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Abstract In recent decades, the need of future climate

information at local scales have pushed the climate model-

ling community to perform increasingly higher resolution

simulations and to develop alternative approaches to obtain

fine-scale climatic information. In this article, various nested

regional climate model (RCM) simulations have been used

to try to identify regions across North America where high-

resolution downscaling generates fine-scale details in the

climate projection derived using the ‘‘delta method’’. Two

necessary conditions were identified for an RCM to produce

added value (AV) over lower resolution atmosphere-ocean

general circulation models in the fine-scale component of

the climate change (CC) signal. First, the RCM-derived CC

signal must contain some non-negligible fine-scale infor-

mation—independently of the RCM ability to produce AV

in the present climate. Second, the uncertainty related with

the estimation of this fine-scale information should be rel-

atively small compared with the information itself in order

to suggest that RCMs are able to simulate robust fine-scale

features in the CC signal. Clearly, considering necessary

(but not sufficient) conditions means that we are studying

the ‘‘potential’’ of RCMs to add value instead of the AV,

which preempts and avoids any discussion of the actual skill

and hence the need for hindcast comparisons. The analysis

concentrates on the CC signal obtained from the seasonal-

averaged temperature and precipitation fields and shows that

the fine-scale variability of the CC signal is generally small

compared to its large-scale component, suggesting that little

AV can be expected for the time-averaged fields. For the

temperature variable, the largest potential for fine-scale

added value appears in coastal regions mainly related with

differential warming in land and oceanic surfaces. Fine-

scale features can account for nearly 60 % of the total CC

signal in some coastal regions although for most regions the

fine scale contributions to the total CC signal are of around

*5 %. For the precipitation variable, fine scales contribute

to a change of generally less than 15 % of the seasonal-

averaged precipitation in present climate with a continental

North American average of *5 % in both summer and

winter seasons. In the case of precipitation, uncertainty due

to sampling issues may further dilute the information pres-

ent in the downscaled fine scales. These results suggest that

users of RCM simulations for climate change studies in a

delta method framework have little high-resolution infor-

mation to gain from RCMs at least if they limit themselves

to the study of first-order statistical moments. Other possible

benefits arising from the use of RCMs—such as in the large

scale of the downscaled fields– were not explored in this

research.
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1 Introduction

In the context of a changing climate due to anthropogenic

factors, it is generally argued that the planning for
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QC H3C 3P8, Canada

e-mail: alejandrodiluca@gmail.com

R. de Elı́a
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adaptation requires climate information accounting for

specificities on scales at which human activities occur, for

example about climatic characteristics within countries,

provinces and even cities (Oreskes et al. 2010). This need

of very fine-scale climatic information has important con-

sequences for climate research and it has pushed climate

modeling research centres to perform increasingly higher

resolution climate simulations and to look for alternative

techniques to produce fine-scale climatic information.

One such approach has been the development of nested,

limited-area, regional climate models (RCMs). Basically,

the RCM technique allows for an increase in resolution by

concentrating the degrees of freedom, and hence the

computational resources, over a limited region of the globe

where the main interest of a user lies (Laprise et al. 2008).

Technically, it consists of using time-dependent large-scale

atmospheric fields and ocean surface boundary conditions

to drive a high-resolution atmospheric model integrated

over a limited-area domain (Giorgi et al. 2001). The

atmospheric driving data are either derived from simula-

tions of lower resolution coupled Atmosphere-Ocean

General Circulation Models (AOGCMs) or analyses of

observations.

From the beginning of RCMs development, nearly

20 years ago, a large effort has ensued to assess their

capability as climate downscaling tools by comparing

RCM-simulated climate to observed data sets. Moreover,

particularly in the last decade, important efforts were also

devoted to assess the ability of RCMs to improve the

simulated climate compared to their driving data in order to

identify the value added by RCMs. The various added

value (AV) studies (for a review of these studies the reader

is referred to Prömmel et al. (2010) and Feser et al. (2011)

and references therein) have clearly shown that RCMs do

not generate AV in an unequivocal way but it seems to

depend upon a variety of factors such as the season and

time scale, the variable and the climate statistics of interest,

the region of analysis, etc.

The AV is generally defined as the ability of RCM

simulations to improve some particular aspect of the driving

fields compared to observations. The necessary use of

observed data in order to identify this AV restricts its study

to only recent past RCM climate simulations (i.e., hindcast

simulations) either driven by reanalyses or AOGCM outputs.

Moreover, the scarceness of fine-scale observations and the

limited number of variables available for validation limits

even more those cases where the AV can be evaluated. In

order to circumvent the limitations imposed by the necessity

of observations, Di Luca et al. (2012a) have developed a

framework, denoted as potential added value (PAV), that

uses the presence of fine-scale variability in RCM-derived

climate statistics as a prerequisite condition for an RCM to

generate some real fine-scale AV.

Due to its independence from observational data, the

PAV framework is particularly interesting when consider-

ing the problem of ascertain whether increasing model

resolution can improve climate projections. As it will be

shown later, when downscaling climate projections from

AOGCMs, our interest is not necessarily directed towards

the RCM climate simulation itself but sometimes towards

the climate change (CC) signal computed from the differ-

ence between climate statistics derived from present and

future RCM simulations. For example, in order to account

for systematic biases in RCM projections, a popular

approach used to estimate future climate is through the

‘‘delta method’’ (e.g., see Rummukainen 2010). The delta

method consists of adding to the observed climate data the

RCM-simulated climate change signal. This suggests that

the RCM’s added value in climate projections may not

come directly from the simulation of future scenario peri-

ods but rather from the climate-change signal itself.

Implicit in the last argument is the idea that some

changes in climate will occur in spatial scales smaller than

those resolved by current AOGCMs. Several sources of

fine-scale climate change can be conceived. For example,

fine-scale climate forcings (e.g., land cover) can change in

the future due to the influence of human activities (e.g., in

agricultural activities). The non-linear interaction between

a large-scale variable and fine-scale surface forcings can

induce small-scale changes if the large-scale variable

changes in the future. Feedback processes can also induce

small-scale changes in meteorological variables due to the

fine scale heterogeneity of surface physical properties.

It should be emphasised, however, that the arguments

from which fine-scale features would appear in the climate

change signal are not the same as those asserted for the

climate itself. One example can help to understand the

difference. A simple mechanism that can generate AV in

mountainous regions in present climate simulations is

related with the general relation between temperature and

terrain elevation. The more detailed representation of ter-

rain elevation gradients will create stationary temperature

gradients even when no fine-scale atmospheric processes

occur. But this mechanism may not generate AV in the CC

signal because their effects may be cancelled out when

computing the difference between future and climate

statistics.

