
Selection of Composable Web Services Driven by User Requirements

Zeina Azmeh∗, Maha Driss†, Fady Hamoui∗, Marianne Huchard∗, Naouel Moha‡ and Chouki Tibermacine∗
∗LIRMM, CNRS, University of Montpellier, France
{azmeh, hamoui, huchard, tibermacin}@lirmm.fr
†IRISA, INRIA, University of Rennes I, France

{mdriss}@irisa.fr
‡Université du Québec à Montréal, Canada

{moha.naouel}@uqam.ca

Abstract—Building a composite application based on Web
services has become a real challenge regarding the large and
diverse service space nowadays. Especially when considering
the various functional and non-functional capabilities that Web
services may afford and users may require.

In this paper, we propose an approach for facilitating
Web service selection according to user requirements. These
requirements specify the needed functionality and expected
QoS, as well as the composability between each pair of services.
The originality of our approach is embodied in the use of
Relational Concept Analysis (RCA), an extension of Formal
Concept Analysis (FCA). Using RCA, we classify services by
their calculated QoS levels and composability modes. We use
a real case study of 901 services to show how to accomplish
an efficient selection of services satisfying a specified set of
functional and non-functional requirements.

Keywords-Web service selection; Web service composition;
Formal Concept Analysis (FCA); Relational Concept Analysis
(RCA); User requirements; QoS.

I. INTRODUCTION

Service-Oriented Computing (SOC) is an emerging
paradigm for developing low-cost, flexible, and scalable dis-
tributed applications based on services [1]. Web services rep-
resent a realization of SOC. They are autonomous, reusable,
and independent software units that can be accessed through
the internet. SOC is becoming broadly adopted and in par-
ticular by organizations, which are more and more willing to
open their information systems to their clients and partners
over the Internet. The reason comes from the fact that SOC
offers the ability to build efficiently and effectively added-
value service-based applications by composing ready-made
services. Web service composition addresses the situation
when the functionality required by users (developers) cannot
be satisfied by any available Web service, but by assembling
suitably existing services [2]. When building Web service-
based applications, we have to face several issues such as:
− Web service retrieval from the large number of ex-

isting services, and the lack of efficient indexing
mechanisms. Current solutions are embodied in search
engines, like: Seekda [3] and Service-Finder [4];

− a service’s ability to meet the user’s functional and
non-functional requirements;

− a service’s composability, or the degree to which a
service can be composed with another, considering the
needed adaptations;

− the last issue is how can we achieve a compromise for
service selection in the light of the previous issues.

Discovering and selecting services that closely fit users’
functional and non-functional requirements is an important
issue highly studied in the literature as in [5], [6], [7].
Functional requirements define functionalities provided by
Web services and non-functional requirements define Qual-
ity of Service (QoS) criteria such as availability, response
time, and throughput [8]. However, discovering and selecting
relevant composable services is another important issue that
still need to be investigated, since few approaches focused on
service composability problem [9], [10], [11]. Relevant com-
posable services represent services that minimize the amount
of adaptation among them while best fitting requirements.

In this paper, we propose an approach for the iden-
tification of services that best fit QoS and composition
requirements. This approach is based on Relational Concept
Analysis (RCA) [12], a variant of Formal Concept Analysis
(FCA) [13], [14]. FCA has been successfully used as a for-
mal framework for service substitution [15], [16], [17], [18],
[19]. The approach also integrates a query mechanism that
allows users to specify their required QoS and composability
levels. Thereafter, the generated lattices help in identifying
the services that match the specified queries.

The paper is organized as follows: Section II gives an
overview of the FCA and RCA classification techniques.
Section III describes our approach. Section IV describes the
experiments performed on a real case study for validating
our approach. The paper ends with the related work in
Section V and the conclusion in Section VI.

II. BACKGROUND

In this section, we give the basic definitions of FCA and
RCA, along with a simple example of exploiting them.

