Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

Elizabeth M. Jones, Mairi Fenton, Michael P. Meredith, Nicola M. Clargo, Sharyn Ossebaar, Hugh W. Ducklow, Hugh J. Venables, Hein J.W. de Baar

PII: S0967-0645(17)30024-3
DOI: http://dx.doi.org/10.1016/j.dsr2.2017.01.007
Reference: DSRII4190

To appear in: Deep-Sea Research Part II

Received date: 3 February 2016
Revised date: 17 January 2017
Accepted date: 17 January 2017

Cite this article as: Elizabeth M. Jones, Mairi Fenton, Michael P. Meredith Nicola M. Clargo, Sharyn Ossebaar, Hugh W. Ducklow, Hugh J. Venables and Hein J.W. de Baar, Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula, Deep-Sea Research Part II, http://dx.doi.org/10.1016/j.dsr2.2017.01.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

Elizabeth M. Jones1,2,*, Mairi Fenton3, Michael P. Meredith3, Nicola M. Clargo2, Sharyn Ossebaar2, Hugh W. Ducklow4, Hugh J. Venables3, Hein J.W. de Baar2,5

1Centre for Energy and Environmental Sciences, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
2NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
3British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
4Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA
5Ocean Ecosystems, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands

*Corresponding author at: Centre for Energy and Environmental Sciences, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands email: e.m.jones@rug.nl

Abstract

The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO\textsubscript{2}). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium carbonate minerals calcite and aragonite was observed in Ryder Bay, in the coastal sea-ice zone of the West Antarctic Peninsula. Glacial meltwater and melting sea ice stratified the water column and facilitated the development of large phytoplankton blooms and subsequent strong uptake of atmospheric CO\textsubscript{2} of up to 55 mmol m-2 day-1 during austral summer. Concurrent high pH (8.48) and calcium carbonate mineral supersaturation (Ω\textsubscript{aragonite} \approx 3.1) occurred in the meltwater-influenced surface ocean. Biologically-induced increases in calcium carbonate mineral saturation states counteracted any effects of carbonate ion dilution. Accumulation of CO\textsubscript{2} through remineralisation of additional organic matter from productive coastal waters lowered the pH (7.84) and caused deep-water corrosivity (Ω\textsubscript{aragonite} \approx 0.9) in regions impacted by Circumpolar Deep Water. Episodic mixing events enabled CO\textsubscript{2}-rich subsurface water to become entrained into the surface and eroded seasonal stratification to lower surface water pH (8.21) and saturation states (Ω\textsubscript{aragonite} \approx 1.8) relative to all surface waters across Ryder Bay. Uptake of atmospheric CO\textsubscript{2} of 28 mmol m-2 day-1 in regions of vertical mixing may enhance the susceptibility of the surface layer to future ocean acidification in dynamic coastal environments. Spatially-resolved studies are essential to elucidate the natural variability in carbonate chemistry in order to better understand and predict carbon cycling and the response of marine organisms to future ocean acidification in the Antarctic coastal zone.
Keywords
carbonate chemistry; ocean acidification; sea ice; glacial meltwater; West Antarctic Peninsula; Ryder Bay

1. Introduction

The rapid increase of carbon dioxide (CO$_2$) in the atmosphere due to human activities is causing shifts in ocean chemistry, as oceanic CO$_2$ uptake lowers seawater pH and the concentration of carbonate ions in the process of ocean acidification (Caldeira and Wickett, 2003; Feely et al., 2004; Orr et al., 2005; Royal Society, 2005). Dissolving CO$_2$ in the ocean increases the partial pressure of CO$_2$ (pCO$_2$) and the concentration of dissolved inorganic carbon (C$_T$) in seawater (Feely et al., 2004; Takahashi et al., 2009). An immediate impact of ocean acidification on marine ecosystems is lowering of the saturation state (Ω) of calcium carbonate minerals in seawater (Feely et al., 2004; Millero, 2007; Fabry et al., 2008). Waters become corrosive to un-protected calcareous shells and skeletons when undersaturation with respect to calcium carbonate saturation states ($\Omega < 1$) occurs (Andersson et al., 2005; Royal Society, 2005; Doney et al., 2009). Biogenic carbonate minerals exist as one of two crystalline forms, aragonite or calcite, where aragonite is the less stable form and reaches undersaturation and dissolution in advance of calcite (Mucci, 1983; Orr et al., 2005). Ocean acidification as a result of anthropogenic CO$_2$ uptake has led to a shallowing of the aragonite saturation horizon ($\Omega = 1$) in the water column, such that corrosive waters can flow above the depth of shelf breaks and enter coastal regions (Sabine et al., 2004; Feely et al., 2008; Bates et al., 2009). Oceanic CO$_2$ timeseries data show that the surface ocean concentrations of CO$_2$ are following the atmospheric CO$_2$ increase (Bates et al., 2014). The pH of the global oceans has reduced by 0.1 units over the last 200 years (Caldeira and Wickett, 2003) and is predicted to drop by a further 0.3-0.4 units by 2100 (Feely et al., 2004; Orr et al., 2005).

The polar oceans are particularly vulnerable to ocean acidification as the cold waters are naturally CO$_2$-rich and have a low total alkalinity (A_T) to C$_T$ ratio that reduces the degree of carbonate mineral saturation and the buffering capacity for further CO$_2$ uptake (Egleston et al., 2010; Shadwick et al., 2011; Shadwick et al., 2013; Takahashi et al., 2014). Additionally, the solubility of calcium carbonate minerals increases at lower temperatures (Zeebe and Wolf-Gladrow, 2001). Climatological data from Drake Passage have revealed decreasing time-trends in surface water pH with an associated reduction in the saturation states of calcite and aragonite of -0.09 ± 0.08 and -0.06 ± 0.05, respectively, per decade (Takahashi et al., 2014). Surface waters of the Southern Ocean are predicted to experience wintertime aragonite undersaturation by 2030, driven by seasonal variations and a synergy of reduced sea-ice cover, surface water freshening and increased air-sea CO$_2$ exchange (Orr et al., 2005; McNeil and
Matear, 2008; Steinacher et al., 2009; Sasse et al., 2015). This has implications for pelagic and benthic calcifiers, such as Southern Ocean pteropods (Bednaršek et al., 2012), foraminifera (Moy et al., 2009) and other Antarctic molluscs (McClintock, et al., 2009) that have already shown reduced calcification and shell dissolution under acidification pressures. Furthermore, shifts in ocean chemistry influence Antarctic phytoplankton productivity, the biological carbon pump and community composition in the Southern Ocean (Neven et al., 2011; Trimborn et al., 2013). However, Antarctic sea urchins and other calcifiers have shown resilience to ocean acidification (Orr et al., 2005; Ericson et al., 2010).

The West Antarctic Peninsula (WAP) is a highly productive marine ecosystem with an effective biological carbon pump that creates important sinks for atmospheric CO$_2$ in the coastal sea-ice zone of the Southern Ocean (Arrigo et al., 2008b; Ducklow et al., 2007; Clarke et al., 2008). Primary production is strongly influenced by the seasonal advance and retreat of sea ice and the eastward flowing Antarctic Circumpolar Current (ACC) that impacts the western shelf of the Antarctic Peninsula. The proximity of the ACC to the WAP shelf allows warm Circumpolar Deep Water (CDW) to intrude into glacially-eroded canyons, which act as conduits to channel the CDW into the coastal zone (Martinson et al., 2008; Meredith et al., 2008; Moffat et al., 2009; Klinck and Dinniman, 2010). Mixing of CDW with overlying Antarctic Surface Water (AASW) and subsurface waters across the WAP shelf results in a modified form of CDW that occupies deep levels of the coastal areas (Klinck, 1998; Smith et al., 1999). Meltwater inputs form the fresh and less-dense AASW that overlies the permanent pycnocline and the warm, saline and CO$_2$-rich CDW beneath (Meredith et al., 2013). Seasonal warming and freshening stratify the upper ocean to cap a cold and saline remnant of the winter mixed layer, termed the Winter Water, at around 100 m depth (Mosby, 1934). Mixing of the AASW and Winter Water with CDW provides a supply of heat, nutrients and CO$_2$ to the upper ocean, which stimulates some of the highest rates of phytoplankton primary production in the whole of the Southern Ocean (Prezelin et al., 2000; Arrigo et al., 2008a; Wallace et al., 2008).

