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Abstract

The correlation among multiple lines of business plays a critical role in aggregating
claims and thus determining loss reserves for an insurance portfolio. We show that the
Sarmanov family of bivariate distributions is a convenient choice to capture the depen-
dencies introduced by various sources, including the common calendar year, accident
year and development period effects. The density of the bivariate Sarmanov distribu-
tions with different marginals can be expressed as a linear combination of products
of independent marginal densities. This pseudo-conjugate property greatly reduces
the complexity of posterior computations. In a case study, we analyze an insurance
portfolio of personal and commercial auto lines from a major US property-casualty
insurer.
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1 Introduction
Provisions generally represent most of the liabilities of a property/casualty insurance com-
pany. It is therefore crucial for a company to estimate its provisions well. With the advent of
the new regulatory standards (e.g. Solvency II in Europe and the upcoming ORSA1 guide-
lines in North America), it is now necessary for an insurer to be more accurate and rigorous
to settle the amount of provisions for the entire portfolio. This involves taking into account
the correlation between the lines of business.

To incorporate dependencies among multiple runoff triangles, the literature can be sep-
arated into two different schools of thought.

The first strand of research examines distribution-free methods, where the (conditional)
mean squared prediction error can be derived to measure prediction uncertainty. For exam-
ple, Braun (2004) takes into account the correlations between the segments by introducing
a correlation between development factors, while Schmidt (2006) adopts a multivariate ap-
proach, by performing a simultaneous study of all segments of the portfolio.

The other approach relies on parametric methods based on distributional families, al-
lowing predictive distribution of unpaid losses, which is believed to be more informative to
actuaries in setting a reasonable reserve range than a single mean squared prediction error.
We will focus on the parametric approach.

Parametric reserving methods mainly involve copulas to model dependence between lines
of business. For example, Brehm (2002) uses a Gaussian copula to model the joint distri-
bution of unpaid losses, while De Jong (2012) models dependence between lines of business
with a Gaussian copula correlation matrix. Shi et al. (2012) and Wüthrich et al. (2013)
also use multivariate Gaussian copula, to accommodate correlation due to accounting years
within and across runoff triangles. Bootstrapping is another popular parametric approach
used to forecast the predictive distribution of unpaid losses for correlated lines of business.
Kirschner et al. (2008) use a synchronized bootstrap and Taylor and McGuire (2007) extend
this result to a generalized linear model context. More recently, Abdallah et al. (2015) use
Hierarchical Archimedean copulas to accommodate correlation within and between runoff
triangles.

We use random effects to accommodate correlation due to calendar year, accident year
and development period effects within and across runoff triangles. Bayesian methods are
not new to the loss reserving literature (see Shi et al. (2012) for an excellent review). In
this paper, to capture dependence between the lines of business (through random effects),
we introduce the Sarmanov Family of bivariate distributions to the reserving literature.
This family of bivariate distributions was first presented in Sarmanov (1966) and appeared
in more detail in Lee (1996). The Sarmanov family includes Farlie–Gumbel–Morgenstern
(FGM) distributions as special cases.

The applicability of Sarmanov’s distribution results from its versatile structure that offers
us flexibility in the choice of marginals and allows a closed form for the joint density. We
aim to show the potential of this family of distributions in a loss reserving context.

In Section 2, we review the modeling of runoff triangles, where notations are set and
1ORSA: Own Risk and Solvency Assessment



3

random effects defined. In Section 3, we present the Sarmanov Family of Bivariate Distri-
butions and introduce them to the loss reserving context in Section 4. We apply the model
to a casualty insurance portfolio from a U.S. insurer and demonstrates the flexibility of the
proposed approach in Section 5. Section 6 concludes the paper.

2 Modeling

2.1 General notations
In this paper, a dependence model within and between lines of business through calendar
year, accident year and development period effects is presented. To simplify the notations,
we will consider the calendar year case. The notations could be easily generalized to accident
year and development period cases.

Let us consider an insurance portfolio with ` lines of business (` ∈ {1, ..., L}). We
define by X(`)

i,j , the incremental payments of the ith accident year (i ∈ {1, ..., n}), and the
jth development period (j ∈ {1, ..., n}). To take into account the volume of each line of
business, we work with standardized data which we denote by Y (`)

i,j = X
(`)
i,j /p

(`)
i , where p(`)

i

represents the exposure variable in the ith accident year for the `th line of business. The
exposure variable can be the number of policies, the number of open claims, or the earned
premiums. The latter option is the one chosen in this paper. We suppose that the accident
year effect is independent of the development period effect. Hence, a regression model
with two independent explanatory variables, accident year and development period, is used.
Assume that α(`)

i (i ∈ {1, 2, ..., n}) and β
(`)
j (j ∈ {1, 2, ..., n}) characterize the accident

year effect and the development period effect respectively. In such a context, a systematic
component for the `th line of business can be written as

η
(`)
i.j = ζ(`) + α

(`)
i + β

(`)
j , ` = 1, ..., L, (1)

where ζ(`) is the intercept, and for parameter identification, the constraint α(`)
1 = β

(`)
1 = 0

is supposed. In our empirical illustration, and in the following, we work with two runoff
triangles (L = 2) of cumulative paid losses exhibited in Tables 1 and 2 of Shi and Frees
(2011). They correspond to paid losses of Schedule P of the National Association of Insurance
Commissioners (NAIC) database. These are 1997 data for personal auto and commercial
auto lines of business, and each triangle contains losses for accident years 1988-1997 and at
most ten development years. Shi and Frees (2011) show that a lognormal distribution and
a gamma distribution provide a good fit for the Personal Auto and the Commercial Auto
line data respectively. To demonstrate the reasonable model fits for the two triangles, the
authors exhibit the qq-plots of marginals for personal and commercial auto lines (see Figure
3 in Shi and Frees (2011)). We work with their conclusion and continue with the same
continuous distributions for each line of business. More specifically, we consider the form
µ

(1)
i.j = η

(1)
i.j for a lognormal distribution with location (log-scale) parameter µ(1)

i.j and shape
parameter σ. However, for the gamma distribution, as noted by Abdallah et al. (2015)
we use the exponential link instead of the canonical inverse link to ensure positive means,
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with µ(2)
ij =

exp(η(2)
ij )

φ
, where µ(2)

ij and φ are the scale (location) and the shape parameters
respectively.

