
Kyushu Institute of Technology Academic Repository

九州工業大学学術機関リポジトリ

Title Synthesis of Organic-Inorganic Hybrid Materials Using
Functional Nanoporous Materials

Author(s) Kamachi, Yuichiro

Issue Date 2016-12-27T13:15:36Z

URL http://hdl.handle.net/10228/5973

Rights

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyushu Institute of Technology of Academic Repository

https://core.ac.uk/display/77603978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Synthesis of Organic-Inorganic Hybrid Materials  

Using Functional Nanoporous Materials 

機能性ナノ多孔体を用いた 

無機有機複合材料の合成 
 

 

 

 

 

 

Yuichiro Kamachi 

 

 

 

 

Department of Applied Chemistry 

Graduate School of Engineering 

Kyushu Institute of Technology 



  



 

Synthesis of Organic-Inorganic Hybrid Materials  

Using Functional Nanoporous Materials 

 

Contents 

 

Chapter 1.  

G e n e r a l  I n t r o d u c t i o n・・・・・・・・・・・・・・・・ 1 

1.1. Various nanoporous materials 

1.1.1. Coordination compounds - Prussian Blue and related analogues・・・・・・・2 

1 .1 .2 .  Mesoporous  Mater ia l s・・・・・・・・・・・・・・・・・・3 

1.2. Hydrogel 

1 . 2 .1 .  H yd r o ge l・・・・・・・・・・・・・・・・・・・・・・・ 11 

1.2.2. Hybrid hydrogel containing Inorganic nanomaterials・・・・・13 

1 .3 .  Object ives  of  thi s  thes is・・・・・・・・・・・・・・・・・22 

1 . 4 .  R e f e r e n c e s・・・・・・・・・・・・・・・・・・・・・・ 2 5 

 

  



Chapter 2.  

Hydrogels containing Prussian blue nanoparticles  

for facile removal of Cs ions・・・・・・・・・・・・・・・31 

2 . 1 .  In t r o d u c t i o n・・・・・・・・・・・・・・・・・・・・・・ 3 2 

2 . 2 .  E x p e r i m e n t  ・・・・・・・・・・・・・・・・・・・・・・ 3 4 

2 .3.  Resul t s  and discuss ion・・・・・・・・・・・・・・・・・・37 

2 . 4 .  Co n c l us i on・・・・・・・・・・・・・・・・・・・・・・・45 

2 . 5 .  R e f e r en ces・・・・・・・・・・・・・・・・・・・・・・・ 4 7 

 

Chapter 3.  

Hydrogels containing mesoporous silica particles 

for control behavior of guest molecules adsorption/desorption 

                    ・・・・・・・・49 

3 . 1 .  In t r o d u c t i o n・・・・・・・・・・・・・・・・・・・・・・ 5 1 

3 . 2 .  E x p e r i m e n t  ・・・・・・・・・・・・・・・・・・・・・・ 5 3 

3 .3.  Resul t s  and discuss ion・・・・・・・・・・・・・・・・・・55 

3 . 4 .  Co n c l us i on・・・・・・・・・・・・・・・・・・・・・・・63 

3 . 5 .  R e f e r en ces・・・・・・・・・・・・・・・・・・・・・・・ 6 4 

 

  



Chapter 4.  

Silicone rubbers containing mesoporous silica particles 

for improvement thermal property and strength・・・・・・・67 

4 . 1 .  In t r o d u c t i o n・・・・・・・・・・・・・・・・・・・・・・ 6 9 

4 . 2 .  E x p e r i m e n t  ・・・・・・・・・・・・・・・・・・・・・・ 7 1 

4 .3.  Resul t s  and discuss ion・・・・・・・・・・・・・・・・・・77 

4 . 4 .  C o n c l u s i o n・・・・・・・・・・・・・・・・・・・・・・ 8 7 

4 . 5 .  R e f e r en ces・・・・・・・・・・・・・・・・・・・・・・・ 8 8 

 

Chapter 5.  

G e n e r a l  C o n c l u s i o n・・・・・・・・・・・・・・・・ 9 3 

 

List of Achievements・・・・・・・・・・・・・・・・・・・・97 

 

Acknowledgements・・・・・・・・・・・・・・・・・・・・・108 

  



  



1 

 

 

 

 

 

 

Chapter 1.  

General Introduction 
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1.1. Various nanoporous materials 

1.1.1. Coordination compounds - Prussian Blue and related analogues 

Coordination compounds have received great attention as novel nanomaterials because 

of their desirable characteristics including their electrochemical properties, molecular 

magnetism, and catalytic abilities [1, 2]. Coordination compounds recognized as metal–

organic frameworks (MOFs) and porous coordination polymers (PCP) with unique 

features such as uniform nanopores and high surface areas are specifically considered 

potentially useful for current energy and environmental issues [3-5]. It is well known 

that the properties and applications of nanomaterials are strongly dependent on their 

sizes and shapes. For instance, the magnetism of nanosized coordination polymers 

(CPs) can be significantly changed from ferromagnetic to super-paramagnetic. 

Moreover, improved sensitivity for particles of a given size and the accelerated 

adsorption capabilities of CPs have been studied [6, 7]. To obtain these promising 

properties, the rational design and systematic control of the sizes of the particles of CPs 

is needed.  So far, several templating methods utilizing mesoporous silica [8, 9], 

emulsion droplets [10-13], and microfluids [14] have been developed to control particle 

size, although precise morphological control is still unreachable. As an alternative 

approach, template-free methods can overcome this drawback by mixing some additives 

[15, 16] or by applying a rapid heating strategy [17].  

The synthesis of CPs is based on the crystallization between the metal ions and 

the organic ligands in a proper solvent. Therefore, control of the stages of nucleation 

and crystal growth during crystallization is crucial in determining the sizes and shapes 

of the particles in the products [18, 19]. With the assistance of a chelating agent that 
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coordinates to metal ions, crystallization with a controllable rate could be achieved, and 

this results in precise control of size and shape. Prussian blue (PB) is one of the 

well-known CPs that is specific for the adsorption of Cesium and thallium ions [20]. In 

addition, it indicates good properties of Cs adsorption than the zeolite in the presence of 

sodium and potassium [21]. For this reason, PB is expected to be Cs adsorption material. 

PB analogues {AaMb[Mc(CN)6], A: cation, M: metal iron} are also widely studied 

because of their valuable electrochemical and magnetic properties [22, 23]. Among the 

PB analogues, Ni–Fe PB analogues were found to be excellent absorbents for Cs ions 

[24]. 

Very recently, Hu et al. demonstrated that sodium citrate could serve as a 

chelating agent, and thus could slowly react with metal ions to afford slow nucleation 

and controllable crystal growth [25]. Chiang et al. further applied this synthetic concept 

to prepare other cyano-bridged coordination polymers consisting of NiII–C≡N–FeII units 

with the aim to control the particle size precisely. They focused on critical effects of the 

cheating agent in the reaction system to clarify the crystallization mechanism. By 

changing the amount of the cheating agent added, the average particle size could be 

widely controlled from 20 to 350 nm with retention of a well-defined cubic shape. Also, 

the use of different hexacyanoferrate sources further expands the possible range of the 

controlled particle sizes. 

 

1.1.2. Mesoporous Materials 

Porous materials can generally be classified as macroporous (> 50 nm), mesoporous 

(250 nm), and microporous materials (< 2 nm). For a fixed pore density, the surface 

area is inversely proportional to the pore size. Hence, in contrast to macroporous 
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materials with low surface area and large non-uniform pores, micro- and mesoporous 

materials provide a promising alternative. Micro and mesoporous materials are often 

called nanoporous materials and are of great scientific and technological importance 

because of their ability to interact with atoms, ions, and molecules within their relatively 

large contained surface and spatially confined nanospaces. Such unique properties offer 

new opportunities in the area of inclusion chemistry, guest-host interaction and 

molecular manipulations, showcasing their great potential in a wide range of research 

fields and applications such as adsorption, catalysis, electronic devices, and drug 

delivery systems [26-28]. 

Amphiphilic molecules, including surfactants and block copolymers, contain 

both hydrophilic and hydrophobic groups, which tend to reduce locally the surface 

tension of a medium and are widely used as detergents, emulsifiers, foaming agents, and 

dispersants. According to the nature of the hydrophilic moieties, they can be classified 

as nonionic, anionic, cationic, or amphoteric types. Amphiphilic molecules are 

spontaneously self-assembled into aggregates with various morphologies, such as 

spherical or rod-like micelles. By increasing their concentration, periodic liquid crystal 

mesophases can also be obtained. Self-assembled substances can ultimately be used as 

structure-directing agents (SDAs) of the soft-templating method for synthesis 

mesoporous materials. The first example of ordered mesoporous silica was reported in 

1992 [29, 30].  

At high concentration, the surfactants preliminarily form a liquid crystal phase.  

Then, the inorganic source is introduced on the surface of the micelles to form a 

mesostructured composite. Subsequent studies have shown that the well-ordered 

mesostructured composites can also be prepared when the surfactant concentration is 
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much lower than that required for the formation of a liquid crystal. Cooperative 

self-assembly is generally known as the most common method (Fig. 1.1 a), in which 

both the surfactant and the framework undergo conformational changes to form an 

ordered mesophase.  

 

 

Fig. 1.1 

Systematic presentation of the synthesis of mesoporous materials 

(a) cooperative self-assembly route,  (b) lyotropic liquid crystal templating route. 
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Considering the interactions between both components is critical to obtain 

highly ordered mesostructured materials. Several interactions such as electrostatic, van 

der Waals, hydrogen or coordination bonding, were previously reported [31]. For 

instance, in basic conditions, where the surface of the silica species is negatively 

charged, a cationic surfactant is favored as a template. The selection of the template 

removal process should be carefully considered in the preparation of mesoporous 

materials. Various removal methods have been developed, such as conventional 

calcination, solvent extraction, ozone treatment [32], supercritical CO2 fluid extraction 

[33], and H2SO4 treatment [34]. The suitable process must be selected depending on the 

nature of the framework compositions. 