Ocean carbonate chemistry and air-sea CO$_2$ exchange along the WAP is strongly regulated by primary production, sea-ice dynamics, glacial meltwater inputs and the mixing of water masses (Carrillo and Karl, 1999; Carrillo et al., 2004; Wang et al., 2009; Montes-Hugo et al., 2010; Tortell et al., 2015; Hauri et al., 2015; Legge et al., 2015; Eveleth et al., 2016). The dominant freshwater source to the region is meteoric (glacial meltwater and precipitation) with a contribution from melting sea ice (Meredith et al., 2008; Meredith et al., 2010). Meltwater inputs stabilise the water column whereas reductions in winter sea-ice cover leads to deep mixing and reduced stratification the following summer (Venables and Meredith, 2014). Melting glaciers and sea ice have been found to be a source of iron that fuel phytoplankton blooms in the Antarctic (Alderkamp et al., 2012; Gerringa et al., 2012; Annett et al., 2015). Enhanced biological carbon uptake has been observed in the wake of retreating sea ice in the coastal
Antarctic (Gibson and Trull, 1999; Sweeney, 2003; Roden et al., 2013) and Southern Ocean (Bakker et al., 2008; Jones et al., 2010; Jones et al., 2015). Freshwater inputs can enhance carbonate mineral undersaturation as the concentration of carbonate ions becomes diluted, as observed in the Arctic Ocean (Yamamoto-Kawai et al., 2009; Chierici and Fransson, 2009; Bates et al., 2009; Azetsu-Scott et al., 2010; Evans et al., 2014). However, strong primary production in the coastal zone of the WAP increases carbonate mineral saturation states and compensates any dilution effects (Mattsdotter Björk et al., 2014; Hauri et al., 2015).

The timing and longevity of phytoplankton blooms and biological CO$_2$ drawdown is strongly influenced by seasonal sea-ice cover, which impacts light availability and water column stratification (Stammerjohn et al., 2008; Vernet et al., 2008; Venables et al., 2013). Wintertime cooling and sea-ice formation create deep mixed layers of Winter Water, during which vertical entrainment of CDW can occur (Meredith et al., 2004; Clarke et al., 2008). Sea-ice cover reduces light levels in the upper ocean and acts as a barrier to impede air-sea CO$_2$ exchange, enabling CO$_2$ enrichment in the underlying water (Delille et al., 2014). During spring and summer, retreat of the ice pack and glacial meltwater inputs promote the formation of large phytoplankton blooms through increased light levels, water column stratification and potential seeding by sea-ice algae and nutrients (Smith and Nelson, 1985; Clarke et al., 2008; Vernet et al., 2008; Meredith et al., 2013; Venables et al., 2013). The intensification of the biological carbon pump through photosynthetic carbon uptake and production and export of organic matter creates strong seasonal CO$_2$ sinks in coastal zones of the WAP and Antarctica (Gibson and Trull, 1999; Carillo et al., 2004; Montes-Hugo et al., 2009; Wang et al., 2009; Buesseler et al., 2010; Montes-Hugo et al., 2010; Roden et al., 2013; Legge et al., 2015).

The WAP has experienced rapid changes in atmospheric and oceanic warming over the latter part of the twentieth century (Vaughan et al., 2003; Meredith and King, 2005; Martinson et al., 2008; Martinson et al., 2012). Many of the glaciers along the WAP have rapidly retreated and there has been a reduction in sea-ice cover and shortening of the sea-ice season (Stammerjohn et al., 2012; Meredith et al., 2013; Ducklow et al., 2013; Cook et al., 2016). These changes impact upon biological production (Mitchell and Holm-Hansen, 1991; Montes-Hugo et al., 2009) and the dynamics of carbonate chemistry and atmospheric CO$_2$ drawdown (McNeil and Matear, 2008; Steinacher et al., 2009; Montes-Hugo et al., 2010). Ryder Bay (northern Marguerite Bay), Adelaide Island, is fringed with several marine-terminating glaciers with variable seasonality in sea-ice cover and extent. The modified CDW from the WAP shelf flows along the Marguerite Trough to supply the upper ocean with warm, nutrient-rich deep water (Martinson et al., 2008; Meredith et al., 2010). Exchange of water masses between Ryder Bay and northern Marguerite Bay occurs across a sill at 350 m depth. Warming of ACC-derived CDW and enhanced inputs of deep waters onto the WAP shelf have contributed to the degradation of glaciers and changes in sea-ice dynamics (Martinson et al., 2012; Prichard et al., 2012). The southward flowing
Antarctic Peninsula Coastal Current enters the region along the coast of Adelaide Island and generates a predominantly cyclonic circulation in Marguerite Bay (Beardsley et al., 2004; Moffat et al., 2008). Melting glaciers, sea-ice formation and melting, and mixing of the water masses influence the physical characteristics of the water column of Ryder Bay (Clarke et al., 2008; Meredith et al., 2008; Wallace et al., 2008; Meredith et al., 2010). These processes strongly regulate primary productivity and biogeochemical cycling and as such, Ryder Bay can be considered as an ideal natural laboratory to study oceanic CO$_2$-carbonate chemistry in a dynamic Antarctic coastal environment. This study complements the existing time series studies conducted in Ryder Bay through detailed descriptions of the spatial state of carbonate mineral saturation and pH and the controlling factors that influence ocean acidification in the coastal sea-ice zone of the WAP.

2. Methods

2.1. Seawater and ice sampling

Biogeochemical samples and physical measurements were collected in austral summer (January to March 2014) in Ryder Bay, a glacially-carved embayment (maximum depth 520 m) in northern Marguerite Bay, Adelaide Island, on the West Antarctic Peninsula (Fig. 1). This was a complement to the Rothera Time Series (RaTS) programme of the British Antarctic Survey. Long-term monitoring at this site, located about 4 km offshore from Rothera Research Station, has been carried out since 1997 (Clarke et al., 2008; Venables et al., 2013). Figure 1 shows the sampling locations used in this study: main time series site (RaTS1), secondary time series site (RaTS2), mouth of Ryder Bay (site A), along the glaciated coast (sites B, C, D), in front of Sheldon Glacier (site F), close to Horton and Hurley Glaciers (sites G, I) and proximal to Léoni Island (site J) and Lagoon Island (site K).

Vertical profiles of potential temperature and salinity were obtained using a conductivity, temperature, depth (CTD) sensor (Seabird SBE19+) attached to a line equipped with several 3.5 L Niskin bottles deployed from a rigid inflatable boat. Seawater samples for carbonate chemistry were drawn from Niskin samplers into 250 ml borosilicate glass bottles and returned to the laboratory for immediate analysis or stored for 1 week, whereby 50 µL saturated mercuric chloride solution was added. Samples for macronutrient analyses were taken from the Niskin samplers into pre-rinsed 200 ml Nalgene© plastic bottles, kept in the dark and returned to the laboratory for processing. Sea-ice and glacial-ice samples were collected between November 2014 and March 2015. Sea-ice samples were taken from fast ice in Hangar Cove, north of Ryder Bay and adjacent to Rothera Research Station. Glacial-ice samples were taken from the Sheldon Glacier (Fig. 1). Ice samples were collected into plastic, sealable bags in the field and transferred into 1 L Tedlar bags and sealed in the laboratory. The
residual air was evacuated using a Nalgene© hand pump. The samples were allowed to melt at ambient temperature (18-20°C) in the dark. Upon complete ice melt (20-24 hours), samples were transferred to 250 mL borosilicate glass bottles, poisoned with 50 μL saturated mercuric chloride solution and stored in the dark until analysis (as above).