2.2 Random effects
The models with random effects can be interpreted as models where hidden characteristics are
captured by this additional random term. Here, we want to detect the effects characterizing
the loss of a given calendar year (accident year or development period) through a random
variable. The latter will capture correlations within the runoff triangles for the L lines of
business.

As mentioned earlier, we keep the same assumptions of Shi and Frees (2011) for the
marginals, i.e. a lognormal distribution for the first line of business and a gamma distribution
for the second line of business. Hence, as an associated conjugate prior, we take normal and
gamma distributions, for the first and second runoff triangle respectively.

2.2.1 Prior distributions

Let the random variable Θ(`)
t characterize the losses of the business line ` (` = 1, 2) for a

given calendar year t with probability density function (pdf) denoted by u(`).
Let Y(`)

t =
(
Y

(`)
t,1 , ..., Y

(`)
1,t

)
be the vector of losses for the tth calendar year of the business

line `. This vector can also be written as Y(`)
t =

(
Y

(`)
1 , ..., Y

(`)
j , ..., Y

(`)
t

)
where j indicates

the jth development period. Also, let µ(`)
j = µ

(`)
t−j+1,j.

Let us assume that, given Θ(`)
t , the random variables Y (`)

1 , ..., Y
(`)
t are conditionally inde-

pendent. For ` = 1, we suppose that[
Y

(1)
i,j | Θ

(1)
t = θ(1)

]
∼ Logn.

(
µ

(1)
i,j θ

(1), σ2
)
,

and

f
Y

(1)
j |Θ(1)

t

(
y

(1)
j ; θ(1)µ

(1)
j , σ2

)
=
 1
y

(1)
j

√
2πσ

 exp
−(log y(1)

j − µ
(1)
j θ(1))2

2σ2

 ,
with E[Y (1)

i,j | Θ
(1)
t = θ

(1)
t ] = eµ

(1)
i.j θ

(1)
t +σ2/2 and Var[Y (1)

i,j | Θ
(1)
t = θ

(1)
t ] =

(
eσ

2 − 1
)(

e2µ(1)
i.j θ

(1)
t +σ2

)
.

Also, let
Θ(1)
t ∼ Normal

(
a, b2

)
,

with

u(1)
(
θ(1); a, b2

)
= 1
b
√

2π
exp

−
(
θ(1) − a

)2

2b2

 .
Given these assumptions, the law of total probability leads to the following joint density

function for Y(1)
t , denoted by fY(1)

t

(
y(1)

t ; a, b2
)
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fY(1)
t

(
y(1)

t ; a, b2
)

=
∫ ∞

0

t∏
j=1

f
Y

(1)
j |Θ(1)

t

(
y

(1)
j | Θ

(1)
t = θ(1)

)
u(1)

(
θ(1); a, b2

)
dθ(1)

=
t∏

j=1

 1
y

(1)
j

√
2πσ

 σ√∑t
j=1 µ

2
jb

2 + σ2

× exp

−
(

1
σ2
∑t
j=1 log(y(1)

j )2(b2
∑t
j=1 µ

2
j + σ2) + 1

b2a
2(b2

∑t
j=1 µ

2
j + σ2)−

(
∑t

j=1 log(y(1)
j )µjb

2+aσ2)2

b2σ2

)
2(b2

∑t
j=1 µ

2
j + σ2)

 .
(2)

For the second line of business ` = 2, we assume that

[
Y

(2)
i,j | Θ

(2)
t = θ(2)

]
∼ Gamma

φ, µ(2)
i,j

θ(2)

 ,

and

f
Y

(2)
j |Θ(2)

t

y(2)
j ;φ,

µ
(2)
j

θ(2)

 =
y

(2)φ−1
j

Γ (φ)
µ(2)

j

θ(2)

φ
exp

− y
(2)
j

µ
(2)
j

θ(2)

 ,

with E[Y (2)
i,j | Θ(2)

t = θ(2)] = φµ
(2)
i,j

1
θ(2) and Var[Y (2)

i,j | Θ(2)
t = θ(2)] = φµ

(2)2
i,j

1
θ(2)2 . For the

random effect Θ(2)
t , we suppose

Θ(2)
t ∼ Gamma (α, τ) ,

with

u(2)
(
θ(2);α, τ

)
= θ(2)α−1

Γ (α) (τ)α exp
(
−θ

(2)

τ

)
.

The joint density function of Y(2)
t denoted by fY(2)

t

(
y(2)

t ;α, τ
)
is hence given by
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fY(2)
t

(
y(2)

t ;α, τ
)

=
∫ ∞

0

t∏
k=1

f
Y

(2)
k
|Θ(2)

t

(
y

(2)
k | Θ

(2)
t = θ(2)

)
u(2)

(
θ(2); τ, α

)
dθ(2)

=
(

t∏
k=1

y
(2)φ−1
k

Γ(φ)(µ(2)
k )φ

)
Γ(tφ+ α)
Γ(α)(τ)α

1(∑t
k=1

y
(2)
k

µ
(2)
k

+ 1
τ

)tφ+α . (3)

For parameter identification, we suppose that a = 1 and τ = 1
α−1 in our empirical

illustration.

