
Detection of REST Patterns and Antipatterns:

A Heuristics-Based Approach

Francis Palma1,2, Johann Dubois1,3, Naouel Moha1,
and Yann-Gaël Guéhéneuc2

1 Département d’informatique, Université du Québec à Montréal, Canada
moha.naouel@uqam.ca

2 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca
3 École supérieure d’informatique, eXia.Cesi, France

johann.dubois@viacesi.fr

Abstract. REST (REpresentational State Transfer), relying on resources
as its architectural unit, is currently a popular architectural choice for
building Web-based applications. It is shown that design patterns—good
solutions to recurring design problems—improve the design quality and
facilitate maintenance and evolution of software systems. Antipatterns,
on the other hand, are poor and counter-productive solutions. There-
fore, the detection of REST (anti)patterns is essential for improving the
maintenance and evolution of RESTful systems. Until now, however, no
approach has been proposed. In this paper, we propose SODA-R (Ser-
vice Oriented Detection for Antipatterns in REST), a heuristics-based
approach to detect (anti)patterns in RESTful systems. We define detec-
tion heuristics for eight REST antipatterns and five patterns, and perform
their detection on a set of 12 widely-used REST APIs including BestBuy,
Facebook, and DropBox. The results show that SODA-R can perform the
detection of REST (anti)patterns with high accuracy. We also found that
Twitter and DropBox are not well-designed, i.e., contain more antipat-
terns. In contrast, Facebook and BestBuy are well-designed, i.e., contain
more patterns and less antipatterns.

Keywords: REST, Antipatterns, Patterns, Design, Heuristics, Detection.

1 Introduction

Over the last decade, there is a paradigmatic shift from the traditional stand-
alone software solutions towards the service-oriented paradigm to design, de-
velop, and deploy software systems [1]. REST (REpresentational State Trans-
fer) [7] architectural style is simpler and more efficient than the traditional
SOAP-based (Simple Object Access Protocol) Web services in publishing and
consuming services [18]. Thus, RESTful services are gaining an increased atten-
tion. Facebook, YouTube, Twitter, and many more companies leverage REST.

However, the increased usage of REST for designing and developing Web-based
applications confronts common software engineering challenges. In fact, likewise

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 230–244, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archipel - Université du Québec à Montréal

https://core.ac.uk/display/77617121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Detection of REST Patterns and Antipatterns 231

any software system, RESTful systems must evolve to handle new web entities
and resources, i.e., meet new business requirements. Even, the changes in un-
derlying technologies or protocols may force the REST APIs to change. All these
changes may degrade the design of REST APIs, which may cause the introduction
of common poor solutions to recurring design problems—antipatterns—in oppo-
sition to design patterns, which are good solutions to the problems that software
engineers face while designing and developing RESTful systems. Anti(patterns)
might be introduced even in the early design phase of RESTful systems. Antipat-
terns in RESTful systems not only degrade their design but also make their main-
tenance and evolution difficult, whereas design patterns facilitate them [3, 5, 6].

Forgetting Hypermedia [16] is a common REST antipattern that corresponds
to the absence of hypermedia, i.e., links within resource representations. The
absence of such links hinders the state transition of RESTful systems and lim-
its the runtime communication between clients and servers. In contrast, Entity
Linking [6]—the corresponding design pattern—promotes runtime communica-
tion via links provided by the servers within resource representations. By us-
ing such hyper-links, the services and consumers can be more autonomous and
loosely coupled. For REST APIs, the automatic detection of such (anti)patterns
is an important activity by assessing their design (1) to ease their maintenance
and evolution and (2) to improve their design quality.

REST (anti)patterns require a concrete detection approach, to support their rig-
orous analysis, which is still lacking. Despite the presence of several technology-
specific approaches in SCA (Service Component Architecture) and Web services
(e.g., [3, 9–11, 13]), they are not applicable for detecting (anti)patterns in REST.
Indeed, the key differences between REST architecture and other SOA standards
prevents the application of these approaches because: (1) traditional service-
orientation is operations-centric, whereas REST is resources-centric, (2) RESTful
services are on top of JSON (or XML) over HTTP, whereas traditional Web services
are on top of SOAP over HTTP or JMS (Java Message Service), (3) Web services
use WSDL (Web Service Definition Language) as their formal contracts; REST has
no standardised contract except the human-readable documentations, (4) tradi-
tional services are the set of self-contained software artefacts where operations
are denoted using verbs; resources in REST are denoted by nouns and are directly-
accessible objects via URIs, and (5) REST clients use the standard HTTP methods
to interact with resources;Web services clients implement separate client-stubs to
consume services.

Among many others, the differences discussed above motivate us to propose a
new approach, SODA-R (Service Oriented Detection for Antipatterns in REST) to
detect (anti)patterns in RESTful systems. SODA-R is supported by an underlying
framework, SOFA (Service Oriented Framework for Antipatterns) [9] that supports
static and dynamic analyses of service-based systems.