Two sites (LMG1, LMG2) were occupied in Marguerite Bay by ARSV Laurence M. Gould on 18 January 2014. Vertical profiles of potential temperature and salinity were obtained using a CTD sensor (Seabird SBE911+) mounted onto a General Oceanics rosette equipped with 12 L Niskin bottles. The mixed layer depth (MLD) is defined as the depth where the potential density exceeds that at 2 m by 0.05 kg m⁻³, based on definitions in Venables et al. (2013). The depth of the potential temperature minimum (θ_min) is taken to represent the core of the Winter Water, typically at 75-100 m (Table 1). Salinity values are reported on the practical salinity scale. Ocean Data View 4 (http://odv.awi.de) was used for data visualisation.

2.2. Analytical methods

Seawater and ice meltwater samples for total dissolved inorganic carbon (C_T) and total alkalinity (A_T) were analysed at Rothera Research Station using a VINDTA 3C (Versatile INstrument for the Determination of Total Alkalinity, Marianda) following methods prescribed in Dickson et al. (2007). Determination of C_T was made through sample acidification with 8.5% H₃PO₄ and gas extraction with coulometric analysis (Johnson et al., 1987) and A_T by automated potentiometric titration with 0.1 M hydrochloric acid (Dickson, 1981). Analyses of Certified Reference Material (CRM, batch 130) supplied by A.G. Dickson (Scripps Institute of Oceanography) every 10-20 samples were used to calibrate the measurements. The precision of the C_T and A_T measurements was 1.6 and 1.0 μmol kg⁻¹, respectively, based on the average difference between CRM in-bottle duplicate analyses (n = 47).

The Lamont-Doherty Earth Observatory (LDEO) measured surface underway pCO₂ (pCO₂_ship) aboard ARSV Laurence M. Gould (LMG) with a precision of 0.5%, together with salinity and temperature using a shower-type water-gas equilibrator and infrared CO₂ gas analyser (see www.ldeo.columbia.edu/pi/CO2 for the operational and engineering details; Takahashi et al., 2015). A range of five standard gas mixtures spanning between 100 and 700 ppm mole fraction CO₂ certified by the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA) was used to calibrate the system every 4 hours. The mean atmospheric CO₂ mixing ratio (xCO₂) measured during 18 January 2014 (at and between sites RaTS1, LMG1, LMG2) was 393 ± 1 ppm (n = 45), consistent with the mean xCO₂ during January-March 2014 of 394 ± 3 ppm (n = 18) measured at Palmer Station, 64.77°S 64.05°W (Dlugokencky et al., 2014). Air pCO₂ was determined as a product of xCO₂ and barometric pressure, corrected for water vapour pressure (Weiss and Price, 1980), where
atmospheric pressure measured at Rothera was processed into daily means. Seawater pCO$_2$ was determined from xCO$_2$ using the solubility of CO$_2$ as a function of temperature and salinity (Weiss, 1974) with corrections for water vapour pressure (Weiss and Price, 1980).

For macronutrient analyses, filtered (0.2 μM) seawater and ice meltwater was collected into pre-rinsed 5 mL polyethylene vials and stored at 4°C for silicate samples and at −20°C for nitrate and phosphate samples. All analyses were carried out with a Technicon TRAACS 800 Auto-analyzer at the Royal Netherlands Institute for Sea Research, Texel. During each run a daily freshly diluted nutrient standard was measured in triplicate to monitor the performance of the analyzer. Precision for silicate, phosphate and nitrate is determined as 0.6 μmol L$^{-1}$, 0.016 μmol L$^{-1}$, 0.13 μmol L$^{-1}$, respectively.

2.3. CO$_2$-carbonate chemistry

The saturation states (Ω) of CaCO$_3$ minerals calcite and aragonite, pH in the total scale (pH$_T$) and pCO$_2$ (pCO$_2_{AT-CT}$) were calculated from CT and AT, accompanied by in-situ temperature, salinity, pressure and nutrient concentrations using the CO2SYS program (Lewis and Wallace, 1998; van Heuven, 2011). The equilibrium equations of Zeebe and Wolf-Gladrow (2001) with carbonic acid dissociation constants (pK$_1$ and pK$_2$) of Mehrbach et al. (1973) as refit by Dickson and Millero (1987) were selected. These dissociation constants are appropriate for the AT-CT input pair in the range of temperatures and salinities in this study. Values for dissociation constants K$_1$ and K$_2$ and solubility product K$_{sp}$ for calcite and aragonite are pressure-corrected (Mucci, 1983; van Heuven, 2011). Saturation states are a measure of the thermodynamic potential of CaCO$_3$ to precipitate or dissolve; when Ω < 1 seawater becomes corrosive to calcifying organisms.

Shipboard sea surface pCO$_2$ values at sites RaTS1, LMG1 and LMG2 on 18 January 2014 were 161 ± 4 μatm, 158 ± 6 μatm and 172 ± 13 μatm, respectively, and were used for consistency checks between measured (pCO$_2_{ship}$) and calculated (pCO$_2_{AT-CT}$) seawater values (Table 1). The ΔpCO$_2$ is the difference between pCO$_2_{AT-CT}$ in surface seawater and the daily mean air pCO$_2$ value. Fluxes of CO$_2$ (Equ. 1) were calculated from ΔpCO$_2$, solubility of CO$_2$ (K$_0$) and the gas transfer coefficient (k), which is a function of wind speed (Wanninkhof et al., 2013).

\[
\text{CO}_2 \text{ flux} = k \cdot K_0 \cdot \Delta \text{pCO}_2
\]

(1)

Fluxes of CO$_2$ were calculated using wind speed data measured at Rothera, taken as a mean over the growing season until the time of sampling (Δt; Table 1) and corrected to 10 m above sea level (Hartman and Hammond, 1985). Negative values of ΔpCO$_2$ and CO$_2$ flux indicate CO$_2$ undersaturation with respect to the atmosphere and uptake of atmospheric CO$_2$.
3. Results

3.1. Summer sea surface of Ryder Bay

The salinity along the glaciated coastline was low (S <32.8) due to meltwater influence (Fig. 2a and b). Sea surface temperature varied from −0.6 °C to 1.7 °C with warmer waters typically located closer to the coast (Fig. 2c). Low concentrations of C_T (<2000 μmol kg$^{-1}$) were found in this region (Fig. 2d). Surface water A_T followed a similar distribution to salinity as higher values (>2250 μmol kg$^{-1}$) were found in saltier water at the mouth of Ryder Bay (site A) and close to island shelves (sites J and K) (Fig. 2e). Near-depleted nitrate concentrations indicated high biological uptake in the meltwater-influenced sites (Fig. 2f). Surface waters across Ryder Bay were undersaturated ($pCO_2 AT$-CT of 119-252 μatm; Fig. 2g) with respect to atmospheric CO$_2$ and the whole region was a strong sink for atmospheric CO$_2$ (Table 1). Total scale pH (pH$_T$) ranged from 8.21 to 8.48 (Fig. 2h). The saturation states of aragonite and calcite had large spatial variability, ranging from 1.8 and 3.1 (Fig. 2i) and 2.9 to 5.0 (not shown), respectively.

