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ABSTRACT 25 

Interactions between headwater aquifers and peatlands have received limited scientific attention. 26 

Hydrological stresses, including those related to climate change, may adversely impact these 27 

interactions. In this study, the dynamics of a southern Quebec headwater system where a peatland 28 

is present is simulated under current conditions and with climate change. The model is calibrated 29 

in steady-state on field-measured data and provides satisfactory results for transient state 30 

conditions. Under current conditions, simulations confirm that the peatland is fed by the fractured 31 

bedrock aquifer year round and provides continuous baseflow to its outlets. Climate change is 32 

simulated through its impact on groundwater recharge. Predicted precipitation and temperature 33 

data from a suite of Regional Climate Model scenarios provide a net precipitation variation range 34 

from +10% to -30% for the 2041-2070 horizon. Calibrated recharge is modified within this range 35 

to perform a sensitivity analysis of the headwater model to recharge variations (+10%, -15% and 36 

-30%). Total contribution from the aquifer to rivers and streams varies from +14% to -44% of the 37 

baseline for +10% to -30% recharge changes from spring 2010 data, for example. With higher 38 

recharge, the peatland receives more groundwater, which could significantly change its 39 

vegetation pattern and eventually ecosystem functions. For -30% recharge, the peatland becomes 40 

perched above the aquifer during the summer, fall and winter. Recharge reductions also induce 41 

sharp declines in groundwater levels and drying streams. 42 

 43 

KEYWORDS 44 

Peatland; headwater system; climate change; groundwater flow modeling; Covey Hill; southern 45 

Quebec Canada 46 
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1. INTRODUCTION 48 

In Canada, peatlands cover up to 14% of the land area and comprise over 90% of present 49 

wetlands (Waddington et al., 2009). They are the most prevalent wetland type in the southern part 50 

of the province of Quebec (Ducks Unlimited Canada, 2006). Peatlands play an important 51 

ecological role in maintaining fragile habitats (e.g. Calmé et al., 2002).  They contribute uniquely 52 

to both physical and chemical hydrologic processes including streamflow, evapotranspiration and 53 

water storage (Waddington et al., 2009). In eastern Canada, as in other parts of the world, 54 

peatlands are under threat from human activities, particularly urban expansion and agriculture 55 

(Poulin et al., 2004), and potentially climate change (Moore, 2002; Tarnocai, 2006). In general, 56 

very little is known about peatland hydrological dynamics and linkages to local or regional 57 

groundwater flow systems. This is especially true for headwater peatlands which can be 58 

significant hydrological reservoirs in environments where bedrock hydraulic conductivity is low 59 

and surrounding soils can be thin or nonexistent (Winter, 2000).  60 

 61 

Numerical modeling of groundwater flow through the peat and in the adjacent aquifer can be used 62 

to better understand peatland-aquifer flow dynamics (Ackerman et al., 2009; Baird et al., 2011). 63 

In regional scale groundwater flow models, surface water features such as lakes and peatlands are 64 

typically represented using constant heads. This boundary condition overly constrains 65 

groundwater flow around the peatland and prevents any consideration of temporal variations of 66 

peatland-aquifer exchanges. For some peatland-specific studies, modeling simplifications such as 67 

two-dimensional representations and steady-state flow regimes (Lapen et al., 2005) limit the 68 

results about regional scale and seasonal hydrological processes. The modeling work of Reeve et 69 

al. (2001) is a notable exception to the constant head peatland representation or peatland-specific 70 

modeling simplifications. Using a regional groundwater flow model and an explicit representation 71 

of flow processes between the peatlands and the aquifer, they showed that in the lowland Lake 72 

Agassiz area, groundwater flow within the peatlands is driven by local flow systems. 73 
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Nevertheless, the scientific literature holds few such examples of regional scale peatland-74 

groundwater interaction models. Simulating groundwater flow in fractured bedrock aquifers itself 75 

is challenging because of the heterogeneous distribution of conductive fractures (Cook, 2003). 76 

This can be further complicated by large vertical gradients present in fractured bedrock headwater 77 

basins. Using an explicit representation of a peatland in a model to accurately simulate transient 78 

fractured bedrock aquifer-peatland interactions in a complex headwater context has not, to our 79 

knowledge, been previously investigated.  80 

 81 

Climate change impacts on groundwater resources at a regional scale are increasingly studied 82 

(e.g. Jyrkama and Sykes, 2007; Scibek et al., 2007). Results from these studies in different 83 

locations show the possibility of increases and decreases in groundwater recharge, depending on 84 

the topography, geology and climate, leading to a variety of trends in groundwater levels. It is 85 

recognized that headwater streams in small catchments are more likely to be vulnerable to low-86 

flow impacts than larger river systems (Winter, 2007). In headwater catchments with shallow 87 

bedrock aquifers, groundwater is probably also highly vulnerable to climate variations because of 88 

slopes and limited (or no) surficial material overlying formations with low permeability which 89 

leads to greater runoff and less infiltration (Kosugi et al., 2006). Investigations of climate change 90 

effects on peatlands have focused on peat interactions with the atmosphere, notably carbon 91 

exchanges (Strack et al., 2004; Belyea and Malmer, 2004), and on hydrologic processes occurring 92 

within the organic deposits (e.g. Whittington and Price, 2006). Recently the impact of climate 93 

change on wetland interaction with the surrounding aquifer has been studied (e.g. Ackerman et 94 

al., 2009; Herrera-Pantoja et al., 2011), finding in particular a vulnerability with declining 95 

groundwater levels. Changes in peatland-aquifer connectivity can impact stream and wetland 96 

biogeochemistry (Devito, 1995; Brassard et al., 2000) which can induce vegetation changes (e.g. 97 

Salinas et al., 2000) and lead to a flashier response to rainfall events (Greyson et al., 2010). 98 

However, the amount of hydrological change a headwater system and its ecosystem can sustain 99 
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before adverse impacts are observed is not well understood. In particular, the function of 100 

peatlands in the hydrological and ecosystem resilience of headwater systems is mostly unknown. 101 