The objective of this article is twofold. First, to quantify

the fine-scale part of the RCM-derived CC signal and to

evaluate its relative importance compared to either the

large-scale CC part or to present climate statistics. Second,

to characterise the robustness of the fine-scale quantitative

results in terms of the sampling uncertainty that results

from interannual variability. The analysis concentrates on

time-averaged seasonal temperature and precipitation

climate change signals as reproduced by several
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RCM-AOGCM pairs in a domain that covers most of North

America, thus encompassing a wide range of climate

regimes. That is, following the classification proposed by

Castro et al. (2005) in which the RCM technique is sepa-

rated according to the boundary conditions used to drive

the RCM, in this article we will focus on the PAV of Type

4 RCM simulations.

The paper is organized as follows. The next section

discusses in some detail the added value issue with special

emphasis on two particular aspects: the difference between

AV and PAV and; the difference between looking for AV

in present climate statistics and in future changes in climate

statistics. Section 3 presents a brief description of the data

used. Section 4 describes the methodology used to analyze

the importance of fine scale features and the metrics used to

quantify the PAV and its related sampling uncertainty.

Temperature and precipitation results are presented in

Sects. 5.1 and 5.2 respectively. Some discussion of the

results and conclusions is given in Sect. 6.

2 Added value issue

2.1 Present climate statistics

In order to illustrate the AV issue, let us consider a

hypothetical AV study. Let us suppose that we are trying to

decide whether an RCM adds value over a lower resolution

climate model (hereafter denoted by GCM) in the repre-

sentation of some climate statistics X (e.g., seasonal-aver-

aged precipitation). Assuming that the metric chosen to

assess model’s performance is given by the squared error

(SE), then the AV can be defined by

AV ¼ ðXGCM � XOBSÞ2 � ðXRCM � XOBSÞ2
¼ SEGCM � SERCM: ð1Þ

Defined in this way, the RCM generates some AV if its SE

is smaller than the GCM’s one, i.e., if AV is positive.

In order to gain more insight on the sources of AV, let us

separate the field according to different spatial scales and

express the value of XOBS as follows:

XOBS ¼ Xls
OBS þ Xss

OBS; ð2Þ

where the superscripts ls and ss designate, respectively, the

large scales and small scales that are permitted or not by

the GCM grid. Hence by definition XGCM
ss = 0 and

XGCM ¼ Xls
GCM : ð3Þ

Similarly the RCM-derived climate statistics (XRCM) may

be decomposed as

XRCM ¼ Xls
RCM þ Xss

RCM : ð4Þ

Replacing Eqs. (2), (3) and (4) in Eq. (1), rearranging and

neglecting covariance terms (see below and in ‘‘Appendix’’

for details), we obtain:

AV �AVss þ AVls; ð5Þ

where

AVss ¼ ðXss
OBSÞ

2 � SEss
RCM

¼ ðXss
OBSÞ

2 � ðXss
RCM � Xss

OBSÞ
2;

ð6Þ

and

AVls ¼ SEls
GCM � SEls

RCM: ð7Þ

That is, the AV can be approximately decomposed into a

small-scale term (AVss) and a large-scale term (AVls). We

recall that these equations were arrived at neglecting two

covariance terms: one corresponds to assuming that large-

scale errors of GCM are uncorrelated with small-scale

variance of observations, and the other that large-scale and

small-scale errors of RCM are uncorrelated.

From Eq. (6) it is clear that three conditions must be

satisfied for the RCM to generate small-scales added value

(AVss [ 0):

1. the observed climate statistics XOBS must contain non-

negligible fine-scale information, i.e., (XOBS
ss )2 [ 0,

2. the RCM-derived climate statistics XRCM must contain

non-negligible fine-scale information, i.e., (XRCM
ss )2 [

0, and

3. the error associated with the fine-scale RCM-derived

information must be smaller than the information

itself, i.e., (XRCM
ss - XOBS

ss )2 \ (XOBS
ss )2.

This analysis suggests that a measure of the potential of

RCMs to add value can be obtained by quantifying the

maximum or available AV derived using observations:

MAVss ¼ ðXss
OBSÞ

2: ð8Þ

The quantity MAVss is called maximum added value of the

small scales and gives an estimation of the maximum value

that an RCM or any other downscaling technique can add.

In those cases where observations are not available, an

estimation of the maximum added value can be done in

terms of fine-scale RCM features:

MAVss�ðXss
RCMÞ

2 � PAVss; ð9Þ

with PAVss denoting the potential for small-scale added

value suggested by a given RCM simulation. It is important

to note that if (XOBS
ss )2

= (XRCM
ss )2 then the PAV quantity

(XRCM
ss )2 will under- or over- estimate MAVss by simulating

too little or too much fine-scale variability. An under/over

estimation of MAVss can be related with either positive or

negative AVss, depending on the values of SERCM
ss and

(XOBS
ss )2. That is, even if PAVss can give an erroneous
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estimation of MAVss, it is still an interesting and useful

quantity because allows to estimate the small-scale part of

PAV in those cases where we do not have any knowledge

about the observed climate statistics.

Figure 1 shows the dependence of AVss as a function of

XRCM
ss for three different values of XOBS

ss . In the case where

XOBS
ss = 0 everywhere, an increase in fine-scale variance of

XRCM can only subtract value by making AVss negative.

Where XOBS
ss

= 0, the fine-scale feature of XRCM can add

value over the GCM estimation wherever Eq. (6) is posi-

tive. The maximum AVss is found when XOBS
ss = XRCM

ss and

is given by ðXss
RCMÞ

2
. Furthermore, Fig. 1 shows that the

term AVss can potentially increase as XOBS
ss increase, justi-

fying the idea of using the increase in the observed fine-

scale variance as a proxy of an increase in AVss.

The term AVls in Eq. (5) represents the AV that can be

generated by an RCM due to an improvement in the large-

scale part of the climate statistics X. It is still a subject of

discussion and debate in the RCM community whether or

not we should hope to find that RCMs are able to generate

AV at large scales, with some authors (e.g., Mesinger et al.

2002 and Veljovic et al. 2010) arguing for a positive

answer and others (e.g., Castro et al. 2005; Laprise et al.

2008) promoting the use of large-scale nudging thus

reducing the chances of RCMs to produce AVls. In any

case, it is generally accepted (e.g., Feser 2006; Prömmel

et al. 2010) that the raison d’être of RCMs is related with

the existence of AV of fine scales (i.e., AVss [ 0), justi-

fying the fact that most AV and PAV studies, including this

article, have concentrated in the AVss and PAVss terms.

The PAVss concept as described above was used to study

the potential benefits of using high-resolution RCMs to

simulate present climate precipitation (Di Luca et al.

