
����: A Tool Support for the Detection

of SOA Antipatterns

Mathieu Nayrolles1,2, Francis Palma2,3,
Naouel Moha2, and Yann-Gaël Guéhéneuc3

1 CESI.eXia, École Supérieur d’Informatique, France
mathieu.nayrolles@viacesi.fr

2 Département d’Informatique, Université du Québec à Montréal, Canada
moha.naouel@uqam.ca

3 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca

Abstract. During their evolution, Service Based Systems (SBSs) need
to fit new user requirements and execution contexts. The resulting
changes from the evolution of SBSs may degrade their design and Quality
of Service (QoS), and thus may cause the appearance of common poor
solutions, called Antipatterns. Like other complex systems, antipatterns
in SBSs may hinder the future maintenance and evolution. Therefore,
the automatic detection of such antipatterns is an important task for
assessing the design and QoS of SBSs, to facilitate their maintenance
and evolution. However, despite of their importance, no tool support
exists for the detection of antipatterns in SBSs. In this paper, we intro-
duce a prototype tool, called Soda, for detecting SOA (Service Oriented
Architecture) antipatterns in SBSs.

Keywords: Antipatterns, Service Based Systems, Detection, Specifica-
tion, Quality of Service.

1 Introduction

Service Based Systems (SBSs) evolve to fit new user requirements, e.g., addi-
tional functionalities or better Quality of Service (QoS). These technical and
functional changes may degrade the design and QoS of SBSs and often intro-
duce poor solutions, called Antipatterns, by opposition to patterns which are
good solutions to recurring problems. Multi Service and Tiny Service are two
common and recurring antipatterns in SBSs, and it is revealed, in particular,
that Tiny Service is the root cause of many SOA failures [4]. Multi Service is
an SOA antipattern that corresponds to a service that implements a multitude
of methods related to different business and technical abstractions. Such a ser-
vice is not easily reusable because of the low cohesion of its methods and is
often unavailable to end-users [1]. Conversely, Tiny Service is a small service
with just a few methods, which only implements part of an abstraction. Such
service often requires several coupled services to be used together, resulting in

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 451–455, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archipel - Université du Québec à Montréal

https://core.ac.uk/display/77617119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


452 M. Nayrolles et al.

higher development complexity and reduced usability [1]. While degrading the
design and QoS of SBSs, antipatterns may make it harder for engineers to per-
form maintenance and evolution tasks. SOA antipatterns are more dynamic in
nature, thus more challenging to detect. Therefore, the automatic detection of
such SOA antipatterns is an important activity to assess the design and QoS
of SBSs, and thus ease the maintenance and evolution tasks of the engineers.
However, a number of works have been devoted for the development of detection
tools within Object Oriented (OO) systems [2,5,6]. Yet, for the detection of SOA
antipatterns in SBSs, there is no tool support. In this paper, we present a SOA
antipatterns detection tool, Soda (Service Oriented Detection for Antipatterns)
to help engineers, for detecting SOA antipatterns automatically in SBSs. Soda
provides the means for both static and dynamic analysis of SBSs.

The remainder of this paper is organized as follows. Section 2 surveys related
work on tool support for the detection of OO code and design issues. Section
3 presents our detection tool, Soda, along with the underlying approach and
some results. Finally, we conclude and sketch future work in Section 4.

2 Related Work

With the goal of detecting OO code and design related issues, a number of tools
have been introduced in the literature [2,5,6]. Nevertheless, researchers and devel-
opers have rarely considered tools to perform detection for SOA antipatterns, i.e.,
in SBSs. Král et al. [3] specified briefly seven SOA antipatterns, but did not dis-
cuss their detection. SOA antipatterns are not well documented and empirically
validated in the literature. To this end, we contribute to the progress in this area
by proposing a tool, called Soda, as support for detecting SOA antipatterns.

3 Overview of SODA Approach

We developed the tool Soda being inspired from our approach of the same name,
SODA, proposed in [7]. Figure 1 represents the three main steps of SODA:
(1) Specifying SOA antipatterns in the form of rule cards from their textual
descriptions, (2) Generating detection algorithms conformed to the antipattern
specifications, and (3) Detecting automatically SOA antipatterns and involved
suspicious service(s) in the analyzed SBS.

Textual 
Description of 

SOA Antipatterns

S
pe

ci
fic

at
io

ns

Rule Card

G
en

er
at

io
n

Detection Algorithm

D
et

ec
tio

n

Suspicious 
Services

SBS

1 2 3

Fig. 1. SODA Approach for the Detection of SOA Antipattern



SODA: A Tool Support for the Detection of SOA Antipatterns 453

In [7], we perform a domain analysis to specify SOA antipatterns by study-
ing their definitions and specifications from the literature to pinpoint significant
static and dynamic properties (represented as metrics). We then use these prop-
erties as the basis for the vocabulary to define our own domain specific language
(DSL), and formalize rule cards. A rule card is the specification of a certain
SOA antipattern at a high-level of abstraction using a combination of multiple
singleton rules. Starting from the specifications of SOA antipatterns described
with rule cards, we generate detection algorithms automatically from rule cards,
by applying a simple template-based technique. We also develop a framework,
called Sofa (Service Oriented Framework for Antipatterns) [7], that supports
metric-based detection of SOA antipatterns in SBSs. Sofa assists the tool Soda,
and provides all services needed for the detection of SOA antipatterns, such as,
static and dynamic analyses, essentially in the form of metrics.