In the past two decades, many efforts have been made to synthesize 

nanoporous materials with well-controlled pore size, shape, composition, and spatial 

arrangement. The hard-templating method is widely used and is a promising strategy for 

the synthesis of nanoporous carbons, metals, and metal oxides. This procedure, which is 

similar to the casting method used in metallurgy, can generally be conceptually adapted 

to the nanometer scale and applied to the synthesis of nanostructured materials using 

various hard-templates. 

Hard-templating is a facile synthetic method for fabricating porous materials 

with a stable porous structure by depositing the targeted materials into the confined 

spaces of the template resulting in a reverse replica. 

In this methodology, the mesopores of the hard templates (silica or carbon) are 

filled with precursors such as carbon sources or metal species (Fig. 1.2 a). Then, the 

desired compositions within the mesopores can be achieved through thermal conversion 

or chemical reduction. Finally, the desired mesoporous materials are obtained by 
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removing the hard-template. Pioneering works were reported by Ryoo and co-workers 

in which they synthesized ordered mesoporous carbons “CMK-1” [35] and “CMK-3” 

[36] using MCM-48 and SBA-15 as template, respectively. Independently, Hyeon et al. 

proposed a similar approach to prepare well-ordered mesoporous carbons designated as 

the SNU series [37]. 
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Fig. 1.2 

(a) Illustration of hard-templating method using mesoporous silica. (b) Low- and (c) 

high-magnification SEM images of the obtained mesoporous Pt nanoparticles prepared 

with mesoporous silica KIT-6 [48]. 
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The hybridization of mesoporous carbons with other substances is critical for 

developing new properties. The synthesis of well-ordered mesoporous carbon 

impregnated with In2O3 nanoparticles for supercapacitor electrodes was also reported, 

where the uniformly distributed In2O3 nanoparticles in the mesoporous carbon matrix 

are utilized for enhancing the capacitive performance [38]. Mesoporous carbons with 

different concentration of fullerene cages were synthesized from a fullerenol-based 

precursor solution. The fullerene cages embedded in the framework are 

electrochemically active, showing their high potential as electrode material in electric 

double-layer capacitors [39]. Lin et al. prepared mesoporous carbon nanoparticles by 

using MCM-48-type mesoporous silica nanoparticles as hard template [40]. However, 

the hard-templating strategy is complex and industrially unfeasible as the synthetic 

pathway involves several steps. 

The same concept was also applied to the preparation of novel nanoporous 

materials with different compositions, such as metal oxides and metals [41-44]. By 

changing the metal species introduced into the silica replica, several mesoporous metals 

(such as Pd and Pt) can be synthesized [45]. A hard-templating route was extended to 

the synthesis of nanoporous metals by synthesizing a 3D framework consisting of 

interconnected Pt nanowires of 3 nm diameter obtained by impregnating tetraammine- 

platinum(II) nitrate into MCM-48 silica [46]. The impregnated Pt species were reduced 

by H2 flow and finally the silica template was removed by HF treatment. By combining 

the electrochemical deposition of Pd salt with the hard-template method, Lu and 

co-workers successfully synthesized a thin film consisting of ordered arrays of Pd 

nanowires [47]. Pt single crystals with monodispersed polyhedral and olive-shaped 

morphologies were synthesized by using KIT-6 (double gyroid structure, Ia3d) and 
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SBA-15 (2D hexagonal structure, p6mm) mesoporous silica, respectively (Fig. 1.2 b 

and 1.2 c) [48]. It is found that the reduction and growth kinetics play a critical role in 

the rational design of mesoporous crystals. Using mild reducing agents, like ascorbic 

acid, provides enough time for the reductants to access the inner regions of the 

mesoporous silica. Slow nucleation and growth of Pt can occur in the confined silica 

channels, thus leading to the formation of mesoporous nanocrystals. A variety of 

compositions including Pt-Ru, Pt-Co, and Pt-Ni have been reported by using this 

method with the appropriate metal precursors [49, 50]. In a successive template method, 

a silica replica (i.e., silica nanorods arranged periodically) is first prepared by using 2D 

hexagonally ordered mesoporous carbon as template. Then, the obtained silica replica is 

employed as a new template for the preparation of mesoporous ruthenium by 

introducing Ru species into the pores followed by their reduction using reducing agents. 

The silica template is ultimately removed to leave the mesoporous Ru free. By changing 

the metal species introduced into the silica replica, several mesoporous metals (such as 

Pd and Pt) can be synthesized [51] 
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1.2. Hydrogel 

1.2.1. Hydrogel 

A hydrogel is three-dimensional networks made of polymer or supermolecular chains 

swollen by water. It can retain a large amount of water while maintaining its structure. 

The gels are basically classified into two types: chemical gels and physical gels. 

Chemical gels are formed by covalently cross-linking polymer chains, and they possess 

a relatively higher elasticity. On the other hand, physical gels are weakly cross-linked 

through hydrogen bonds, van der Waals interactions, or sterical entanglements. Because 

physical cross-links are reversible, these gels exhibit unique properties, such as 

self-healing, which make them suitable for drug delivery systems (DDS), as well as 

biomedical and tissue engineering. 

Poly(N-isopropylacrylamide) (PNIPAm) has been well known as a 

thermosensitive polymer and has been extensively studied until now [52, 53]. PNIPAm 

possesses an inverse solubility: upon heating, the polymer chains change abruptly at 

their lower critical solution temperature (LCST) from hydrophilic to hydrophobic. 

When heated in water, the PNIPAm gel undergoes a reversible LCST phase 

transition from a swollen hydrated state to a shrunken dehydrated state, thereby showing 

a large reduction of its volume. Other variety of physical stimuli (e.g., electric or 

magnetic field, light, pressure, and sound) and chemical stimuli (e.g., pH, solvent 

composition, ionic strength, and molecular specie) are also effective in inducing a 

dramatic volume transition (Fig. 1.3). 
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Fig. 1.3 

Dramatic volume transition of hydrogels induced by chemical and physical stimuli. 
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1.2.2. Hybrid hydrogel containing Inorganic nanomaterials 

Formation of composite hydrogels are considered to be a simple way of improving the 

mechanical properties of hydrogels by adding organic/inorganic fillers such as clays, 

celluloses, etc [54]. Carbon nanotubes (CNTs) can also be used as fillers [55]. 

Hydrogels prepared by hybridizing CNTs into poly(vinyl alcohol) (PVA) hydrogels 

improved the overall mechanical properties. As observed with the hydrogels hybridized 

with clays, the mechanical properties of the CNT/PVA hydrogels are superior to those 

of the original PVA hydrogel. When only a little amount of CNTs is loaded, the tensile 

modulus, tensile strength, and strain at break are largely increased by 78.2%, 94.3% and 

12.7%, respectively. 

Mesoporous materials synthesized by condensing silica species in the presence of 

structure directing templates have been extensively investigated [56, 57]. Uniformly 

sized mesopores and a large surface area are suitable factors for many applications such 

as performant adsorbents and catalyst supports. These materials can also serve as novel 

fillers for polymer materials. By adding only a small amount of fillers, effective 

physical interactions between the polymer chains and the pore surfaces along with 

topological confinement of the polymer chains piercing through the mesopores can be 

expected, which can ultimately enhance significantly the mechanical properties of the 

materials. It has been demonstrated that mesoporous silicas (MPSs) with 

three-dimensional bicontinuous pores (Ia-3d) can be employed as an effective 

topological cross-linker for PNIPAm hydrogel to improve the mechanical properties 

[58]. Here, the materials properties were varied by using different mesoporous materials 

with different structures and pore sizes. The improved mechanical properties of the gels 

doped with MPSs can be attributed to the formation of both topological and rigid 
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cross-links. Since these cross-links can freely move on the chains, heterogeneities in the 

gel structure and mechanical stress are balanced so that the gel possesses a large fracture 

strain and equilibrium swelling ratio. Individual polymer chains or bundles are observed 

to be piercing through the mesopores to form movable topological cross-links near the 

particle surface. 

Haraguchi et al. have reported the synthesis of polymer-clay nanocomposite gels 

(NC gels) consisting of PNIPAm and inorganic clay which they investigated in terms of 

their optical and swelling/deswelling properties (Fig. 1.4) [59, 60]. Interestingly, 

depending on the clay concentration, the obtained NC gels exhibit unique changes in 

their optical transmittance and anisotropy, as well as in their swelling/deswelling 

behaviors. These characteristics are distinct from those of chemically cross-linked 

hydrogels. Even when chemical cross-linkers are not used, the polymer chains can be 

bound by the clay nanosheets to form mechanically robust gels, which can be referred to 

as ‘physical cross-linkers’. Liu et al. reported a series of PNIPAm hydrogels with a high 

hectorite content modified by tetrasodium pyrophosphate [61]. The tensile strength is 

1 MPa, and the elongation at break is 1400%, highlighting the promising mechanical 

properties of this composite. A complicated deswelling behavior was also observed, due 

to the high clay content in the hydrogels and the ionic dispersant contained in hectorite. 
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Fig. 1.4 

(a, b) Photographs depicting changes in transparency for NC3 and NC15 gels; (a) 20 oC 

(< LCST) and (b) 50 oC (> LCST), respectively. (c, d) Schematic representation of the 

structural models for NC20 gels; (c) a uniform and random dispersion of clay platelets, 

and (d) spontaneous aggregation (layer stacking) of clay platelets. The clay content in 

NC gel is expressed using a simplified numerical value of 3, 15, and 20 corresponding 

to the clay concentration in the initial reaction solution [60].  
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Similar concepts are applicable to other types of hydrogels using graphene oxide 

nanosheets [62, 63]. Recently, graphene and graphene oxide have been attracting 

tremendous attention as fillers for polymer reinforcement due to their large theoretical 

specific surface area. In particular, graphene oxide has a large number of 

oxygen-containing groups, such as hydroxyl, epoxide and carboxyl groups, and 

therefore, can be easily dispersed in water. The dispersity of fillers is an important 

factor when it comes to the preparation of high quality hybrid hydrogels. Uniform 

distribution nanometer scale fillers play critical role for enhancing the mechanical 

performance.  