2012a) and temperature (Di Luca et al. 2012b), and the

PAVss dependence on several factors such as the season,

the region and the climate statistics of analysis. In what

follows, the application of the PAV framework to climate

change studies will be considered.

2.2 Future changes in climate statistics

A variety of approaches may be used to show how a given

climate statistics X can change between present and future

climate simulations. A popular approach, generally desig-

nated as the ‘‘delta method’’ (e.g., see Rummukainen

2010), consists on computing the future climate statistics

(Xfuture) by adding the climate change as estimated from

climate model simulations (CCsimulated) to the past

observed climate (XOBS
present). That is, the delta method

approximation can be expressed as:

Xfuture
d ¼ Xpresent

OBS þ CCsimulated; ð10Þ

where CCsimulated is computed in the usual form as

the difference between X in future and present climate

(Xsimulated
future - Xsimulated

present ) using either RCM (CCRCM) or

GCM (CCGCM) simulations.

Another popular approach used to show changes in

climate statistics X is through the use of the climate change

signal (CCsimulated) itself, with no explicit consideration of

present and future climate statistics. That is, in this case,

we are not interested in the future value of the climate

statistics but only on how much X may change between

present and future periods.

Following the development in Sect. 2.1, the CC signal

added value (AVCC) generated by an RCM simulation over

a GCM can be defined using the delta method by:

AVCC ¼ ðXfuture
d;GCM � Xfuture

true Þ
2 � ðXfuture

d;RCM � Xfuture
true Þ

2;

¼ ðCCGCM � ðXfuture
true � Xpresent

OBS ÞÞ
2

� ðCCRCM � ðXfuture
true � Xpresent

OBS ÞÞ
2;

¼ ðCCGCM � CCtrueÞ2 � ðCCRCM � CCtrueÞ2; ð11Þ

where the subscript ‘‘true’’ denotes the still unknown cli-

mate statistics that will arise in future climate conditions.

That is, the RCM generates some AV if its error in the CC

signal estimation is smaller that the GCM one, i.e., if AVCC

is positive. It is important to note that, when using the delta

method, the AV of RCM simulations in future climate

statistics does not depend directly on the future climate

statistics (Xsimulated
future ) but on the CC signal (CCsimulated).

Replacing the total CC signal in Eq. (11) according to

the contribution of large (CCls) and small (CCss) scales and

neglecting the two covariance terms as in Sect. 2.1 (see

also ‘‘Appendix’’) we have,

AVCC �AVls
CC þ AVss

CC; ð12ÞFig. 1 Small-scales added value (AVss) as a function of XRCM
ss for

three different values of XOBS
ss
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with

AVss
CC ¼ ðCCss

trueÞ
2 � SEss

CC;RCM

¼ ðCCss
trueÞ

2 � ðCCss
RCM � CCss

trueÞ
2;

ð13Þ

and

AVls
CC ¼ SEls

CC;GCM � SEls
CC;RCM: ð14Þ

As with the present climate case, three necessary

conditions for the RCM to add value in the fine-scale CC

signal can be identified:

1. the true CC signal (CCtrue) must contain non-negligi-

ble fine-scale information, i.e., (CCtrue
ss )2 [ 0,

2. the RCM-derived CC signal (CCRCM) must contain non-

negligible fine-scale information, i.e., (CCRCM
ss )2 [ 0,

and

3. the error of the fine-scale RCM-derived CC informa-

tion must be smaller than the information itself, i.e.,

(CCtrue
ss )2 [ (CCRCM

ss - CCtrue
ss )2.

Given that we do not have any knowledge about the true

CC signal, the available or maximum small-scale AV

cannot be measured for future climate projections (see Eq.

(8) for comparison) and the first condition cannot be

explicitly addressed. However, in a similar way as done in

the last section, a quantity measuring the importance of fine

scales in the CC signal can be used to characterise the

PAV:

PAVss
CC1
¼ ðCCss

RCMÞ
2: ð15Þ

Defined in this way, a near zero value of PAVss
CC1

suggests that no fine-scale variability is created by the

RCM simulation and hence no AVCC
ss should be expected.

Moreover, in those cases where PAVss
CC1

[ 0, the third

condition can be used to define a second PAV quantity:

PAVss
CC2
¼ ðCCss

RCMÞ
2 � ðDss

RCMÞ
2;

¼ PAVss
CC1
� ðDss

RCMÞ
2;

ð16Þ

where Dss
RCM constitutes a measure of the uncertainty in the

estimation of CCRCM
ss and is used as a proxy of the error

SECC,RCM
ss . The quantity PAVss

CC2
measures the magnitude of

the fine-scale CC signal (CCRCM
ss ) compared to its uncertainty

(Dss
RCM) and can be used to quantify the robustness of the

CCRCM
ss estimation and the associated chances to produce

some AVCC
ss . PAVss

CC2
values close to or less than zero suggest

a large uncertainty associated with CCRCM
ss and a high chance

to get the wrong value of CCtrue
ss . Relatively large values of

both PAVss
CC1

and PAVss
CC2

would be related with a large and

robust estimation of the fine-scale component of the CC

signal and with a large potential for added value.

Finally, for the large-scale part, the PAV in the CC

signal could be simply defined as:

PAVls
CC ¼ ðCCls

RCM � CCls
GCMÞ

2: ð17Þ

That is, there exists some PAVCC in large scales if and

only if the climate projections derived using the RCM and

the driving GCM simulations are different. Several

arguments can be presented to expect a large-scale

component of the PAVCC quantity. For example, Gao

et al. (2011) argue that because AOGCMs do not

adequately simulate higher elevations where temperature

changes have less effect on snow cover (where temperatures

are still cold enough to retain snow), the large-scale

temperature change can be differently simulated in an

RCM compared to a GCM. As argued in Sect. 2.1, we

suppose that the primary AV of RCM simulations would

come from the direct influence of the small-scale part

and so, in this article, we will concentrate in the study of

PAVCC
ss with no explicit consideration of the large-scale

counterpart PAVCC
ls or the covariance terms (see

‘‘Appendix’’ for details).

3 NARCCAP data

The RCM simulations used in this study were provided by

the North American Regional Climate Change Assessment

Program (NARCCAP; http://www.narccap.ucar.edu/;

Mearns et al. 2009). In NARCCAP, RCMs were run with

a horizontal grid spacing of about 50 km over similar

North American domains covering Canada, United States

and most of Mexico. Acronyms, full names and a refer-

ence, and the modelling group of the RCMs used in this

study are presented, respectively, in the first three columns

in Table 1.