2.2.2 Posterior distribution

Using Bayes theorem, the posterior distributions for [Θ(1)
t = θ(1) | Y(1)

t ] and [Θ(2)
t = θ(2) |

Y(2)
t ] are given by

u(1)
(
θ(1) | Y(1)

t

)
∝ fY(1)

t |Θ
(1)
t

(
y(1)

t | Θ
(1)
t = θ(1)

)
u(1)

(
θ(1); a, b2

)
∝ u(1)

(
θ(1); apost, b2

post

)
,

and

u(2)
(
θ(2) | Y(2)

t

)
∝ fY(2)

t |Θ
(2)
t

(
y(2)

t | Θ
(2)
t = θ(2)

)
u(2)

(
θ(2);α, τ

)
∝ u(2)

(
θ(2);αpost, τpost

)
.

This shows that the posterior distributions for [Θ(1)
t = θ(1) | Y(1)

t ] and [Θ(2)
t = θ(2) | Y(2)

t ],
are again Normal and gamma distributions with updated parameters

apost =
∑t

k=1 log(y(1)
k

)µ(1)
k
b2+aσ2∑t

k=1 µ
(1)2
k

b2+σ2 and b2
post = b2σ2∑t

k=1 µ
(1)2
k

b2+σ2 ;

αpost = α + tφ and τpost =
 1
τ

+∑t
k=1

y
(2)
k

µ
(2)
k

−1

.

These results of posterior distributions will be very helpful in the calculation of the joint
Sarmanov distribution, and for the moments calculation of the total as well.

3 Sarmanov Family of Bivariate Distributions
Sarmanov’s bivariate distribution was introduced in the literature by Sarmanov (1966), and
was also proposed in physics by Cohen (1984) under a more general form. Lee (1996)
suggests a multivariate version and discusses several applications in medicine. Recently, due
to its flexible structure, Sarmanov’s bivariate distribution gained interest in different applied
studies. For example, Schweidel et al. (2008) use a bivariate Sarmanov model to capture the
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relationship between a prospective customer’s time until acquisition of a particular service
and the subsequent duration for which the service is retained. Miravete (2009) presents
two models based on Sarmanov distribution and uses them to compare the number of tariff
plans offered by two competing cellular telephone companies. Danaher and Smith (2011)
discuss applications to marketing (see also the references therein). In the insurance field,
Hernández-Bastida et al. (2009) and Hernández-Bastida and Fernández-Sánchez (2012) use
the bivariate Sarmanov distribution for premium evaluation. Here, we want to highlight and
show its usefulness in loss reserving modeling.

We suppose a dependence between the calendar years (accident years or development
periods) of the two runoff triangles, i.e the elements of a given calendar year of a line of
business are assumed to be correlated with the corresponding elements of the other line of
business through common random effects. This will create dependence between Θ(1)

t and
Θ(2)
t . For this purpose, we propose to use the Sarmanov Family of bivariate distributions to

model the joint distribution of the random effect Θ(`)
t with ` ∈ {1, 2}.

3.1 Definitions
Let ψ(`)(θ(`)), ` = 1, 2 be two bounded non-constant functions such that

∫∞
−∞ ψ

(`) (t)u(`) (t) dt =
0. Let

(
Θ(1),Θ(2)

)
have a bivariate Sarmanov distribution, the joint distribution can then

be expressed as

uS
(
θ(1), θ(2)

)
= u(1)

(
θ(1); a, b2

)
u(2)

(
θ(2);α, τ

) (
1 + ωψ(1)

(
θ(1)

)
ψ(2)

(
θ(2)

))
, (4)

provided that ω is a real number that satisfies the condition

1 + ωψ(1)
(
θ(1)

)
ψ(2)

(
θ(2)

)
≥ 0 for all θ(`) , ` ∈ {1, 2}.

One of the main interesting properties of the Sarmanov is that the bivariate distribution
can support a wide range of marginals, such as in this case, the normal and the gamma
distributions. Different methods are proposed in Lee (1996) to construct mixing functions
ψ(`) for different types of marginals. As mentioned in Lee (1996), different types of mix-
ing functions can be used to yield different multivariate distributions with the same set
of marginals. Based on Corollary 2 in Lee (1996), a mixing function can be defined as
ψ(`)

(
θ(`)

)
= exp

(
−θ(`)

)
− L(`) (1), where L(`) is the Laplace transform of u(`), evaluated at

1. Hence, given our choice of distribution for Θ(`), ` = 1, 2, we have

ψ(1)(θ(1)) = exp
(
−θ(1)

)
− exp

(
−a+ b2

2

)
ψ(2)(θ(2)) = exp

(
−θ(2)

)
− (1 + τ)−α .

As for the dependence parameter ω of the Sarmanov bivariate distribution, in the case
of normal and gamma marginals, it is bounded as follows
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− 1
b exp(−a+ b2

2 )
√
ατ (1 + τ)−α−1 ≤ ω ≤ 1

b exp(−a+ b2

2 )
√
ατ (1 + τ)−α−1 .

The proof of this result is a direct consequence of Lee’s (1996) Theorem 2.

3.2 Joint distribution
A critical problem when modeling dependence between runoff triangles is to obtain a joint
distribution of unpaid losses. The Sarmanov distribution will be a good ally to circumvent
to this problem. With normal and gamma marginals for Θ(1)

t and Θ(2)
t respectively, the prior

joint pdf of
(
Θ(1)
t ,Θ(2)

t

)
is given by

uS
(
θ(1), θ(2)

)
= u(1)

(
θ(1); a, b2

)
u(2)

(
θ(2);α, τ

)(
1 + ω exp

(
−a+ b2

2

)
(1 + τ)−α

)

+u(1)
(
θ(1); a− b2, b2

)
u(2)

(
θ(2);α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−u(1)
(
θ(1); a− b2, b2

)
u(2)

(
θ(2);α, τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−u(1)
(
θ(1); a, b2

)
u(2)

(
θ(2);α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α , (5)

which corresponds to a linear combination of the product of univariate pdfs. This last
expression highlights an attractive feature of the Sarmanov family of distributions. Its
simplicity and form greatly facilitate many calculations.