To validate SODA-R, first, we performa thorough analysis of REST (anti)patterns
from the literature [2, 5, 6, 8, 12, 16] and define their detection heuristics. A de-
tection heuristic provides an indication for the presence of certain design issues.
For instance, a heuristic “servers should provide entity links in their responses”,



232 F. Palma et al.

suggests that REST developers need to provide entity links in the responses that
REST clients can use. For such case, we define a detection heuristic to check if the
response header or body contains any resource location or entity links. Follow-
ing the defined heuristics, we implement their concrete detection algorithms, ap-
ply them on widely used REST APIs, and get the list of REST services detected
as (anti)patterns. Our detection results show the effectiveness and accuracy of
SODA-R: it can detect five REST patterns and eight REST antipatterns with an aver-
age precision and recall of more than of 75% on 12 REST APIs including BestBuy,
Facebook, and DropBox.

Thus, the main contributions in this paper are: (1) the definition of detection
heuristics for 13 REST (anti)patterns from the literature, namely [2, 5, 6, 8, 12,
16], (2) the extension of SOFA framework from its early version [9] to allow
the detection of REST (anti)patterns, and, finally, (3) the thorough validation
of SODA-R approach with 13 REST (anti)patterns on a set of 12 REST APIs by
invoking 115 REST methods from them.

The reminder of the paper is organised as follows. Section 2 briefly describes
the contributions from the literature on the specification and detection of SOA

(anti)patterns. Section 3 presents our approach SODA-R, while Section 4 presents
its validation along with detailed discussions. Finally, Section 5 concludes the
paper and sketches the future work.

2 Related Work

It is important to design REST (REpresentational State Transfer) APIs of quality
for building well-maintainable and evolvable RESTful systems. In the literature,
the concept of (anti)patterns are well-recognised as the means to evaluate var-
ious design concerns in terms of quality. Despite of the presence of some REST

(anti)patterns defined recently by the SOA (Service Oriented Architecture) com-
munity, the methods and techniques for their detection are yet to propose.

Indeed, there are few books [2,5,6] that discuss a number of REST patterns. In
addition, a number of online resources [8,12,16] by REST practitioners provide a
high-level overview of REST (anti)patterns and discuss how they are introduced
by developers at design-time. Beyond those contributions, however, the detection
of (anti)patterns require a concrete approach, to support their rigorous analysis,
which is still lacking in the current literature.

For instance, Erl in his book [5] discussed 85 SOA patterns related to service
design and composition. Erl et al. [6] also explained the REST and RESTful

service-orientation, and discussed seven new REST patterns, thus in total, the
catalog defines 92 SOA patterns. Daigneau [2] introduced 25 design patterns for
SOAP (Simple Object Access Protocol) and RESTful services related to the service
interaction, implementation, and evolution. Moreover, various online resources
[8, 12, 16] defined a limited number of REST antipatterns related to API design
with simple examples. All those books and online resources discussed (1) the
solutions to recurring design problems (i.e., patterns) or (2) the bad design
practices (i.e., antipatterns), but none of them discussed their detection.



Detection of REST Patterns and Antipatterns 233

A few contributions are available on the detection of SOA (anti)patterns for
various SOA standards, e.g., SCA (Service Component Architecture) [3, 9–11]
and Web services [13]. To the best of our knowledge, the detection of REST

(anti)patterns, in the literature deserves yet to receive attention. As a contin-
uous effort to investigate diverse SOA technologies with the goal of detecting
REST (anti)patterns, we focus, in this paper, on analysing the REST APIs, both
statically and dynamically.

3 The SODA-R Approach

We propose the SODA-R approach (Service Oriented Detection for Antipatterns
in REST) for the detection of REST (anti)patterns. The steps in SODA-R include:

Step 1. Analysis of Patterns and Antipatterns: This manual step involves
analysing the description of REST (anti)patterns to identify the relevant proper-
ties that characterise them. We use these properties to define detection heuristics.

Step 2. Detection of Patterns and Antipatterns: This semi-automatic step in-
volves the implementation of detection algorithms based on the heuristics defined
in the previous step. Later, we automatically apply these detection algorithms
on a set of REST APIs, which return detected (anti)patterns.

The next sections detail the analysis of REST (anti)patterns, the implementa-
tion of detection algorithms, and the application of the detection algorithms on
REST APIs. The validation of SODA-R is discussed in Section 4.

3.1 Analysis of Patterns and Antipatterns

For the definition of heuristics, we perform a thorough analysis of REST

(anti)patterns by studying their descriptions and examples in the literature
[6, 12, 16, 17]. This analysis helps us to identify the static and dynamic prop-
erties relevant to each REST (anti)pattern. A static property is a property that
is defined on a RESTful service and is obtained statically, i.e., before invoking
the REST methods.

A dynamic property, on the other hand, is obtained after making a service
call to access a resource and can be found in the request/response headers and
bodies, at runtime. For instance, the HTTP request headers Accept and Cache-

Control and their corresponding values, respectively used to set the resource
formats requested by the clients and to set the caching preferences, correspond to
dynamic properties. Similarly, the HTTP response headers Location and Status

and their corresponding values, respectively used to set the new location by
servers and to indicate the current context and status of the action performed
by the server on a client request, also correspond to dynamic properties. Table 1
shows the relevant static and dynamic properties for each (anti)pattern, which
we use and combine in the following section to define detection heuristics.