Five RCM-AOGCM pairs are used in this study to

analyze the climate change signal, with two RCMs (CRCM

and RCM3) driven by two AOGCMs and one RCMs

(HRM3) driven by only one AOGCM. Four AOGCMs are

used to drive the RCMs: the Canadian Global Climate

Model version 3 (CGCM3, Flato and Boer (2001) and Flato

(2005)), the NCAR Community Climate Model version 3

(CCSM3, Collins et al. 2006), the Geophysical Fluid

Dynamics Laboratory Climate Model version 2.1 (GFDL,

GFDL Global Atmospheric Model Development Team

2004) and the United Kingdom Hadley Centre Coupled

Climate Model version 3 (HadCM3, Gordon et al. 2000).

The fourth column in Table 1 provides the LBCs used to

drive each RCM. A total of ten RCM simulations are

considered, five of them simulating a present period

(1971–1995) and the other five simulating the future cli-

mate (2041–2065) using the A2 scenario (Mearns et al.

2009).

For each RCM simulation, several 3-hourly variables are

available in their original map projection; but in this article

Potential for small scale added value of RCM’s 605
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we will concentrate only on the instantaneous 2-m tem-

perature and on the 3-hourly average total precipitation.

Sea surface temperatures (SST) and sea ice (SI) surface

boundary conditions comes from AOGCM data and are

updated every 6 h by using a linear interpolation between

consecutive monthly-mean values. Similarly, boundary

conditions are interpolated from the low resolution to the

*50-km grid meshes by using a linear interpolation in the

horizontal.

All NARCCAP RCMs include some more or less

sophisticated representation of land surface and the upper

soil levels. The representation of lakes depends on each

RCM and on the LBCs used to drive the RCM. RCMs do

not share the fraction of water in every grid point (i.e., the

land-water mask is model dependent) although most

RCMs, with the only exception of the RCM3, represents

the Great Lakes, Winnipeg Lake and other relatively large

lakes in the west northern part of Canada. In all cases, as

with oceanic regions, surface temperatures in lakes are

prescribed using the driving AOGCM data.

4 Methodology

The methodology used to study the importance of fine

scales in the determination of the climate change signal is

based on a perfect model approach designated as the

potential added value framework. A main advantage of this

framework is that it allows to estimate PAVCC
ss quantities

independently of the relative performance between the

RCM and the driving AOGCM without necessity of having

high-resolution observations. A brief description of the

framework is given here but a more detailed discussion can

be found in Di Luca et al. (2012a, b).

4.1 PAV measures

Let us consider a two-dimensional field representing the

projected change of a given climate statistics X computed

using *50 km grid-spacing RCM simulations that we

denote by CCRCM. A domain of analysis, common to all

RCMs, is selected and divided in non-overlapping boxes of

300 km by 300 km leading to a low-resolution grid mesh

containing a total of 288 grid boxes (see Fig. 2). Using this

grid mesh, we can define a lower resolution version of

CCRCM, that we denote by the virtual GCM version of the

climate change signal (CCVGCM), by aggregating the

CCRCM over each 300-km side grid boxes. For any RCM-

AOGCM simulation, the upscaling is simply performed by

computing the arithmetic average of the statistics X over all

the RCM grid points inside the region of interest.

As discussed in Sect. 2.2, a question that arises naturally

in the context of the PAV framework is whether the high-

resolution CCRCM contains fine-scale information that is

absent in the low-resolution part (CCVGCM). Given that some

of the most important factors of anthropogenic climate

change are large scale in nature (e.g., greenhouse gases

concentration changes), it is unclear whether the CC signal

would contain a significant high-resolution component. A

simple way to quantify the importance of fine scales in the

high-resolution CC signal can be done by defining:

Table 1 Acronyms, full names and modelling group of RCMs involved in the NARCCAP project. Column 4 indicates the LBCs used to drive

each RCM

RCM Full name Modelling group LBCs

CRCM Canadian regional climate model (version 4.2.0)

(Caya and Laprise 1999)

Ouranos/UQAM CGCM3

CCSM

RCM3 Regional climate model (version 3)

(Giorgi et al. 1993)

UC

Santa Cruz

CGCM3

GFDL

HRM3 Hadley regional mode (version 3)

(Jones et al. 2004)

Hadley centre HadCM3

Fig. 2 Spatial-mean CRCM model land fraction over the 288 regions

used in the analysis. The total domain of analysis is common to all 6

RCM domains and each sub region has the same dimensions (i.e.,

300 km by 300 km). Black (blue) colors denote those regions entirely

covered with land (water)
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PAVss
CC1
¼ ðCCss

RCMÞ
2 ¼ r2ðCCRCMÞ; ð18Þ

where r2 (CCRCM) denotes the spatial variance of the high-

resolution CC signal field over a given 300-km side region.

Similarly, we can define a relative PAV quantity that

evaluates the proportion of the CC signal that is accounted

only by the fine-scale part by writing

rPAVss
CC1
¼ r2ðCCRCMÞ

CC2
VGCM

; ð19Þ

where CCVGCM
2 is the square of the spatial-mean climate

change signal in each region. Defined in this way, rPAVss
CC1

varies between 0 and ?1; rPAVss
CC1

*0 would indicate

that the high-resolution estimation does not add extra

information over the coarse-resolution one. For a given

region, rPAVss
CC1

*1 indicates that the change in the fine-

scale temperature is as large as the large-scale part change.

For the seasonal-averaged temperature, CCVGCM is always

greater than zero in continental North America and Eq. (19) is

well defined. When considering seasonal-averaged precipi-

tation, CCVGCM can be near zero and so an alternative rPAV

quantity should be considered to avoid that rPAV be indefinite.

This can be done, for example, by normalising the PAVss
CC1

with the square of the mean precipitation of the region:

rPAVss
CC1
¼ r2ðCCRCMÞ
ðprpresent

VGCM Þ
2
; ð20Þ

where prVGCM
present represents the spatial-mean precipitation over

each 300-km side region in present climate. Again, with this

definition, rPAVss
CC1

varies between 0 and ?1; rPAVss
CC1

*0

indicating that the high-resolution estimation does not add

extra information over the coarse-resolution one. For a given

region, rPAVss
CC1

*1 indicates that the change in the fine-scale

precipitation is as large as the spatial-mean precipitation itself.

It should be emphasised that the quantities PAVss
CC1

and

rPAVss
CC1

defined in Eq. (18), (20) and (19) only account for

the potential added value of the small scales (PAVCC
ss ), that

is, the PAV arising from the simulation of fine-scale fea-

tures in the statistics X that are absent in GCM fields. The

two quantities are mute about the potential of RCMs to add

value in the large scale or in the covariance terms (see Sect.

2 and ‘‘Appendix’’).