Lowest concentrations of C_T (1911 μmolkg$^{-1}$), A_T (2211 μmolkg$^{-1}$) and strong pCO$_2$ undersaturation (119 μatm) were observed by melting sea ice (site D), marked by the lowest salinity (~32.1) relative to the rest of Ryder Bay. Concurrent aragonite supersaturation ($\Omega >2.5$) occurred in this area and along the glaciated coastline. Central Ryder Bay (sites C and G) and shelf waters of Léoni and Lagoon Islands (sites J and K) were characterised by higher salinity (S >32.8) and high C_T (2055-2085 μmol kg$^{-1}$). The lowest pH$_T$ (8.21) and the lowest aragonite saturation levels (1.8) near Lagoon Island (site K). The coldest water of −0.6 °C was observed in front of Sheldon Glacier (site F) with higher A_T, C_T and lower saturation states compared to other coastal sites.

3.2. Deep waters of Ryder Bay

Waters occupying the deepest levels across Ryder Bay (Fig. 3a) had higher salinity and lower temperatures (not shown) with much less variability compared to the surface layer. Exceptions were the waters overlying the shallow island shelf (site K) and in front of Sheldon Glacier (site F), where the lowest values of C_T (2166-2172 μmolkg$^{-1}$) and A_T (2285-2292 μmol kg$^{-1}$) were found. Both sites exhibited the highest deep water pH$_T$ and aragonite saturation states (Fig. 3b-c). In contrast, the highest values of C_T (>2240 μmolkg$^{-1}$) and A_T (>2310 μmolkg$^{-1}$) occurred in deep waters of the coastal zone and in central Ryder Bay. Concurrent high nitrate concentrations (>34.2 μmolkg$^{-1}$) indicated remineralisation of organic matter at these locations. All deep waters had low pH$_T$ (7.84-7.87) and were undersaturated with respect to aragonite ($\Omega \sim$0.9-1.0) across Ryder Bay.
3.3. Water mass and meltwater carbonate chemistry

Distinct water masses could be identified from salinity and potential temperature characteristics in Ryder Bay (Fig. 4a). Warm and fresh Antarctic Surface Water (AASW) occupied the summer mixed layer with high and variable aragonite saturation states (2.5 ± 0.5). The Winter Water layer was identified by a distinct potential temperature minimum and steep, decreasing gradients in aragonite saturation. The deepest levels (>200 m) of Ryder Bay and Marguerite Bay were filled with modified CDW, which was distinguished within a given salinity range (34.6 ≤ S ≤ 34.7) as measured on the shelf of the WAP from upper CDW of the ACC offshore (Smith et al., 1999). Modified CDW was found intruding the shelves of the WAP with C_T and A_T values of 2253 μmol kg⁻¹ and 2350 μmol kg⁻¹, respectively (Hauri et al., 2015). The CDW identified in Marguerite Bay had potential temperature and salinity values of 1.23 ± 0.04 °C and 34.64 ± 0.01, respectively. In comparison, the CDW in Ryder Bay was cooler (1.14 ± 0.08 °C) and fresher (34.60 ± 0.03). Relative to ACC-derived CDW, the CDW in Marguerite Bay had higher concentrations of C_T (2276 ± 1 μmol kg⁻¹), whereas A_T values (2348 ± 1 μmol kg⁻¹) were similar. The CDW identified in Ryder Bay had higher C_T concentrations (2279 ± 3 μmol kg⁻¹) whereas A_T values (2348 ± 4 μmol kg⁻¹) were conserved. The shift in water mass properties is indicative of entrainment of thermocline water into the CDW (Venables et al., this issue) and organic matter remineralisation. The modified CDW across Ryder Bay was undersaturated with respect to aragonite.

The distribution of A_T and C_T relative to salinity revealed high meltwater-induced variability (Fig. 4b). Meltwater carbonate chemistry was determined for glacial ice (S = 0, C_T = 16 ± 5 μmol kg⁻¹, A_T = 100 ± 5 μmol kg⁻¹) and sea ice (S = 7, C_T = 277 ± 150 μmol kg⁻¹, A_T = 328 ± 150 μmol kg⁻¹) as a freshwater end member, similar to ~300 μmol kg⁻¹ previously reported for melting sea ice (Anderson and Jones, 1985; Bates et al., 2009; Yamamoto-Kawai et al., 2009). The modified CDW end member is defined as above. Values of A_T closely followed the salinity-dilution lines with positive deviations of about 20 μmol kg⁻¹ at lower salinities. This pattern indicates an excess of alkalinity in the meltwater-influenced surface waters. The salinity and C_T correlation showed strong negative C_T deviations from the theoretical mixing lines. This divergence suggests that elevated biological production removes substantial C_T between 50-200 μmol kg⁻¹ in meltwater-influenced surface waters, thereby increasing aragonite saturation states. Vertical distributions of A_T across the upper and lower sections of Ryder Bay (Fig. 5a) generally followed the trends in salinity with low values in the upper waters that increased with increasing depth (Fig. 5b-c). Concentrations of C_T increased with depth and had steep vertical gradients to the highest values in the deepest parts of the bay (200-500 m) with CDW influence (Fig. 5d and e). The lowest C_T and A_T in the upper 25 m occurred in the productive meltwater layer, which corresponded to high aragonite supersaturation (Fig. 5f and g). Weak vertical gradients of C_T near Sheldon Glacier (site F) and over the
shelf of Lagoon Island (site K) were accompanied by a deepening of the aragonite saturation horizon. From east to west across the lower part of Ryder Bay, the shoaling aragonite saturation horizon impacted the Winter Water layer with strong undersaturation at the glaciated coast (site I).

4. Discussion

4.1. Biologically-induced sea surface carbonate supersaturation and deep water acidification

Biological processes in meltwater-impacted areas had a large control on surface water calcium carbonate saturation states and \(\text{pH}_T \) across Ryder Bay. Since the saturation state for calcite is about 50% higher than that for aragonite and shows the same distribution and trend, for example in relation to \(\text{pH}_T \) (Fig. 6a), the discussions that follow will focus only on aragonite saturation states and \(\text{pH}_T \). Aragonite supersaturation (\(\Omega > 2.0 \)) was concurrent with surface water salinity in the range 32.1-33.1 where biological carbon uptake reduced surface water \(C_T \) to less than 1950 \(\mu \text{molkg}^{-1} \) and counteracted any meltwater-induced suppression of saturation states. This theory is supported by the strong anti-correlation between saturation states with salinity where high aragonite saturation was found in the meltwater-influenced surface waters (Fig. 6b). These values fall into the range of aragonite saturation (\(\Omega = 1.7-3.5 \)) found in summer surface waters at other coastal sites in the Ross Sea (Sweeney, 2003) and Prydz Bay, East Antarctica (Gibson and Trull, 1999; McNeil et al., 2011) and in Southern Ocean waters close to the Antarctic Peninsula (Tynan et al., 2016).

Meltwater-stratification, high light levels and macro- and micro-nutrient supplies are essential for sustaining the large phytoplankton blooms that are characteristic of this region (Venables et al., 2013; Annett et al., 2015; Henley et al., this issue). High primary productivity and intense photosynthetic reductions in \(\text{CO}_2 \) and \(C_T \) increased summertime carbonate mineral saturation states in Ryder Bay. The hypothetical mixing relationships of glacial ice and sea ice with modified CDW indicate that biological uptake of up to 200 \(\mu \text{mol} \ C_T \, \text{kg}^{-1} \) was accompanied by aragonite supersaturation in surface waters. Nitrate concentrations at or close to depletion (<0.2 \(\mu \text{mol} \, \text{kg}^{-1} \)) with associated low \(C_T \) of 1911-1955 \(\mu \text{molkg}^{-1} \) in the surface layer showed the close coupling of nitrate and carbon cycling (Fig. 6c). Nitrate concentrations may reach transient periods of exhaustion due to phytoplankton growth but are regenerated and re-supplied in the upper water column during the summer (Henley et al., this issue). These findings support the hypothesis that biological \(C_T \) uptake was a driving force for high aragonite saturation states in the AASW. Previous studies along the WAP have also linked spatial variability in carbonate saturation states to biological productivity and meltwater inputs (Hauri et al., 2015).