234 F. Palma et al.

Table 1. Relevant properties of patterns and antipatterns

REST Antipatterns REST Patterns Properties

Breaking Self-descriptiveness – request-header fields; response-header fields

Forgetting Hypermedia Entity Linking http-methods; entity-links; Location

Ignoring Caching Response Caching Cache-Control; Cache-Control; ETag

Ignoring MIME Types Content Negotiation Accept; Content-Type

Ignoring Status Code – http-methods; status; status-code

Misusing Cookies – Cookie; Set-Cookie

Tunnelling Through GET – http-method; request-uri

Tunnelling Through POST – http-method; request-uri

– End-point Redirection Location; status-code

– Entity Endpoint end-points; http-methods

DetectionHeuristicsofRESTAntipatternsandPatterns: Using the static
and dynamic properties, we define detection heuristics of REST (anti)patterns. Fig-
ures 1 and 2 show the detection heuristics defined for the Forgetting Hypermedia
antipattern and the corresponding Entity Linking pattern, respectively.

1: Forget-Hyper-media(response-header, response-body, http-method)
2: body-links[] ← Extract-Entity-Links(response-body)
3: header-link ← response-header.getValue(“Link”)
4: if(http-method = GET and (length(body-links[]) = 0 or header-link = NIL)) or
5: (http-method = POST and (“Location:” �∈ response-header.getKeys() and
6: length(body-links[]) = 0))) then
7: print “Forgetting Hypermedia detected”
8: end if

Fig. 1. Heuristic of Forgetting Hypermedia antipattern

Forgetting Hypermedia [16] is a REST antipattern that identifies the absence of
entity links in the response body or header. In general, for the HTTP GET requests,
the entity links are provided in the response body or header, hence, checking for
the absence of links in the response body (i.e., the size of the array containing
the entity-links is zero) or the absence of link in the response header is sufficient
(line 4, Figure 1). As for the HTTP POST requests, usually the server provides
a location in the response header or links in the response body. Therefore, it
is sufficient to look for the absence of Location in the response header (line
5, Figure 1) or the absence of links in the response body (line 6, Figure 1) to
detect Forgetting Hypermedia antipattern. The corresponding pattern, Entity
Linking [6] (Figure 2) refers to a REST service that provides entity links to follow
in their response bodies or headers. We put the detection heuristics for the seven
other REST antipatterns and four REST patterns on our web site1.

Heuristics are more suitable, in particular for the detection of REST

(anti)patterns, because they are more intuitive. Moreover, the engineer’s knowl-
edge and experience on REST (anti)patterns play a key role in defining heuristics.

3.2 Detection of Patterns and Antipatterns

In this section, we detail the detection of REST (anti)patterns. We show the
different implementation and application steps in Figure 3.

1 http://sofa.uqam.ca/soda-r/

http://sofa.uqam.ca/soda-r/


Detection of REST Patterns and Antipatterns 235

1: Entity-Linking(response-header, response-body, http-method)
2: body-links[] ← Extract-Entity-Links(response-body)
3: header-link ← response-header.getValue(“Link”)
4: if(http-method = GET and (length(body-links[]) ≥ 1 or header-link �= NIL)) or
5: (http-method = POST and (“Location:” ∈ response-header.getKeys() or
6: length(body-links[]) ≥ 1))) then
7: print “Entity Linking detected”
8: end if

Fig. 2. Heuristic of Entity Linking pattern

Fig. 3. Steps of the detection of REST (anti)patterns

Step 2.1: Implementation - From the heuristics defined in the previous
step (in Section 3.1), we manually implement their corresponding detection al-
gorithms. These algorithms are thus conform to detection heuristics that use
and combine static and dynamic properties. We implement also the service in-
terfaces for invoking REST services, and later to analyse their static and dynamic
properties. These interfaces written in Java contain a set of methods mapped
to respective HTTP requests for all REST APIs from their online documentations
(see Table 4). The REST API online documentations comprise of (1) a list of re-
sources, (2) a list of actions to perform on these resources, (3) the HTTP requests
with entity end-points, and (4) a list of parameters for each HTTP request.

Step 2.2: Dynamic Invocation - After we have Java interfaces for REST

APIs, we implement the REST clients to invoke each service by providing the
correct parameter lists. The REST clients must conform to the API documenta-
tions. During the detection time, we dynamically invoke the methods of service
interfaces. From REST point of view, invocation of a method refers to performing
an action on a resource or on an entity. For some method invocations, clients
require to authenticate themselves to the servers. For each authentication pro-
cess, we need to have a user account to ask for the developer credentials to the
server. The server then supplies the user with the authentication details to use
every time to make a signed HTTP request. For instance, YouTube and DropBox
support OAuth 2.0 authentication protocol to authenticate their clients. At the
end of this step, we gather all the requests and responses.

Step 2.3: Application - For the application, we rely on the underlying frame-
work SOFA (Service Oriented Framework for Antipatterns) [9] that enables the
analysis of static and dynamic properties specific to REST (anti)patterns. We au-
tomatically apply the heuristics in the form of detection algorithms on the requests



236 F. Palma et al.

from the clients and responses from the servers, gathered in the previous step. In
the end, we obtain a list of detected REST (anti)patterns.