4.2 Sampling uncertainty in PAV measures

Inherent to the process of computing climate statistics from

a finite length time series (i.e., 25 years periods in our case)

there is an uncertainty related to sampling. The existence of

sampling uncertainty implies that two adjacent grid points

can show somewhat different present and future statistics

(e.g., time-averaged values), leading to differences in the

CC signal and its derived spatial variance, even if physical

mechanisms that determine the climate in both grid points

are essentially the same. Ideally, in any grid point and for

any given RCM-AOGCM simulation, the sampling

uncertainty can be quantified using several RCM simula-

tions performed employing different boundary conditions

arising from running the AOGCM with slightly different

initial conditions (i.e., using several members of the driving

AOGCM). In NARCCAP, modelling efforts has been put

on the number of RCM-AOGCM pairs and there is only

one realisation of each pair available for analysis thus

preventing the internal variability sampling study.

In order to circumvent this practical limitation, the

sampling uncertainty will be quantified by estimating the

fine-scale CC signal in each 300-km side region using a

Monte Carlo approach. First, for each RCM-AOGCM

simulation, the high-resolution climate change signal

CCRCM is computed 100 times by sampling randomly with

replacement over the 25-year seasonal averages of present

(XRCM
present) and future (XRCM

future) simulations, thus obtaining a

distribution for CCRCM that we denote by CCRCM
i .

Second, for each sample of CCRCM
i , we compute the

spatial variance obtaining a 100 sample distribution of

variances in each region, denoted by ri
2 (CCRCM), that can

be used to estimate the mean spatial variance and some

measure of the spread around the mean. Defined in this

way, the sampling uncertainty gives a measure of the

interannual variability in each region.

A similar method to estimate sampling uncertainty was

used by Déqué et al. (2011). Using a Monte Carlo procedure

and a 10 members sampling they found a very good agree-

ment between the sampling uncertainty computed using

various runs only differing on initial conditions and the

Monte Carlo approximation for time-averaged precipitation.

For time-averaged temperature, they found a good agreement

in summer season but they found that the Monte Carlo

approximation underestimates by nearly 30 % the ‘‘true’’

spread in winter. Although these results are encouraging, a

more detailed study should be undertaken to confirm that the

Monte Carlo estimation constitutes a good approximation.

The existence of sampling uncertainty has implications

when attempting to evaluate the necessary conditions for AV

that were discussed in Sect. 2.2 (see Eqs. 15 and 16). First,

when trying to identify regions containing non-negligible

fine-scale variance (i.e., PAVss
CC1

= r2 (CCRCM) [ 0), the

sampling uncertainty implies that we cannot use a zero

threshold but some non-zero threshold that measures the

level of noise inside each region. That is, a ‘‘variance noise’’

threshold must be used in order to determine whether the

fine-scale variance is induced by physical mechanisms or

only arising from sampling uncertainty. We will refer to the

use of such threshold as ‘‘physically significant’’ condition.
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The physically significant condition is defined here in a

simple way by arbitrarily choosing a minimum value, the

same for all regions, for PAVss
CC1

to be statistically different

from zero. In order to take into account the sampling

uncertainty in the variance computations and the possibility

of getting a value below the threshold by chance, the cri-

terion imposes that 95 % of the Monte Carlo-generated

variances must be larger than the threshold:

PAVss
CC1
� q5ðr2

i ðCCRCMÞÞ[ threshold: ð21Þ

For the absolute quantity (PAVCC
ss ), relatively small values

are chosen for both temperature ((0.1 K)2 threshold) and

precipitation ((0.04mm/day)2 threshold). Assuming that

CCRCM values are normally distributed inside each region,

this implies that 95 % (99 %) of the CCRCM differences

between two grid points are smaller than 0.2 K (0.3 K) for

temperature and smaller than 0.08 mm/day (0.12 mm/day)

for precipitation. Similarly, for relative PAV quantities

(rPAVCC
ss ), regions will be considered as physically signif-

icant when rPAVCC
ss values are larger than 0.052 and 0.02 2

for temperature and precipitation respectively.

Another implication introduced by the existence of

sampling uncertainty is related with the second PAV

quantity defined in Eq. (16). As discussed in Sect. 2.2, a

measure of the uncertainty of CCRCM
ss can be used to esti-

mate the condition (CCtrue
ss )2 [ SECC,RCM

ss that suggests that

a large error in the estimation of CCtrue
ss can prevent the

RCM from adding value. In particular, the sampling

uncertainty can be used as a lower limit of the unknownable

error SECC,RCM
ss to quantify the ‘‘potential skill’’ of the fine-

scale spatial variance estimation. That is, although we can

never decide on the actual skill of the RCM-derived CC

signal, we can be confident that the CCRCM
ss skill will be

poor if the associated uncertainty is large. In this sense, the

potential skill can be partially quantified through the use of

the sampling uncertainty and will tend to diminish as the

uncertainty increases.

In order to define the potential skill condition, let us

suppose that the mean value of ri
2 (CCRCM) is a good esti-

mation of the spatial variance of the true climate-change

signal (i.e., r2ðCCRCMÞ� r2ðCCtrueÞ). In this case, for any

sample ri
2 (CCRCM), there will be some AV in the fine-scale

climate-change signal if and only if r2
i ðCCRCMÞ\2 �

r2ðCCRCMÞ (see Eq. 13). That is, in order to guarantee some

form of skill in the estimation of a PAVss
CC1

we will consider

as potentially skillful those regions in which at least 95 % of

the ri
2 (CCRCM) samples verify:

PAVss
CC2
� q95ðr2

i ðCCRCMÞÞ � 2 � r2ðCCRCMÞ[ 0: ð22Þ

with q95 the 95th percentile of the ri
2 (CCRCM) distribution.

Several uncertainty sources can influence PAV quanti-

ties; see Foley (2010) for a detailed discussion. The

uncertainty related with the use of different RCM and

AOGCMs will not be directly addressed here, although

PAV quantities derived from individual pairs of RCM-

AOGCM simulations will be shown. Also, NARCCAP

future climate simulations are available only based on the

A2 scenario (see IPCC 2007), thus preventing any scenario

uncertainty analysis. While this can be a main source of

uncertainty when looking at the end of the twentyfirst

century climate, it is probably less important when looking

at the first half of the century.

It should be noted that quantitative results related to the

‘‘physically significant’’ and the ‘‘potential skill’’ condi-

tions depend on the arbitrary choice of the threshold and

the sampling uncertainty measure, respectively. The use of

other thresholds and sampling uncertainty measures would

lead to different quantitative results. However, we expect

results to be qualitatively similar.

5 Results

5.1 Temperature

Figures 3 and 4 show the seasonal-averaged projected tem-

perature change (2041–2065 to 1971–1995) for individual

RCM simulations in winter and summer seasons respectively.