This lack of knowledge limits the development and application of adaptation strategies such as 102 

land and water resources management (e.g. protecting peatlands, reducing groundwater 103 

withdrawal, and limiting deforestation and urban development) in headwater systems where 104 

peatlands are present. 105 

  106 

This research was initiated at the request of Nature Conservancy of Canada to better understand 107 

the hydrological function of a headwater peatland recently identified for conservation. The goal 108 

of this long term study is to determine if the peatland plays a role in maintaining groundwater 109 

levels, as well as river baseflows, streams and springs which form habitats for endangered 110 

salamander species (Larocque et al., 2006). Climate change was identified as the most eminent 111 

threat to the low development Covey Hill area where the targeted headwater peatland is located. 112 

This paper addresses these questions by using a numerical groundwater flow model to simulate 113 

the dynamics of the headwater system under current conditions and with climate change-induced 114 

recharge variations. Specifically, a groundwater flow model developed in MODFLOW 115 

(Harbaugh, 2005) is used to simulate regional flows for the headwater system as well as local 116 

aquifer-peatland interactions under current conditions and with a range of recharge scenarios 117 

derived from Regional Climate Models.  118 

 119 

2. Study area 120 

The Covey Hill peatland is located within the Covey Hill Natural Laboratory (Larocque et al., 121 

2006), 74
o
00’W, 45

o
00’N, near the Canada-USA border in the Chateauguay River watershed 122 

(Figure 1). Covey Hill is the most northward extension of the Adirondack Mountains. The highest 123 

point on the hill is located 345 m above sea level. Covey Hill comprises Cambrian sandstone of 124 

the Potsdam Group (Covey Hill Formation), deformed and fractured during the Appalachian 125 
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orogeny (Globensky, 1986). Groundwater flows in the fractured sandstone. This bedrock aquifer 126 

is used by local residents for potable water supply. 127 

 128 

The absence of surface deposits on large areas near the hilltop and south of the international 129 

border shows the importance of erosion during the last ice advance (12 ky). In other areas, the hill 130 

is covered by the thin, permeable and sandy Saint-Jacques till (Lasalle, 1981). Glaciolacustrine 131 

sediments are found locally below 220 m above sea level (masl) (Parent and Occhietti, 1988). 132 

Sandy beach deposits are located at the foot of the hill, between 80 and 100 masl (Tremblay et al., 133 

2010). Littoral sediments from the erosion of the rock substrate by the Champlain Sea and till are 134 

abundant at the base of Covey Hill (see cross-section, Figure 1b). These sediments, composed of 135 

highly permeable sands and gravels, are mostly located on the northern side of the hill. The 136 

sandstone aquifer is generally unconfined over the study area. The till, silt and clay sediments in 137 

the north are less permeable than the sandy deposits at the base of the hill. Groundwater flow 138 

through the sandstone aquifer occurs in laterally-extensive sub-horizontal bedding planes, 139 

connected by sub-vertical fractures and joints (Nastev et al., 2008). Covey Hill is considered an 140 

important recharge area for the 2500 km
2
 Chateauguay aquifer (Croteau et al., 2010). Near the 141 

end of the last glaciation, the breakout of paleo-lake Iroquois through an outlet near Covey Hill 142 

created a relatively impervious sandstone pavement (also called Flat Rock) that extends from 143 

below the peatland approximately 30 km southeastward into the Champlain Valley in the United 144 

States (Franzi et al., 2002). The Blueberry and Gouffre lakes are remnants of this catastrophic 145 

event and form deep reservoirs which store significant volumes of water along the Allen River 146 

(Barrington et al., 1992).  147 

 148 

The Covey Hill peatland is one of the few remaining undisturbed peatlands in southern Quebec 149 

and one of the oldest known in the province. Basal peat 
14

C dating shows that organic matter 150 

started accumulating 13 250 years B.P., probably soon after the breakout of paleo-lake Iroquois 151 
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(Pellerin et al., 2007). The peatland covers an area of approximately 0.51 km
2
 near the hilltop. 152 

The peat averages 1.4 m deep and reaches 3.2 m in some areas (Rosa et al., 2008; see Figure 1b). 153 

To the west, the peatland feeds the Outardes River and to the east it discharges in the Allen River. 154 

Fournier (2008) used hydraulic gradients and a water budget to demonstrate that groundwater 155 

flows year round from the surrounding bedrock aquifer into the peatland. A vegetation study also 156 

identified a minerotrophic transition zone (lagg) between the forests located on the bedrock and 157 

the central peatland ombrotrophic sector (Pellerin et al. 2009).  Surface water input to the 158 

peatland from runoff has not been observed since the start of the peatland monitoring and is 159 

considered negligible. Based on the piezometric map of Covey Hill the area contributing 160 

groundwater to the peatland is estimated to be 1.7 km
2
. 161 

 162 

2. EXPERIMENTAL ANALYSIS 163 

2.1 Available data 164 

Precipitation and temperature data are available from the Hemmingford weather station located 165 

11 km from the peatland (Environment Canada, 2010). From 2007 to 2010, the annual average 166 

precipitation was 1064 mm and the average annual temperature was 6.8ºC. Snow usually falls 167 

between November and March. Potential evapotranspiration (PET) is calculated with the Oudin et 168 

al. (2005) equation. This equation provides PET estimates based on mean daily air temperature 169 

and on extraterrestrial radiation which is estimated following Morton (1983). The seasonal net 170 

precipitation (precipitation - PET) is estimated for three-month periods between 2007 and 2010 171 

(Table 1). It varies from a negative net precipitation in summer to a winter maximum of 285 mm. 172 

A negative net precipitation indicates seasons where potential evapotranspiration could not be 173 

met by precipitation. Because of the sub-zero temperatures, the winter net precipitation 174 

accumulates on the ground as snow and becomes available only during spring snowmelt. The 175 

average annual PET calculated with the Oudin equation from 2007 to 2010 was 664 mm y
-1

. The 176 
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average net precipitation is therefore 400 mm y
-1

 for this period and varies from 323 to 567 mm y
-177 

1
. 178 

Figure 1a shows the location of gauging stations and their contributing watersheds in the Covey 179 