From its initial version in [9], we further developed the SOFA framework to sup-
port the detection of REST (anti)patterns. SOFA itself is developed based on the
SCA (Service Component Architecture) standard [4] and is composed of several
SCA components. SOFA framework uses FraSCAti [15] as its runtime support. We
added a new REST Handler SCA component in the framework. The REST Handler
component supports the detection of REST (anti)patterns by (1) wrapping each
REST API with an SCA component and (2) automatically applying the detection
heuristics on the SCA-wrapped REST APIs. This wrapping allows us to introspect
each request and response at runtime by using an IntentHandler. The intent
handler in FraSCAti is an interceptor that can be applied on a specific service
to implement the non-functional features, e.g., transaction or logging. When we
invoke a service that uses an IntentHandler, the service call is interrupted and
the intent handler is notified by calling the invoke(IntentJoinPoint)method.
This interruption of call enables us to introspect the requests and responses of
an invoked REST service.

4 Validation

In this section, we want to show the robustness of SODA-R approach, accuracy
of our detection heuristics, and performance of the implemented algorithms.

4.1 Hypotheses

We define three hypotheses to assess the effectiveness of our SODA-R approach.
H1. Robustness: The SODA-R approach is robust. This hypothesis claims that
our SODA-R approach is assessed rigorously on a large set of REST APIs and with
a set of different REST patterns and antipatterns.
H2. Accuracy: The detection heuristics have an average precision of more than
75% and a recall of 100%, i.e., more than three-quarters of detected (anti)patterns
are true positive and we do not miss any existing (anti)patterns. Having a trade-
off between precision and recall, we presume that 75% precision is acceptable
while our objective is to detect all existing (anti)patterns, i.e., 100% recall. This
hypothesis claims the accuracy of the defined detection heuristics and the im-
plemented detection algorithms.
H3. Performance: The implemented algorithms perform with considerably a
low detection times, i.e., on an average in the order of seconds. Through this as-
sumption, we support the performance of the implemented detection algorithms.

4.2 Subjects and Objects

We define heuristics for eight different REST antipatterns and five REST patterns
from the literature. Tables 2 and 3 list those REST antipatterns and patterns



Detection of REST Patterns and Antipatterns 237

Table 2. List of eight REST antipatterns

Breaking Self-descriptiveness: REST developers tend to ignore the standardised headers, formats,
or protocols and use their own customised ones. This practice shatters the self-descriptiveness or
containment of a message header. Breaking the self-descriptiveness also limits the reusability and
adaptability of REST resources [16].

Forgetting Hypermedia: The lack of hypermedia, i.e., not linking resources, hinders the state
transition for REST applications. One possible indication of this antipattern is the absence of URL
links in the resource representation, which typically restricts clients to follow the links, i.e., limits
the dynamic communication between clients and servers [16].

Ignoring Caching: REST clients and server-side developers tend to avoid the caching capability due
to its complexity to implement. However, caching capability is one of the principle REST constraints.
The developers ignore caching by setting Cache-Control: no-cache or no-store and by not providing
an ETag in the response header [16].

Ignoring MIME Types: The server should represent resources in various formats, e.g., xml, json, pdf,
etc., which may allow clients, developed in diverse languages, a more flexible service consumption.
However, the server side developers often intend to have a single representation of resources or rely
on their own formats, which limits the resource (or service) accessibility and reusability [16].

Ignoring Status Code: Despite of a rich set of defined application-level status codes suitable
for various contexts, REST developers tend to avoid them, i.e., rely only on common ones, namely
200, 404, and 500, or even use the wrong or no status codes. The correct use of status codes from
the classes 2xx, 3xx, 4xx, and 5xx helps clients and servers to communicate in a more semantic
manner [16].

Misusing Cookies: Statelessness is another REST principle to adhere—session state in the server
side is disallowed and any cookies violate RESTfulness [7]. Sending keys or tokens in the Set-Cookie
or Cookie header field to server-side session is an example of misusing cookies, which concerns both
security and privacy [16].

Tunnelling Through GET: Being the most fundamental HTTP method in REST, the GET method
retrieves a resource identified by a URI. However, very often the developers rely only on GET method
to perform any kind of actions or operations including creating, deleting, or even for updating a
resource. Nevertheless, HTTP GET is an inappropriate method for any actions other than accessing a
resource, and does not match its semantic purpose, if improperly used [16].

Tunnelling Through POST: This anti-pattern is very similar to the previous one, except that in
addition to the URI the body of the HTTP POST request may embody operations and parameters to
apply on the resource. The developers tend to depend only on HTTP POST method for sending any
types of requests to the server including accessing, updating, or deleting a resource. In general, the
proper use of HTTP POST is to create a server-side resource [16].

collected from the literature, mainly [6, 8, 12, 16, 17]. In Tables 2 and 3, we put
the relevant properties for each antipattern and pattern in bold-italics.

As for the objects in our experiment, we use some widely-used and popular
REST APIs for which their underlying HTTP methods, service end-points, and
authentication details are well documented online. Large companies like Face-
book or YouTube provide self-contained documentations with good example sets.
Table 4 lists the 12 REST APIs that we analysed in our experiment.