Wang and co-workers prepare robust composite hydrogels by using graphene 

oxide (GO) as polyfunctional initiating and cross-linking centers (Fig. 1.5) [64]. It is 

interesting to point out that the obtained hydrogels can be self-repaired in a short time. 

High recovery (up to 88%) can be achieved at a prolonged healing time. The healed 

composite hydrogels exhibit high tensile strengths and elongations, compared to other 

hydrogels. These self-healing hydrogels represent a promising strategy for the 

fabrication of smart materials with widespread potential applications in biomedical and 

engineering fields. Recently, Aida and co-workers reported a photo-induced preparation 

of composite hydrogels [65]. These hydrogels are composed of a polymer network 

accommodating photocatalytic titania nanosheets at each cross-linking point. The 

radicals for polymerization is generated photocatalytically on the titania nanosheets. 

The unique mechanisms behind this approach are suitable to achieve smart 

hybridizations with other hydrogels and polymers. As seen in the above reports, the 

strong interaction between the polymer chains and the nanosheet surface is a critical 

factor for increasing the mechanical strengths. 
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Fig. 1.5 

(a) The proposed self-healing mechanism of the GO composite hydrogels. (b) 

Photographs of the damaged and the self-healed GO composite gels [(b-1) Round 

shaped gel cut into two parts, (b-2) gel healed at 4 oC for 20 s, and (b-3) the healed G1 

gels after being equilibrium swollen in deionized]. The scale bars are 1 cm [64]. 
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The clay sheets align parallel to the electric field, resulting in a uniaxial 

orientational order. Paineau et al. reported clay-containing composite hydrogels from 

aqueous suspensions of swelling clays by applying high-frequency AC electric fields 

[66]. Interestingly, polarized optical microscopy shows that the clay platelets are 

perfectly oriented by the electric field and that this field-induced alignment can be fixed 

by in-situ polymerization. The patterns of the platelet orientation are coherently 

extended over the entire area (at length scales down to 20 μm). The use of external 

fields is effective to control the orientation of the used filler materials, and this 

technique can be easily extended to a wide range of inorganic anisotropic particles.  

Recently, colloids of inorganic nanosheets have been rediscovered as fascinating 

soft materials with a liquid crystallinity. Liquid crystal (LC) phases of antimony 

phosphate [67], niobates [68, 69], clays [70, 71], and graphene oxide [72] have been 

reported by different groups. Due to extremely anisotropic shape of the inorganic 

nanosheets (lateral size of up to 100 μm and a thickness of a few nanometers), the 

colloids of fully exfoliated inorganic nanosheets are able to form a LC phase [73]. By 

forming large oriented LC domains inside the hydrogels, remarkable anisotropic 

properties and chemical stability, along with a high mechanical strength, can be 

achieved. 

Miyamoto et al. demonstrated that macroscopically anisotropic hydrogels can be 

synthesized by hybridization of PNIPAm with liquid crystalline inorganic nanosheets 

[74]. The anisotropic gels are facilely synthesized by radical polymerization of 

N-isopropylacrylamide in the presence of a liquid crystalline fluorohectorite (FHT) 

nanosheets with N,N'-methylenebisacrylamide (as a chemical cross-linker). The liquid 

crystalline mixture is aligned when introduced into a thin glass capillary and the aligned 
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structure is retained after the polymerization. Due to the anisotropic structure, 

anisotropic properties in molecule transport, optical property, and thermoresponsive 

volume change are observed. The mechanical properties of the obtained hybrid 

hydrogels is significantly improved compared to that of the gel without FHT. A tough 

gel can be obtained even when no chemical cross-linkers is added during the synthesis, 

because the polymer chains are physically cross-linked by the nanosheets. The same 

group reported PNIPAm hydrogel doped with uniaxially aligned LC nanosheets (Fig. 

1.6) [75]. The alignment of the LC nanosheets at the cm-scale is easily achieved by the 

application of an in-plane or an out-of-plane AC electric field during 

photo-polymerization. Upon adsorption of the dye, a photoresponsive pattern can be 

printed onto the gel with a μm-scale resolution. When the gel is irradiated with light, 

only the colored region is photothermally deformed. Interestingly, the photo-irradiated 

gel shows temporal expansion along one direction followed by anisotropic shrinkage, 

which is an unexpected behavior for a conventional PNIPAm gel. 
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Fig. 1.6 

Microscopic images and schematic structures of the FHT/PNIPAm gels containing 1 

wt% of FHT synthesized with (a) in-plane and (b) out-of-plane electric field. The 

images are observed with crossed polarizers and a wave plate [65]. 
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Following the above reports, Meija et al. [76] and Aida et al. [77, 78] also 

reported anisotropic nanosheets/polymer composite gels synthesized through a similar 

approach. Mejia et al. hybridized liquid crystalline α-ZrP nanosheets with 

poly(acrylamide-co-N-isopropylacrylamide) to obtain birefringent gels. They clarify that 

the equilibrium swelling ratios and the size of the oriented domains can be tuned with 

appropriately controlling the synthetic conditions. Aida et al. used nanosheets of titanate 

or niobate for hybridization with PNIPAm gel. By applying a strong magnetic field 

during the synthesis, the strongly anisotropic monodomain gels are obtained. 
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1.3. Objectives of this thesis 

As seen in above-mentioned previous studies, hybridization of polymer materials with 

inorganic fillers are a very effective way for improving mechanical. However, all the 

previous works do not fully utilize the original properties of the used fillers. 

Nanoporous materials such as mesoporous silica (MPS) and Prussian blue possess a 

very large number of nanoscale pores and extremely large pore volumes. They show 

high adsorption capacity of guest molecules. At the same time, nanometer scale fillers 

can also serve as an effective ‘topological crosslinker’ in polymers. Use of such physical 

crosslinks are also effective for further improved mechanical properties, although there 

are several effective ways [9, 10] to enhance the mechanical properties of gel materials 

(e.g., formation of double network structures). In the present thesis, two types of 

nanoporous materials (MPS and Prussian blue) are selected as the fillers, and novel 

organic-inorganic hybrid materials with new functions which have never been 

synthesized successfully (Fig. 1.7) 
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Fig. 1.7 

Utilize of functional inorganic filler materials for new hybrid gels/silicone rubbers.  
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Chapter 2. 

Hydrogels containing Prussian blue nanoparticles  

for facile removal of Cs ions 
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Abstract 

Recent reports have demonstrated the practical application of Prussian blue (PB) 

nanoparticles toward environmental clean-up of radionuclide 137Cs. Herein, the author 

prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and 

sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles 

showed a high surface area (440 m2･g−1) and consequently an excellent uptake ability of 

Cs ions from aqueous solutions. By incorporation of PB nanoparticles, the uptake 

ability of Cs ions into poly(N-isopropylacrylamide (PNIPAm) hydrogel was drastically 

increased up to 156.7 m2･g−1 compared with 30.2 m2･g−1 for PNIPAm hydrogel with 

commercially available PB. Thus, The obtained PB-containing PNIPAm hydrogel is 

considered as an excellent candidate for the removal of Cs ions from aqueous solutions, 

which will be useful for the remediation of the nuclear waste. 
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2.1. Introduction 

Among many kinds of organic materials, physically or chemically cross-linked polymer 

networks swollen by water, i.e. polymer hydrogels, are emerging as novel functional 

soft-materials [1-3]. Especially, poly(N-isopropylacrylamide) (PNIPAm) hydrogel is 

attractive for industrial, biological and medical applications and it has been drawing a 

great attention from the scientific community because of its sensitivity to external 

stimuli (light, temperature, pressure, pH, solvents, and magnetic and electric fields) 

which makes it promising for a broad range of applications [4-7]. The PNIPAm 

hydrogels are facilely synthesized by radical polymerization of N-isopropylacrylamide 

(NIPAm) monomer. Currently, various gels with different functions have been reported. 

Yoshida et al. reported the self-oscillating gels designed by utilizing the 

Belousov-Zhabotinsky (BZ) reaction, an oscillating reaction, as a chemical model for 

tricarboxylic acid cycle [8]. PNIPAm/inorganic nanosheet composite gels have been 

also studied by several groups. Miyamoto et al. reported the synthesis of liquid 

crystalline nanosheet/PNIPAm composite gels with anisotropic swelling which 

responds to light and temperature [9, 10]. Haraguchi et al. also reported 

PNIPAm/inorganic clay nanosheet composite gels with extremely high mechanical 

property [11-13]. 

In this chapter, the author demonstrated a novel PNIPAm hydrogel containing 

Prussian Blue (PB) nanoparticles. The main purpose of this study is to prepare 

functional hydrogels for the removal of radioactive contaminants with high transport 

abilities which can be dissolved in soils and finally end up being absorbed by plants and 

ultimately by animals and human beings. The isotope 137Cs from nuclear power plant 

waster is considered as a dangerous radionuclide from the environmental standpoint 
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because of its relatively long half-life time (years), high volatility, high activity, and 

high solubility. It has been generally known that PB itself exhibits excellent capabilities 

in removing radioactive Cs because of its strong affinity for these specific ions [14, 15]. 