Hill Natural Laboratory where water levels have been recorded hourly since 2007 (Trutrack level 180 

loggers) on the Allen River (29 km
2
 watershed) and the Outardes River (26 km

2
 watershed) as 181 

well as on the Schulman stream (2.7 km
2
 watershed). For all gauging stations, rating curves were 182 

constructed by measuring flow rates manually (Swoffer2100 velocimeter). Flows were estimated 183 

during the frost free period of May to October from 2007 to 2010 (2007 to 2009 for the Schulman 184 

stream). The Chapman (1999) digital filter was used on the flow rate time series to separate 185 

baseflows from total flows (see Table 1). Without field calibration it is difficult to determine the 186 

baseflow recession constant k, which describes the rate of baseflow decay.  Here, a k value of 187 

0.99 was used to represent the relatively low groundwater contribution to river flows (cf. Gagné, 188 

2010). Total flows and baseflows are similar for the Allen and Outardes rivers and are an order of 189 

magnitude smaller for the Schulman stream, as expected when comparing watershed sizes (see 190 

Figure 1). On average, the estimated baseflows represent 39, 27 and 29% of the total flows for the 191 

Allen River, the Outardes River and the Schulman stream respectively. These proportions are 192 

relatively small, but typical of values found in headwater streams (e.g. Croteau et al., 2010). The 193 

proportionately larger baseflows on the Allen River can be explained by the presence of deep 194 

lakes along its course that intercept significant volumes of groundwater and smooth the impact of 195 

rain events.  196 

 197 

Groundwater levels were measured in two bedrock piezometers located near the peatland (4.5 and 198 

15 m depth), in nine private monitoring wells, and in three observation wells owned by the 199 

Geological Survey of Canada (Solinst level loggers; hourly measurements year round). A total of 200 

371 heads are also available from a provincial water well database, the Système d'informations 201 

hydrogéologiques (SIH) (Ministère du Développement durable, de l'Environnement, de la Faune 202 
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et des Parcs-MDDEFP, 2010). Six piezometers (approximately 0.5 m depth) are located directly 203 

in the peatland to monitor groundwater levels in the organic deposits (INW-PT2X level loggers; 204 

hourly measurements during the frost free period of May to October). Several of these 205 

piezometers and the shallow bedrock observation well are depicted in Figure 1b. The bedrock 206 

water table is located near the surface (between 2 and 15 m depth). Groundwater flows generally 207 

in a radial direction from the hilltop, in the laterally-extensive fractures and dissolution joints 208 

rather than in the sandstone porosity (Nastev et al., 2008). Heads in the peatland are lower than in 209 

the surrounding bedrock aquifer, indicating lateral groundwater input from the aquifer to the 210 

peatland (Fournier, 2008). 211 

 212 

Hydraulic conductivity (K) values for the fractured bedrock are available from pumping tests and 213 

packer tests reported in previous studies (Barrington et al., 1992; Lavigne et al., 2010a) and from 214 

slug tests performed in the two bedrock observation wells located near the peatland (Fournier, 215 

2008). Available data for bedrock K range from 4x10
-10

 to 1x10
-4

 m s
-1

. These highly variable 216 

values correspond to a wide range of fracture apertures and connectivity, but clearly decrease 217 

with depth. Peat hydraulic conductivity was estimated by Fournier (2008). For the top 0.3 m, it 218 

was estimated using an experimental tank reproducing Darcy’s experiment (Rosa and Larocque, 219 

2008) and varies between 0.00189 and 0.00725 m s
-1

. Below this depth and down to 1 m, it was 220 

estimated with the Modified Cubic Method (Beckwith et al., 2003a) and varies between 2.1x10
-8

 221 

and 1x10
-4

 m s
-1

. Hydraulic conductivities show a significant decreasing pattern with depth. 222 

Below 1 m, K is expected to be very low and probably significantly restricts flow in the lower 223 

peat layers. 224 

 225 

2.2 Development of the groundwater flow model 226 

The MODFLOW software (Harbaugh, 2005) was used to simulate groundwater flow in the 227 

fractured bedrock and interactions between the aquifer, the peatland and streams, assuming that 228 
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the unconfined bedrock aquifer behaves as an equivalent porous medium. A digital elevation 229 

model was built using elevation data from the Ministère des Ressources Naturelles (MRNF, 230 

2007). The groundwater flow model is discretized in 16 layers for a total thickness of 96 m (layer 231 

thickness increases from 0.25 m at the surface to 30 m at the base of the aquifer). The upper eight 232 

layers are thin to allow an accurate representation of the peatland stratigraphy: the top two layers 233 

(each 0.25 m thick) correspond roughly to the top portion of the acrotelm while the next layers 234 

correspond to gradually more humified and less permeable peat layers (reaching the catotelm). A 235 

variable head representation of the peatland was used rather than a constant head boundary 236 

condition to ensure that simulated flows reflect the hydraulic properties of both the bedrock and 237 

the organic deposits in changing hydrological conditions. This representation of the organic 238 

deposits is nevertheless simplified and does not include lateral heterogeneity within the peat 239 

deposits which can drive groundwater flow (Beckwith et al., 2003b).  240 

 241 

The model extends north and east from Covey Hill into the St. Lawrence Lowlands and covers a 242 

total area of 173 km
2
. It is limited to the northwest by the Outardes River and to the north by the 243 

Noire River (Figure 2). A specified head boundary is used to allow groundwater flow to the 244 

regional aquifer. A no-flow boundary is used approximately 9 km parallel to and east of the Allen 245 

River. This is a flow line based on the piezometric map. The southern and southwestern limit is 246 

set on the drainage basins of the Allen and Outardes rivers (i.e., a water-divide, thus a no-flow 247 

boundary is used). The bedrock at the base of the model is a no-flow boundary. The model 248 

consists of 9698 cells of 135 m x 135 m. Cells are refined over and around the peatland 249 

(67.5 m x 67.5 m) to ensure a good representation of head variations. Figure 3 presents a three-250 

dimensional depiction of the model, with a vertical exaggeration of 10 times. 251 