A. Formal Concept Analysis (FCA)

We base our approach on FCA [13], [14] which is a
classification method that permits the identification of groups

of objects having common attributes. It takes a data set repre-
sented as an n×m table (formal context) with objects as rows
and attributes as columns. A cross "×" in this table means
that the corresponding object has the corresponding attribute.
An example of a formal context is shown in Table I, for a set
of objects O={1,2,3,4,5,6,7,8,9,10} and a set of at-
tributes A={odd,even,prime,composite,square}.

Table I: A formal context for objects O and attributes A.

odd even prime composite square
1 × ×
2 × ×
3 × ×
4 × × ×
5 × ×
6 × ×
7 × ×
8 × ×
9 × × ×
10 × ×

From a formal context, FCA extracts the set of all the for-
mal concepts. A formal concept is a maximal set of objects
(called extent) sharing a maximal set of attributes (called in-
tent). For example, in Table I, a=({4,6,8,10},{even,
composite}) is a formal concept because the ob-
jects 4, 6, 8, and 10 share exactly the attributes even
and composite (and vice-versa). On the other hand,
({6},{even, composite}) is not a formal concept
because the extent {6} is not maximal: other objects share
the same set of attributes.

FCA reveals the inheritance relations (super-concept and
sub-concept) between the extracted concepts and organizes
them into a partially ordered structure known as Galois
lattice or concept lattice. The resulting concept lattice is
illustrated in Figure 1(L).

Figure 1: Formal concept lattice for the context in Table I
(L); focus on the concept b (R). Lattices are built with
Concept Explorer (ConExp) tool [20].

This lattice reveals phenomena that may not be rec-
ognized intuitively. For example, in Figure 1(R) appears
the concept b=({4},{composite,even,square}) as
a sub-concept of the concept a. It inherits a’s attributes
composite and even, and extends it by the square.

B. Relational Concept Analysis (RCA)

RCA [12] is an extension of FCA that takes into con-
sideration the relations between the objects. Thus, it takes

as input two types of contexts: (non-relational) ones that
are previously used with FCA to classify objects by at-
tributes, and inter-context (relational) ones that represent
the relations between the objects. RCA generates lattices
similar to the ones generated by FCA, but enriched with
the information about the relation between the objects. We
take as an example two sets of numbers, {1,2,3,4,5}
and {11,12,13,14,15,16,17,18,19,20}. We build
two non-relational contexts similar to the one in Table I. We
consider a relation called Divides between the first and
second sets of numbers, and we build the relational context
in Table II. RCA takes the two non-relational contexts

Table II: The relational context Divides.

Divides 11 12 13 14 15 16 17 18 19 20
1 × × × × × × × × × ×
2 × × × × ×
3 × × ×
4 × × ×
5 × ×

(numbers×attributes), and the relational context Divides,
then generates the two lattices in Figure 2.

Figure 2: The enriched lattices generated by RCA.

These lattices are similar to FCA lattices, but one of
them is enriched with the relation Divides. For exam-
ple: by regarding the concept a=({2},{prime,even,
Divides:c7,Divides:c3}) in lattice (L), we notice
that numbers of its extent can divide numbers of the extents
of the concepts 7 and 3 in lattice (R). In the general
case, where relations form directed cycles between objects,
RCA applies iteratively. During this iteration, several scaling
operators can be used. Here we use the existential one
(see [12] for more details).

III. APPROACH

Using our approach, a user can specify an abstract process
described as a set of functional and non-functional require-
ments. The functional requirements describe the needed
tasks, while the non-functional requirements describe the
expected QoS and mode of composition for these tasks. The
approach retrieves sets of Web services, filters and analyzes
their data according to the user requirements. Then, it clas-
sifies them in concept lattices based on RCA classification

technique (II-B). This latter enables a simplified selection of
Web services that best match the specified requirements and
thus, allows the realization of a desired process with less
time and effort.