Surface waters of Ryder Bay were strongly undersaturated with respect to atmospheric \(\text{CO}_2 \) (\(\Delta p \text{CO}_2 \) up to \(-256 \mu \text{atm}\)) to create areas of substantial \(\text{CO}_2 \) uptake of up to 55.4 mmol m\(^{-2}\) day\(^{-1}\) during
austral summer. It is predicted that such strong atmospheric CO2 uptake persists in Ryder Bay during the summer (January and February) as consistently low sea surface CO2 coupled to high chlorophyll-a concentrations in shallow mixed layers (< 10 m) is known to occur throughout these months on an annual basis (Legge et al., 2015; Legge et al., this issue). This study found a stronger degree of CO2 undersaturation with respect to atmospheric values compared to data from three summer seasons presented in Legge et al. (2015) and higher carbonate saturation states than those reported by Legge et al. (this issue) for January-February 2014 at 15 m depth at RaTS1. These features can be attributed to the finer-scale vertical sampling (2, 5, 15 m) in the surface layer in this study, which resolved the biological production signal in very shallow meltwater layers. Both studies confirm that favourable conditions (high light levels, nutrient supply) drive carbonate mineral supersaturation and create strong sinks for atmospheric CO2 in Ryder Bay.

Steep vertical gradients in C_T were found from productive surface waters to the deep parts (200-500 m) of Ryder Bay that were impacted by CDW, for example C_T increased with depth by up to 2 μmolkg⁻¹m⁻¹ between the AASW and CDW layers in the productive coastal zone. Biologically-driven aragonite supersaturation in high-pH_T (>8.47) surface water swiftly changed with depth to reach intense aragonite undersaturation with minimum values of pH_T of 7.84 at and below the Winter Water layer. Whilst recycling and advective losses of organic carbon in the upper water column are important components of biogeochemical fluxes in the WAP, export of at least 10% of the net primary production provides a supply of organic carbon to subsurface waters and sustains rich benthic communities (Buesseler et al., 2010; Weston et al., 2013; Constable et al., 2014; Stukel et al., 2015). The sinking particulate organic carbon in highly productive coastal waters and subsequent remineralization likely contributed to high concentrations of C_T (>2280 μmolkg⁻¹) found in the CDW. Remineralisation through oxidation recycles organic material back into inorganic forms C_T and nitrate and enriches deep water concentrations with associated suppression of calcium carbonate saturation states. The proposed mechanism is supported by negative correlations of aragonite saturation states with nitrate and C_T concentrations (Fig. 6c-d).

An intensification of the biological carbon pump in the productive coastal zone generated carbonate mineral supersaturation in surface waters and undersaturation in subsurface waters, through remineralisation of exported organic material. This process was likely to further increase C_T in the CDW as it flowed inland to drive pH_T and saturation states to their minimum values in Ryder Bay. The shoaling of the aragonite saturation horizon in the coastal zone presents acidification conditions the marine communities of Ryder Bay. Antarctic benthic organisms have shown vulnerability to ocean acidification pressures that is likely influenced by local environmental conditions (Ahn, 1993; McClintock, et al., 2009; Morley et al., 2009; Cummings et al., 2011). However, contemporary distributions and natural spatio-temporal variations in carbonate mineral saturation levels suggest that pelagic-benthic organisms of the WAP and Southern Ocean may exhibit a degree of resilience to further ocean acidification (McNeil et al.,
Future studies should investigate synergistic effects and analyse a range of biological variables to attain a more comprehensive view of the likely ecological impacts of Antarctic environmental change.

4.2. Impact of ice melt on carbonate mineral saturation states

Glacial meltwater is the dominant freshwater source to Ryder Bay (Meredith et al., 2008) and, combined with seasonal sea-ice melt, exerts an important influence on carbonate saturation states and pH. Glacial and sea-ice meltwaters were found to exhibit very low CT-AT signatures, which have the chemical potential to suppress carbonate mineral saturation states through dilution of carbonate ion concentrations, as found in the Arctic Ocean (Chierici and Fransson, 2009; Yamamoto-Kawai et al., 2009; Evans et al., 2014). However, this was not evident in Ryder Bay as the highest aragonite saturation states (Ω >3.0) were concurrent with the freshest (S of 32.1-32.8) surface water. Phytoplankton production probably counteracted any meltwater dilution effects as photosynthetic CO₂ uptake reduced surface water CT, thereby decreasing the ratio of CT to AT and increasing the state of carbonate saturation (Bates et al., 2009). This is consistent with other observations in coastal Antarctic waters (Shadwick et al., 2013; Mattsdotter Björk et al., 2014; Hauri et al., 2015).

Surface AT is primarily governed by meltwater inputs with contributions from carbonate mineral precipitation and dissolution and mixing into AT-rich deep water. As phytoplankton utilise nitrate as the nitrogen source for primary production, AT is affected through the principle of electroneutrality; uptake of nitrate (NO₃⁻) removes hydrogen ions (H⁺) thereby increasing AT (Brewer and Goldman, 1976; Wolf-Gladrow et al., 2007). The concentration of nitrate in surface waters varied between 0.1-14.4 μmolkg⁻¹ due to biological utilization versus re-supply from recycling in the surface layers and mixing with nitrate-rich subsurface waters (Henley et al., this issue). To compensate for the effects of nitrate changes on AT values, potential alkalinity (AT⁺; the sum of AT and nitrate) is considered and thus resulting variability can be attributed to carbonate processes and mixing. Surface water potential alkalinity and salinity has a positive relationship (AT⁺ = 69.5 + 2; r² = 0.57) and data fall between the glacial ice, sea ice and CDW mixing lines (Fig. 7). The positive deviations of AT up to 20 μmolkg⁻¹ relative to the hypothetical meltwater-seawater mixing trends revealed excess AT in meltwater-impacted surface waters. We hypothesise that these changes may result from the dissolution of the carbonate mineral ikaite (CaCO₃·6H₂O), which forms in sea ice during winter (Dieckmann et al., 2008; Fransson et al., 2011; Rysgaard et al., 2012). Upon sea-ice melt, ikaite crystals dissolve to release carbonate ions (increasing alkalinity) and reduce pCO₂ in the surrounding seawater to drawdown atmospheric CO₂; the sea-ice CO₂ pump (Papadimitriou et al., 2004; Delille et al., 2007; Rysgaard et al., 2007; Geilfus et al., 2012). In addition, sea-ice meltwater may exhibit AT-CT deficits from residual brines where ikaite precipitation has taken place, which would also reduce sea surface pCO₂ in the meltwater layer (Jones et al., 2010).
Currents, such as the Antarctic Peninsula Coastal Current (Beardsley et al., 2004; Moffat et al., 2008), winds and tides transport sea ice into and out of Ryder Bay (Clarke et al., 2008; Meredith et al., 2008; Wallace et al., 2008; Meredith et al., 2010). As such, sea ice that formed elsewhere in the WAP may contribute additional biogeochemical characteristics upon melting in Ryder Bay. Therefore, dissolution of ikaite crystals from melting sea ice likely contributes to CO₂ drawdown during seasonal sea-ice melt in Ryder Bay, as suggested by Legge et al. (this issue).