 252 

The Outardes and Allen rivers are represented using MODFLOW’s River package in the top two 253 

layers. The Blueberry Lake and the Gouffre Lake, as well as a marsh area in the USA portion of 254 
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the Allen River are set as constant heads. Small permanent streams and tributaries are represented 255 

using MODFLOW’s Drain package in the top two layers. Recharge zones are determined 256 

according to the slope and type of Quaternary deposits (Figure 2a, Table 2). The study area is 257 

divided into four hydraulic conductivity zones (Figure 2b). Zone 1 corresponds to the peatland. 258 

The Covey Hill formation is divided into three zones (2, 3 and 4) based on areas of similar 259 

elevation and field hydraulic conductivity measurements (Lavigne et al., 2010a).  260 

 261 

The model was calibrated in steady-state by manually adjusting the K values of the four hydraulic 262 

conductivity zones using a trial and error procedure based on measured K data. Zonal recharge 263 

and river and stream exchange coefficients were also calibrated. The storage coefficient for the 264 

organic deposits (zone 1) was set to 0.7, based on an estimation from water level increases 265 

following precipitation events (Fournier, 2008) and was calibrated for the bedrock hydraulic 266 

conductivity zones. The calibration targets are the available head measurements (SIH database, 267 

bedrock observation wells, private monitoring wells and peatland piezometers) as well as the 268 

baseflows estimated for the three gauging stations (Allen and Outardes rivers, Schulman stream).  269 

 270 

In transient-state, the year is divided into four stress periods of 91 days (10 time steps in each 271 

period) corresponding to spring, summer, fall and winter. Following a 20 year spin-up period, the 272 

transient model was executed to simulate the 2007-2010 flows, the period during which detailed 273 

transient hydrological data are available. In MODFLOW, multipliers are used to modify the value 274 

of calibrated steady-state recharge for each transient period. These multipliers were calculated for 275 

each 91 day season using the ratio of the net precipitation for the season of interest to the average 276 

net precipitation for the calibrated steady-state period. This method assumes that seasonal 277 

recharge is distributed analogously to the net precipitation ratios. That is, a lower net precipitation 278 

will lead to a reduction in both runoff and infiltration. The same multipliers were used for all 279 

recharge zones. In the model, the winter recharge is set to zero and transferred to the spring 280 
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(when net precipitation is therefore usually the highest). For periods where the net precipitation is 281 

a negative value (i.e. for some summer periods), the recharge in the model is also set to zero.   282 

 283 

2.3 Climate change scenarios 284 

The impact of climate change on groundwater recharge was investigated by considering net 285 

precipitation values calculated with future time series of daily precipitation and temperature data. 286 

It is assumed that recharge will follow the same pattern as net precipitation, such that a lower net 287 

precipitation will lead to an analogous reduction in both runoff and infiltration. This might not 288 

hold true if rainfall intensity increases or if there is less snow due to a shorter winter. Predicted 289 

PET values were derived from Regional Climate Models (RCMs) future temperature time series 290 

used in the Oudin et al. (2005) equation. Although using a daily weather generator and a recharge 291 

model might provide more detailed input data for the groundwater flow model (cf. Herrera-292 

Pantoja et al., 2011), it would be much more labor intensive and is beyond the scope of this work.  293 

 294 

The climate change scenarios are derived from four RCMs driven by six General Circulation 295 

Models (GCMs). This form of dynamic downscaling provides a better representation of both 296 

average conditions and extremes than other methods over the study area. Future RCM scenarios 297 

were further downscaled using the daily translation bias correction method (Mpelasoka and 298 

Chiew, 2009) to remove the biases between simulated and observed temperature and precipitation 299 

variables.  300 

 301 

Ten projections (Figure 4, Table 3) were selected from the 25 dynamically downscaled 302 

simulations available for the Covey Hill area. Most of the simulations are outputs of the Canadian 303 

Regional Climate Model (CRCM) (Music and Caya, 2007) and were generated and supplied by 304 

the Ouranos Consortium on Regional Climatology and Adaptation to Climate Change. The 305 

remaining simulations are from the North American Regional Climate Change Assessment 306 
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Program. All projections are for the 2041-2070 climate. The 10 simulations account for 85% of 307 

the future climate variability projected for the study site as established by a cluster analysis 308 

carried out on the range of available RCM scenarios. The simulations are driven by six different 309 

GCMs under the Intergovernmental Panel on Climate Change emissions scenarios A1B and A2 310 

(IPCC, 2000). The A1B emissions scenario corresponds to a medium population growth, rapid 311 

gross domestic product growth and a balance of all energy sources. The A2 scenario is based on 312 

high population growth, medium gross domestic product growth, high energy use, medium-to-313 

high land-use changes, and slow introduction of more energy efficient technologies. The A2 314 

scenario is one of the most commonly used scenarios (Jackson et al., 2011).  315 

 316 

Future RCM scenarios predict annual average air temperatures increasing by 2.4°C 317 

(CRCM4.2.3_ECHAM#1) to 3.6 °C (CRCM4.2.3_CGCM3#2) for the 2041-2070 period. These 318 

temperature increases far exceed the maximum difference of 1.6°C from the mean annual 319 

temperature observed from 1971 to 2000 on Covey Hill. When used in the Oudin et al. (2005) 320 

formula, the increased temperatures of the climate scenarios induce 15 to 21% increase in 321 

predicted PET compared to the PET value of the reference period. Annual precipitation 322 

projections range from a 3% increase (CRCM_CCSM) to a 13% increase (ECP2_GFDL). This 323 

range of precipitation variation is small when compared to the -19% to +38% difference from the 324 

mean precipitation observed from year to year during the reference period. 325 

 326 

Stemming from these changes in temperature and precipitation, net precipitation varies from a 327 