The synthesis of various PB particles with different shapes have been extensively 

studied recently [16-20]. Therefore, the author expects that the hydrogels containing PB 

nanoparticles can be utilized for the separation of Cs ions in the context of a nuclear 

waste cleaning technology. The present gels are easily synthesized by mixing NIPAm 

with PB nanoparticles. Use of such physical crosslinks [9-13], such as nanosheets or 

nanoparticles, are also effective for further improved mechanical properties, although 

there are several effective ways [21, 22] to enhance the mechanical properties of gel 

materials (e.g., formation of double network structures). 

 

  



35 

 

2.2. Experimental 

2.2.1. Chemicals 

FeCl3 · 6H2O was purchased from Sigma-Aldrich, trisodium citrate and Na4[Fe(CN)6] · 

xH2O were purchased from Nacalai Tesque, commercially available PB particles were 

purchased from Yoshida Chemical Industrial Co., Ltd., Japan and 

N-isopropylacrylamide (NIPAm), N,N-methylenebisacrylamide (BIS), ammonium 

peroxodisulfate (APS), and N, N, N’, N’-tetramethylethylenediamine (TEMED) were 

purchased from Kanto Chemical Co., Ltd., Japan. 

 

2.2.2. Preparation of PNIPAm hydrogel containing PB nanoparticles 

For the preparation of PB nanoparticles, a 20 mL aqueous solution of FeCl3 · 6H2O (8.6 

g) and tri-sodium citrate (8.6 g) were mixed with another 20 mL aqueous solution of 

Na4[Fe(CN)6] · xH2O (11.0 g) under constant magnetic stirring. After aging for 10 min, 

a suspension containing 10 wt% PB nanoparticles (small-sized PB particles, SPBs) was 

obtained. For the preparation of PNIPAm hydrogels containing PB nanoparticles, PB 

nanoparticles, NIPAm (730 mg), BIS (10.0 mg), APS (20.0 mg), TEMED (13.0 μL), 

and distilled water (10.0 g) were mixed together. After stirring for 1 hour and 

subsequent bubbling with nitrogen for 30 min, the PNIPAm/SPB hydrogels were 

obtained. Various amounts of PB nanoparticles were studied: 7.50 mg, 15.0 mg and 

23.0 mg, which were labelled as PNIPAm/SPB hydrogel (I), (II), and (III), respectively. 

The samples containing commercially available PB particles (large-sized PB particles, 

LPBs) were prepared with the same procedure and molar ratios and were labelled as 

PNIPAm/LPB hydrogel (I), (II), and (III), respectively. 
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2.2.3. Quartz Crystal Microbalance (QCM) study for Cs ions adsorption 

A 9 MHz AT-cut quartz crystal with Au electrodes on both sides was used to measure 

the frequency. The QCM electrode coated with the sample was fixed inside a QCM 

instrument (QCA922, SEIKO EG&G Co., Ltd., Japan). Before the film deposition 

process, the QCM electrodes were firstly sonicated in a mixture of ethanol and 

deionized water for 30 min. After being rinsed with deionized water and dried under 

flowing nitrogen gas, the initial frequency (F0) was recorded for both the electrodes and 

was further used to estimate the mass of the PB samples deposited onto QCM electrodes 

according to the Sauerbrey equation. In order to coat the QCM electrodes with PB 

samples for Cs ions adsorption, the PB samples were dispersed in an aqueous solution 

of Nafion (0.1 wt%) with a concentration of 1 mg·mL−1. The PB particles were 

deposited as precursor layers onto the surface of the parent Au electrode by drop-casting 

at room temperature. After drying the electrode in a gentle nitrogen gas flow, the 

surface was rinsed with water and dried under vacuum for 2 h. Then, the real-time 

monitoring of Cs ion adsorption uptake was recorded at room temperature. 

 

2.2.4. Characterization 

Scanning electron microscope (SEM) images were taken under a 5 keV accelerating 

voltage by using a Hitachi SU-8000 scanning microscope. Transmission electron 

microscope (TEM) observations were performed using a JEM-2010 TEM system 

operated at 200 keV. Wide-angle powder X-ray diffraction (XRD) patterns were 

obtained with a Rigaku RINT 2500X diffractometer using a monochromated Cu K_ 

radiation (40 kV, 40 mA) at a scanning rate of 2o･min−1. Nitrogen sorption isotherms 

were obtained by using a Quantachrome Autosorb Automated Gas Sorption System at 
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77 K. Comporession tests were performed with a Shimadzu AG-100-KNG-M3 testing 

machine. For the compression test, the samples (diameter: 30.0 mm, height: 8 mm) were 

compressed along their shorter axis at a compression rate of 5 mm･min-1 until a fracture 

occurred. Cs adsorption analysis were obtained with a Shimadzu ICPM-8500. 
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2.3. Results and disucussion 

The surface morphology of the LPBs and the SPBs was examined by SEM and TEM. 

The LPB powder consists of irregularly-shaped particles with an average particle size of 

around 50 nm (Fig. 2.1a). On the other hand, the SPBs synthesized in this study are 

nanoparticles with a uniform size distribution centered around 20 nm (Fig. 2.1b) Zeta 

potential measurements reveal a monodispersed distribution and an average particle size 

around 20 nm. The SPBs are negatively charged (−80 mV) and well dispersed in water 

without any significant aggregation, which is favorable for the preparation of hydrogel 

composites. 

A TEM image of individual PB nanoparticle is shown in Fig. 2.1c. The particle 

size observed here was around 20 nm with semi-spherical shape, which was in 

agreement with SEM image (Fig. 2.1b). The electron diffraction from the aggregated 

SPBs can be assigned to the face-centercubic (fcc) structure of a typical PB crystal (Fig. 

2.1d). The crystal structure and phase purity of both samples were also investigated by 

wide-angle XRD measurement (Fig. 2.2a). In both the samples, the peak positions in 

the XRD profiles are exactly the same, confirming the crystal structure determined by 

electron diffraction. The average crystallite size is calculated to be around 44 nm (for 

LPBs) and 15 nm (for SPBs) with the Scherrer equation, thus suggesting that the 

particles are mostly monocrystalline. 
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Fig. 2.1 

SEM image of (a) LPBs and (b) SPBs. (c) TEM image of individual SPB, and (d) 

selected area ED patterns taken from several SPBs aggregate. 
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Fig. 2.2 

(a) Wide-angle XRD patterns and (b) N2 adsorption–desorption isotherms of (i) LPBs 

and (ii) SPBs. 
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N2 adsorption–desorption isotherms were measured for both LPBs and SPBs 

(Fig. 2.2b). The SPBs show a high surface area (440 m2･g−1) and display a type IV 

isotherm with a broad hysteresis loop associated with a capillary condensation taking 

place in the inter particle space among the aggregated nanoparticles. In contrast, the 

LPBs show very low surface area (10 m2･g−1) due to their large size. 

Fig. 2.3 shows photographs of the hydrogels with and without PB particles. 

The hydrogel remains stable even at high PB concentrations (23.0 mg). The color 

gradually darkens with increasing the amount of PB particles. To quantitatively discuss 

the hardness of hydrogels, the stress–strain modulus of these hydrogels was examined 

(Fig. 2.4a). As the amount of SPBs is increased, more stress is required distorting the 

hydrogel, suggesting an enhanced mechanical hardness. Increasing the concentration of 

LPBs, however, shows negligible impact on the overall hardness. The Young’s modulus 

(E) was calculated from the relationship between the stress (σ) and the strain (ε) in the 

range where Hooke’s law holds (Fig. 2.4b). The PNIPAm/SPB hydrogel shows the 

highest sustained stress (4.3 kPa), which is twice larger than that of PNIPAm hydrogel 

itself and (2.4 KPa) and also significantly larger than that of PNIPAm/LPB hydrogel 

(3.3 kPa). The polymer chains in the hydrogel are supposed to be physically 

cross-linked by the SPBs to enhance the overall mechanical toughness. Thus, the SPBs 

can serve as crosslinking fillers. Compared to the LPBs, the SPBs give more 

crosslinking points, thus significantly improving the mechanical property. 
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Fig. 2.3  

The photographs of (a) PNIPAm hydrogel, (b) PNIPAm/SPB hydrogel(I) 

 

 

 

 

Fig. 2.4  

(a) Compressing apparatus for the measurement of strain–stress curve.  

(b) Strain–stress relation of (i) PNIPAm hydrogel, (ii) PNIPAm/LPB hydrogel (I), and 

(iii) PNIPAm/SPB hydrogel (I). 
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The amount of adsorbed Cs ions into the hydrogels was also investigated. As 

seen in Fig. 2.5a, increasing the concentration added PB particles leads to higher 

amounts of adsorbed Cs ions. The adsorption capacity of PNIPAM hydrogel itself can 

be calculated to be 2.04 mg·g−1 by dividing 1.51 mg (when x = 0) by the total polymer 

amount (0.740 g). Then, the adsorption capacity is calculated to be 30.2 mg･g−1 for the 

LPBs embedded in the hydrogels and 156.7 mg･g−1 for the SPBs (Table 3.1). 