In both seasons, results show warmer conditions in the future

with generally a stronger warming in continental compared to

oceanic regions. In winter season, the spatial pattern of CCRCM

shows a general increase to the north and to the interior of the

continent that reaches almost 7 K in the centre of the Hudson

Bay for all RCM simulations with the only exception of the

RCM3-GFDL simulation. This pattern of warming is related

with the positive feedback induced by the reduction of the

period of snow sea-ice cover and the associated increase in

absorbed solar radiation (see for example IPCC 2007).

Warming is smaller in summer than in winter in

northern regions and generally larger in central and

southern regions. The spatial pattern of CCRCM shows

maximum values in continental-middle latitudes with

changes as large as 4 K in central United States in most

RCM simulations. This pattern of warming is mainly

explained by the positive feedback induced by the decrease

of latent heat fluxes and the increase in sensible fluxes due

to negative anomalies in surface soil moisture in most

central-western regions (Seneviratne et al. 2010).

Figures 5 and 6 show the square root of the PAVss
CC1

measure (see Eq. 18) for the RCM-AOGCM simulations

and for the ensemble-mean results in winter and summer

seasons, respectively. As stressed in Sect. 3, oceanic

boundary conditions in NARCCAP simulations are

obtained by interpolating SST and SI fields coming from

the driving AOGCM simulations. This means that
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Fig. 3 Climate change signal for the time-averaged temperature in winter season for individual RCM-AOGCM simulations

Fig. 4 Same as Fig. 3 but for summer season results
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stationary fine-scale patterns in the ocean fields, if they

exist, are artificial and do not reflect any physical pro-

cesses. For this reason, we decided to mask oceanic regions

in the PAV analysis. Oceanic regions are defined as those

containing 100 % water-fraction and the total number

depends on the RCM considered, varying between 50 in the

CRCM to 58 in the HRM3 model.

In winter season (Fig. 5), the largest
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC1

p

values

(*1.2 K) appear in northern-coastal regions mainly along the

Hudson Bay and the Canadian Archipelago coasts with rela-

tively large values also along the Pacific Coast (*0.5 K) and

in central western United States. Different mechanisms appear

to produce the relatively large values in coastline regions

depending on whether or not sea ice is present during the

winter. For example, most RCM-AOGCM simulations show

large values of PAVss
CC1

over the northern part of the Pacific

Coast, associated with larger warming over land compared to

water (see Fig. 3), probably explained by the snow-albedo

feedback that is present in land but absent in water surfaces.

On the contrary, large values of PAVss
CC1

in the Hudson Bay

and the Canadian Archipelago coasts are generally related

with a more pronounced warming over oceanic regions,

maybe due to a stronger albedo feedback in sea ice compared

to land surfaces. A mechanism that can be important in regions

along the Rocky Mountains is related with the snow-albedo

feedback resulting from the differential snow cover change in

varying altitude regions.

A large number of regions show that at least 5 % of

winter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC

p

sample values are smaller than the 0.1 K

threshold established for physical significance (white mask

in Figs. 5 and 6). The number of these regions depends on

the simulation and varies between 74 in the HRM3-

HADCM3 and 170 in the RCM3-GFDL simulations, with

all simulations showing ‘‘zero’’ values in the south-eastern

part of the continent.

Figure 5f shows the square root of the average of

PAVss
CC1

across the five individual simulations

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hPAVss
CC1
i

q

) in winter season. A total of 154 out of 230

non-oceanic regions appear to be physically significant and

these regions are mostly located along a coast (Canadian

Archipelago, Hudson Bay, Pacific and Atlantic Oceans)

and in the central-western part of the continent.

In summer season (Fig. 6), the largest
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC1

p

values

(*0.6 K) appear also in coastal regions along the Hudson

Bay, but in this case relatively large values extend to the

south, along the Pacific and the Atlantic coasts and over the

Great Lakes and other smaller lakes in Canada, at least in

those simulations containing lakes (CRCM and HRM3). In

this season, the relatively large PAVss
CC1

values in coastal

regions seem to be forced mainly by a larger warming over

land compared to oceanic regions (see Fig. 4) probably due

to the slower response of the ocean because of its larger

heat capacity. The number of regions that verify the

Fig. 5 Square root of the temperature potential added value (see

Eq. 18) in winter season for individual RCM-AOGCM simulations

and for the ensemble mean. White regions designate those regions that

do not satisfy the ‘‘physically significant’’ condition. Large crosses
(x) designate those regions that do not satisfy the ‘‘skill’’ criteria.

Oceanic regions are in black
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‘‘physically significant’’ criterion (see Eq. 21) varies

between 105 in the HRM3-HADCM3 and 158 in the

RCM3-GFDL simulations, thus showing similar values

although less variability than the winter case.

Figure 7 shows the square root of the ensemble-mean

temperature relative PAV measure (computed using Eq.

(19)) in winter and summer seasons, respectively.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrPAVss
CC1
i

q

values are always smaller than 0.6, suggest-

ing that fine-scale mean-temperature changes are generally

smaller than the large scale ones. The domain-averaged
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrPAVss
CC1
i

q

in winter (summer) is 0.086 (0.093) with a

maximum value of 0.31 (0.58). That is, averaged

over continental North America, the contribution of the

fine scales to the total climate change signal is of the

order of 10 % although it can attain 60 % in specific

regions.

In both seasons, as with the absolute PAVss
CC1

measure,

the largest ensemble-mean rPAVCC
ss values appear along

coastal regions due to the differential heating observed in

land and ocean surfaces. In winter (summer), there is a

total of 101 (93) out of 230 non-oceanic regions where at

least 5 % of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrPAVss
CC1
i

q

sample values are smaller than

the threshold imposed for physical significance. Other

than in coastal regions, relatively large winter hrPAVss
CC1
i

values appear over west-central United States (probably

associated with fine-scale topography) and over the Great

Lakes. The general spatial pattern of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrPAVss
CC1
i

q

closely

resembles the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hPAVss
CC1
i

q

field suggesting that fine-

scale variances of the CC signal tend to follow the mean

CC.

Interestingly, according to the potential skill condition

(see Eq. 22), the estimation of hPAVss
CC1
i and hrPAVss

CC1
i

quantities appear to be robust in all regions for both sum-

mer and winter seasons.

5.2 Precipitation

A similar analysis to the one presented above is also per-

formed for the precipitation variable. Figures 8 and 9 show

the seasonal-averaged precipitation change (2041–2065 to

1971–1995) for individual RCM-AOGCM simulations

(CCRCM) in winter and summer seasons, respectively. The

high-resolution CC signal is normalised by the present

climate mean precipitation in order to account for the

important mean-precipitation gradients across the North

American continent.