The potential alkalinity-salinity relationship agrees with those in the Antarctic region (60-70 °S) of the Atlantic Ocean (AT* = 58.S + 368) and in the circumpolar Southern Ocean (south of 60°S) region (AT* = 74.S – 192) from climatological data distributions (Takahashi et al., 2014). The sign and magnitude of the slope and intercept for the Ryder Bay data fit between the two groups of climatological data and show low alkalinity typical of Antarctic waters (Egleston et al., 2010) and the influence of mixing with upwelled deep waters of higher alkalinity and salinity as typical for Antarctic shelf and coastal regions. The Ryder Bay data have a comparatively narrow range of potential alkalinity (2210-2275 μmolkg⁻¹) at lower salinities (32.1-33.1), which is attributed to glacial and sea-ice meltwater influences in the WAP coastal zone. Time series sampling with finer temporal resolution at the ice-ocean interface and within meltwater plumes would help to better understand the carbonate chemistry of meltwaters and improve climatological estimates of carbonate chemistry distributions and carbon cycling in the under-sampled Antarctic coastal zone.

4.3. Deep mixing drives weak carbonate saturation gradients

Episodic wind-driven mixing and turbulent water column conditions destabilised any stratification and eroded summer surface biological signals. Weak vertical gradients in CT resulted from the downward mixing of productive surface waters, which allowed exchange with carbon-rich, low pHₜ Winter Water and modified CDW. For example, the mixed water column overlying the shelf of Lagoon Island had a shallow gradient with an increase of 85 μmol Cₜ kg⁻¹ between AASW and the Winter Water layer, compared to rapid Cₜ increases with depth, up to four times greater (332 μmolkg⁻¹) for the same depth range, along the meltwater-stratified coast. The effect of phytoplankton production over the island shelves was strongly compensated, based on relatively high residual nitrate concentrations of 14.4 μmol kg⁻¹ at the sea surface and Cₜ values of 2085 μmol kg⁻¹, and as such mixing processes re-supplied the upper ocean with carbon and nitrate.

Coldest surface waters (−0.6 °C) near Sheldon Glacier were relatively salty (S = 32.9) compared to other coastal sites, which indicated strong vertical mixing into saline subsurface waters despite close proximity to the glacier face and meltwater inputs. Reduced nitrate (4.4-6.1 μmol kg⁻¹) and Cₜ (~2031 μmol kg⁻¹) showed evidence of summertime biological production with concomitant high
aragonite saturation states of 2.3 in the surface layer. These features likely resulted from episodic wind-driven mixing that recently impacted the otherwise productive water column and as such the depth of the aragonite saturation horizon deepened from its location at around 75 m across Ryder Bay. The effects of mixing and vertical water mass exchange reduced aragonite saturation states throughout the water column relative to values across Ryder Bay at Sheldon Glacier and Lagoon Island, for example ranging from 1.83 to 1.36 between AASW and the Winter Water near Lagoon Island. These waters would be particularly sensitive to future ocean acidification as summertime sea surface pCO$_2$ undersaturation enabled further atmospheric CO$_2$ uptake of 27.9 mmol m$^{-2}$ day$^{-1}$, which could drive carbonate mineral undersaturation and create areas of surface water corrosivity.

4.4. A wider regional context

Key variables of CO$_2$-carbonate chemistry in an ocean acidification context are pH, carbonate mineral saturation states and air-sea CO$_2$ fluxes. Values of these variables measured in central Ryder Bay (RaTS1) were similar compared to the mean value from all other Ryder Bay sites for the air-sea CO$_2$ flux of -48.6 and -43.2 mmol m$^{-2}$ day$^{-1}$ and aragonite saturation state in AASW of 2.6 and 2.5, respectively. Winter Water aragonite saturation states at RaTS1 and the Ruder Bay mean value were both 1.1 (Table 1). Whilst large spatial variability existed during the summer, the carbonate chemistry distributions at RaTS1 can be considered as broadly representative of those of Ryder Bay. The values were put into a wider regional context by comparison to CO$_2$-carbonate chemistry data from Marguerite Bay. To remove temporal variability, sampling at RaTS1 and in Marguerite Bay was carried out on the same day. Shipboard measurements of sea surface pCO$_2$ varied between 135 μatm and 199 μatm to show that the whole region was highly undersaturated with respect to atmospheric CO$_2$ (Fig. 8). Variability in the degree of CO$_2$ undersaturation likely resulted from the balance of the dominant controls on surface water carbonate chemistry distributions in the sea-ice coastal zone, i.e., biological CO$_2$ drawdown versus vertical mixing with CO$_2$-rich subsurface waters (section 4.1 and 4.3).

Shipboard pCO$_2$ (pCO$_2$$_{ship}$) measurements (averaged over a 30-minute period during the time of surface water C$_T$ and A$_T$ sampling) provide a consistency check for those calculated from C$_T$ and A$_T$, pCO$_2$$_{AT-CT}$, as described in section 2.3. Sea surface pCO$_2$$_{AT-CT}$ at RaTS1 and in southern Marguerite Bay (LMG1) was 155 and 157 μatm, respectively, which was very close to pCO$_2$$_{ship}$ of 161 \pm 4 μatm (RaTS1) and 158 \pm 6 μatm (LMG1). Northern Marguerite Bay (LMG2) had higher pCO$_2$$_{AT-CT}$ of 187 μatm, which showed a larger offset compared to 172 \pm 13 μatm as measured onboard. From the available data, pCO$_2$$_{AT-CT}$ largely replicated the measured values and showed that the calculation approach for the carbonate chemistry variables is sufficiently robust within the given analytical precision. Larger offsets between measured and calculated pCO$_2$ (~15 μatm) as shown in northern Marguerite Bay are likely due to the
high spatial variability in surface water pCO$_2$ and the difference in sampling time between the automated sea surface pCO$_2$ system (taking seawater measurements every 3 minutes) and the closing of a surface water Niskin bottle (one snap-shot time) in moving ocean waters.

Values of the air-sea CO$_2$ flux (−41.7 and −44.9 mmol m$^{-2}$ day$^{-1}$) and aragonite saturation states in modified CDW (1.0) in Marguerite Bay were very close when compared to those values of −44.9 mmol m$^{-2}$ day$^{-1}$ and 0.9 determined at RaTS1. The similarity of physical properties (Venables and Meredith, 2014) and vertical distributions of C$_T$-A$_T$ (Fig. 9) between Ryder Bay and Marguerite Bay suggest that the principle processes influencing the carbonate chemistry are consistent between the two bays. The increase in absolute values of C$_T$ between the CDW present in Ryder Bay relative to that in Marguerite Bay is likely due to modification of the water mass that includes a signal of export and remineralisation of organic carbon in the productive coastal waters. The processes impacting carbonate chemistry in Ryder Bay and Marguerite Bay are likely to also likely to occur in northern parts of the coastal sea-ice zone of the WAP, as currents such as the southward flowing Antarctic Peninsula Coastal Current advect water masses into the study area and transfer biogeochemical properties into Ryder Bay (Klinck et al., 2004; Wallace et al., 2008). Therefore, observations in Ryder Bay are likely to incorporate biogeochemical signatures from waters farther north as well as from Marguerite Bay. Spatio-temporal studies are, therefore, essential to elucidate the controls on carbon cycling in seasonally and regionally dynamic environments and to better understand ocean acidification impacts on marine ecosystems in the climatically-vulnerable Antarctic coastal waters.