 

Table 2.1 

Cs ions adsorption capacity of SPBs/LPBs hybrid gel and SPBs/LPBs powder 

 

Sample name Surface area 

Cs adsorption 

capacity 

(with hydrogel) 

Cs adsorption 

capacity 

(without hydrogel)* 

Commercially 

available PB particles 

(LPBs) 

10 m2･g-1 30.2 mg･g-1 38.8 mg･g-1 

PB nanoparticles 

(SPBs) 
440 m2･g-1 156.7 mg･g-1 191.4 mg･g-1 

Note: *Calculation by QCM analysis. 
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The Cs adsorption capacity of both LPBs and SPBs without hydrogels was also 

investigated by QCM technique. The QCM-based adsorption offers the capability to 

monitor in real-time the Cs ions uptake at a nanogram precision. The shift in the 

resonance frequency of the quartz following the deposition of materials on the electrode 

surface can be described by Sauerbrey’s theory. By measuring the decrease in frequency, 

the mass per unit area (Δm, g·cm−2) of the PB particles deposited onto the parent Au 

electrode can be systematically calculated by using frequency change (Δf ) measured by 

a QCM with a fundamental resonance frequency (f0) before and after drop-coating. The 

relationship of Δf to the mass loading of the PB samples (Δm) is defined by the 

Sauerbrey equation [23]: 

∆𝑓 = −
2𝑁𝑓0

2

√𝜌𝜇

∆𝑚

𝐴
  (1) 

where N, f0, ρ, μ, and A are the harmonic overtone, the fundamental resonance 

frequency, the crystal density (2.649 g･cm−3), the shear modulus of the quartz crystal 

(2.947×1011 g･cm−1･s−2), and the surface area (0.196 cm2), respectively. The mass of 

the PB samples deposited onto QCM electrodes can be thus calculated using Eq. (1). Δf 

after drop-coating and drying-up were 11150 Hz for SPBs and 11094 Hz for LPBs, thus 

the deposited mass for each sample calculated to be 11.90 and 11.85 μg·cm−2, 

respectively. 

The QCM electrodes coated with PB samples were immersed in 50 mL water. 

After reaching the equilibrium where no more water molecules could adsorb onto the 

PB films, the Cs ions solution (50 mL, 1000 ppm) was injected into the water. A sharp 

decreasing in the crystal frequency was observed due to the adsorption uptake of Cs 

ions onto the surface of the PB samples. The time-dependence of Δf , which corresponds 
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to the amount of adsorbed Cs ions, was plotted and illustrated in Fig. 2.5b. The author 

clearly observed a large adsorption uptake of Cs ions into the SPBs with a total Δf (after 

6,000 s) of 417 Hz. In contrast, LPBs a relatively small Δf of 88 Hz and consequently, 

reflecting a much lesser adsorption uptake of Cs ions from the solution. The adsorption 

capacity was drastically increased and the significant difference in the adsorption uptake 

was attributed to the increase in the effective surface area of the PB nanoparticles. The 

calculated Cs ions adsorption capacity of the SPBs is 191.4 mg·g−1, which is around six 

times than that of LPBs (38.8 mg·g−1) (Table 2.1). These obtained values indicate the 

maximum Cs ions adsorption capacity, as an excess concentration of Cs ions was used 

under these experimental conditions. 
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2.4. Conclusion 

The author successfully prepared PB nanoparticles, which could be well dispersed in an 

aqueous suspension. After drying, the obtained 20 nm size PB nanoparticles show high 

surface area (440 m2･g−1) and were successfully hybridized with PNIPAm hydrogel to 

form PNIPAm/PB composite hydrogels. The Cs ions adsorption capacity of the SPBs 

embedded in the hydrogels (156.7 mg·g−1) is about five times higher than that of the 

LPBs (30.2 mg·g−1).  
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Chapter 3. 

Hydrogels containing mesoporous silica particles 

for control behavior of guest molecules adsorption/desorption 
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Abstract 

Here the author prepared thermo-responsive hydrogel containing mesoporous silica 

(KIT-6) with high surface area. The hybrid hydrogel was prepared by gelation of 

NIPAm monomer with mesoporous silica particles in presence of cross linker. 

Owing to the doped mesoporous silica, a large amount of guest molecules were 

adsorbed easily. With increase of temperature, the hybrid hydrogel shrinked to retard 

the release of guest molecules. 
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3.1. Introduction 

Mesoporous silica (MPS) materials have demonstrated very interesting properties in 

the development of drug delivery system (DDS), because of high adsorption capacity 

of guest molecules and their release [1-4]. Also, MPS has shown to be highly 

biocompatible and its self-degradation in aqueous solution solves the problems related 

to the removal of the material after use [5]. MPS itself, however, cannot show the 

intelligent properties such as controlled release as a function of external stimuli, 

which is highly demanding in DDS. On the other hand, use of several 

stimuli-responsive polymers (e.g., polymeric micelles) can optimize adsorption and 

delivery of drugs [6-9]. In spite of their fast response with change in external factors, 

their poor mechanical properties limit their applications, since most of the polymers 

consist of organic backbone. 

The combination of stimuli responsive properties of polymer and mechanical 

and thermal stability of MPS can help to develop smart MPS-based delivery systems 

in which encapsulation and release of guest molecules can be controlled by a variety 

of external stimuli [10-12]. Some efforts have been made to realize hybrid systems 

using MPS materials for controlled release. pH-responsive hybrid carrier system is 

constructed by electrostatic interaction between polycations and anionic SBA-15. 

The ionizable carboxylic acid can act as a reversible gate to release drug in a 

controlled way [13]. pH-induced conformational change of protein molecules forms 

pH-responsive nanovalve to lock and unlock the pore entrances of MCM-41 [14]. 

Poly(N-isopropylacrylamide) (PNIPAm) is a thermoresponsive polymer, 

which shows a reversible coil-to-globule transition at elevated temperature (known as 

lower critical solution temperature (LCST)) in aqueous solution [15]. Raising the 
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temperature above its LCST, water bound to the polymer chain is released and soluble 

polymer coils start to form insoluble globular particles. The LCST of PNIPAm is at 

around 32-34 oC which is very close to human body temperature. Therefore, 

PNIPAm-based hybrid gel has been widely studied in biomedical applications [16-18]. 

Hybridization of MPS particles with functional polymer not only enables 

functionalization with various molecules but also provides the opportunity to tune the 

loading and release of guest molecules [19]. Liu et al. synthesized a magnetic MPS 

nanoparticle coating with PNIPAm polymer. The phase transition temperature of 

hybrid spheres can be finely tuned by adjusting the amount of hydrophilic comonomer 

[20]. Interpenetrating network of PNIPAm is formed within the pores by organic and 

inorganic gelation. The property of hybrid gel is optimized by controlling the molar 

ratios of silica source and NIPAm [21]. Radical microemulsion polymerization is used 

to graft PNIPAm on the Fe3O4@SiO2 core-shell nanoparticles [22]. Lopez et al. 

impregnated the polymer into the pores of MCM-41 [23]. The kinetics of molecular 

diffusion was observed when the polymer chain changes from open coil to globule 

conformation as a function of temperature. 

The author’s goal of this chapter is a smart hybridization of PNIPAm 

hydrogels with MPS particles to realize sustainable release. Mesoporous structures are 

easily accessible for the adsorption of guest molecules. Mechanical strength, 

encapsulation and controlled release of guest molecules as a function of temperature 

are investigated. 
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3.2. Experimental 

3.2.1. Preparation of PNIPAm hydrogels with MPS particles. 

MPS (KIT-6) was prepared, according to previous study of Suzuki et al. [24]. Pluronic 

P123 block copolymer (6.00 g) was dissolved in water (217 mL) and HCl (37.0 wt%) 

solution (10.0 mL). After the complete dissolution of block copolymer, n-butanol (7.39 

mL) was further added to the mixture and stirred at 35 °C for 1 hour. Butanol is believed 

to act as a co-surfactant which co-micellizes with the block copolymer. Tetraethyl 

orthosilicate (TEOS) (12.9 g) was dropped into the homogenous clear solution and 

additional stirring was carried out at 35 °C for 24 hours. Finally, the obtained particles 

were washed with ethanol/HCl solution and then calcined at 550 °C in air to remove the 

polymer. For preparation of typical hybrid hydrogel, 0.73 g of NIPAm monomer and 

0.01 g of N,N’-methylenebis acrylamide (BIS) were added into aqueous dispersion of 

KIT-6 (0.2 g, 0.5 g, or 1.5 g in 1.5 g of water). The resulting solution was stirred for 1 h. 

The mixture was kept into ice bath with N2 bubbling for 30 min. Ammonium 

peroxodisulfate (APS) and N,N,N’,N’-tetramethylethylenediamine (TEMED) was added 

and kept at 20 oC for 12 hour for gelation. The gel was removed from reaction vessel 

and kept in distilled water for 7 days to wash away the reaction residues. The obtained 

hybrid gels containing MPS particles are noted as PNIPAm-MPS(x) where x indicates the 

doped amounts of MPS in gram. 

 

3.2.2. Characterization of MPS particles 

Transmission electron microscope (TEM, JEOL JEM-2100F) was used to 

observe the mesostructure of MPS particles. Belsorp apparatus (Bel Japan, Inc.) was 

used to measure nitrogen-adsorption isotherms and the pore-size distribution. 
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Low-angle XRD patterns were recorded by using a NANO VIEWER (Rigaku, Japan). 
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3.3. Results and Discussion 

N2 adsorption desorption isotherm of MPS shows typical IV type with specific surface 

area (717 m2·g-1) (Fig. 3.1a). XRD peaks in low-angle region shows excellent structural 

ordering with Ia-3d symmetry (Fig. 3.1b). Highly interconnected mesopores of MPS 

(KIT-6) was observed by TEM (Fig. 3.1c). The main achievement of this study is that 

gelation of PNIPAm on/into the MPS does not perturb the mesoporosity. The XRD 

pattern of the hybrid gel (Fig. 3.1b) is nearly the same as the original one, indicating no 

mesostructural shrinkage or destruction was occurred. The d-spacing of the hybrid gel is 

the same as that of pure KIT-6, indicating the original mesopores are also retained after 

inclusion of PNIPAm. A little weaker peaks of hybrid gel can be attributed to the reduced 

X-ray scattering contrast between the pores and the wall of the materials due to partial 

interpenetration of polymer into the mesopores. The photograph of the obtained 

PNIPAm-MPS hybrid gel is shown in Fig. 3.1d. During the heating and cooling cycle 

(Fig. 3.2a) from 20 to 45 oC, a sharp change in the volume of gel appears at around 34 oC. 