We explain our approach in view of Figure 3, which
illustrates the different components and their course of action
that lead to service selection.
We describe these components respectively along with
an example of an abstract process of three tasks
{Task1,Task2,Task3}, as follows:

A. User Requirements Analyzer:

The approach starts by analyzing the requirements speci-
fied by the user via a description file (see Figure 4), which
is composed of the following elements:

1) Functional requirements: this part is described by
a set of tasks. Each task is described by its input
and output parameters via their names and types.
For each parameter, a user specifies a set of rele-
vant keywords for its name, and another set for its
type. For example, Task1 has one input parame-
ter, which is defined by {InParamNameKeys1,
InParamTypeKeys1}. We enabled the user of pro-
viding more than one keyword, in order to retrieve
more relevant services. For example: if a user needs a
"date" parameter, he/she may specify the possible
keywords for its name as {date} and types (primitive
or complex) as {string, date}.

2) Non-functional requirements: this part is composed of
two other parts.
− QoS specification, which specifies the requested

QoS level for each task according to the sup-
ported QoS attributes (qosx,qosy,etc.).

− Composition specification, which specifies the
mode of composition (links) between each
two consecutive tasks, for example: Task1 →
Task2. The mode of composition describes
whether Task1 (source) covers all the input
of Task2 (target) or not. This notion is better
described below.

Functional: NonFunctional:
Task: Task1 QoS:
Input: Attribute: qos1

Keywords: k1 Task: task1
Type: t1 Level: Good

Output: ...
... Composition:

... Link:

... Source: task1

... Target: task2

... Mode: FC

... ..

Figure 4: An excerpt of the user’s requirements file.

The analyzer extracts the information related to these
functional and non-functional requirements, which is used

by the remaining components as described below.

B. Web Service Retriever:

The requirements analyzer sends to this component the
keywords provided for the parameter names input/out-
put for each task {InParamNameKeys, OutParam-
NameKeys}. In our example, the retriever searches and
retrieves a set of services: WS1.i, WS2.j, and WS3.k,
corresponding respectively to each of the three tasks. It also
gathers the QoS values (the supported attributes) for each
retrieved service (qosx.i,qosy.i,etc.).

C. WSDL Parser:

Each set of the retrieved services is passed to this com-
ponent1, in order to extract for each service its operations
with their input/output parameters.

Using the information extracted from the parsed services,
we can check a service’s compatibility.

D. Compatibility Checker:

This component checks whether a service provides an op-
eration that can satisfy the corresponding task. An operation
satisfies a task when it contains the requested input/output
parameters names. We verified this by using the Jaro-
Winkler string distance measure [21]. By doing so, we
discovered three possible cases:
− compatible, there exists one operation at least that

satisfies the corresponding task and has the same
parameters types; or it may become:

− adaptable compatible, meaning that none of the satis-
fying operations has the same parameter types (either
for input, or output, or both), thus type adaptations
need to be done; otherwise:

− incompatible, the service does not satisfy the corre-
sponding task.

The compatibility checker reduces the number of the re-
trieved services, by omitting the incompatibles ones (WS1.i
becomes WS1.i’). Thus, it keeps a detailed list of the
compatible services together with their satisfying operations.

Once we identified the compatible services, we can mea-
sure the mode of composition and the QoS levels using the
two following components.

E. Composability Evaluator:

Composing two Web services is finding two operations
(one of each) that can be linked. Two operations can be
linked when the output parameters of the first (source) can
cover the input parameters of the second (target). We can
define two composition modes according to the coverage of
the input parameters of a target operation, in addition to
two other modes according to the needed adaptations that
are discovered by the compatibility checker. They are:

1Available online: http://www.lirmm.fr/∼azmeh/tools/WsdlParser.html

Figure 3: An overview of the approach’s components in their course of action.

− Fully-Composable (FC), when a source opera-
tion covers by its outputs all of the expected inputs of
a target operation;

− Partially-Composable (PC), when one or
more input parameters of a target operation are not
covered;

− Adaptable-Fully-Composable (AFC), when
the source and target operations have an FC mode, but
need some type adaptations either for the output of the
source or the input of the target, or both of them; and

− Adaptable-Partially-Composable (APC),
similar to AFC but when having a PC mode.