5. Conclusion

High spatial variability in summertime surface water pH and carbonate mineral saturation states was observed in Ryder Bay in the coastal sea-ice zone of the West Antarctic Peninsula. Primary productivity had the largest impact on calcium carbonate mineral saturation states, generating supersaturation with respect to biogenic minerals calcite and aragonite of up to 3.1 and 5.0, respectively. Glacial meltwater and melting sea ice stratified the water column and facilitated the development of large phytoplankton blooms that resulted in high pH (8.48) and calcium carbonate supersaturation (Ω >3). The sea surface of Ryder Bay was strongly undersaturated with respect to atmospheric CO$_2$ as biological carbon uptake reduced seawater pCO$_2$ AT-CT to 119-252 μatm and created intense CO$_2$ sinks (55 mmol m$^{-2}$ day$^{-1}$) in meltwater-impacted areas during austral summer. Effects of transient sea-ice melt were superimposed onto the glacial melt signal, where any carbonate ion dilution was completely compensated by biologically-driven carbon uptake and increases in carbonate mineral saturation states. The presence of excess alkalinity in sea-ice meltwater indicated that dissolution of sea ice-derived carbonates likely had minor contributions to atmospheric CO$_2$ drawdown during the seasonal thaw. A strong biological carbon
pump in the coastal sea-ice zone created (i) surface water calcium carbonate supersaturation and (ii) deep-water corrosivity, as additional organic debris produced in productive waters are settled to depth and remineralised, thus adding CO$_2$ to naturally carbon-rich Circumpolar Deep Water in the deepest levels of Ryder Bay. Deep mixing enabled entrainment of CO$_2$-rich waters into the surface, which supressed surface water aragonite saturation states ($\Omega \sim 1.8$) and induced low vertical gradients in pH. Episodic mixing events may enhance the vulnerability of the surface layer to ocean acidification upon further uptake of anthropogenic CO$_2$ during the summer. Variations in calcium carbonate mineral saturation states and air-sea CO$_2$ fluxes across Ryder Bay can be considered as largely representative of Marguerite Bay, with relevance to the wider West Antarctic Peninsula coastal zone. The findings here highlight the importance of higher resolution sampling for the accurate assessment of carbon cycling in dynamic environments that are influenced by meltwater inputs, high productivity and mixing of water masses. These processes generated high spatial variability in oceanic carbonate chemistry, which impacted the drawdown of atmospheric CO$_2$ and functioning of the biological carbon pump. As such, the productive coastal sea-ice zones of Antarctica are key regions to study the response of marine ecosystems to impacts of ocean acidification.

Acknowledgements

The authors gratefully acknowledge BAS, Royal NIOZ and NWO for the opportunity to conduct fieldwork at the Dirck Gerritsz and Bonner laboratories at Rothera. Particular thanks to J. Bown, P. Rozema, S. Henley, S. Heiser for assistance in the laboratory, boating and sample collection. Support was gratefully received from S. Ober, for CTD maintenance and data calibration, and P. Laan for technical and logistical issues. Extended thanks to the scientific party, Captain, officers and crew onboard ARSV Lawrence M. Gould for the support and opportunity to sample in Marguerite Bay. Meteorological data were obtained from www.antarctica.ac.uk/met/metlog/. Atmospheric CO$_2$ data were obtained from NOAA at ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/co2_psa_surface-flask_1_ccgg_event.txt. This work is part of postdoctoral research (E. Jones) at the University of Groningen under the research programme 866.13.006, which is (partly) financed by the Netherlands Polar Programme at NWO. RaTS is a component of the Polar Oceans research programme at BAS, funded by NERC. The LMG-based sampling was supported by US NSF-ANT 1440435 (Palmer LTER) to H. Ducklow. Underway pCO$_2$ acquisition was supported by the Ship of Opportunity Observation Program (SOOP) and a grant (NA10OAR4320143) from the United States NOAA. We gratefully acknowledge the helpful comments of two anonymous reviewers that have considerably improved the quality of the manuscript. This work is dedicated to Dutch polar explorer Philip de Roo.
References

Bakker, D.C.E., Hoppema, M., Schroder, M., Giebitz, W., de Baar, H.J.W., 2008. A rapid transition from ice covered CO$_2$ rich waters to a biologically mediated CO$_2$ sink in the eastern Weddell Gyre. Biogeosciences 5, 1373-1386.

Eveleth, R., Cassar, N., Doney, S.C., Munro, R., Sweeney, C., Biological and physical controls on O$_2$/Ar, Ar and pCO$_2$ variability at the Western Antarctic Peninsula and in the Drake Passage. Deep-Sea Res. II (2016), http://dx.doi.org/10.1016/j.dsr2.2016.05.002.

Fig. 1. Map of the West Antarctic Peninsula (WAP) showing Adelaide Island, Marguerite Bay and Ryder Bay (insert). Sampling sites A, B, C, D, F, G, I, J, K, RaTS1, RaTS2, LMG1 (1), LMG2 (2) are marked by black dots. The locations of Rothera Research Station, Sheldon Glacier, Horton Glacier, Hurley Glacier, Léoni Island and Lagoon Island are marked. General flow of the Antarctic Circumpolar Current is indicated along the WAP in the offshore Bellingshausen Sea region.

Fig. 2. Site locations in Ryder Bay (a) and sea surface distributions of (b) salinity; (c) potential temperature (θ, °C); (d) C_T (μmolkg⁻¹); (e) A_T (μmolkg⁻¹); (f) nitrate (NO₃, μmolkg⁻¹); (g) pCO₂_AT-CT (μatm); (h) pH_T; and (i) aragonite saturation state (Ωaragonite) across Ryder Bay. Ωaragonite is calculated at in-situ temperature and pressure. Sampling sites are marked by black dots.
Fig. 3. Site locations in Ryder Bay (a) and deep water distributions of (b) pH\(_\text{T}\); and (c) aragonite saturation state (Ω\(_{\text{aragonite}}\)) across Ryder Bay. Black dashed line in (c) shows the location of undersaturated (Ω <1) water. pH\(_\text{T}\) and Ω\(_{\text{aragonite}}\) are calculated at in-situ temperature and pressure. Sampling sites are marked by black dots.

Fig. 4. (a) Potential temperature (θ, °C) versus salinity plot, related to aragonite saturation state (Ω\(_{\text{aragonite}}\)); (b) relationship of A\(_T\) (upper line; μmolkg\(^{-1}\)) and C\(_T\) (lower line; μmolkg\(^{-1}\)) as a function of salinity, related to aragonite saturation state (Ω\(_{\text{aragonite}}\)). Principle water masses are labelled in (a): Antarctic Surface Water (AASW), Winter Water (WW), and modified Circumpolar Deep Water (mCDW). Trend lines in (b) represent salinity-dilution using glacial ice endmember S = 0, C\(_T\) = 16 μmolkg\(^{-1}\), A\(_T\) = 100 μmolkg\(^{-1}\) (solid line) and sea-ice endmember S = 7, C\(_T\) = 277 μmolkg\(^{-1}\), A\(_T\) = 328 μmolkg\(^{-1}\) (dashed line) with S = 34.7, C\(_T\) = 2276 μmolkg\(^{-1}\), A\(_T\) = 2348 μmolkg\(^{-1}\) as the end member for mCDW (Smith et al., 1999). Ω\(_{\text{aragonite}}\) is calculated at in-situ temperature and pressure.

Fig. 5. Site location in Ryder Bay showing upper (sites F, D, C, RaTS1, B, RaTS2, A) and lower (sites I, G, J, K) sections (a) and depth distributions of (b) A\(_T\) (μmolkg\(^{-1}\)) upper section; (c) A\(_T\) (μmolkg\(^{-1}\)) lower section; (d) C\(_T\) (μmolkg\(^{-1}\)) upper section; (e) C\(_T\) (μmolkg\(^{-1}\)) lower section; (f) aragonite saturation state (Ω\(_{\text{aragonite}}\)) upper section; (f) aragonite saturation state (Ω\(_{\text{aragonite}}\)) lower section. Ω\(_{\text{aragonite}}\) is calculated at in-situ temperature and pressure. Sampling sites in Ryder Bay are marked by black dots and labelled in (a). Sampling depths in the water column are marked by black dots in (b-f).