There is no significant deviation from the LCST of pure PNIPAm hydrogel indicating that 

the PNIPAm retains its characteristic properties in hybrid gel. It underwent reversible 

70% volume change when heated from ambient temperature to above the LCST. The 

reversible temperature driven phase transition is very useful for the adsorption and 

release of guest molecules, which is discussed later. 
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Fig. 3.1 

(a) N2 adsorption-desorption isotherm and pore size distribution of the used MPS 

(KIT-6). (b) low-angle XRD patterns of (i) the MPS (KIT-6) and (ii) the PNIPAm-MPS 

(0.5). (c) TEM image of MPS (KIT-6). (d) Photograph of the PNIPAm-MPS (0.5). 
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The mechanical properties of the PNIPAm gels were remarkably improved by 

the addition of MPS particles. Fig. 3.2b shows the stress-strain curves obtained by 

compression test. By loading 0.5 g of MPS particles, the fracture strain is almost 

constant, but the fracture stress largely increases from 93.5 to 378 kPa. When excess 

amounts of MPS particles (more than 1.5 g) are loaded, the fracture stress further 

largely increases, and the fracture strain (%) decreases. In the equilibrium swelling state, 

the average number (n) of the monomer units between the cross links is calculated as 

mNIPAm/mBIS (= ~492) where mNIPAm and mBIS indicate the moles of NIPAm and BIS, 

respectively. From this value, the root-mean-square end-to-end distance (<R2>1/2) and 

fully stretched chain length (L) are calculated as (C×n×b2)1/2 (= ~16 nm) and n×b (= 

~120 nm), respectively, based on the characteristic ratio (C= ~8) and the bond length of 

the polymer chain (b= ~0.25 nm). It is expected that the free polymer chains outside the 

pore are rather less stretched than the chains inside the narrow pores. Inside the pores, 

not a single chain but multiple numbers of chains can be incorporated because the 

mesopore size is much larger than a cross-sectional size of the chains (~1 nm). It is 

expected that the mesopores can accommodate around 16 polymer chains. 
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Fig. 3.2  

(a) Behaviour of volume phase transition properties of PNIPAm gel. (b) Mechanical 

strength of PNIPAm gels [(i) PNIPAm-MPS (1.5), (ii) PNIPAm-MPS (0.5), (iii) 

PNIPAm gel with uncalcined MPS (0.5), and (iv) PNIPAm gel without MPS]. 
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Considering the gel structure discussed above, the improved mechanical 

properties of the gel doped with 0.5 g MPS particles is accounted for the formation of 

both topological and rigid crosslinks. The polymer chains or their bundles are piercing 

through the mesopores to form movable topological crosslinks near the particle surface, 

and then the total mechanical stress is uniformly dispersed, leading to the improvement 

of mechanical property of gels. For comparison, hydrogel containing as-prepared 

mesostructured silica particles (without mesopores) were also prepared, as shown in Fig. 

3.2b. It indicates almost the same mechanical behavior as the pure hydrogel. When 

excess amounts of MPS particles (more than 1.5 g) are loaded, more polymer chain 

networks are incorporated deep inside the particles. These polymers are mostly 

immobilized well so that the effective density of the polymer chains and the chemical 

cross linker outside the pores decreases [25]. 

The ability of hybrid gel to adsorb the guest molecules from aqueous solution 

was investigated. The author used methylene blue (MB) as model molecule. For 

comparison, the author checked the adsorption capacity of MPS and PNIPAm gel. MPS 

itself shows remarkably higher adsorption capacity compared with pure PNIPAm gel (Fig. 

3.3). The adsorption capacity of hybrid gel is comparable with MPS. It is indicated that 

almost all space of mesopores is available for entrapment of guest molecules even after 

gelation of PNIPAm. The slightly increased adsorption capacity of hybrid gel compared 

with MPS is due to entrapment of MB in polymer chains. This high adsorption capacity is 

very advantageous for application as delivery systems with high compound loading. 
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Fig. 3.3 

(a) Adsorption amounts of methylene blue (MB) into MPS; uncalcined MPS, calcined 

MPS, PNIPAm gel without MPS, PNIPAm-MPS (0.2), and (ii) PNIPAm-MPS (0.5), 

respectively.  
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Adsorption of large amount of guest molecules and their controlled release is 

always demanding in biomedical application. Here, the author investigated the 

temperature-dependent release of MB from the hybrid gel. The gel was immersed in pure 

water at two different temperatures (25 °C and 40 °C) and studied the kinetics of release 

of MB. The amount of MB released was estimated by the absorbance at 630 nm of the 

supernatant solution. The release profile of MB was shown in Fig. 3.4a. The 

time-dependent release amount is higher at temperature (25 oC) lower than LCST of 

PNIPAm. The faster release rate is due to opening of the gate as the PNIPAm becomes 

hydrophilic and cannot close the pore tightly. The extended polymer chains open the gate 

and allow releasing the entrapped MB quickly. At temperature (40 oC) above the LCST of 

PNIPAm, the transformation from coil to globule structure occurs which increases the 

hydrophobicity of the polymer chain results into shrinking and closes the gate more 

tightly, thereby preventing the drug from being significantly released from hybrid gels. 

The direct observation of photograph of hybrid gel at ambient temperature and above 

LCST clearly shows the phase transition behavior (Inset of Fig. 3.4a). The shrinking and 

expansion of hybrid gel as a function of temperature is directly observed. For comparison, 

the burst release was observed for the pure PNIPAm gel (Fig. 3.4b). It is found that the 

hybridization of thermoresponsive polymer with silica not only enhances the adsorption 

efficiency but also releases the drug in sustained manner. 
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Fig. 3.4 

Time-dependent release properties of the adsorbed methylene blue (MB) from (a) 

PNIPAm-MPS (0.2) and (b) PNIPAm gel without MPS, respectively. 
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3.4. Conclusion 

A thermoresponsive PNIPAm-based hybrid gel containing MPS (KIT-6) is successfully 

synthesized. The ordered mesostructure of KIT-6 is completely preserved after 

incorporating the PNIPAm. The high surface area MPS offers high loading efficiency and 

PNIPAm polymer chains contribute the controlled release of guest molecules by 

changing the applied temperatures. This novel hybrid gel containing thermally and 

mechanically stable MPS and thermoresponsive polymer with the LCST value being 

around physiological temperature of human body will be a highly useful system for drug 

delivery applications in the future. 
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Chapter 4. 

Silicone rubbers containing mesoporous silica particles 

for improvement thermal property and strength 
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Abstract 

The author fabricated mesoporous silica/silicone composites in a simple way and 

systematically examine their thermal stability and mechanical strength. Simple 

calculations showed that more than 90 vol% of mesopores are filled with silicone 

rubbers. Compared to non-porous silica/silicone composites, mesoporous silica/silicone 

composites showed a lower coefficient of linear thermal expansion (CTE). In addition, 

dramatic improvements of the tensile strength and Young’s modulus were obtained with 

mesoporous silica/silicone composites.  
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4.1. Introduction 

Unlike organic rubbers, the backbone of which consists of C–C bonds, silicone rubber 

has a stronger siloxane bond (Si–O–Si) backbone. Therefore, silicone rubber can 

withstand hostile environments, such as high temperature, UV irradiation, and ozone 

exposure, in which the C–C bonds break. Owing to these characteristics, silicone rubber 

is commonly used for parts exposed to hostile environments, such as combustion 

engines, rocketry, and satellites. In addition, because silicone rubber is chemically 

stable and has high biocompatibility, it is used for medical apparatuses, such as 

catheters, cochlear implants, cardiac pacemakers, artificial skins, contact lenses, and 

oxygenators. Currently, on account of its transparency, flexibility, and environmental 

resistance, silicone rubber is being used for optoelectronic devices, such as the cover of 

LED, light guide films, and optical fibers. 

However, low mechanical strength, especially tensile strength, and high 

thermal expansion are the main drawbacks of silicone rubber for practical uses. To 

expand the applications of silicone rubber, these obstacles need to be overcome. To 

reinforce the mechanical strength, the addition of inorganic fillers is very common in 

polymers [1-13], gels [14, 15], and natural rubbers [16-20]. Many filler-loading 

experiments with silicone rubber have been reported [21-35].  

As a new inorganic filler material, the author has focused on mesoporous silica. 

Mesoporous silica, with a very large number of nanoscale pores and extremely large 

pore volumes, can be prepared through the spontaneous self-assembly of surfactants 

[36-45]. In previous papers, Yamauchi et al. pointed out that mesoporous silica particles 

effectively reduce the coefficient of linear thermal expansion (CTE) of epoxy polymer 

composites [46-50]. The author has also demonstrated that mesoporous silica particles 
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are more effective in reducing CTE values and hardening silicone rubber composites 

than conventional non-porous silica fillers. In addition, silicone rubber composites with 

mesoporous silica particles showed higher transparency than those with non-porous 

silica particles [51]. 