Thus, having the composition Task1 → Task2, the com-
posability evaluator determines the mode of composition for
all the services in WS1.i’ with all the services in WS2.j’.
Then, it generates four relational contexts (Section II-B)
between WS1.i’ and WS2.j’ according to the four pre-
viously defined modes of composition. These contexts are
exploited by the RCA classifier to clarify which services can
be composed and following which mode. This is illustrated
in the experiments section IV.

F. QoS Levels Calculator:

This component takes into consideration the
QoS values for all the sets of compatible services
(qosx.i’,qosx.j’,qosx.k’,etc.). It extracts
these values from the ones returned by the service retriever,
according to the list returned by the compatibility checker.
Web services have many QoS attributes and different
ranges of numerical values for each one of these attributes.
In order to have a better overview of these values, we
apply a statistical technique called BoxPlot++ [22] to
cluster the convergent values together. The BoxPlot++

is an extension of the original boxplot [23] technique.
It takes as input a given set of numerical values, and
produces one to seven corresponding levels of values:
L = {BadOutlier,VeryBad,Bad,Medium,Good,
VeryGood,GoodOutlier}2. The technique is applied
on each QoS attribute. Then, it generates for each set of
services a non-relational context (Section II-A) having all
of its QoS attributes levels. These contexts are exploited
afterwards by RCA classifier, in order to classify the
services according to these different QoS levels.

G. RCA Classifier:
This component takes into consideration the relational

contexts of composition modes and the non-relational con-
texts of QoS levels. It also uses the non-functional re-
quirements provided in the user requirements file. These
requirements are considered as queries that are added to the
two types of contexts as follows:
The QoS specifications for each task are integrated to the
corresponding non-relational context as a new row. The
composition specifications are also integrated to the corre-
sponding relational context in the same way.

Finally, the RCA classifier [24] generates all the cor-
responding service lattices and passes them to the final
component. This component is further detailed in [25].

H. Lattice Interpreter:
By integrating the non-functional queries into the con-

texts, they appear inside the concepts of the corresponding
lattices. This enables this component of locating the services
that satisfy the queries and to navigate between the different
solutions. These services are present at the sub-concepts of
the queries concepts. This is better illustrated in section IV.

2Available online: http://www.lirmm.fr/∼azmeh/tools/BoxPlot.html

IV. EXPERIMENTS

We applied our approach on an abstract process, which
is supposed to provide the weather information for a
given ip address. It is described by a user requirements
file (Section III) using three tasks: Task1, Task2, and
Task3. Task1 takes as input an ip address and provides
Task2 with the corresponding city name. Task2 takes
the city name and returns to Task3 the correspond-
ing zipcode. Finally, Task3 returns the corresponding
weather information. From this file, the experiments
are conducted on four steps as follows:

1. Collecting Services: We use the set of keywords
describing each task to search and retrieve sets of
corresponding Web services. We make use of the Service-
Finder Web service search engine [4] to collect a set of
corresponding endpoints (WSDL addresses). This engine
also provides us with values of two QoS attributes:
availability (A) and response time (RT). We download
the corresponding WSDL files after omitting repeated and
invalid endpoints. We show in Table III each task with its
keywords as well as the number of obtained endpoints, the
number of retrieved WSDL files, and the sets identifiers.
In this step, we make use of the requirements analyzer
components (III-A) and the service retriever (III-B).

Table III: Summary of the retrieved services.

Task Keywords #Endpoints #Services SetID
1 {ip,ipAddress}, 94 94 WS1.i

{city,cityName}
2 {city,cityName}, 768 760 WS2.j

{zip,zipcode,postal,postalcode}
3 {zip,zipcode,postal,postalcode}, 39 37 WS3.k

{weather,weatherInfo,forecast,
weatherForecast,weatherReport}

2. Filtering the Services: In this step, we parse the
WSDL files using the WSDL parser (III-C) and remove
the invalid ones (Filter1). Then we calculate the compatible
ones (Filter2) using the Compatibility checker (III-D).
In Table IV, we can see the resulting number of filtered
services for each set.

Table IV: The number of filtered services for each set.