In winter, most simulations tend to produce an increase

in precipitation over most of the continent mainly as a

result of the increase of atmospheric moisture due to the

temperature dependence of the water vapour saturation

pressure together with a displacement of the westerlies to

the north (see IPCC 2007). Increments are generally

smaller than 30–40 %, with maximum values generally

located over the Hudson Bay. In absolute terms (not

shown), the maximum increase in precipitation amounts

appear along the northern part of the Pacific Coast, with

Fig. 6 Same as Fig. 5 but for summer season results
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values of the order of 3 mm/day. Most RCM-AOGCM

simulations tend to show a decrease of precipitation in the

south-western part of the domain, a feature that seems to be

related with an enhanced subsidence in this region due to

an intensification of the subtropical anticyclone in this

season (IPCC 2007).

In summer, in agreement with results found in IPCC

(2007), the precipitation CC signal is strongly dependent

on the RCM-AOGCM simulation and, in some simulations,

the increase in precipitation is only limited to the northern

part of the domain. Some simulations suggest a decrease of

about 30 % in mean-precipitation in the northern part of

the Pacific Coast.

Figures 10 and 11 show the square root of the precipi-

tation PAVss
CC1

measure for individual RCM-AOGCM

simulations and for the ensemble-mean results in winter

and summer seasons, respectively. In winter season

(Fig. 10), the largest
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC1

p

values are found along the

Pacific coast, mainly in the northern part, with values

attaining 1.15 mm/day. In some individual simulations, the

Fig. 7 Same as Fig. 5 but for the ensemble-mean rPAVCC
ss quantity

Fig. 8 Climate change signal for the time-averaged precipitation in winter season for individual RCM-AOGCM simulations
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC1

p

winter season field shows a secondary maximum

in the south-eastern part of the domain, with values of

about 0.4 mm/day. In regions located in central United

States and most of Canada, the 5th percentile of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC1

p

distribution is generally smaller than the

0.04 mm/day threshold, suggesting that most of these

regions are physically non-significant.

In summer, no clear pattern of PAVss
CC1

can be identified

and, in most regions, mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAVss
CC1

p

values are generally

smaller than 0.3 mm/day. In this season, the PAV precip-

itation analysis in individual RCM-AOGCM simulations

shows that a minimum of 107 and a maximum of 213

appear as physically non significant according to the cri-

terion defined in Eq. (21).

Figure 12 shows the square root of the relative PAV

precipitation measure (see Eq. 20) for the ensemble-mean

results in winter and summer seasons, respectively. In both

seasons, it is clear that the fine-scale component of the CC

signal is much smaller than the present seasonal-averaged

precipitation. Domain-average
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrPAVss
CC1
i

q

values are

about 0.045 and 0.048 in winter and summer seasons

respectively, suggesting that fine scales induce a precipi-

tation change of about 5 % compared to the present time-

averaged precipitation.

In winter season (Fig. 12a), the largest changes in mean

precipitation (*10 %) seem to arise related with the

presence of fine-scale topographic features along the

Rocky Mountains and with a small-scale process taking

place in the northern part of the domain.

In summer season (Fig. 12b), the largest
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hrPAVss
CC1
i

q

values appear in the south-western part of the continent

with values attaining 0.3 in some regions. Interestingly,

most of these regions seem to be non-robust to the sam-

pling uncertainty criterion indicating that in these regions

negative added value could be the net result due the gen-

eration of too much or too little fine-scale features.

According to the potential skill condition, the estima-

tions of PAVss
CC1

and rPAVss
CC1

for precipitation are much

more uncertain than for the temperature case. For the

PAVss
CC1

quantity, a total of 9 (11) regions appear to show

that the 95th percentile of their sampling distribution (ri
2

(CCRCM)) is larger than two times their mean value in

summer (winter) season. Table 2 shows that the number of

regions increases to 41 (24) in the same seasons for the

rPAVss
CC1

. The last two results suggest that, for precipita-

tion, the sampling uncertainty induced by interannual

variability can be relatively large not only to determine

fine-scale variances r2 (CCRCM) but also the seasonal-

average precipitation CCVGCM
2 .

Fig. 9 Same as Fig. 8 but for summer season results
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6 Discussion

The need of future climate information at local and

regional scales together with objective evidence

supporting the improvement of climate simulations

arising from the use of higher resolution models have

pushed the climate modelling community to perform

increasingly higher resolution simulations and to develop

Fig. 10 Square root of the precipitation potential added value in

winter season for individual RCM-AOGCM simulations and for the

ensemble-mean. White regions designate those regions that do not

satisfy the ‘‘physically significant’’ condition. Crosses (x) designate

those regions that do not satisfy the ‘‘potential skill’’ criteria. Oceanic

regions are in black

Fig. 11 Same as Fig. 10 but for summer season results
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alternative approaches to obtain the fine-scale climatic

information.

In this article, various nested RCM simulations have

been used to try to identify regions across North America

for which the higher resolution afforded by RCMs will

effectively generate non-negligible fine-scale information

in the climate change signal. It is first noted that the issue

of looking for AV in future climate is equivalent to

searching for AV in the climate change signal instead of in

the climate itself, at least when considering the ‘‘delta

method’’ to approximate future climate statistics. Further,

the absence of knowledge about the ‘‘true’’ climate change

implies that only necessary (but not sufficient) conditions

for AV can be studied leading to the concept of potential

added value. This concept has already been discussed for

present climate applications in Di Luca et al. (2012a, b).

It is shown that an RCM simulation must satisfy two

conditions in order to have chances to produce added value

over lower resolution AOGCMs in the fine-scale compo-

nent of the climate change signal. First, the RCM-derived

climate change signal must contain some non-negligible

fine-scale information. Second, the uncertainty related with

the estimation of this fine-scale information should be

small enough to suggest some potential skill in future cli-

mate projections. That is, since non-negligible fine-scale

information can either add value to or deteriorate the rep-

resentation of the climate change signal compared to its

large-scale part, large spread in the potential added value

indicates a high chance to deteriorate the large-scale CC

signal.

The importance of fine scales in the climate change

signal is studied using the potential added value framework

as presented in Di Luca et al. (2012a). For each NARC-

CAP RCM simulation, large-scale CC values are computed

by aggregating the high-resolution CC signal over a lower

resolution 300-km grid spacing mesh (denoted as virtual

GCM grid) that tries to emulate the grid of a real low

resolution GCM. Using a common North American domain

for all NARCCAP RCM simulations, a total of 288 non-

overlapping virtual GCM grid boxes are defined. An

absolute potential added value measure is then defined by

estimating the fine-scale variability of the CC signal inside

each 300 km side region and a relative quantity is similarly

derived by calculating the fraction of the total CC signal

accounted for by the small-scale component.