However, the fabrication process of silicone rubber composites in the previous 

work took a long fabrication time because many steps are required to obtain the 

composites [51]. First, mesoporous silica was mixed with the main component of the 

silicone rubber with the aid of a solvent, and the obtained slurry was then dried until the 

solvent completely evaporated. After mechanical mixing of the slurry, a curing agent 

was added and mixed. Finally, the curing procedure was conducted in a vacuum to 

obtain the final products. From an industrial viewpoint, reducing processes and saving 

time are important. In this study, the author proposes a simple fabrication process by 

using silicone rubber, which does not require a curing agent. Furthermore, the thermal 

stability, swelling characteristics, mechanical strength, and transparency are examined 

in detail for supporting the effectiveness of mesoporous silica particles as filler 

materials. 
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4.2. Experimental 

4.2.1. Chemicals 

Commercially available mesoporous silica particles (product name: TMPS-4) were 

purchased from Taiyo Kagaku Co., Ltd. 1,1,1,3,3,3-Hexamethyldisilazane 

(Sigma-Aldrich Inc.) was used for the surface modification of mesoporous silica 

particles. As a reference material, non-porous silica particles (product name: Admafine 

SO-C6; from Admatech Co., Ltd.) were used. The particle size of both mesoporous 

silica and non-porous silica is around 800 nm (Fig. 4.1a and b). Silicone rubber 

(product name: X-32-3095) was acquired from Shin-Etsu Chemical Co., Ltd. In this 

study, all chemicals were used without further purification. 
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Fig. 4.1 

SEM images of (a) mesoporous silica particles (TMPS) and (b) non-porous silica 

particles (Admafine SO-C6). (c) Low-angle XRD pattern. (d) N2 adsorption–desorption 

isotherm of TMS-TMPS. The inset in (d) is the pore-size distribution. (e) Typical 

picture of the fabricated silica/silicone composite. (f) cross-sectional SEM image of 

TMS-TMPS_25 wt%. The white arrows point to the embedded TMS-TMPS. 
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4.2.2. Preparation of silica/silicone composites 

Trimethylsilyl modification of TMPS-4 was conducted to increase the affinity between 

the mesopore surface and silicone.TMPS-4 (10 g) and 1,1,1,3,3,3-hexamethyl- 

disilazane (1.0 g) were mixed in the polypropylene bag. The powders were 

subsequently treated at 120 oC for 24 h; then, TMS-modified TMPS-4 (hereafter, 

referred to as ‘‘TMS-TMPS’’) was obtained. TMS-TMPS and silicone were mixed with 

the THINKY vacuum mixer ARV-310 at room temperature until a bubble-free mixture 

was obtained. The obtained mixture was heated under a reduced-pressure condition. 

First, the mixture was kept at 40 oC for around 20 h, then gradually heated up to 150 oC, 

and finally held at 150 oC for 30 min. For a comparative study, the author prepared a 

composite with nonporous silica particles (NS) in the same way. The author prepared 

several silica/silicone composites by varying the amounts of TMS-TMPS (or NS). The 

total composite amounts were fixed to be 7.0 g. The details for each component are 

listed in Table 4.1. Hereafter, mesoporous silica/silicone and non-porous silica/silicone 

composites are described as TMS-TMPS_X wt% and NS_X wt%, respectively, where 

‘‘X’’ indicates the weight percentages of TMS-TMPS and NS. 
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Table 4.1   

Sample preparation and physical data of mesoporous silica/silicone and non-porous 

silica/silicone composites with various amounts of doped silica. 

 

  Amount /g         

Sample Silica Silicone Density/g・cm-3 Dead pore ratio 
[vol%] 

Weight ratio of  
outside silcone [wt%] 

CTE 

 [×10-4 oC-1] 

Silicone rubber 0 7 1.07 ―― 100 273 

TMS_TMPS_10wt% 0.7 6.3 1.12 93.4 81.1 243 
TMS_TMPS_20wt% 1.4 5.6 1.173 92.6 62.4 213 
TMS_TMPS_25wt% 1.75 5.25 1.198 91.4 53.3 198 
TMS_TMPS_30wt% 2.1 4.9 1.229 91.8 43.8 182 

NS_10wt% 0.7 6.3 1.128 ―― 90 258 

NS_20wt% 1.4 5.6 1.193 ―― 80 246 

NS_25wt% 1.75 5.25 1.225 ―― 75 236 

NS_30wt% 2.1 4.9 1.264 ――  70 228 

 

 

 

 

  



75 

 

4.2.3 Characterization 

The low-angle X-ray diffraction of TMS-TMPS was measured with RINT 2000/PC 

(Rigaku) using a CuKα X-ray. The total pore volume of TMS-TMPS was estimated 

from the N2 adsorption–desorption isotherm measured with BELSORP-mini II (BEL 

JAPAN) at 77 K. Prior to the measurement, the particles were pretreated in a vacuum at 

100 oC for 24 h with BELPREP-vac II (BEL JAPAN). The specific gravity of the 

obtained silica/silicone composites was determined using the Archimedean method. 

Thermal mechanical analysis (TMA) data of the composites were obtained using 

Thermoplus TMA 8310 (Rigaku). Prior to the measurement, rectangular specimens 

(10mm × 4.5 mm × 4.5 mm) were prepared from the fabricated composites. The 

temperature was increased at a rate of 5 oC min-1 during the measurement. The obtained 

TMA charts were normalized by the original specimen length (10 mm). The weight loss 

at 260 oC was measured with an EXSTAR TG/DTA 6200 (SII). The swelling 

characteristic of the composites was examined as follows. First, each composite (5 mm 

× 5 mm × 10 mm) was put into a 15 mL screw bottle (diameter is 2.5 cm); 8 mL of 

toluene was added; and the cap was closed to prevent evaporation of the solvent. The 

composites were completely immersed in toluene. A fixed point observation was 

conducted until the swelling of the composite reached equilibrium. By dividing the 

volume of a swelled composite by the initial volume, the time-dependence of the 

volume expansion ratio was measured. Stress–strain measurements were performed 

with an AG-100-KNG-M3 testing machine (Shimadzu). For the compression test, the 

rectangular composites (4 mm × 4 mm × 3 mm) were compressed along their shorter 

axis at a compression rate of 5 mm mm_1. For the tensile strength measurements, a strip 

sample (1 mm × 5 mm × 40 mm) was put on the machine with an initial gap of 20 mm 
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and stretched at a rate of 5 mm mm-1 until a fracture occurred. To investigate the 

transparency of the composites, the UV-VIS-NIR spectrum of each composite was 

measured with a V-570 spectrophotometer (JASCO). The thickness of each composite 

was fixed to 50 mm.  
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4.3. Results and discussion 

Prior to the fabrication of mesoporous silica/silicone composites, the author examined 

the starting TMS-TMPS used in this study. The low-angle X-ray diffraction profile of 

TMS-TMPS had several peaks assignable to (10), (11), and (20) diffractions of a 

well-ordered 2D hexagonal structure (Fig. 4.1c). The pore-to-pore distance was 

estimated to be 5.8 nm because the d10 value was 5.0 nm. The N2 adsorption–desorption 

isotherm showed type-IV isotherms with a capillary condensation step (Fig. 4.1d). 

Uniform pore sizes were confirmed from the pore-size distribution calculated by the 

BJH method. The calculated BET surface areas, mean mesopore diameters, and total 

pore volumes were 776 m2･g-1, 3.7 nm, and 0.89 cm3･g-1, respectively. 

Fig. 4.1e is the photograph of a fabricated mesoporous silica/ silicone 

composite showing its flexibility. The cross-sectional SEM image of the composite 

showed that added mesoporous silica particles were well dispersed in the silicone 

rubber matrix (Fig. 4.1f). No voids or cracks were observed at the interface between the 

particles and the silicone rubber matrix. From the viewpoint of practical application, the 

absence of such voids and cracks is significant because these voids and cracks may 

induce the distortion and/or breakage of the composites under high temperature. 

To quantitatively estimate the degree of pore filling in the composite, the 

‘‘dead pore ratio’’, which has been described in previous studies of Suzuki et al. [4651], 

was calculated using the following equations: 

𝑉 =

1
𝜌 −

1
𝜌silicone

(
100 − 𝑥

100 ) −
1

𝜌silica
(

𝑥
100)

(
𝑥

100)
  ( 4 − 1 ) 
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Dead pore ratio (vol%) =
𝑉0−𝑉

𝑉0
× 100 （4 − 2）  

 

where x is the additive weight ratio of mesoporous silica particles (wt%), and ρ, ρsilicone 

and ρsilica are the density of the composites, silicone (1.07 g･cm-3) and silica (2.18 g･

cm-3), respectively, and V0 is the total pore volume of TMS-TMPS (0.89 cm3･g-1). 

When all mesopores are fully filled with silicone rubber, the dead pore ratio becomes 

100 vol%, while it is 0 vol% if all mesopores completely remain. Table 4.1 lists the 

estimated dead pore ratio of each composite. The dead pore ratio was more than 90 

vol%, indicating that most of the mesopores were filled with silicone rubber. 

The thermal stability of the obtained silica/silicone composites was examined 

using a thermal mechanical analysis (TMA) chart. Fig. 4.2 shows the length-normalized 

TMA charts of the silica/silicone composites. Unlike silica/epoxy composites of Suzuki 

et al. [46–50], the silica/silicone composites showed no bend occurring as a result of the 

glass transition because the glass transition temperature of silicone rubber (-125 oC to 

-120 oC) [52–54] was much lower than the temperature region in the TMA chart. The 

CTE value was determined from the slope of the TMA chart. The CTE value of silicone 

rubber was 273 × 10-6 oC-1 and decreased monotonically as the amount of added silica 

particles increased. Although the decrease of the CTE value was observed in both 

non-porous silica/silicone composites (NS_X wt%) and mesoporous silica/silicone 

composites (TMS-TMPS_X wt%), the degrees of CTE reduction in the mesoporous 

silica/silicone composites were much higher than those in the non-porous silica/silicone 

composites (Fig. 4.3a). To give an example, the CTE values of NS_30 wt% and 

TMSTMPS_ 30 wt% were 228 × 10-6 oC-1 and 182 × 10-6 oC-1, i.e., 83.5% and 66.7% of 
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the CTE values of silicone rubber, respectively. 