WS1.i WS2.j WS3.k
Filter1 (Valid) 94 748 37
Filter2 (Compatible) 17 96 21

3. Composability and QoS: In this step, we calculate the
composition modes for the compatible sets of services (Ta-
ble V) as well as their QoS levels. We use the Composability
evaluator (III-E) and the QoS level calculator (III-F).

The resulting composition modes and QoS levels are or-
ganized into non-relational and relational contexts (see [26]),
and are used to classify the services in the next step.

4. RCA-Based Classification: During this step, the RCA
classifier (III-G) takes the contexts formed in the previous

Table V: Number of services per composition mode.

WS1.i’ WS2.j’ WS3.k’
FC services 12 3 12
PC services 4 89 4
AFC services 2 1 11
APC services 0 3 2

step and integrates the QoS queries. The queries that we
choose in this case study are specified to be Good A and
Good RT levels for each task in the process. We also re-
quire an FC composition mode for both (Task1,Task2)
and (Task2,Task3). The generated lattices are illustrated
in Figure 5.

These lattices are finally interpreted by the lattice inter-
preter (III-H), considering two rules:
− in each lattice, the services satisfying the correspond-

ing query (QoS and composition) appear in the sub-
concepts of the concept where the query appears. Ex-
ample: the services in c0 (WS1.i) satisfy Query1;

− the services located closer to the bottom of a lattice
offer better QoS levels than the farther ones, for
example: in the lattice (WS2.j), the service WS2.8
is better than service WS2.198 because it has a
VeryGood A (an inherited attribute). On the other
hand, the services located in a same concept have
convergent QoS levels.

Following the precedent rules, the lattice interpreter ex-
tracts the following services to be the best choice regarding
the specified requirements:
{WS1.59,WS1.5,WS1.3} for Task1 because they all
appear in the same concept (c0); {WS2.8} for Task2
because it is better than {WS2.198}; and {WS3.23} for
Task3 because it is better than {WS3.1}. If we verify the
actual services, we get the information in Table VI.

Table VI: Information about the services satisfying the
queries with the selected ones (highlighted).

WS Name Operation A(%) RT(ms)
1.59 Ip2LocationWebService IP2Location 100 257

(in) IP:string
(out) CITY:string,..

1.5 GeoCoder IPAddressLookup 100 328
(in) ipAddress:string
(out) City:string,..

1.3 IP2Geo ResolveIP 100 798
(in) ipAddress:string
(out) City:string,..

2.198 MediCareSupplier GetSupplierByCity 85 304
(in) City:string
(out) Zip:string,..

2.8 ZipcodeLookupService CityToLatLong 100 439
(in) city:string
(out) Zip:string,..

3.1 USWeather GetWeatherReport 85 384
(in) ZipCode:string
(out) WeatherReport:string

3.23 Weather GetCityForecastByZIP 100 237
(in) ZIP:string
(out) ForecastReturn:complex

These service lattices offer a browsing mechanism that

Figure 5: The concept lattices for the compatible sets of services with Good A, Good RT queries, and FC mode.

facilitates services selection according to user requirements.
In each lattice, services are classified by their QoS levels
as well as their composition modes with services in a
following lattice. A lattice reveals two relations between
the services regarding QoS: hasSimilarQoS when services
are located in a same concept and hasBetterQoS when
a service is a descendant of another service(s). Services
having a hasSimilarQoS or hasBetterQoS relations with a
selected service, are considered to be its alternatives. User
requirements (queries) can be expressed as new services to
be classified in the corresponding lattices. This locates the
part of the lattice that meets the user requirements and thus
represent an efficient lattice navigation mechanism. In the
case where no services could be found for the specified
requirements, the query mechanism enables the user to
identify the next best service selection. This service will
have lesser QoS than the requested and it represents the
direct ascendant of the query concept. For example: in the
third lattice of Figure 5, we could take WS3.2 or WS3.3
in concept c3 to be the next best selection. They have a
Medium RT and a Good A.