The joint distribution fY(1)
t ,Y(2)

t

(
y(1)

t ,y(2)
t

)
in the case of the Sarmanov family of bivariate

distributions with normal and gamma marginals is expressed by

fY(1)
t ,Y(2)

t

(
y(1)

t ,y(2)
t

)
=
∫ +∞

0

∫ ∞
−∞

t∏
k=1

f
Y

(1)
k
|Θ(1)

t

(
y

(1)
k | Θ

(1)
t = θ(1)

)
f
Y

(2)
k
|Θ(2)

t

(
y

(2)
k | Θ

(2)
t = θ(2)

)
uS
(
θ(1), θ(2)

)
dθ(1)dθ(2).

Following (2), (3) and (5), we obtain a closed-form expression for the density function of(
Y(1)

t ,Y(2)
t

)
, namely
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fY(1)
t ,Y(2)

t

(
y(1)

t ,y(2)
t

)
= fY(1)

t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)(

1 + ω exp
(
−a+ b2

2

)
(1 + τ)−α

)

+fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

−fY(1)
t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α . (6)

3.3 Posterior Sarmanov distribution
The posterior distribution can be used for the calculation of the moments of the total re-
serve. The posterior bivariate joint density function of the couple

(
Θ(1)
t ,Θ(2)

t

)
conditioned

on
(
Y(1)

t ,Y(2)
t

)
is given by

uS(θ(1), θ(2) | y(1)
t ,y(2)

t )

= f(y(1)
t ,y(2)

t | θ
(1)
t , θ

(2)
t )uS(θ(1)

t , θ
(2)
t )

fY(1)
t ,Y(2)

t
(y(1)

1 , ..., y
(1)
t , y

(2)
1 , ..., y

(2)
t )

= C1u
(1)
(
θ

(1)
t ; apost, b2

post

)
u(2)

(
θ

(2)
t ;αpost, τpost

)
+ C2u

(1)
(
θ

(1)
t ; a’

post, b
2
post

)
u(2)

(
θ

(2)
t ;αpost, τ ’

post

)
−C3u

(1)
(
θ

(1)
t ; a’

post, b
2
post

)
u(2)

(
θ

(2)
t ;αpost, τpost

)
− C4u

(1)
(
θ

(1)
t ; apost, b2

post

)
u(2)

(
θ

(2)
t ;αpost, τ ’

post

)
(7)

where

apost =
∑t
k=1 log(y(1)

k )µ(1)
k b2 + aσ2∑t

k=1 µ
(1)2
k b2 + σ2

a’
post =

∑t
k=1 log(y(1)

k )µ(1)
k b2 +

(
a− b2

)
σ2∑t

k=1 µ
(1)2
k b2 + σ2

b2post =
(∑t

k=1 µ
(1)2
k

σ2 + 1
b2

)−1
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and

αpost = tφ+ α

τpost =
(

t∑
k=1

y
(2)
k

µ
(2)
k

+ 1
τ

)−1

τ ’
post =

(
t∑

k=1

y
(2)
k

µ
(2)
k

+ 1
τ

+ 1
)−1

,

with

C1 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)(

1 + ω exp
(
−a+ b2

2

)
(1 + τ)−α

)

C2 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

C3 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a− b2, b2
)
fY(2)

t

(
y(2)

t ;α, τ
)
ω exp

(
−a+ b2

2

)
(1 + τ)−α

C4 = 1
fY(1)

t ,Y(2)
t

(
y(1)

t ,y(2)
t

)fY(1)
t

(
y(1)

t ; a, b2
)
fY(2)

t

(
y(2)

t ;α, τ

1 + τ

)
ω exp

(
−a+ b2

2

)
(1 + τ)−α .

This last expression shows that the posterior bivariate density function of
(
Θ(1),Θ(2)

)
,

is again a linear combination of the product of univariate normal and gamma pdfs. The
posterior density is hence a pseudo-conjugate to the prior density in the sense that the
posterior density is a linear combination of products of densities from the univariate natural
exponential family of distributions (normal and gamma in our case). It would be interesting
to investigate the link between the posterior Sarmanov distribution and the linear credibility
theory, where the Bayesian premium is considered linear.

4 Claims reserving

4.1 Calendar year dependence
To accommodate correlation, most multivariate loss reserving methods focus on a pair-
wise association between corresponding cells in multiple runoff triangles. Recently, Shi and
Frees (2011) successfully incorporated dependence between two lines of business with a pair-
wise association. However, such a practice usually relies on an independence assumption
across accident years and ignores the calendar year effects that could affect all open claims
simultaneously and induce dependencies among loss triangles. In fact, most dependencies
among loss triangles could arguably be driven by certain calendar year effects and exogenous
common factors such as inflation, interest rates, jurisprudence or strategic decisions such as
the acceleration of the payments for the entire portfolio can have simultaneous impacts on all
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lines of business of a given sector, which could be the case here for the two lines of business
considered in the present paper.

Such a calendar year effect has already been analyzed, for example by Barnett and
Zehnwirth (1998) who add a covariate to capture the calendar year effect. De Jong (2006)
models the growth rates in cumulative payments in a calendar year, and Wüthrich (2010)
examines the accounting year effect for a single line of business. Wüthrich and Salzmann
(2012) use a multivariate Bayes Chain-Ladder model that allows modeling of dependence
along accounting years within runoff triangles. The authors derive closed form solutions for
the posterior distribution, claims reserves and corresponding prediction uncertainty. Kuang
et al. (2008) also consider a canonical parametrization with three factors for a single line of
business.

In our proposed model, instead of adding an explanatory variable for the calendar year
effect, the dependence relation between the paid claims of a diagonal will be based on a
random effect. More specifically, the same random variable Θ(`)

t is assumed for each diagonal
of a runoff triangle. The likelihood function of this model can be easily derived from (2) and
(3).