 

 

 

 

Fig. 4.2 

Length-normalized thermal mechanical analysis (TMA) charts of (a) mesoporous 

silica/silicone composites (TMS-TMPS_X wt%) and (b) non-porous silica/silicone 

composites (NS_X wt%).  
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Fig. 4.2 

Length-normalized thermal mechanical analysis (TMA) charts of (a) mesoporous 

silica/silicone composites (TMS-TMPS_X wt%) and (b) non-porous silica/silicone 

composites (NS_X wt%).  
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Fig. 4.3 

(a) CTE as a function of the weight ratios of the added silica particles and (b) 

relationship between CTE and the weight ratios of silicone outside mesopores in the 

composites. Filled circles (●), open circles (○), and crosses (×) represent mesoporous 

silica/silicone composites (TMS-TMPS_X wt%), non-porous silica/silicone composites 

(NS_X wt%), and silicone rubber without silica fillers, respectively.  
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As reported in previous papers, polymers confined into mesopores do not 

contribute to the CTE [46-51]. Therefore, only silicone outside mesopores should be 

considered. The weight ratios of silicone outside mesopores are calculated with the 

following equations: 

 

Relative weight ratio of inside silicone (wt%) 

=
𝑉0 ×

𝑥
100 ×

dead pore ratio (vol%)
100 × 𝜌silicone

(
100 − 𝑥

100 )
× 100  ( 4 − 3 ) 

 

Relative weight ratio of outside silicone (wt%) 

= 100 − relative weight ratio of inside silicone (wt%)  ( 4 – 4 ) 

  

Weight ratio of outside silicone (wt%) 

= (
100 − 𝑥

100
) 

× (
relative weight ratio of outside silicone (wt%)

100
) × 100  ( 4 − 5 ) 

 

where V0 is the total pore volume of TMS-TMPS (0.89 cm3 g-1), x is the additive weight 

ratio of mesoporous silica particles (wt%), and rsilicone is the density of silicone rubber 

(1.07 g･ cm-3). The calculated outside polymer amounts of each composite are 

summarized in Table 4.1, and their relationship to CTE is shown in Fig. 4.3b. It was 

revealed that the CTE values of mesoporous silica/silicone composites (TMS-TMPS_X 
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wt%) were in proportion to the weight ratios of silicone outside mesopores. It should be 

noted that the CTE values of the nonporous silica/silicone composites were also in the 

least-squares regression line of the mesoporous silica/silicone composites. This fact 

strongly demonstrated that the thermal expansion behaviors of the composites were 

governed by only the silicone rubbers outside filler particles. The expansion of silicone 

rubbers inside themesopores was suppressed almost completely, indicating that the 

silicone rubbers confined physically inside the mesopores are thermally stable due to 

the robust silica frameworks. 

The reinforcement of silicone rubber with silica loading was examined by 

compression tensile stress–strain measurements. The relationship between stress (σ) and 

strain (ε) in the composites is summarized in Fig. 4.4a. As the amount of added silica 

particles increases, more stress is required for distortion due to the enhanced mechanical 

hardness. Even when the same amount was added, mesoporous silica particles hardened 

the silicone rubber much more than non-porous silica particles. The obtained Young’s 

modulus (E) was calculated using the following equation in the range of stress in which 

Hooke’s law holds: 

𝐸 =
𝜎

𝜀
  (4 − 6) 

As shown in Fig. 4.4b, the estimated Young’s modulus was linearly increased 

as the weight ratio of silicone rubber outside the mesopores decreased. 
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Fig. 4.4 

(a) Compression Stress–strain curve for silica/silicone composites. The solid and the 

dotted lines indicate mesoporous silica/silicone composites (TMS-TMPS_10 wt%, 

TMS-TMPS_25 wt%) and non-porous silica/silicone composites (NS_10 wt%, NS_25 

wt%), respectively. (b) Young’s modulus as a function of the weight ratios of silicone 

outside mesopores in the composites. The least-squares linear regression line is also 

noted. Filled circles (●), open circles (○), and crosses (×) represent mesoporous 

silica/silicone composites (TMS-TMPS_10 wt%, TMS-TMPS_25 wt%), non-porous 

silica/silicone composites (NS_10 wt%, NS_20 wt%), and silicone rubber without silica 

fillers. 
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The improvement of the mechanical strength by the addition of mesoporous 

silica particles was also confirmed by tensile stress–strain measurement. As shown in 

Fig. 4.5, all the curves were typical of rubber samples. The elastic limits at a small 

strain were around 30% (for TMS-TMPS_20 wt%), 35% (for NS_20 wt%), and 40% 

(for the original silicone rubber). A steep increase in stress was clearly observed until 

fracture. TMS-TMPS_20 wt% showed much larger initial modulus (15.3 MPa) and 

fracture strength (11.6 MPa) than the original silicone rubber (7.8 and 8.5 MPa, 

respectively). It is notable that the fracture strain was mostly retained (133%) in 

TMSTMPS_20 wt% compared to the original silicone rubber (131%), even though the 

modulus significantly increased. In contrast, the fracture strain of NS_20 wt% 

considerably decreased to 108%, while only a smaller increase in the initial modulus 

(13.0 MPa) and fracture strength (10.7 MPa) was observed. These results highlight 

another important merit of mesoporous silica versus non-porous ones as the filler of 

rubber materials. The addition of mesoporous silica not only increases the modulus 

effectively but also retains the stretching property, leading to total high fracture 

toughness. The increases in the initial modulus and fracture strength are explained by 

the increasing fraction of the hard component (i.e. silica spheres or mesoporous silica 

filled with silicone). Moreover, the author may consider a different mechanism under 

stretch for better strain of the mesoporous-silica-containing rubber system. It is easily 

presumable that, upon stretching, the silicone polymers inside of the mesopore are 

released from the mesopore. Consumption of the given stretching energy for breakage 

of the weak physical interactions between the inside silicone rubber and the mesopore 

wall, rather than the breakage of the covalent bond of the polymer, contributes to the 

larger fracture strain. The fact that the elastic limit appears at lower strain for 
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TMS-TMPS_20 wt% than original rubber or NS_20 wt% is explained by the 

irreversible release of polymers from the mesopores with even a small stretch, 

supporting the above-mentioned mechanism. 

 

 

Fig. 4.5 

Tensile stress–strain measurement for TMS-TMPS_20 wt%, NS_20 wt%, and silicone 

rubber without silica fillers. 
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4.4. Conclusion 

The author proposed a simple fabrication procedure for mesoporous silica/silicone 

composites by using the silicone rubber without a curing agent. The dead pore ratio 

calculation showed that almost all mesopores were completely filled with silicone 

rubbers due to influence of improvement the affinity between mesopore and silicone by 

trimethylsilyl modification of TMPS-4. This systematic study demonstrated that 

mesoporous silica particles were a smarter filler material than non-porous ones for 

enhancing the properties of silicone rubber. Compared to non-porous silica/silicone 

composites, mesoporous silica/silicone composites showed lower CTE values because 

their robust silica framework suppressed the thermal expansion of silicone rubber 

confined in the mesopores. As for the mechanical reinforcement, mesoporous silica 

particles effectively increased the tensile strength and Young’s modulus. In the near 

future, the author will show practical applications using silicone composite with 

improved thermal and mechanical strength. 
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Chapter 5. 

 General conclusion 
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With the studies of the present thesis, the author developed some novel 

organic-inorganic hybrids of organic polymer hydrogels and porous inorganic fillers. In 

contrast to previous examples of organic polymer-inorganic hybrids where the inorganic 

fillers were mainly employed for improving mechanical strength of the organic 

polymers, the materials developed by the author utilize the pores of inorganic fillers as 

adsorption sites that endow novel functions with the hybrids. 

In chapter 2, novel PNIPAm hydrogels containing Prussian Blue (PB) 

nanoparticles was synthesized. By incorporation of PB nanoparticles, the uptake ability 

of Cs ions into PNIPAm hydrogel was drastically increased up to 156.7 m2･g−1 in 

comparison with PNIPAm hydrogel with commercially available PB. Thus, the author 

shows that the PB-containing PNIPAm hydrogel is considered as an excellent candidate 

for the removal of Cs ions from aqueous solutions, which will be useful for the 

remediation of the nuclear waste. Chapters 3 and 4 demonstrate the use of mesoporous 

silica (MPS) as the fillers. In chapter 3, hybridization of PNIPAm hydrogels with MPS 

particles realized sustainable and controlled release of molecules. This is very 

interesting properties in the development of drug delivery system (DDS). In Chapter 4, 

the use of MPS is further applied to prepare MPS-containing silicone rubbers. The 

stable polymers embedded inside the mesochannels of MPS effectively reduced the 

coefficient of linear thermal expansion (CTE) of polymer composites. The important 

thing is that the original nanoporous materials is retained even after hybridization with 

hydrogels and silicone rubbers. Then, it is possible to utilize the inherent properties 

derive from the used nanoporous materials. 

Recently, the hybridization of hydrogels and silicone rubbers with well-defined 

nanostructured inorganic materials are emerging as a promising and efficient technique 
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to improve the properties. Especially, hybridization of hydrogels with other 

nanomaterials will be useful to bring out new functions in future. While hydrogel 

materials have been already used in many commercial products such as soft contact 

lenses and disposal diapers, newly developed hybrid hydrogels with superior properties 

and smart functions will be able to achieve a great performance in the field of drug 

delivery systems, sensors, coatings, artificial organs, and chemical actuators for 

microfluidics and molecular robots, as mentioned in Chapters 2 and 3. In future, further 

combination of different porous fillers with functional polymers, it will be possible to 

the creation of new functions as well as improvement of mechanical strength of 

materials.   
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