In this experiment, we had several functional and non-
functional requirements needed to build a simple process
of three tasks as described previously. The Service-Finder
enabled us to find a total of 901 (Table III) Web service
addresses, among which we have to identify and retrieve

the services meeting our requirements. Using our approach,
we efficiently identified out of 901 endpoints a set of five
services that best match our requirements (VI). The total
time required to extract these services is equal to 103 sec3,
starting from the WSDL Parser (component C) till the end.

V. RELATED WORK

We list the related work according to three categories:
Web Service Composability: The Web service Compos-

ability problem have been addressed by many works [10],
[27], [28], [9], [11]. Ernst et al. [10] present an approach
based on syntactic descriptions of Web services. This ap-
proach detects the matching between Web service’s op-
erations by analyzing the results obtained after multiple
invocations of these services. The input and output pa-
rameter values are compared syntactically and matchings
are deduced. Contrarily to our approach, which focuses
on the syntactic, semantic, and QoS descriptions of Web
services, this work is based on the experimental usage of
Web services, and is perfectly complementary to ours. In this
research area, much work has been done also on semantic
Web services [27], [28], [9], [11]. In [27], Sycara et al.
present DAML-S, an ontology for semantic Web service
description. They show the use of this ontology for service

3Calculated by NetBeans (6.9.1) using Intel Core 2 Duo
(1.80GHz) and a RAM of (2.00 GB).

discovery, interaction, and composition. Two implementa-
tions are proposed: the DAML-S/UDDI Matchmaker that
provides semantic capability matching and the DAML-S
Virtual Machine that manages the interaction with Web
services. Contrarily to our approach, this work do not deal
with QoS properties to compose Web services. In [28]
and [9], Medjahed et al. present a model for checking the
composability of semantic Web services at different levels:
syntactic, semantic, and QoS. Two kinds of composability
are defined: horizontal (normal composability) and vertical
(substitutability). This work deals with three QoS properties:
fees, security, and privacy. In our approach, we may consider
any QoS property. We used availability and response time
provided by Service-Finder. In [11], Lécue et al. present a
method which combines semantic and static analysis of mes-
sages in semantic Web services. Data types (XML schemas)
and semantic description (domain ontologies and SA-WSDL
specifications) of parameters are used to deduce mappings.
These mappings are then transformed into adapters (XSL
documents). In this work, the focus is on the generation of
adapters of Web service data flows. This enhances greatly
the composability of Web services which are not directly
composable. In our work, we concentrated on the selection
of services that best fit the user’s QoS and composability
requirements. The two approaches are complementary.

QoS-Based Web Service Selection: Many approaches
like [5], [6], [7] have been proposed to solve the problem of
QoS-based Web service selection. In [5], Zeng et al. present
a middle ware platform that enables the quality-driven com-
position of Web services. In this platform, the QoS is evalu-
ated by means of an extensible multidimensional model, and
the selection of Web services is performed in such a way
as to optimize the composite service’s QoS. Aggarwal et
al. [6] present a constraint driven Web services composition
tool that enables the selection and the composition of Web
services considering QoS constraints. Like Zeng et al. [5], a
linear integer programming approach is proposed for solving
the optimization problem. In [7], Yu et al. propose heuristic
algorithms to find a near-to-optimal solution more efficiently
than exact solutions. They model the QoS-based service
selection and composition problem in two different ways:
a combinatorial model and a graph model. A heuristic
algorithm is introduced for each model. The QoS-based
service selection problem is viewed by all the works detailed
above [5], [6], [7] as an optimization problem that aims to
find the service that best fit QoS requirements from the set of
candidate services. The advantage of our approach compared
to these works is that FCA provides equivalence classes
of services (the extents formal concepts provide classes of
services that share the same characteristics). If a service in
an application fails, one of the other services in the class
can replace it. This provides considerable enhancement for
the dynamic composition since it reduces the reaction time.

