at the
expense of the off-diagonal entries in the A matrix:

M2
L ∼ m2


 1 λ4 λ2

λ4 1 λ2

λ2 λ2 1


 ; M2

R ∼ m2


 1 0 λ2

0 1 0
λ2 0 1


 ;

A ∼ m


0 0 1

0 0 1
0 1 1


 , (20)

where again every entry denotes an order of magnitude.
Such an ansatz minimizes FCNC amplitudes, opening the
possibility for squarks to be of the order of 1 TeV and, per-
haps, less than that. A realistic relation between mb/mt
and ms/mc in this case can be obtained through the large
radiative corrections compensating tree levels mb and/or
mc. For md we reserve again the radiative mechanism of
generation.

We turn now to the “effective supersymmetry” picture
[19] which has many fewer degrees of freedom and where
flavor physics can be formulated in a more definite way. In
the squark mass matrices, diagonalized by unitary trans-
formations U and V ,

M2
L = U†


m2

1 0 0
0 m2

2 0
0 0 m2

3


 U ;

M2
R = V †


m′2

1 0 0
0 m′2

2 0
0 0 m′2

3


 V, (21)

the eigenvalues m2
1, m2

2, m′2
1 , m′2

2 are taken to be in the
multi-TeV scale and eventually decoupled from the rest
of the particles. At the same time, the squark from the
third generation is believed to be not heavier than 1 TeV
and weakly coupled to the first and second generations
of quarks to avoid the excessive fine-tuning in the radia-
tive corrections to the Higgs potential and suppress FCNC

contributions to the kaon mixing. The advantage of this
approach in our case is that the loop integrals in (13)
can be parametrized by one number η. Moreover, the up
quark Yukawa matrix keeps its nearly diagonal form and
the Kobayashi–Maskawa mixing results entirely from Md.
Introducing the notations

U∗
13 = ω, U∗

23 = ρ, U∗
33 ' 1,

V13 = γ, V23 = δ, V33 =
√

1 − |γ|2 − |δ|2, (22)

we write the resulting form of the mass matrix:
√

2
v

Md (23)

= η




ωγ ωδ ω
√

1 − |γ|2 − |δ|2

ργ y2
η tan β + ρδ ρ

√
1 − |γ|2 − |δ|2

γ δ y3
η tan β +

√
1 − |γ|2 − |δ|2


 .

Here we take into account that y3 ' 1 and ρ,∼ ω � 1.
Using this form of the mass matrix, we calculate Hd =

2
v2 MdM

†
d, its eigenvalues and the Kobayashi–Maskawa

matrix which diagonalizes Hd. The determinant of Hd has
a simple form:

detHd = |η|6|ω|2|γ|2 |y2|2
|x|4 , (24)

where x = η tanβ. The presence of y2 in detHd suggests
that we should choose y2v/

√
2 ' ms. This requires the

partial compensation of tree-level and radiative correc-
tions in mb and as a result one has x ' −1 and δ ∼ O(λ).

The analysis of |Vus| yields an even smaller value for
the parameter γ. It turns out that to sufficient accuracy
one has

|Vus|2 =
(

m2
d

m2
s

) (
2m2

s

v2|y2|2
) |δ|2 + |γ|2

|γ|2 (25)

and therefore γ ∼ O(λ2). At the same time

|Vub| = |ω|

∣∣∣1 + 1
x

√
1 − |δ|2

∣∣∣∣∣∣1 + 1
x

√
1 − |δ|2

∣∣∣2 + |δ|2
(26)

which makes |ω| be of the order of λ3. A similar relation
for |Vcb| shows that ρ ∼ O(λ2). Thus the analysis of the
mass matrices generated by the loop with a third gener-
ation of squarks inside gives ρ, ω, γ, δ � 1, consistent
with similar requirement imposed by the absence of large
FCNC contributions.

4 Conclusions

The supersymmetric mass problem has one interesting as-
pect, which is not always properly emphasized. With the
general flavor-changing soft-breaking terms, it is hard to
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interpret the dimensionless coefficient in the superpoten-
tial in terms of the observed fermionic masses and mixing
angles. This opens up the possibility of a supersymmetric
theory with many fewer free parameters in the superpo-
tential than is assumed in the conventional MSSM. We
have shown the phenomenological possibility of the low-
energy U–D unification in the supersymmetric models.
The Kobayashi–Maskawa mixing in this case is the result
of the supersymmetric threshold corrections. The analysis
of these corrections shows that tanβ is not fixed by the
requirement of the unification. U–D unification allows it
to be in a large range 15 ≤ tanβ ≤ ∞.

Among different quark masses only mt is clearly of
tree-level origin and md is of radiative origin. The mass of
the bottom quark can either come from the radiative cor-
rections (tanβ → ∞), or from the tree-level (tanβ ∼ 65)
or be the combination of both including the possibility of
a destructive interference between the tree-level and ra-
diative correction terms. This applies to the other quark
masses as well (u, s, c). The radiative origin of ms normally
implies large entries in the right-handed squark mass ma-
trix leading to 3–5 TeV quark mass scale to satisfy FCNC
requirements (ε-parameter and b → sγ).

It was shown in [2] that the scale of the physics re-
sponsible for the flavor hierarchy can be as low as a few
TeV. Our conclusion is that the condition of the unifica-
tion of all Yukawa couplings does not require us to raise
this scale significantly. The scale of the unification, i.e.
the supersymmetric threshold in the case considered, can
be as low as 1 TeV without causing unacceptable FCNC
amplitudes.

An obvious advantage of the “effective supersymme-
try” approach in connection with the low-energy U–D
unification is that the resulting mass matrix (23) can be
parametrized by a small number of parameters i.e. the
mixing angles between the third-generation squark and
quark fields. At the same time all loop integrals are ex-
pressed by one number η and this significantly simplifies
the analysis. The condition imposed on this mass matrix
to reproduce observable masses and mixings automati-
cally leads to the smallness of the mixing angles between
third-generation squarks and first- and second-generation
quarks, which coincides with the similar requirements im-
posed by the absence of FCNC.

The possibility of U–D unification at low energies with
the radiative mechanism for Kobayashi–Maskawa mixing
has an interesting application to the left–right supersym-
metric models. It allows one to reduce the number of
Higgs bi-doublets, making it more similar to the conven-
tional (nonsupersymmetric) left–right models. Unfortu-
nately, in the case of manifest left–right symmetry, where
left-handed and right-handed squark masses are equal, the
radiatively induced fermion masses and mixings do not
correspond to the observables.
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