For the temperature variable, the largest potential for

added value appears in coastal regions mainly related with

differential warming in land and oceanic surfaces. In

northern regions along the Hudson Bay and the Canadian

Archipelago this seems to be related with a differential

snow-sea-ice albedo feedback. Along the Pacific and

Atlantic coasts, the relatively large PAV seems to be more

Fig. 12 Same as Fig. 10 but for the ensemble-mean rPAVCC
ss quantity

Table 2 Number of non-oceanic regions that do not satisfy the

physical (see Eq. 21) or the potential skill (see Eq. 22) conditions for

the ensemble-mean PAV and rPAV measures in winter and summer

seasons. Robust regions designate those that satisfy simultaneously

both conditions

Temperature Precipitation

Summer Winter Summer Winter

PAV

(1) q5 \ threshold 90 76 70 123

(2) q95 [ 2 � r2 0 0 9 11

Robust 140 154 160 107

rPAV

(1) q5 \ threshold 134 126 130 122

(2) q95 [ 2 � r2 0 0 41 24

Robust 96 104 91 108
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related with the differential warming due to the dissimilar

thermodynamical properties (e.g., heat capacity) of water

and land surfaces. Fine-scale features can account for

nearly 60 % of the total CC signal in some coastal regions

although for most regions the fine scale contributions to the

total CC signal are of only *5 %.

For the precipitation variable, fine scales contribute to a

change of generally less than 15% of the seasonal-averaged

precipitation in present climate with a continental North

American average of *5% in both summer and winter sea-

sons. In winter, the largest PAV appears in mountainous

regions and in the north part of the continent. In the first case,

fine-scale features may be related with the interaction between

large-scale precipitation changes in mid-latitudes (see IPCC

2007) and the fine-scale topography of the Rocky Mountains.

An important aspect to take into account when estimating

the future change of a given climate statistics is related with

its uncertainties. As expected, and in agreement with Giorgi

(2002), we found that the sampling uncertainty due to

interannual variability tends to increase as the spatial scale of

the data used to compute climate statistics decreases (not

shown).

The analysis also shows that the uncertainty due to inter-

annual variability associated with fine-scale features in the

CC signal seems to be much larger in precipitation than in

temperature. This has as a consequence that while the RCMs

may add fine-scale features to precipitation fields at all time

scales, some of this gain may be lost due to the lack of

robustness associated with the relatively short time periods

usually analyzed (i.e., 25 years periods in our case). This

result may be of importance for impact and adaptation studies

and for this reason deserves further exploration.

Probably the most important limitation of this study is

related with the choice of seasonal-averaged quantities in the

PAV analysis without explicit consideration of, for example,

higher order statistics. The dissimilar sensitivity to changes in

spatial resolution exhibited by different climate statistics and

their associated climate change signal can have important

implications for CC signal PAV studies and it could be very

interesting to repeat the analysis using a variety of climate

change statistics (e.g., variances and percentiles).

A second important caveat is that the analysis of the

uncertainty of the fine-scale part of the CC signal and its

implications on PAV quantities was performed only in

terms of the sampling uncertainty, with no consideration of

others sources of uncertainties such as structural model

uncertainties. As a consequence, the number of potential

skilful regions obtained in this study probably corresponds

to an upper limit compared to a more complete analysis

including other uncertainty sources.
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Appendix: Added value as a spatial scale issue

This section contains the development of a more detailed

expression for the AV as a function of spatial scales (see

Eq. 1) as the one presented in Sect. 2.

Let us assume that we can compute a two-dimensional

high-resolution climate statistics X based on observations

and let us also assume that a perfect spatial decomposition

method is available that allows to separate the field

according to different spatial scales as follows:

XOBS ¼ Xls
OBS þ Xss

OBS: ð23Þ

Super-index ls designates the large scales that can be

resolved by the GCM and ss denotes the small scales that

can be resolved by the RCM and are absent in the GCM.

Before applying the spatial decomposition method to the

RCM- and GCM-simulated X, both XRCM and XGCM fields are

projected into some high-resolution grid mesh on which an

analysis of observations is available. For simplicity, the

projection consists of assigning the value of the RCM and

GCM fields on each grid points of the observed high-reso-

lution mesh that fall inside the corresponding RCM and GCM

grid box. For this particular projection we have XGCM
ss and

XRCM ¼ Xls
RCM þ Xss

RCM ; ð24Þ

and

XGCM ¼ Xls
GCM : ð25Þ

The added value can be simply defined as the difference

between the GCM and the RCM errors

AV ¼ ðXGCM � XOBSÞ2 � ðXRCM � XOBSÞ2

¼ MSEGCM �MSERCM ;
ð26Þ
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with ðdÞ2 ¼ 1
N

PN�1
i¼0 d2

i denoting the average of the square

differences between observed and simulated climate statistics

X over all grid points i. Defined in this way, an RCM generates

some added value if AV is larger than 0, i.e., if the RCM

constitutes a better approximation of the observed field

compared to the GCM. Using Eqs. (23), (24) and (25) the

RCM and GCM mean square errors can be expressed as:

MSERCM ¼ ðXRCM � XOBSÞ2

¼ ðXls
RCM þ Xss

RCM � ðXls
OBS þ Xss

OBSÞÞ
2

¼ ð�ls
RCM þ �ss

RCMÞ
2

¼ MSEls
RCM þMSEss

RCM þ 2 � �ls
RCM�

ss
RCM;

ð27Þ

and

MSEGCM ¼ ðXGCM � XOBSÞ2

¼ ðXls
GCM � ðXls

OBS þ Xss
OBSÞÞ

2

¼ ð�ls
GCM � Xss

OBSÞ
2

¼ MSEls
GCM þ ðXss

OBSÞ
2 � 2 � �ls

GCMXss
OBS:

ð28Þ

By replacing Eqs. (27) and (28) in Eq. (26) we obtain:

AV ¼ AVss þ AVls þ AVcov ð29Þ

where

AVss ¼ ðXss
OBSÞ

2 �MSEss
RCM; ð30Þ

AVls ¼ MSEls
GCM �MSEls

RCM; ð31Þ

and

AVcov ¼ �2 � �ls
GCMXss

OBS � 2 � �ls
RCM�

ss
RCM: ð32Þ

Hence the total AV can be decomposed in a small-scale (AVss),

a large-scale (AVls) and a covariance (AVcov) part. Terms AVss

and AVls were already described in Sect. 2.1. The term AVcov

includes the contribution of covariances between the error in

the GCM-simulated climate statistics and the fine scale

observed statistics and between the errors in the small and

large scale RCM-simulated statistics. As with AVls, the term

AVcov was not explicitly considered in our analysis although

ultimately its magnitude as a source of AV should be quan-

tified and compared with the other two terms.

An analogous development can be performed to obtain

expressions for the PAV in the CC signal by replacing

observed and simulated climate statistics X by their

respective climate projections CC.
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