Web Service Classification Using Concept Lattices:
Many works in the literature like [15], [16], [17], [18], [29],
[19], [30] have addressed the classification of Web services
using concept lattices. Peng et al. [15] present an approach
to classify and select services. They build lattices upon
contexts where individuals are Web services and properties
represent the operations of these services. The approach
allows similar services clustering by applying similarity
search techniques that compare operation descriptions and
input/output messages data type. Aversano et al. [15] use
FCA, to understand relationships between services, as well
as between operations of a complex service, by analyzing
service interfaces and documentation. Concept lattices are
built upon a context obtained from keywords extracted
from service descriptions or operation parameters. They
cluster similar services, highlight hierarchical relationships,
commonalities, and differences between services. Azmeh et
al. [17] present a similar approach to classify and select
services using the FCA. They propose WSPAB tool that
permits the discovery, the automatic classification, and the
selection of Web services. Classification is accomplished by
defining a binary relation between services and operation
signatures. In [18], Azmeh et al. uses FCA to classify Web
services by keywords extracted from their WSDL description
files, to identify relevant services and their substitutes. Fenza
and Senatore [29] describes a system for supporting the
user in the discovery of semantic Web services that best fit
personal requirements and preferences. Through a concept-
based navigation mechanism, the user discovers conceptual
terminology associated to the Web services and uses it to
generate an appropriate service request which syntactical
matches the names of input/output specifications. The ap-
proach exploits the fuzzy FCA for modelling concepts and
relative relationships elicited from Web services. After the
request formulation and submission, the system returns the
list of semantic Web services that match the user query.
Contrarily to our approach, these works [15], [16], [17],
[18], [29] do not deal with QoS properties to classify Web
services. In [19], Chollet et al. propose an approach based
on FCA to organize the services registry at runtime and
to allow the best service selection among heterogeneous
and secured services. The services registry is viewed as a
formal context where the services are the individuals and the
services types, functional, and non-functional characteristics
(security characteristics) are properties. In [30], Driss et al.
propose a requirement-centric approach to Web services,
modelling, discovery, and selection. They consider formal
contexts with services as individuals and QoS characteristics
as properties. The obtained lattices are used to check out
relevant (that best fit functional requirements) and high QoS
Web services. All the works detailed above [15], [16], [17],
[18], [29], [19], [30] are based on FCA, and not on RCA.
In addition, they do not deal with service composition since
they propose to classify and select only individual services.

VI. CONCLUSION

In this paper, we presented an approach for facilitating
Web service selection according to user functional and non-
functional requirements. This approach is based on four
principal steps; service collecting, validity and compatibility
filtration, QoS levels calculating, and RCA classification.
The resulting lattices group services that have common QoS
and composition levels. User requirements are expressed
as new services and are classified in the corresponding
lattices. This locates the part of the lattice that meets the
user requirements. We validated our approach on a set of
901 real-world Web services obtained by querying Service-
Finder. Experimental results show that our approach allows
an efficient selection of services satisfying the specified
functional and non-functional requirements.

Future work includes: (i) enhancing the composability
evaluator component by considering advanced semantic and
syntactic similarity techniques; (ii) proposing keywords to
the user to help her/him in specifying the needed tasks
more efficiently; and (iii) performing experiments on more
complex compositions.

REFERENCES

[1] M. N. Huhns and M. P. Singh, “Service-oriented computing:
Key concepts and principles,” IEEE Internet Computing,
vol. 9, no. 1, pp. 75–81, 2005.

[2] J. Rao and X. Su, A Survey of Automated Web Service
Composition Methods. LNCS, Springer, 2005.

[3] Seekda, http://webservices.seekda.com/.

[4] Service-Finder, http://www.service-finder.eu/.

[5] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware
for web services composition,” IEEE Transactions on
Software Engineering, vol. 30, no. 5, pp. 311–327, 2004.

[6] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint
driven web service composition in meteor-s,” in Proc. of SCC
’04, pp. 23–30, 2004.

[7] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for
web services selection with end-to-end qos constraints,” ACM
Transactions on the Web, vol. 1, no. 1, p. 6, 2007.

[8] D. A. Menascé, “Qos issues in web services,” IEEE Internet
Comp., vol. 6, no. 6, pp. 72–75, 2002.