Fig. 6. Relationship of (a) calcite saturation state (Ω\(_{\text{calcite}}\)) and aragonite saturation state (Ω\(_{\text{aragonite}}\)) as a function of pH\(_\text{T}\), related to salinity; (b) aragonite saturation state (Ω\(_{\text{aragonite}}\)) as a function of salinity, related to water column depth; (c) aragonite saturation state (Ω\(_{\text{aragonite}}\)) as a function of nitrate (NO\(_3\); μmolkg\(^{-1}\)) concentrations, related to salinity; and (d) aragonite saturation state (Ω\(_{\text{aragonite}}\)) as a function of C\(_T\) (μmolkg\(^{-1}\)) concentrations, related to salinity. Ω\(_{\text{calcite}}\) and Ω\(_{\text{aragonite}}\) are calculated at in-situ temperature and pressure. Surface data (<10 m) highlighted with open black circles. The horizontal black-dashed line represents when saturation states are equal to 1 where data below the line represent carbonate mineral undersaturation.

Fig. 7. Relationship of potential alkalinity (A\(*_T\); μmol kg\(^{-1}\)) as a function of salinity for all data (grey dots) in the summer mixed layer AASW, sea surface data (<10 m) are highlighted with open black circles. The solid-black line represents the potential alkalinity-salinity linear regression trend A\(*_T\) = 69.S + 2. The black-dashed lines represent hypothetical salinity-dilution lines using glacial ice endmember S = 0, A\(_T\) =
100 μmol kg⁻¹ and sea-ice endmember $S = 7$, $A_T = 328$ μmol kg⁻¹ and $S = 34.7$, $A_T = 2348$ μmol kg⁻¹ as end members for mCDW (Smith et al., 1999).

Fig. 8. Sea surface pCO_2 (pCO_2_{ship}; μatm) aboard ARSV Laurence M. Gould in the Marguerite Bay and Ryder Bay region during 18 January 2014. Data points are marked by black dots. Sites occupied for water column sampling (RaTS1, LMG1, LMG2) are marked by black circles and labelled.

Fig. 9. Depth profiles of (a) potential temperature (θ, °C); (b) salinity; (c) A_T (μmol kg⁻¹); and (d) C_T (μmol kg⁻¹) from all sites in Ryder Bay (grey dots) and Marguerite Bay (black dots).

Table 1. Ryder Bay and Marguerite Bay sampling sites; location; sampling date (2014); Δt (days) time from winter (t_0) 17 September 2013 until sampling date; water column depth (m); mixed layer depth (MLD, m); depth of potential temperature minimum (θ_{min}, m); AASW average aragonite saturation state (Ω); Winter Water average aragonite saturation state (Ω); mCDW average aragonite saturation state (Ω); ΔpCO_2 (μatm) from the difference between shipboard daily mean air pCO_2 and calculated seawater pCO_2_{AT-CT}; CO₂ flux (mmol m⁻² day⁻¹). Ω is calculated at in-situ temperature and pressure. Average values and standard deviations for all Ryder Bay data are shown beneath the respective variable. – means no data.

<table>
<thead>
<tr>
<th>site</th>
<th>location</th>
<th>date dd-mm</th>
<th>Δt days</th>
<th>depth m</th>
<th>MLD m</th>
<th>θ_{min} m</th>
<th>AASW Ω</th>
<th>WW Ω</th>
<th>mCDW Ω</th>
<th>ΔpCO₂ μatm</th>
<th>CO₂ flux mmol m⁻² day⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>RaTS1</td>
<td>Ryder Bay coast</td>
<td>18-01</td>
<td>123</td>
<td>503</td>
<td>14.0</td>
<td>73.0</td>
<td>2.6</td>
<td>1.1</td>
<td>0.9</td>
<td>-228</td>
<td>-48.6</td>
</tr>
<tr>
<td>RaTS2</td>
<td>Ryder Bay coast</td>
<td>29-01</td>
<td>134</td>
<td>340</td>
<td>2.5</td>
<td>49.5</td>
<td>3.0</td>
<td>1.0</td>
<td>0.9</td>
<td>-243</td>
<td>-49.3</td>
</tr>
<tr>
<td>A</td>
<td>Ryder Bay entrance</td>
<td>21-01</td>
<td>126</td>
<td>317</td>
<td>3.5</td>
<td>49.0</td>
<td>3.1</td>
<td>1.1</td>
<td>1.0</td>
<td>-256</td>
<td>-55.4</td>
</tr>
<tr>
<td>B</td>
<td>Ryder Bay coast</td>
<td>31-01</td>
<td>136</td>
<td>372</td>
<td>3.0</td>
<td>49.0</td>
<td>2.9</td>
<td>1.0</td>
<td>0.9</td>
<td>-243</td>
<td>-50.4</td>
</tr>
<tr>
<td>C</td>
<td>Ryder Bay coast</td>
<td>21-02</td>
<td>157</td>
<td>378</td>
<td>7.0</td>
<td>61.0</td>
<td>1.9</td>
<td>1.0</td>
<td>1.0</td>
<td>-162</td>
<td>-32.5</td>
</tr>
<tr>
<td>D</td>
<td>Ryder Bay ice</td>
<td>05-02</td>
<td>141</td>
<td>252</td>
<td>2.5</td>
<td>53.0</td>
<td>3.1</td>
<td>1.0</td>
<td>–</td>
<td>-254</td>
<td>-55.1</td>
</tr>
<tr>
<td>F</td>
<td>Sheldon Glacier</td>
<td>16-01</td>
<td>121</td>
<td>174</td>
<td>20.5</td>
<td>94.0</td>
<td>2.3</td>
<td>1.4</td>
<td>–</td>
<td>-202</td>
<td>-43.3</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Date</td>
<td>Depth (m)</td>
<td>Water Temp (°C)</td>
<td>Salinity</td>
<td>pH</td>
<td>Conductivity (μS cm⁻¹)</td>
<td>Temperature (°C)</td>
<td>Salinity</td>
<td>pH</td>
<td>Conductivity (μS cm⁻¹)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------</td>
<td>----</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----</td>
<td>------------------------</td>
</tr>
<tr>
<td>G</td>
<td>Ryder Bay centre</td>
<td>19-02</td>
<td>155 136</td>
<td>19.5</td>
<td>76.0</td>
<td>1.9</td>
<td>1.0</td>
<td>−145</td>
<td>−29.8</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Horton-Hurley Glaciers</td>
<td>28-01</td>
<td>133 184</td>
<td>5.0</td>
<td>52.0</td>
<td>3.1</td>
<td>1.0</td>
<td>−242</td>
<td>−48.1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>Léoni-Lagoon Islands</td>
<td>12-02</td>
<td>148 300</td>
<td>10.5</td>
<td>52.0</td>
<td>2.2</td>
<td>1.1</td>
<td>−176</td>
<td>−34.7</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>Lagoon Island</td>
<td>01-03</td>
<td>165 94</td>
<td>48.5</td>
<td>87.5</td>
<td>1.8</td>
<td>1.4</td>
<td>−133</td>
<td>−27.9</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Average:
- 2.5±0.5
- 1.1±0.2
- 0.9±0.0
- −208±4
- −43.2±10.2

LMG1 Marguerite Bay 18-01 123 584 7.0 49.0 2.7 1.0 1.0 −226 −44.9
LMG2 Marguerite Bay 18-01 123 475 10.0 52.0 2.4 1.0 1.0 −197 −41.7