30% decrease (CRCM_CCSM) to a 10% increase (CRCM4.2.3_ECHAM#1). The net 328 

precipitation scenarios do not all agree about the sign of change: seven predict a decrease in mean 329 

net precipitation and three an increase. The bounds of the bootstrapped 95% confidence interval 330 

on the ensemble mean are -21.5% and 2.9%. The sign of change for net precipitation thus remains 331 

uncertain. To facilitate simulations, groundwater recharge variations of +10%, -15% and -30% of 332 
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the calibrated values are used to study the sensitivity of peatland-aquifer interactions under 333 

climate change. These percentages are a simplification of the complex multi-scenario possibilities 334 

but are considered sufficiently representative to generate informative results. In the literature, 335 

recharge variations due to climate change for humid areas are expected to differ significantly 336 

depending on topography, geology and climate. The recharge variations used here are similar to 337 

those reported in literature: -59 to +15% in the Chateauguay watershed (Croteau et al., 2010), 338 

+53% in the Grand River watershed of Ontario, Canada (Jyrkama and Sykes, 2007), +11 to +25% 339 

in the Grand Forks aquifer of British Columbia, Canada (Scibek et al., 2007), -40 to +31% for 340 

various locations in Great Britain (Herrera-Pantoja and Hiscock, 2008; Jackson et al., 2011). In 341 

the semi-arid region of the southern High Plains of Texas, USA, Ng et al. (2010) report climate 342 

change induced groundwater recharge variations from -75% to +35%. 343 

 344 

3. RESULTS AND DISCUSSION 345 

3.1 Model calibration, measured and simulated baseline conditions 346 

The calibrated Ks in the groundwater model are within the interval of measured values 347 

(Barrington et al., 1992; Fournier, 2008; Lavigne et al., 2010a), decreasing with depth as 348 

observed with field measured data (Figure 5). The calibrated K in the peatland is high in the top 349 

two layers of organic deposits and decreases rapidly below this depth. Below these layers K is set 350 

to even lower values to represent gradually more humified and less permeable peat. The Kh/Kv 351 

ratio in bedrock layers 1-9 of zones 2 and 3 is set to 1000 and 100 respectively, to represent the 352 

predominantly horizontal groundwater flow within the horizontal bedding planes. The Kh/Kv ratio 353 

layers 10-12 for zones 1, 2 and 3 are set to 100, and the deeper anisotropy for these zones is set to 354 

10. In zone 4, the Kh/Kv ratio is 10 for all layers. The calibrated conductance for the River nodes 355 

is 200 m
2
 d

-1
. This value provides the best estimates of river base flows. Calibrated conductance 356 

for the drains is 500 m
2
 d

-1
.  357 

 358 
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For the steady-state simulation, the maximum possible recharge was limited to the average annual 359 

net precipitation for the 2007-2012 period (400 mm y
-1

). The steady-state calibrated average 360 

recharge for the entire domain is 113 mm y
-1

, i.e. 28% of this average net precipitation. The 361 

difference between net precipitation and recharge can be justified by the diversion of net 362 

precipitation to streams and evacuated via surface routes (not simulated in this work). Spatially 363 

calibrated recharge varies between 0 and 372 mm y
-1

 (Table 2). The maximum value is attributed 364 

to the peatland where little runoff occurs. The minimum recharge is calibrated on the northern 365 

portion of the study area where compact till, silt and clay sediments are found. Although in reality 366 

recharge is rarely nil, this value illustrates the very limited water volumes that can percolate 367 

through these low permeability sediments. The calibrated recharge obtained in this study is lower 368 

than the values of 162-180 and 227-240 mm y
-1 

previously estimated by Croteau et al. (2010) and 369 

Gagné (2010) respectively for the Allen and Outardes watersheds. This difference can be 370 

attributed to the fact these authors calibrated recharge using soil reservoir models to reproduce 371 

baseflow estimated from hydrograph separation. Because it is very difficult to distinguish 372 

between recharge and subsurface runoff with hydrograph separation, this method can 373 

overestimate actual recharge to the aquifer.  374 

 375 

For the transient state simulations, Table 1 presents the seasonal values of recharge. Seasonal 376 

recharge is lowest (almost zero) in summer and largest in the spring due to snowmelt. From 2007 377 

to 2010, the annual recharge varies from 98 to 172 mm y
-1

. The storage coefficient was calibrated 378 

to 0.004 for the bedrock in zone 2, and 0.001 in zones 3 and 4, typical values for fractured 379 

bedrock (Anderson and Woessner, 1992). 380 

 381 

Figures 6a and b show that the steady-state groundwater flow model simulates the available head 382 

data without any systematic overestimation or underestimation of heads in any area of the study 383 

domain (mean error 0.4 m, mean absolute error 7.2 m and root mean squared error 9.3 m). The 384 
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simulated errors can be partially explained by the fractured and probably highly heterogeneous 385 

bedrock aquifer, a condition not represented with the equivalent porous media model. The error 386 

on the simulated heads could also arise from the inaccuracy of the SIH data, because it is 387 

measured over several years, there are variable drilling depths, and the reference topography 388 

(which itself is highly varied) is estimated, and from the inaccuracy in the elevation model. 389 

Nevertheless, the calibrated model simulates the large head differences observed over this 390 

headwater area relatively well.  391 

 392 

Figure 7 illustrates measured and simulated heads from 2007 to 2010 for the peatland and three 393 

wells located at the top of the hill, at mid-slope, and at the foot of the hill. The heads are plotted 394 

relatively (i.e. elevation centered on 0) to remove any errors related to topographical inaccuracies.  395 

The simulated groundwater levels compare reasonably with the observation data. For example, 396 

the Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970), comparing the seasonal 397 

bedrock observation well heads to the simulated heads, where E = 1 corresponds to a perfect 398 

match, ranges from 0.983 to 0.998 for the illustrated wells and is similar for the additional 399 

bedrock monitoring wells. For the peatland piezometers, the efficiency coefficients are similar 400 

(e.g. 0.994 as illustrated in Figure 7). Errors in the transient state simulation are expected to be 401 

caused in part by the porous media representation of the fractured bedrock aquifer and the 402 

imprecision in storage coefficient calibration.  403 

 404 

Table 1 shows that the magnitudes of seasonal baseflows are relatively well simulated for the 405 

Allen and Outardes rivers, and for the Schulman stream. Model baseflows range from 0.08 to 406 

0.20 m
3
/s for the Allen, 0.05 to 0.24 m

3
/s for the Outardes and 0.006 to 0.014 m

3
/s for the 407 

Schulman .  However, the simulated values generally vary less from year to year than the 408 