4.3 Validation Process

Through the implemented clients, we invoked a total set of 115 methods from
the service interfaces to access resources and received the responses from servers.
Then, we applied the detection algorithms on the REST requests and responses
and reported any existing patterns or antipatterns using our SOFA framework.
We manually validated the detection results to identify the true positives and



238 F. Palma et al.

Table 3. List of five REST patterns
Content Negotiation: This pattern supports alternative resource representations, e.g., in json,
xml, pdf, etc. so that the service consuming becomes more flexible with high reusability. Servers
can provide resources in any standard format requested by the clients. This pattern is applied via
standard HTTP media types and adhere to service loose coupling principle. If not applied at all, this
turns into Ignoring MIME Types antipattern [6].

End-point Redirection: The redirection feature over the Web is supported by this pattern, which
also plays a role as the means of service composition. To redirect clients, servers send a new location
to follow with one of the status code among 301, 302, 307, or 308. The main benefit of this pattern
is—an alternative service remains active even if the requested service end-point is not sound [6].

Entity Linking: This pattern enables runtime communication via links provided by the server in
the response body or via Location: in the response header. By using hyper-links, the servers and
clients can be loosely coupled, and the clients can automatically find the related entities at runtime.
If not properly applied, this pattern turns into Forgetting Hypermedia antipattern [6].

Entity Endpoint: Services with single end-points are too coarse-grained. Usually, a client requires
at least two identifiers: (1) a global for the service itself and (2) a local for the resource or entity
managed by the service. By applying this pattern, i.e., using multiple end-points, each entity (or
resource) of the incorporating service can be uniquely identified and addressed globally [12].

Response Caching: Response caching is a good practice to avoid sending duplicate requests and
responses by caching all response messages in the local client machine. In opposed to Ignoring
Caching antipattern, the Cache-Control: is set to any value other than no-cache and no-store, or
an ETag is used along with the status code 304 [6].

Table 4. List of 12 REST APIs and their online documentations.

REST APIs Online Documentations
Alchemy alchemyapi.com/api/
BestBuy bbyopen.com/developer/
Bitly dev.bitly.com/api.html
CharlieHarvey charlieharvey.org.uk/about/api/
DropBox dropbox.com/developers/core/docs/
Facebook developers.facebook.com/docs/graph-api/
Musicgraph developer.musicgraph.com/api-docs/overview/
Ohloh github.com/blackducksw/ohloh api/
TeamViewer integrate.teamviewer.com/en/develop/documentation/
Twitter dev.twitter.com/docs/api/
YouTube developers.google.com/youtube/v3/
Zappos developer.zappos.com/docs/api-documentation/

to find false negatives. The validation was performed by two professionals who
have knowledge on REST and were not part of the implementation and exper-
iment. We provided them the descriptions of REST (anti)patterns and the sets
of all requests and responses collected during the service invocations. We used
precision and recall to measure our detection accuracy. Precision concerns the
ratio between the true detected (anti)patterns and all detected (anti)patterns.
Recall is the ratio between the true detected (anti)patterns and all existing true
(anti)patterns.

4.4 Results

Table 5 presents detailed detection results for the eight REST antipatterns and five
REST patterns. The table reports the (anti)patterns in the first column followed



Detection of REST Patterns and Antipatterns 239

Fig. 4. Bar-plots of the detection results for eight antipatterns and five patterns. (APIs
are followed by the number of method invocations in parentheses. The acronyms corre-
spond to the (anti)pattern name abbreviation and the numbers represent their detected
instances.)

by the analysed REST APIs in the following twelve columns. For each REST API

and for each (anti)pattern, we report: (1) the total number of validated true
positives with respect to the total detected (anti)patterns by our algorithms,
i.e., the precision, in the first row and (2) the total number of detected true
positives with respect to the total existing true positives, i.e., the recall, in the
following row. The last two columns show, for all APIs, the average precision-
recall and the total detection time for each (anti)pattern. The detailed results
on all the test cases, e.g., 115 methods from 12 REST APIs, are available on our
web site1.

4.5 Overview on the Results

Figure 4 shows the bar-plots of the detection results for the eight antipatterns
and five patterns on the 12 REST APIs.

REST developers are most likely to use their own header fields, data formats,
and protocols, which limit the comprehension and reusability of REST APIs. For
example, among more than 80 instances of detected Breaking Self-descriptiveness
(BSD) antipattern: Facebook (29 instances), DropBox (12 instances), and Best-
Buy (12 instances) were mostly using customised header fields, data formats, and
protocols. Also, Forgetting Hypermedia (FH) antipattern was detected in Face-
book (8 instances) and DropBox (10 instances) APIs. Moreover, Ignoring MIME

Types (IMT) antipattern was detected in Twitter (10 instances) and YouTube
(9 instances) APIs. Among the less frequent antipatterns, Ignoring Status Code



240 F. Palma et al.

(ISC, 2 instances) and Misusing Cookies (MC, 3 instances) were not significantly
observed among the 115 tested methods.

As for REST patterns, Content Negotiation (CN, 70 instances) and Entity
Linking (EL, 62 instances) were most frequently applied by REST developers.
Content Negotiation pattern supports the ability to represent REST resources in
diverse formats (implemented by REST developers) as requested by the clients.
Entity Linking pattern facilitates clients to follow links provided by the servers.
Furthermore, some APIs also applied Response Cashing (RC, 13 instances) and
End-point Redirection (ER, 2 instances) patterns.