[9] B. Medjahed and A. Bouguettaya, “A multilevel compos-
ability model for semantic web services,” IEEE Trans. on
Knowledge and Data Eng., vol. 17, no. 7, pp. 954–968, 2005.

[10] M. D. Ernst, R. Lencevicius, and J. H. Perkins, “Detection of
web service substitutability and composability,” in WS-MaTe
2006, pp. 123–135, 2006.

[11] F. Lécue, S. Salibi, P. Bron, and A. Moreau, “Semantic and
syntactic data flow in web service composition,” in Proc. of
ICWS’08, pp. 211–218, 2008.

[12] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev,
“Relational concept discovery in structured datasets,” Annals
of Mathematics and Artificial Intelligence, vol. 49, no. 1-4,
pp. 39–76, 2007.

[13] B. Ganter and R. Wille, Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, Inc., 1999.

[14] R. Wille, “Restructuring lattice theory: an approach based on
hierarchies of concepts,” Ordered Sets, vol. 83, pp. 445–470,
Sep. 1982.

[15] D. Peng, S. Huang, X. Wang, and A. Zhou, “Management and
retrieval of web services based on formal concept analysis,”
in Proc. of CIT’05, pp. 269–275, 2005.

[16] L. Aversano, M. Bruno, G. Canfora, M. Di Penta, and D. Dis-
tante, “Using concept lattices to support service selection,”
Int. J. of Web Serv. Res., vol. 3, no. 4, pp. 32–51, 2006.

[17] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and
S. Vauttier, “Wspab: A tool for automatic classification and
selection of web services using formal concept analysis,” in
Proc. of ECOWS’08, 2008.

[18] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and
S. Vauttier, “Using concept lattices to support web service
compositions with backup services,” in Proc. of ICIW’10,
2010.

[19] S. Chollet, V. Lestideau, P. Lalanda, P. Colomb, and
D. Moreno, “Heterogeneous service selection based on formal
concept analysis,” in Proc of Int. W. on Net-Centric Service
Enterprises: Theory and Application (NCSE2010), 2010.

[20] Conexp. [Online]. Available: http://conexp.sourceforge.net/

[21] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg, “A
comparison of string distance metrics for name-matching
tasks,” in IIWeb, S. Kambhampati and C. A. Knoblock, Eds.,
pp. 73–78, 2003.

[22] Z. Azmeh, F. Hamoui, and M. Huchard, “BoxPlot++,” Tech.
Rep., 01 2011. [Online]. Available: http://hal-lirmm.ccsd.
cnrs.fr/lirmm-00557222/en/

[23] R. McGill, J. W. Tukey, and W. A. Larsen, “Variations of Box
Plots,” The American Statistician, vol. 32, pp. 12–16, 1978.

[24] GaLicia, “Galois lattice interactive constructor,” 2002, http:
//www.iro.umontreal.ca/∼galicia - accessed on Sept. 22, 2008.

[25] Z. Azmeh, M. Driss, M. Huchard, N. Moha, and
C. Tibermacine, “QoS-Driven Selection of Composable
Web Services,” Tech. Rep., 06 2010. [Online]. Available:
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00565357/en/

[26] RCA contexts, http://www.lirmm.fr/∼azmeh/icws11/
rca-contexts.html.

[27] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan,
“Automated discovery, interaction and composition of seman-
tic web services,” Journal of Web Semantics, Elsevier, vol. 1,
pp. 27–46, 2003.

[28] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Com-
posing web services on the semantic web,” The VLDB Jour-
nal, vol. 12, pp. 333–351, 2003.

[29] G. Fenza and S. Senatore, “Friendly web services selection
exploiting fuzzy formal concept analysis,” Soft Comput.,
vol. 14, pp. 811–819, June 2010.

[30] M. Driss, N. Moha, Y. Jamoussi, J.-M. Jézéquel, and H. Ha-
jjami Ben Ghézala, “A requirement-centric approach to web
service modeling, discovery, and selection,” in Proc. of IC-
SOC’10, 2010.