4.2 Line of Business dependence
4.2.1 Motivations

In the same view of Abdallah et al. (2015), we propose a model that allows a dependence
relation between all the observations that belong to the same calendar year for each line of
business using random effects instead of multivariate Archimedean copulas. Additionally,
we use another dependence structure that links the losses of calendar years of different lines
of business with a Sarmanov family of bivariate distributions instead of hierarchical copula.
With this second level of dependence, we capture the dependence between two different
runoff triangles in a pairwise manner between corresponding diagonals, instead of between
cells. Hence, instead of pairing cells with a copula as in Shi and Frees (2011), we will pair
diagonals through random effects using the Sarmanov family of bivariate distributions.

The calendar year effect has rarely been studied with more than one line of business. Two
recent examples are De Jong (2012), where the calendar year effect was introduced through
the correlation matrix and Shi et al. (2012), who used random effects to accommodate the
correlation due to accounting year effects within and across runoff triangles. Shi et al.
(2012) work with a Bayesian perspective, using a multivariate lognormal distribution, along
with a multivariate Gaussian correlation matrix. The predictive distributions of outstanding
payments are generated through Monte Carlo simulations. The calendar year effect is taken
into account through an explanatory variable. Again with a Bayesian framework, Wüthrich
et al. (2013) used a multivariate lognormal Chain-Ladder model and derived predictors and
confidence bounds in closed form. Their analytical solutions are such that they allow for any
correlation structure. Their models permit dependence between and within runoff triangles,
along with any correlation structure. It has also been shown in this paper that the pair-wise
dependence form is rather weak compared with calendar year dependence. More recently,
Shi (2014) captures the dependencies introduced by various sources, including the common
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calendar year effects via the family of elliptical copulas, and uses parametric bootstrapping
to quantify the associated reserving variability.

In this paper, to model the complex dependence structure between two runoff triangles,
we introduce models based on the Sarmanov family of bivariate distributions. The idea
is to use random effects to capture dependence within lines of business, and then join the
two random effects through a Sarmanov distribution to capture dependence between lines of
business. Empirical results are shown in the next section. Finally, the log-likelihood function
of this model can be obtained from (6).

4.2.2 Mean and Variance

To compute the resulting reserve for this model, the estimated total unpaid losses for i+ j >
n+ 1, can be expressed as follows

E [Rtot] = E
[
R(1) +R(2)

]
= E

 2∑
`=1

n∑
i=2

n∑
j=n−i+2

p
(`)
i Y

(`)
i,j

 =
2∑
`=1

n∑
i=2

n∑
j=n−i+2

p
(`)
i E[Y (`)

i,j ],

where
E[Y (1)

i,j ] = E[E[Y (1)
i,j | Θ

(1)
t ]] = E[eµ

(1)
i,j Θ(1)

t +σ2/2] = eaµ
(1)
i,j + 1

2 b
2µ

(1)2
i,j +σ2/2

and
E[Y (2)

i,j ] = E[E[Y (2)
i,j | Θ

(2)
t ]] = E

[
φµ

(2)
i,j

1
Θ(2)
t

]
= φµ

(2)
i,j

1
τ(α− 1) ,

with t = i+ j − 1.
Consequently, the total unpaid losses can be written as

E [Rtot] =
n∑
i=2

n∑
j=n−i+2

p
(1)
i eaµ

(1)
i,j + 1

2 b
2µ

(1)2
i,j +σ2/2 +

n∑
i=2

n∑
j=n−i+2

p
(2)
i φµ

(2)
i,j

τ(α− 1) . (8)

When we model dependence between loss triangles, the global variance can be very
informative. Knowing that the two runoff triangles are correlated, it is interesting to observe
how the two random effects Θ(1)

t and Θ(2)
t change together, i.e whether the two variables tend

to show similar (positive dependence) or opposite behavior (negative dependence). Note that
when Θ(1)

t and Θ(2)
t are assumed unrelated (independent case), we will have Cov(R(1), R(2)) =

0.
The total claims reserve variance can be written as

Var(Rtot) = Var
(
R(1) +R(2)

)
= Var(R(1)) + Var(R(2)) + 2Cov(R(1), R(2))

=
2∑
`=1

Var(R(`)) + 2Cov(R(1), R(2)).

Using the conditional independence of Y (`)
i,j given Θ(`)

t = θ(`) (t = i+ j − 1)), we have
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Var(R(1)) = E

Var
 n∑
i=2

n∑
j=n−i+2

p
(1)
i Y

(1)
i.j | Θ

(1)
t

+ Var

E
 n∑
i=2

n∑
j=n−i+2

p
(1)
i Y

(1)
i.j | Θ

(1)
t


=

n∑
i=2

n∑
j=n−i+2

p
(1)2
i

(
E
[
Var

(
Y

(1)
i.j | Θ

(1)
t

)]
+ Var

(
E
[
Y

(1)
i.j | Θ

(1)
t

]))

=
n∑
i=2

n∑
j=n−i+2

p
(1)2
i

(
e2aµ(1)

i,j +2b2µ
(1)2
i,j +2σ2

− e2aµ(1)
i,j +b2µ

(1)2
i,j +σ2

)

and

Var(R(2)) = E

Var
 n∑
i=2

n∑
j=n−i+2

p
(2)
i Y

(2)
i.j | Θ

(2)
t

+ Var
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 n∑
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n∑
j=n−i+2
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(2)
i Y

(2)
i.j | Θ

(2)
t


=

n∑
i=2

n∑
j=n−i+2

p
(2)2
i

(
E
[
Var

(
Y

(2)
i.j | Θ

(2)
t

)]
+ Var

(
E
[
Y

(2)
i.j | Θ

(2)
t

]))

=
n∑
i=2

n∑
j=n−i+2

φ(p(2)
i µ

(2)
i,j )2

(
α + φ− 1

τ 2(α− 1)2(α− 2)

)
.

For the covariance calculation, we have

Cov(R(1), R(2)) =
n∑
i=2

n∑
j=n−i+2

p
(1)
i p

(2)
i

(
E
[
Y

(1)
i,j Y

(2)
i,j

]
− E

[
Y

(1)
i,j

]
E
[
Y

(2)
i,j

])
.