Overall, REST APIs that follow patterns tend to avoid corresponding antipat-
terns and vice-versa. For example: BestBuy and Facebook are found involved
respectively in 0 and 8 instances of Forgetting Hypermedia antipattern; however,
these APIs are involved in 11 and 21 corresponding Entity Linking pattern.
Moreover, DropBox, Alchemy, YouTube, and Twitter APIs had 27 instances of
Ignoring Caching antipattern, but they were involved in 8 instances of the cor-
responding Response Cashing pattern. Finally, we found Facebook, DropBox,
BestBuy, and Zappos APIs involved in only 3 instances of Ignoring MIME Types
antipattern, which conversely are involved in more than 55 instances of corre-
sponding Content Negotiation pattern.

In general, among the 12 analysed REST APIs with 115 methods tested and
eight antipatterns, we found Twitter (32 instances of four antipatterns), Drop-
Box (40 instances of four antipatterns), and Alchemy (19 instances of five an-
tipatterns) are more problematic, i.e., contain more antipatterns than others (see
Figure 4). On the other hand, considering the five REST patterns, we found Face-
book (49 instances of four patterns), BestBuy (22 instances of two patterns), and
YouTube (15 instances of three patterns) are well designed, i.e., involve more
patterns than others (see Figure 4).

4.6 Details of the Results

In this section, we discuss three detection results in detail, obtained in our ex-
periment as presented in Table 5.

REST developers tend to rely on their own customised headers, formats, and
protocols, and thus introduce Breaking Self-descriptiveness antipattern. The
analysis on the 12 REST APIs shows that developers used non-standard header
fields and protocols in most APIs including BestBuy, DropBox, Facebook, and
Twitter. For example, Facebook used x-fb-debug and x-fb-rev header fields,
which are mainly used to track a request id for their internal bug manage-
ment purpose. Similarly, we found DropBox using the x-dropbox-request-id

and Twitter using x-tfe-logging-request-* and x-xss-protection header
fields. In general, the designers and implementers often distinguish the standard-
ised and non-standardised header members by prefixing their names with “x-”
(a.k.a. eXperimental). Indeed, the “x-” convention was highly discouraged by the
Internet Society in RFC822 [14]. The manual validation reveals that all our detec-
tion was true positives and we reported all existing non-standard header fields
and protocols, except two in DropBox where the manual validation considered



Detection of REST Patterns and Antipatterns 241

Table 5. Detection results of the eight REST antipatterns and five REST patterns ob-
tained by applying detection algorithms on the 12 REST APIs (numbers in the paren-
theses show total test methods for each API).

R
E
S
T

A
P
I

(
7
)
A
lc
h
e
m

y

(
1
2
)B

e
s
tB

u
y

(
3
)
B
it
ly

(4
)C

h
a
r
li
e
H
a
r
v
e
y

(1
5
)D

r
o
p
B
o
x

(2
9
)F

a
c
e
b
o
o
k

(8
)M

u
s
ic
g
r
a
p
h

(3
)O

h
lo

h

(8
)T

e
a
m

V
ie
w
e
r

(
1
0
)T

w
it
t
e
r

(9
)Y

o
u
T
u
b
e

(7
)Z

a
p
p
o
s

p
r
e
c
is
io

n
-r
e
c
a
ll

(1
1
5
)
T
o
ta

l

A
v
e
r
a
g
e

P
r
e
c
is
io

n
-R

e
c
a
ll

D
e
t
e
c
ti
o
n

T
im

e

REST Antipatterns

Breaking Self- 0/0 12/12 0/0 4/4 12/12 29/29 0/0 3/3 0/0 10/10 9/9 7/7 p 86/86 100%
21.31s

descriptiveness 0/0 12/12 0/0 4/4 12/14 29/29 0/0 3/3 0/0 10/10 9/9 7/7 r 86/88 98.21%

Forgetting 1/1 0/0 2/2 0/0 9/10 8/8 7/7 0/0 3/3 4/4 2/3 0/0 p 36/38 94.58%
19.54s

Hypermedia 1/1 0/0 2/2 0/0 9/9 8/8 7/7 0/0 3/3 4/4 2/2 0/0 r 36/36 100%

Ignoring 7/7 0/0 0/0 0/0 12/12 1/1 0/0 1/1 4/4 8/8 0/0 0/0 p 33/33 100%
18.99s

Caching 7/7 0/0 0/0 0/0 12/12 1/1 0/0 1/1 4/4 8/8 0/0 0/0 r 33/33 100%

Ignoring 2/2 1/1 3/3 4/4 0/0 2/2 8/8 0/0 0/0 10/10 9/9 0/0 p 39/39 100%
19.39s

MIME Types 2/2 1/1 3/3 4/4 0/0 2/2 8/8 0/0 0/0 10/10 9/9 0/0 r 39/39 100%

Ignoring 1/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 p 1/2 50%
21.22s

Status Code 1/2 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 1/3 25%

Misusing 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0 0/0 0/0 p 3/3 100%
19.1s

Cookies 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0 0/0 0/0 r 3/3 100%

Tunnelling 5/7 0/0 0/2 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/1 p 5/11 17.86%
28.26s