Chapman estimated baseflows. This could be due to the modeling methodology in which bulk 409 

seasonal recharge values are used on three month stress periods, rather than storm-specific 410 
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precipitation and recharge extremes encountered in nature.  Also, it must be remembered that the 411 

Chapman estimated baseflows are only crude estimations of the aquifer contribution to the rivers. 412 

Considering the simple representation of the groundwater contribution to rivers, these results are 413 

considered satisfactory.  414 

 415 

Fournier (2008) has estimated the groundwater flow contribution to the peatland using the Darcy 416 

equation with bedrock-peatland head gradients and measured hydraulic conductivities. The same 417 

technique was used here on a seasonal basis. The average seasonal hydraulic gradient between the 418 

4.5 m bedrock piezometer located near the peatland and the closest peatland piezometer is used in 419 

this calculation. During the 2007-2010 period, this hydraulic gradient was on average slightly 420 

higher during the spring (0.0032 m/m), a mid-value during the fall (0.0031 m/m) and lowest 421 

during the summer (0.0029 m/m). It is assumed to be constant all along the 5580 m of the aquifer-422 

peatland North and South inflow lengths. The hydraulic conductivity corresponds to the average 423 

between 4.5 m bedrock piezometer K (3.54x10
-5

 m/s) and the hydraulic conductivity of the 424 

topmost 0.5 m of peat deposits (1.84x10
-3

 m/s). The model simulates groundwater inflows to the 425 

peatland (Table 1) similar to the Darcy flux values for the spring (0.0072 for the model vs. 0.0082 426 

m
3
/s for Darcy), but lower for the summer (0.0037 vs. 0.0076 m

3
/s) and fall (0.0053 vs. 0.0080 427 

m
3
/s) seasons. Although relatively small, this groundwater inflow to the peatland is nevertheless 428 

important for the hydrological dynamics of the peatland, its ecosystem and habitat diversity. This 429 

inflow provides sustained minerals, nutrients and water to maintain rich and diverse plant 430 

communities identified in the minerotrophic transition zone (lagg ecotone; Pellerin et al. 2009). 431 

The direction of groundwater flow (i.e. always from aquifer to peatland under current climate 432 

conditions) is also correctly simulated. Because of the significantly higher hydraulic 433 

conductivities in the upper peat layers, the model simulates groundwater movement through the 434 

peatland mainly in the topmost 0.5 m. Similar dominating superficial flow within the top layers of 435 

a peatland has also been reported in other field studies (e.g. Devito et al., 1996).  436 
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The model predicts groundwater outflow from the peatland in the direction of the Allen and 437 

Outardes rivers, equivalent to 4 to 7% of the total baseflow to each river. Simulated flows from 438 

the peatland to the two rivers are largest during the spring and fall seasons with a total out flow of 439 

0.0157 and 0.0131 m
3
/s respectively for the two seasons. Outflows remains non-negligible (under 440 

current conditions) throughout the year (minimum 0.0102 m
3
/s during the winter) , with highest 441 

contributing percentages in summer and winter when river baseflows are the lowest. Other studies 442 

(e.g. Devito et al., 1997) have shown that baseflow from a headwater peatland can be interrupted 443 

during the dry season in a low permeability headwater bedrock settings. Although the 444 

groundwater flow model for Covey Hill does not provide detailed information on river baseflows, 445 

the simulations show that the storage-release capacity of the peatland is important to support river 446 

low flows. Similarly to other headwater peatlands, the Covey Hill peatland appears to play a 447 

significant buffer role in a hydrological system where the soil and surface deposits offer little 448 

storage potential to maintain river flows during the dry season.  449 

 450 

Twelve percent of the recharge applied to the model domain is discharged from the aquifer to the 451 

small streams which are represented by drains. This corresponds to a significant volume of water, 452 

of a similar magnitude to the simulated baseflows of the Allen or the Outardes River. Thirty 453 

percent of the recharge emerges in the Allen and Outardes rivers as well as in the Schulman 454 

stream uptream from the gauging stations (see Figure 1). Twelve percent emerges in the two 455 

rivers below their gauging stations where the rivers flow mostly on impervious sediments and 456 

have little interaction with the aquifer.  457 

 458 

During an average year, the total flow to the regional aquifer through the northern boundary is 459 

equivalent to 52 mm y
-1

. This inter-aquifer flow represents 46% of the average calibrated 460 

recharge for the study domain. Covey Hill is a recharge zone but small streams and rivers 461 

intercept a significant part of this recharge. The volume of water that actually reaches the regional 462 
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aquifer is therefore much lower than what reaches the saturated zone. This is rarely taken into 463 

consideration when evaluating regional recharge with 1D water budget methods. This proportion 464 

of total recharge that reaches the regional aquifer as groundwater flow cannot be verified with 465 

field measurements but appears reasonable given the other simulated flows. Comparatively, in a 466 

nearby watershed in south-western Quebec, Nastev et al. (2006) found that discharge to 467 

secondary streams comprised 37% of the water budget.  468 

 469 

3.2 Simulated climate change scenarios  470 

The recharge scenarios investigated in this study are considered a representative range of possible 471 

recharge variations for a future climate. Although the 2007-2010 period during which detailed 472 

transient hydrological data are available is outside the 1971-2000 reference period for the climate 473 

change scenarios, the four recharge scenarios are simulated up to 2010 to facilitate comparison 474 

with recent conditions.  475 

 476 

Figure 8 illustrates variations in heads, river and stream flows, as well as subsurface outflow 477 

through the northern boundary for each of the recharge scenarios relative to the spring 2010 478 

baseline results. Trends are similar for data from other seasons and years. Recharge variations of 479 

+10, -15 and -30% induce median head changes of +1.1, -1.9 and -4.2 m respectively. This high 480 

sensitivity of groundwater levels to recharge variations is probably a common trait of headwater 481 

aquifers and is an argument in favor of management measures that would limit human-induced 482 

recharge reductions or wetland drainage in headwater systems. Nevertheless, the headwater 483 

system apparently has some resilience, buffering recharge variations to a limited extent. 484 