From (8) we have

E
[
Y

(1)
i,j

]
E
[
Y

(2)
i,j

]
=
(
eaµ

(1)
i,j + 1

2 b
2µ

(1)2
i,j +σ2/2

) φµ
(2)
i,j

τ(α− 1)

 ,
and given (5), we obtain

E[Y (1)
i,j Y

(2)
i,j ] = E

[
E
(
Y

(1)
i.j Y

(2)
i.j | Θ

(1)
t ,Θ(2)

t

)]
= eσ

2/2φµ
(2)
i,j E[eµ

(1)
i,j Θ(1)

t
1

Θ(2)
t

],

with

E[eµ
(1)
i,j Θ(1)

t
1

Θ(2)
t

] =
∫ ∞

0

∫ ∞
−∞

eµ
(1)
i,j θ

(1) 1
θ(2)u

S(θ(1), θ(2))dθ(1)dθ(2).

Consequently, the total variance of unpaid losses is expressed as follows
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Var(Rtot) =
n∑
i=2

n∑
j=n−i+2

p
(1)2
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)p(2)
i φµ
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}. (9)

4.3 Accident year and development period dependence
We consider here a dependence structure captured through accident year and development
period effects. In fact, some exogenous factors could result in an accident year trend. Change
in reserving practices for example, in the way case reserves are settled at the opening of the
claim, for current accident year claims. Further, a court judgment, a change in legislation
affecting future losses, major events and disasters can all result in an accident year trend
as well. The development period trend could result from the same exogenous factors cited
for the calendar year case, but also from management decisions. For example, a revision of
inactive claims or a changing pace of payments (internal or external initiative) are widespread
practices in the industry that might affect several lines of business simultaneously.

4.3.1 Credibility loss reserving

As discussed earlier in this paper, the flexibility of the Sarmanov family of bivariate distri-
bution allows us to easily change the dependence structure. Hence, as in extension and in
addition to the calendar year approach, we will consider here two other approaches in which
the random effect characterizes the loss of a given accident year or development period. Such
modeling is well illustrated in Figure 1. In fact, we can see that a given accident year or
development period effect will also impact the observations in the lower triangle belonging
to the same accident year or development period. This is a great advantage when working
with random effects rather than copulas, where the predictive power for the lower triangle
might be limited.
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Henceforth, we consider a situation where an insurer has access to claims experience
and has the potential to improve prediction of outstanding liabilities by incorporating past
information. The link here with linear credibility is pretty straightforward.

The accident year and development period effect has rarely been studied in the literature.
It is interesting to note that depending on the dependence structure we use, we could get
different conclusions from the analysis of dependence between the two business lines. This
was also well illustrated in Figure 4 of Shi et al. (2012). This will be discussed in greater
detail in the next section, where an empirical illustration is presented.

The idea here is that future payments will be updated through past experience. In fact,
the random effect characterizing the loss of a given accident year or development period
affects payments in the lower triangle as well. More importantly, it would be interesting
here to see how these random effects impact the two runoff triangles simultaneously.

Figure 1: Modeling dependence with a Sarmanov bivariate distribution
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4.3.2 Expected claim reserve

For the accident year or development period approach, unlike the calendar year case, the
projections in the lower part of the triangle will be now impacted by the values of the upper
part, because they are, henceforth, linked by the random effect Θ(`)

t .
Let Θt =

(
Θ(1)
t ,Θ(2)

t

)
and =t =

(
Y(1)

t ,Y(2)
t

)
where Θ(`)

t , ` = 1, 2, characterizes the loss of
a given accident year (t = i) or development period (t = j).

Given the conditional independence of Y (`)
i,j given Θ(`)

t = θ(`), the total estimated projected
paid loss ratio is given by
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]
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Hence, from (7), we have
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Similarly, we obtain for the second line of business
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)
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,

and hence
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Consequently, the total unpaid losses in this case can be written as

E [Rtot | =t] =
2∑
`=1

n∑
i=2

n∑
j=n−i+2

p
(`)
i E[Y (`)

i.j | =t]

=
n∑
i=2

n∑
j=n−i+2

p
(1)
i

(
(C1 − C4) eapostµ

(1)
i,j +

b2
post

2 µ
2(1)
i,j +σ2/2 + (C2 − C3) ea

’
postµ

(1)
i,j +

b2
post

2 µ
2(1)
i,j +σ2/2

)

+
n∑
i=2

n∑
j=n−i+2

p
(2)
i φµ

(2)
i,j

(
C1 − C3

τpost(αpost − 1) + C2 − C4

τ ’
post(αpost − 1)

)
, (10)

with parameters apost, a’
post, b2

post, αpost, τpost, τ ’
post and Ci, i ∈ {1, 2, 3, 4} as given in (7). The

expression of the claims reserve variance is more cumbersome for this approach but can be
handily derived given that the posterior density of the Sarmanov family is a pseudo-conjugate
prior.

5 Empirical illustration

5.1 Model calibration
We implement the three models proposed in the previous sections with the runoff triangles
described in section 2.1. We want to compare the fit of our models with that obtained in
Shi and Frees (2011), where pairwise dependence (PWD) between cells is supposed through
a copula. The Gaussian copula was selected for this model based on Akaike’s Information
Criterion (AIC). In our empirical study, we first use a model that supposes independence
between lines of business, with dependence within runoff triangles captured through ran-
dom effects. This model is described in section 4.1. Fit statistics are shown in Table 1. In
terms of the AIC, we observe that the three models offer a better fit than the PWD model,
which is a promising result for what follows. Now, we suppose pairwise dependence between
random effects that affect a given calendar year, accident year or development period. This
dependence between runoff triangles is captured with the Sarmanov family of bivariate dis-
tributions. The fit statistics and the reserves obtained for this model are shown in Tables 2
and 3 respectively.