Through GET 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 5/5 100%

Tunnelling 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 p 5/5 100%
28.64s

Through POST 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 5/5 100%

REST Patterns

Content 5/5 11/11 0/0 0/0 14/14 26/26 0/0 3/3 5/5 0/0 0/0 7/7 p 71/71 100%
19.63s

Negotiation 5/5 11/11 0/0 0/0 14/14 26/26 0/0 3/3 5/5 0/0 0/0 7/7 r 71/71 100%

Entity 6/6 11/11 1/1 4/4 3/3 21/21 1/1 2/2 1/1 5/5 6/6 4/4 p 65/65 100%
19.90s

Linking 6/6 11/11 1/1 4/4 3/3 21/21 1/1 2/2 1/1 5/5 6/7 4/4 r 65/66 98.81%

End-point 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 p 2/2 100%
20.36s

Redirection 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 r 2/2 100%

Entity 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 p 10/10 100%
23.06s

Endpoint 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 r 10/10 100%

Response 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 8/8 4/4 p 13/13 100%
19.23s

Caching 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 8/8 4/4 r 13/13 100%

Average
p 369/378 89.42%

21.43s
r 369/374 94%

them as non-standard practice. This leads to the precision of 100% and the recall
of 98.21% for this detection.

Any RESTful interaction is driven by hypermedia—by which clients interact
with application servers via URL links provided by servers in resource repre-
sentations [7]. The absence of such interaction pattern is known as Forgetting
Hypermedia antipattern [16], which was detected in eight APIs, namely Bitly,
DropBox, Facebook, and so on (see Table 5). Among the 115 methods tested,
we found 38 instances of this antipattern. Moreover, REST APIs that do not
have this antipattern well applied the corresponding Entity Linking pattern [6],
e.g., Alchemy, BestBuy, and Ohloh, which is a good practice. This observation
suggests that, in practice, developers sometimes do not provide hyper-links in
resource representations. As for the validation, 36 instances of Forgetting Hy-
permedia antipattern were manually validated; therefore, we have an average
precision of 94.58% and a recall of 100%. For Entity Linking pattern, the man-
ual validation confirmed 66 instances whereas we detected a total of 65 instances,



242 F. Palma et al.

all of which were true positives. Thus, we had an average precision of 100% and
a recall of 98.81%.

Caching helps developers implementing high-performance and scalable REST

services by limiting repetitive interactions, which if not properly applied violates
one of the six REST principles [7]. REST developers widely ignore the caching ca-
pability by using Pragma: no-cache or Cache-Control: no-cache header in the re-
quests, which forces the application to retrieve duplicate responses from servers.
This bad practice is known as Ignoring Caching antipattern [16]. In contrast, the
corresponding pattern, Response Caching [6] supports response cacheability. We
detected six REST APIs that explicitly avoid caching capability, namely Alchemy,
DropBox, Ohloh, and so on (see Table 5). On the other hand, cacheability is
supported by YouTube and Zappos, which were detected as Response Caching
patterns. The manual analysis of requests and responses also confirmed these
detections, and we had an average precision and recall of 100%.

4.7 Discussion on the Hypotheses

In this section, we discuss the hypotheses defined in Section 4.1.

H1. Robustness: To validate the SODA-R approach, we performed experiment
on 12 REST APIs including well-known Facebook, BestBuy, DropBox, Twitter,
and YouTube. We analysed 115 methods in the form of HTTP requests from these
APIs and applied detection algorithms of eight common REST antipatterns and
five REST patterns on them. For each request among 115, we analysed individual
request headers and bodies, and the corresponding response headers and bodies.
With such an extensive evaluation and validation, we support our first hypothesis
on the robustness of our SODA-R approach.

H2. Accuracy: As shown in Table 5, we obtained an average recall of 94% and
an average precision of 89.42% on all REST APIs and for all test methods. The
precision ranges from 17.86% to 100%, while we obtained a recall between 25%
and 100% for all REST (anti)patterns. Thus, with an average precision of 89.42%
and a recall of 94%, we can positively support our second hypothesis on the
accuracy of our defined heuristics and implemented detection algorithms.

H3. Performance: The total required time includes: (i) the execution time,
i.e., sending REST requests and receiving REST responses (ranges from 19.1s to
24.55s) and (ii) the time required to apply and run the detection algorithms on
the requests and responses (ranges from 0.004s to 4.312s). Each row in Table
5 (last column) reports the total required detection time for a pattern or an
antipattern, which varies from 19.1s to 28.64s. We performed our experiments
on an Intel Core-i7 with a processor speed of 2.50GHz and 6GB of memory. The
detection time is comparatively very low (on an average 3% of the total required
time) than the execution time. With a low average detection time of 21.43s, we
can positively support our third hypothesis on performance.