Interestingly, removing the peatland (i.e. zone 1) from the model in steady state, and therefore 485 

simulating a major perturbation scenario, produces a reduction in heads similar to a 15% decrease 486 

in recharge (results not shown). The water holding capacity of the organic deposits therefore 487 

contributes to some extent to maintain high groundwater levels near the top of the Covey Hill 488 
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headwater system. In the absence of soils and surface deposits, the Blueberry, Gouffre and Forêt 489 

Enchantée lakes certainly also contribute to the hydrological resilience of the system. Beyond a 490 

certain level of recharge reduction, heads change more significantly (and this change is much 491 

more variable in space), the largest changes being observed on the top of the hill. This agrees 492 

with results from other studies (e.g. Lavigne et al., 2010b) which have shown that the highest 493 

sensitivity of groundwater levels to pumping increases occurs in areas where potentiometric 494 

heads are the highest.  495 

 496 

Total contribution from the aquifer to the Allen and Outardes rivers, to the Schulman stream and 497 

to all the small streams varies from +14% to -22 and -44% of the baseline for the +10%, -15% 498 

and -30% recharge scenarios respectively (Figure 8). In the model, the Allen and Outardes rivers 499 

never become dry because they are represented using MODFLOW's River package. This is 500 

probably realistic since inputs from the peatland and from a series of lakes along their courses 501 

provide significant reservoirs to maintain flow throughout the year. The Schulman stream and the 502 

smaller streams located on the northern face of the hill simulated with the Drain package can 503 

become seasonally isolated from the aquifer due to low piezometric levels, which represents 504 

drying. When recharge decreases, small streams and springs dry out. This drying of small streams 505 

and springs could have an adverse effect on endangered salamanders species found on Covey Hill 506 

(Larocque et al., 2006).  507 

 508 

As recharge decreases, the proportion of the recharge flowing to the regional aquifer increases 509 

only slightly for the -15% and -30% scenarios respectively. As less water is diverted to surface 510 

routes, more (proportionately) can flow to the regional aquifer. This comes from the drying out of 511 

small streams that otherwise drain groundwater towards surface streams and rivers. Conversely, a 512 

10% increase in recharge drives more water to rivers and drains and less, percentage wise, to the 513 

regional aquifer. 514 
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During the 2007-2010 period, the peatland was constantly fed by the aquifer. Groundwater input 515 

to the peatland increases with the +10% recharge scenario, leading to an increase in heads and to 516 

more water drained by the peatland outlets. When recharge decreases by 15%, water flows from 517 

the bedrock aquifer to the peatland on the southern portion and from the peatland to the aquifer 518 

on its northern side (Figure 9). Outflows from the peatland are even higher for the -30% recharge 519 

scenario. Also, oxidation of peat and vegetation changes could also occur in response to reduced 520 

groundwater inflow to the peatland. Extrapolating from a trend line for flow to the peatland from 521 

the aquifer, a recharge decrease of 16.5% causes an annual net groundwater contribution to the 522 

peatland of zero. Figure 10 shows that with the -30% recharge scenario, flow reversals occur 523 

during the summer, fall and winter seasons, and sometimes during the spring. Under these 524 

conditions, the flow regime changes and more water flows out of the peatland than into it through 525 

most of the year. This could induce water table drawdowns within the peatland that are beyond 526 

the threshold of peatland vegetation resilience to groundwater level variations. Significant 527 

vegetation changes could result from this situation with tree growth increase and further reduction 528 

of the organic matter accumulation within the peatland. Frequent or long term changes of this 529 

nature could impair the buffer function of the headwater peatland. Conversely, with higher 530 

recharge some areas of the peatland would become totally flooded. This could significantly 531 

impact its vegetation favouring for instance the spread of minerotrophic marshes and aquatic 532 

plants (Swan and Gill, 1970; Asada et al., 2005). 533 

 534 

It is noteworthy to underline the fact that detailed representation of recharge fluxes and changes 535 

in the seasonal occurrence of recharge are not included in this study. This is especially true for 536 

winter conditions. Under climate change, the RCM scenarios predict higher winter temperatures, 537 

with a mean temperature change of +3.1°C, ranging from +2.1°C to +4.2°C. This will lead to a 538 

shorter period of below zero temperatures (10 to 14 days), more frequent recharge events during 539 

the winter season, reduced snow accumulation and reduced spring recharge. The climate models 540 
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indicate an increase in rainfall intensity with the 90
th
 percentile of the maximum daily 541 

precipitation rising from 63.7 to 72.7 mm. A detailed soil water budget model would have been 542 

necessary along with monthly (or shorter) stress periods to illustrate in more details the impact of 543 

increased winter recharge or rainfall intensity on local and regional groundwater flow.  544 

 545 

For the two recharge reduction scenarios, the peatland groundwater contributing area is mostly 546 

located at the southwest of the peatland and is reduced from 1.7 km
2
 to 1.2 and 1.1 km

2
 547 

respectively. As mentioned above, the peatland watershed is relatively small and influenced only 548 

by local groundwater flow. In this respect, the Covey Hill peatland is probably typical of 549 

peatlands located in headwater systems where undulating topography limits the area contributing 550 

to groundwater flow. This situation makes it particularly sensitive to hydrological changes in 551 

rainfall and recharge.  552 

 553 

4. CONCLUSION 554 

This work provides insights into the hydrological functions of a headwater system and peatland in 555 

regulating groundwater levels and river baseflows. Under current conditions, this work confirms 556 

that the Covey Hill peatland is fed by the fractured bedrock aquifer year round and provides 557 

continuous baseflow to its outlets. A peatland located in a headwater system where surface 558 

deposits are scarce is expected to play an important role as a water reservoir, helping to regulate 559 

the impacts of climate variability. A suite of Regional Climate Model scenarios have provided a 560 

net precipitation variation range from -30% to +10% for the 2041-2070 horizon. This range was 561 

used to modify calibrated recharge values. Over the studied headwater system, recharge 562 

reductions induce sharp declines in groundwater levels and drying streams. Recharge variations 563 

of +10, -15 and -30% induce median head changes of +1.1, -1.9 and -4.2 m respectively. Close to 564 

the peatland and within the organic deposits, hydraulic gradients change and the peatland 565 

becomes perched above the aquifer during the summer, fall and winter. Although the climate 566 
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change induced recharge scenarios tested in this work are hypothetical, results from this study 567 

indicate that a headwater system can be highly vulnerable to recharge variations, both in terms of 568 

heads and fluxes. Although the knowledge exists to link these trends to ecosystem changes, more 569 

work is needed to establish specific thresholds and quantifiable ecological responses.  570 