The reserve estimations, for the calendar year approach are based on (8), with the system-
atic component described in (1). As for the accident year and development period approach,
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the calculation is performed following (10). However, the accident year (development pe-
riod) parameter is missing in the mean specification for accident year (development period)
approach. Hence, we borrow the information from the calendar year trend to complete the
projection of the lower triangle. We note that a gamma curve, also known as a Hoerl’s curve,
could also have been investigated for this case.

Dependence
Fit Statistics PWD Dev. period Calendar year Accident year
Log-Likelihood 350.5 376.4 396.4 402.3

AIC -618.9 -669.0 -708.9 -720.8
BIC -508.3 -656.2 -696.2 -708.1

Table 1: Fit Statistics of PWD model vs Independent lines of business with random effects

Dependence
Fit Statistics Dev. period Calendar year Accident year

Dependence parameter 628.76 (194.20) -387.10 (746.77) 12083 (22300)
Log-Likelihood 381.1 396.6 403.1

AIC -676.2 -707.2 -718.8
BIC -663.1 -694.2 -705.8

Table 2: Fit Statistics of Sarmanov model

We observe that the model with accident year dependence offers the best fit of all the
models. Indeed, according to the fit statistics, the data seem to favour the model emphasis-
ing accident year effects. However, the model with development period dependence seems
to favor dependence between lines of business. Given that the three models nest the inde-
pendence case as a special case, we can perform a likelihood ratio test to examine the model
fit. Compared with the independent case, the accident year model gives a χ2 statistics of
0.2, the calendar year model gives a χ2 statistics of 0.4, whereas the development period
model gives a χ2 statistics of 9.4. Henceforth, the dependence is rejected over the indepen-
dence model for the calendar year and accident year cases, because ω is not statistically
significant, meanwhile a dependence model is preferred for the development period case. A
Wald test (see Boucher et al. (2007) for a detailed discussion on one-sided statistic tests)

Dependence
Reserves estimation PWD Dev. period Calendar year Accident year

Personal 6,423,180 6,547,988 6,476,093 6,616,171
Commercial 495,989 504,928 551,478 438,716

Total 6,919,169 7,052,916 7,027,571 7,054,888

Table 3: Reserve estimation with different models
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based on the estimated values of ω and its standard errors (see Table 2) leads to the same
conclusions drawn from the likelihood ratio test. Interestingly, the model has a better fit
when incorporating dependence between the two lines of business only for the development
period approach. This is also confirmed by the results of the AIC.

5.2 Predictive distribution
In practice, actuaries are interested in knowing the uncertainty of the reserve. A modern
parametric technique, the bootstrap, not only gives such information but most importantly
provides the entire predictive distribution of aggregated reserves for the portfolio. The pre-
dictive distribution notably allows assessment of risk capital for an insurance portfolio. Boot-
strapping is also ideal from a practical point of view, because it avoids complex theoretical
calculations and can easily be implemented. Moreover, it tackles potential model overfitting,
typically encountered in loss reserving problems due to the small sample size. Henceforth,
we implement a parametric bootstrap analysis to quantify predictive uncertainty.

The bootstrap technique is increasingly popular in loss reserving, and allows a wide range
of applications. It was first introduced in a loss reserving context with a distribution-free
approach by Lowe (1994). For a multivariate loss reserving analysis, Kirschner et al. (2008)
used a synchronized parametric bootstrap to model dependence between correlated lines
of business, and Taylor and McGuire (2007) extended this result to a generalized linear
model context. Shi and Frees (2011), and more recently Shi (2014), have also performed
a parametric bootstrap to quantify the uncertainty in parameter estimates, while modeling
dependence between loss triangles using copulas.

5.2.1 Sarmanov simulation

The parametric bootstrap allows us to obtain the whole distribution of the reserves. We
follow the same bootstrap algorithm as Taylor and McGuire (2007), also summarized in Shi
and Frees (2011).

The first step of the parametric bootstrap is to generate pseudo-responses of normalized
incremental paid losses y∗(`)ij , for i, j such that i+ j − 1 ≤ n and ` = 1, 2.

For the first line of business, we generate a realization y∗(1)
ij of a lognormal distribution

with location (log-scale) parameter µ̂(1)
ij Θ(1) and shape parameter σ̂. As for the second line

of business, y∗(2)
ij is a generated realization of a gamma distribution with location (scale)

parameter µ̂
(2)
ij

Θ(2) and shape parameter φ̂.
Therefore, a technique to generate realizations of the couple

(
θ(1), θ(2)

)
from a Sarmanov

family of bivariate distributions should be used.
Given that the calendar year dependence is the most widely used for its intuitive and

practical purposes, we focus solely on this approach.
To generate a bivariate Sarmanov distribution we follow the method based on the condi-

tional simulation. Thus, for a given calendar year t, the algorithm for a Sarmanov bivariate
distribution between the lines of business is as follows
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Estimated reserve Bootstrap reserve Estimation error Process error
CY Sarmanov 7,027,571 7,047,931 312,331 153,413

Table 4: Bootstrap results for the calendar year Sarmanov model

1. Generate a realization θ(1), from the random variable Θ(1)
t ∼ Normal

(
â, b̂2

)
.

2. Generate a realization from the conditional cumulative distribution of the random
variable

(
Θ(2)
t | Θ

(1)
t = θ(1)

)
.

3. Get a realization θ(2) from the previous stage.

Consequently, we have obtained realizations of the couple
(
θ(1), θ(2)

)
from a Sarmanov

family of bivariate distributions.

5.2.2 MSEP

A common statistic to measure the total variance uncertainty of the portfolio Rtot, is the
mean squared error of prediction (MSEP).

The MSEP is a combination of process error and estimation error. Estimation error is
linked to past observations and process error is due to the variation of future observations.
The definition can be expressed as follows

MSEP [R̂tot] = E[(Rtot − R̂tot)2]
= E[((Rtot − E[Rtot])− (R̂tot − E[Rtot]))2].