Detection of REST Patterns and Antipatterns 243

4.8 Threats to Validity

As future work, we plan to generalise our findings to other REST APIs. How-
ever, we tried to minimise the threat to the external validity of our results by
performing experiments on 12 REST APIs by invoking and testing 115 methods
from them. The detection results may vary based on the heuristics defined for
the REST (anti)patterns. To minimise the threats to the Internal validity, we
made sure that every invocation receives responses from servers with the correct
request URI, and the client authentication done while necessary. Moreover, we
tested all the major HTTP methods in REST, i.e., GET, DELETE, PUT, and POST on
resources to minimise the threat to the internal validity. Engineers may have dif-
ferent views and different levels of expertise on REST (anti)patterns, which may
affect the definition of heuristics. We attempted to lessen the threat to construct
validity by defining the heuristics after a thorough review of existing literature
on the REST (anti)patterns. We also involved two professionals in the intensive
validation of the results. Finally, the threats to reliability validity concerns the
possibility of replicating this study. To minimise this threat, we provide all the
details required to replicate the study, including the heuristics, client requests,
and server responses on our web site1.

5 Conclusion and Future Work

REST (REpresentational State Transfer) is now a popular architectural style for
building Web-based applications. REST developers may apply design patterns or
introduce antipatterns. These REST patterns and antipatterns may respectively:
(1) facilitate and hinder semantically richer communications between clients and
servers, or (2) ease and cause difficult maintenance and evolution.

This paper presented the SODA-R approach (Service Oriented Detection for An-
tipatterns in REST) to define detection heuristics and detect REST (anti)patterns
in REST APIs. The detection of (anti)patterns in REST APIs requires an in-depth
analysis of their design, invocation, and authentication. We applied SODA-R to
define the detection heuristics of five common REST patterns and eight REST an-
tipatterns. Using an extended SOFA framework (Service Oriented Framework for
Antipatterns), we performed an extensive validation with 13 REST (anti)patterns.
We analysed 12 REST APIs and tested 115 methods, and showed the accuracy of
SODA-R with an average precision of 89.42% and recall of 94%.

In future work, we want to replicate SODA-R on other REST APIs and methods
with more REST (anti)patterns. We also intend to enrich the catalog of antipat-
terns and patterns by thoroughly investigating a large set of REST APIs.

Acknowledgements. The authors thank Abir Dilou for initiating the study.
This study is supported by NSERC (Natural Sciences and Engineering Research
Council of Canada) and FRQNT research grants.



244 F. Palma et al.

References

1. Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.:
Service-based Software: The Future for Flexible Software. In: Proceedings of Sev-
enth Asia-Pacific Software Engineering Conference, pp. 214–221 (2000)

2. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley (November 2011)

3. Demange, A., Moha, N., Tremblay, G.: Detection of SOA Patterns. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 114–130.
Springer, Heidelberg (2013)

4. Edwards, M.: Service Component Architecture (SCA). OASIS, USA (April 2011)
5. Erl, T.: SOA Design Patterns. Prentice Hall PTR (January 2009)
6. Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R.: SOA with REST: Prin-

ciples, Patterns & Constraints for Building Enterprise Solutions with REST. The
Prentice Hall Service Technology Series from Thomas Erl. (2012)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis (2000)

8. Fredrich, T.: RESTful Service Best Practices: Recommendations for Creating Web
Services (May 2012)

9. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and Detection of SOA Antipatterns. In: Liu,
C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS,
vol. 7636, pp. 1–16. Springer, Heidelberg (2012)

10. Nayrolles, M., Moha, N., Valtchev, P.: Improving SOA Antipatterns Detection in
Service Based Systems by Mining Execution Traces. In: 20th Working Conference
on Reverse Engineering, pp. 321–330 (October 2013)

11. Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y.G., Baudry, B., Jézéquel, J.M.:
SOA Antipatterns: An Approach for their Specification and Detection. Interna-
tional Journal of Cooperative Information Systems 22(04) (2013)

12. Pautasso, C.: Some REST Design Patterns (and Anti-Patterns) (October 2009),
http://www.jopera.org/node/442

13. Penta, M.D., Santone, A., Villani, M.L.: Discovery of SOA Patterns via Model
Checking. In: 2nd International Workshop on Service Oriented Software Engineer-
ing: In Conjunction with the 6th ESEC/FSE Joint Meeting, IW-SOSWE 2007, pp.
8–14. ACM, New York (2007)

14. RFC2822: Internet Message Format by Internet Engineering Task Force. Technical
report (2001)

15. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. Software: Practice and Experience 42(5), 559–583 (2012)

16. Tilkov, S.: REST Anti-Patterns (July 2008),
http://www.infoq.com/articles/rest-anti-patterns

17. Tilkov, S.: RESTful Design: Intro, Patterns, Anti-Patterns (December 2008),
http://www.devoxx.com/

18. Vinoski, S.: Serendipitous Reuse. IEEE Internet Computing 12(1), 84–87 (2008)

http://www.jopera.org/node/442
http://www.infoq.com/articles/rest-anti-patterns
http://www.devoxx.com/

	Detection of REST Patterns and Antipatterns:A Heuristics-Based Approach
	1 Introduction
	2 Related Work
	3 The SODA-R Approach
	3.1 Analysis of Patterns and Antipatterns
	3.2 Detection of Patterns and Antipatterns

	4 Validation
	4.1 Hypotheses
	4.2 Subjects and Objects
	4.3 Validation Process
	4.4 Results
	4.5 Overview on the Results
	4.6 Details of the Results
	4.7 Discussion on the Hypotheses
	4.8 Threats to Validity

	5 Conclusion and Future Work
	References