 571 

The MODFLOW model has proven to be adequate to simulate current groundwater flow 572 

conditions in both steady and transient states in the Covey Hill headwater bedrock aquifer as well 573 

as to simulate interactions between aquifer and peatland. This was achieved in spite of the 574 

inevitable simplifications necessary to represent a regional aquifer, namely using an equivalent 575 

porous media representation for the fractured bedrock and deriving recharge from net 576 

precipitation values. Representing the peatland explicitly and not overly constraining it using, for 577 

example, a constant head boundary condition, was necessary to study the peatland-aquifer 578 

interactions. In further research based on additional field characterization, using a fully coupled 579 

model could allow the simulation of runoff and infiltration as specific processes, as well as the 580 

simulation of surface flow to rivers.   581 

 582 

In this study, recharge variations were related to climate change. Other human-induced recharge 583 

variations can result from increased urbanization or groundwater level decreases due to 584 

groundwater abstraction to meet agricultural or urban needs. The hydrogeological impact of these 585 

variations could be magnified if combined with climate change induced recharge reductions. 586 

Under these conditions, current management practices might not be sufficient to ensure the long 587 

term hydrological and ecosystem functions of a headwater system. More research is necessary to 588 

include these considerations into management practices to develop adaptation strategies in the 589 

anticipation of climate change and population growth.  590 

 591 

592 
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Table 1. Seasonal net precipitation, recharge, baseflows (for the gauging station locations 759 

shown in Figure 1 estimated with Champan, 1999, and simulated) and aquifer-peatland 760 

exchanged fluxes (estimated with Darcy and simulated) for the 2007-2010 period 761 

*: minimum and maximum values 762 
**: average value 763 
***: winter recharge is applied in the spring (i.e. when snow melts)  764 
n.a.: data not available 765 

 766 

  767 

 Spring Summer Fall Winter 

Net precipitation (mm) 0-132* 

(79)** 

 -66-36 

(-31) 

102-227 

(150)  

133-285 

(213) 

  

Calibrated recharge for 

transient state simulation 

(mm) 

40-119 

(87) 

0-11 

(3) 

31-69 

(46) 

0-0*** 

(0) 

     

Chapman baseflow (m
3
/s)     

- Allen River 0.18-0.40 

(0.26) 

0.05-0.12 

(0.09) 

0.07-0.17 

(0.12) 

n.a. 

- Outardes River 0.15-0.40 

(0.27) 

0.02-0.15 

(0.07) 

0.02-0.18 

(0.09) 

n.a. 

- Schulman stream 0.018-0.024 

(0.021) 

0.002-0.004 

(0.003) 

0.001-0.002 

(0.002) 

n.a. 

     

Simulated baseflow (m
3
/s)     

- Allen River 0.12-0.20 

(0.16) 

0.09-0.10 

(0.10) 

0.11-0.15 

(0.13) 

0.08-0.09 

(0.09) 

- Outardes River 0.11-0.24 

(0.19) 

0.06-0.07 

(0.07) 

0.10-0.16 

(0.12) 

0.05-0.06 

(0.06) 

- Schulman stream 0.010-0.022 

(0.017) 

0.007-0.008 

(0.007) 

0.009-0.014 

(0.011) 

0.006-0.007 

(0.007) 

     

Darcy aquifer-peatland flow 

(m
3
/s)  

 ( 0.0082)  (0.0076)  (0.0080) n.a. 

     

Simulated aquifer-peatland 

flow (m
3
/s) 

0.0047-0.0090 

(0.0072) 

0.0034-0.0041 

(0.0037) 

0.0046-0.0065 

(0.0053) 

0.0029-0.0034 

(0.0032) 
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Table 2. Calibrated annual recharge rates for each recharge zone under current conditions  768 

Zone Type of surface deposits Calibrated recharge (mm y
-1
) 

   

1 Peatland 372 

2 Till over Flatrock  117 

3 Till  219 

4 Fractured bedrock 329 

5 Shallow till over fractured 

bedrock  
303 

6 Fractured bedrock  183 

7 Post-glacial littoral sediments  128 

8 Compact till, silt and clay 

sediments  
0 

   

 769 

  770 
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Table 3. RCM runs considered in this study (see Mearns et al. 2012 for model acronym 771 

details) 772 

RCM GCM Member Domain 
Emissions 

scenario 

CRCM4.2.3 CGCM3 5 AMNO A2 

CRCM4.2.3 CGCM3 2 AMNO A2 

CRCM4.2.3 ECHAM5 1 AMNO A2 

CRCM4.2.3 ECHAM5 2 AMNO A2 

CRCM4.2.3 Arpège UnifS2 -- AMNO A1B 

CRCM4.2.0 CGCM3 4 AMNO. A2 

HRM3 HADCM3 -- QC A2 

CRCM CCSM -- N. Amer. A2 

ECP2 GFDL -- N. Amer. A2 

RCM3 CGCM3 -- N. Amer. A2 

 773 

 774 

 775 
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Figure 1. a) location of the Covey Hill Natural Laboratory and b) regional and peatland cross-sections. Note 
that SIH wells are not represented in this figure. The delineated “watershed limits” correspond to the 

gauging station watersheds.    
188x199mm (300 x 300 DPI)  
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The conceptual groundwater flow model of Covey Hill: a) recharge zones and b) hydraulic conductivity zones 
130x205mm (300 x 300 DPI)  
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Simulated flow directions in the peatland contribution area a) for spring 2010, and for the recharge 
scenarios b) 10% increase, c) 15% decrease and d) 30% decrease  

103x62mm (300 x 300 DPI)  
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