3.1 Description of ���� Tool

Figure 2 presents the snap-shot of our Soda tool. We mark different sections of
the tool from 1 to 7. Section 1 enlists the SOA antipatterns that can be detected.
For the selected antipattern, Section 2 provides textual description, while Section
3 shows the corresponding rule card; Section 4 presents the results, i.e., suspicious
service(s); Section 5 provides values for all metrics (from the associated rule
card), for each service; Section 6 exposes the generated association rules. Finally,
Section 7 helps to visualize the suspicious service(s) within the analyzed SBS.

Most of the dynamic and static metrics calculated by Sofa use only the
service interfaces that are freely available. An extension of our tool, called So-
daar (Service Oriented Detection for Antipatterns based on Association Rules)
enables Soda to identify suspicious service(s) by mining association rules [8]
to discover interesting relations between services, i.e., patterns, using execution
traces. Association rules are implications of the form A → B (i.e., if-then state-
ment), where A and B may be a single service or a subset of services. In Sodaar,
each execution trace is considered as a transaction and invoked methods iden-
tified within traces as items. Based on these association rules, we can classify
suspicious services. Considering the metric-based framework, i.e., Sofa and our
extended Sodaar, we developed a complete tool, Soda.

Principal Features of ����

1. Soda does direct import of an SBS as a Jar package.
2. Soda has a straight forward detection interface for the users, which is handy

both for beginners and experts.
3. Soda shows all the detection details, i.e., metric values, corresponding rule

cards, textual descriptions of antipatterns etc.
4. For the detection, Soda supports both well-known metric based and execu-

tion trace based analysis of SBSs.
5. Also, Soda exposes all the execution traces, association rules generated from

those traces, and relations among them, that is also useful to the users to
better understand the SBS analyzed.



454 M. Nayrolles et al.

7

Fig. 2. Detection of SOA Antipatterns with Soda

Figure 2 shows the detection results forMulti Service antipattern. An elaborative
presentation about the Soda tool, more detection results and further materials
are available at http://sofa.uqam.ca/tool.html. We also show the precision and
recall of the detection algorithms used by Soda tool in [7]. Currently Soda can
detect 10 SOA antipatterns, and users can extend this number by adding new
metrics and thus new rule cards for new antipatterns.

4 Conclusion and Future Work

In this paper, we presented Soda that incorporates the framework, Sofa, i.e.,
metrics based analysis. Sodaar, an extension of Soda, is based on execution
trace analysis. As the future work, we intend to develop Soda as an Eclipse plug-
in and provide a graphical interface to visualize the detected antipatterns easily
by the engineers. At present, Soda performs detection for services with simple
interfaces, i.e., WSDL-based SBSs. We intend to extend Soda for other SOA
technologies including RESTful, Web Services, SCA and EJB. Also, employing
rule mining or heuristic approach can improve detection performance.



SODA: A Tool Support for the Detection of SOA Antipatterns 455

References

1. Dudney, B., Asbury, S., Krozak, J., Wittkopf, K.: J2EE AntiPatterns. John Wiley
& Sons Inc. (2003)

2. Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A.: JDeodorant: Identification and Re-
moval of Feature Envy Bad Smells. In: IEEE International Conference on Software
Maintenance, ICSM 2007, pp. 519–520 (October 2007)

3. Král, J., Žemlička, M.: Crucial Service-Oriented Antipatterns, vol. 2, pp. 160–171.
International Academy, Research and Industry Association, IARIA (2008)

4. Kral, J., Zemlicka, M.: Popular SOA Antipatterns. In: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, Computation World (2009)

5. Marinescu, R.: Detection Strategies: Metrics-based Rules for Detecting Design
Flaws. In: Proc. IEEE International Conference on Software Maintenance (2004)

6. Moha, N., Guéhéneuc, Y.G., Duchien, L., Meur, A.F.L.: DECOR: A Method for
the Specification and Detection of Code and Design Smells. IEEE Trans. Softw.
Eng. 36(1), 20–36 (2010), http://dx.doi.org/10.1109/TSE.2009.50

7. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and Detection of SOA Antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 1–16.
Springer, Heidelberg (2012)

8. Oracle: Data Mining Concepts 11g Release 1 (11.1) Part Number B28129-04,
http://docs.oracle.com

http://dx.doi.org/10.1109/TSE.2009.50
http://docs.oracle.com

	SODA: A Tool Support for the Detection of SOA Antipatterns
	Introduction
	Related Work
	Overview of SODA Approach
	Description of Soda Tool
	Principal Features of Soda


	Conclusion and Future Work
	References