Assuming E[(Rtot−E[Rtot])(R̂tot−E[R̂tot])] = 0, i.e. future observations are independent
of past observations, we get

MSEP [R̂tot] ≈ E[(Rtot − E[Rtot])2] + E[(R̂tot − E[R̂tot])2]
= V ar[Rtot]︸ ︷︷ ︸

Process error2

+ V ar[R̂tot]︸ ︷︷ ︸
Estimation error2

.

The main advantage of using the Sarmanov family of bivariate distributions lies in the
fact that we are able to derive a closed-form expression for the process error of the whole
portfolio (see (9)), which is not straightforward to obtain analytically with a copula model.
We quantify the estimation error with the parametric bootstrap. In our empirical illustration,
the obtained bootstrap results are exhibited in Table 4.

Also, because we can obtain the estimation error and process error for a Sarmanov model,
it would be interesting to compare them with their analytic equivalent from Mack’s model,
which has long been considered as a benchmark model. This comparison is shown in Table
5. We note that the two methods provide results in the same order of magnitude.
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Model Reserve
√
MSEP

Sarmanov 7,027,571 347,947
Mack 6.925.951 334,929

Table 5: Comparison between Sarmanov model and Mack model

5.2.3 Risk capital analysis

In addition to the bootstrap results for the calendar year dependence model with a Sar-
manov family of bivariate distributions exhibited in Table 4, we provide a histogram of the
reserve distribution, with the corresponding percentiles in Figure 2. The latter information
is important and useful for actuaries when they want to select a reserve at a desired level of
conservatism. We also superimposed kernel density estimates on the histogram of Figure 2
in Figure 3 with several choices for the bandwidth parameter to determine the smoothness
and closeness of the fit. Smoothing the data distribution with a kernel density estimate can
be more effective than using a histogram to identify features that might be obscured by the
choice of histogram bins.

Figure 2: Percentiles of total unpaid losses (in millions) - Sarmanov calendar year model

The predictive distribution of unpaid losses is very helpful to obtain reserve ranges,
but it is also useful from a risk capital standpoint. Risk capital is the amount that prop-
erty/casualty insurers set aside as a buffer against potential losses from extreme and adverse
events.

We want to show here the impact of assuming a dependence structure based on the
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Figure 3: Total unpaid losses distribution with density Kernel estimation (in millions) -
Sarmanov calendar model

Sarmanov family of bivariate distribution on the risk capital calculation instead of summing
up the risk capital for each subportoflio. In fact, the most common approach in practice,
called the "Silo" method, is to divide the portfolio into several subportfolios and to evaluate
the risk capital for each silo and then add them up for the portfolio. The main criticism
to this method is that it implicitly assumes a perfect positive linear relationship among
subportfolios, which does not allow any form of diversification. We aim to show, following
the parametric bootstrap, that one can take advantage of this diversification between the
two lines of business, allowing risk capital analysts to be less conservative.

Mathematically, the risk capital is the difference between the risk measure and the ex-
pected unpaid losses of the portfolio, which are 7, 047, 931. For the risk measure, we consider
the tail value-at-risk (TVaR) that has been widely used by actuaries. This measure is more
informative than the value at risk (VaR) in the distribution tail, and the subadditivity of
VaR is not guaranteed in general.

To examine the role of dependencies we calculate the risk measure for each sub-portfolio
(i.e. the personal auto line and the commercial auto line), and then use the simple sum as
the risk measure for the entire portfolio. This is the result reported under the silo method.
The silo method gives the largest estimates of risk measures because it does not account
for any diversification effect in the portfolio. We provide the results for the case where no
random effects are considered within lines of business (Silo - independent), and the case
where random effects within lines of business are assumed (Silo - random effects). Both
cases assume independence between lines of business and are compared with the case that
treats the two lines of business as related through the Sarmanov bivariate distribution. We
show in Table 6 that the gain in terms of risk capital is important when we capture the
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Risk measure TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR (99%)
Silo - random effects 7,671,066 7,755,618 7,862,446 8,041,361 8,441,168
Silo - independent 7,582,963 7,656,635 7,760,671 7,922,635 8,259,798

Sarmanov 7,491,092 7,542,301 7,609,383 7,720,910 7,910,013
Risk capital

Silo - random effects 623,135 707,686 814,515 993,429 1,393,237
Silo - independent 535,032 608,703 712,739 874,704 1,211,866

Sarmanov 443,160 494,369 561,451 672,979 862,082
Gain

vs independent 17.17% 18.78% 21.23% 23.06% 28.86%
vs random effect 28.88% 30.14% 31.07% 32.26% 38.12%

Table 6: Risk capital estimation with different scenarios

association between the two triangles, and this difference is even greater in the distribution
tail where most adversed situations are encountered for the two lines of business. This result
indicates that the silo method leads to more conservative risk capital, while the Sarmanov
model leads to more aggressive risk capital.

6 Conclusion
In this paper, we have studied different approaches to model dependence between loss trian-
gles. If losses in different lines of business are correlated, aggregate reserves must reflect this
dependence. To allow a flexible dependence relation, we propose the use of the Sarmanov
family of bivariate distributions. To illustrate the model, an empirical illustration was per-
formed using the same data as that used by Shi and Frees (2011). Based on the AIC and on
the BIC, we show that our models provide a better fit than the PWD model does.

With the proposed model, we can derive analytically the expression of total the reserve
and the total process variance with a calendar year, accident year and development period
dependence model, thanks to the pseudo-conjugate properties. Also, we use a parametric
bootstrap to derive a predictive distribution and incorporate parameter uncertainty in our
analysis.

By coupling various sources of dependencies with a Sarmanov bivariate distribution
through random effects, we propose a new approach to model dependence structures be-
tween runoff triangles. This model is a promising tool to better take into account depen-
dencies within and between business lines. Indeed, this approach can easily be generalized
to more than two lines of business because it is possible to extend the Sarmanov’s family of
distributions to the multivariate case. As an extension, one can also consider these random
effects dynamic or evolutionary, i.e. that they evolve over time and are updated through past
experience. We leave the detailed discussion of this complicated case to the future study.
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