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eTOC: The regenerative capacity of Schwann cells in the PNS underlies functional 

repair following injury. Here, Mindos et al show a new function for the tumour 

suppressor Merlin and Hippo/YAP signalling in the generation of repair-competent 

Schwann cells following injury. 
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Abstract.  

Loss of the Merlin tumour suppressor and activation of the Hippo signalling pathway 

play major roles in the control of cell proliferation and tumourigenesis. We have 

identified completely novel roles for Merlin and the Hippo pathway effector Yes 

Associated Protein or YAP in the control of Schwann cell plasticity and peripheral 

nerve repair following injury. Injury to the peripheral nervous system (PNS) causes a 

dramatic shift in Schwann cell molecular phenotype and the generation of repair-

competent Schwann cells, which direct functional repair. We find that loss of Merlin 

in these cells causes a catastrophic failure of axonal regeneration and remyelination 

in the PNS. This effect is mediated by activation of YAP expression in Merlin null 

Schwann cells and loss of YAP restores axonal regrowth and functional repair. This 

work identifies new mechanisms that control the regenerative potential of Schwann 

cells and give a new insight to understanding the correct control of functional nerve 

repair in the peripheral nervous system.  
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Introduction.  

While the peripheral nervous system (PNS) may repair effectively following injury, 

such repair relies upon both the neurons and Schwann cells (SCs) to hugely change 

their roles from a function that supports normal nerve transmission to a function 

supporting repair and regeneration (Jessen and Mirsky, 2016; Jessen et al., 2015; 

Kim et al., 2013). The generation of repair-competent SCs distal to the site of the 

injury, termed Büngner cells, involves the transcription factor cJun-dependent loss of 

myelin proteins, recruitment of macrophages and the activation of the specific repair 

programme in SCs (Arthur-Farraj et al., 2012; Jessen and Mirsky, 2016; Parkinson et 

al., 2008). The slowed axonal regeneration that occurs in older mice is also 

associated with an impaired induction of cJun and reduced myelin clearance in SCs 

following injury (Kang and Lichtman, 2013; Painter et al., 2014). Injury to the PNS 

also triggers the activation of mitogen activated protein kinase (MAPK) pathways 

within SCs, such as the extracellular regulated kinases (ERK) 1/2 and p38 pathways 

and signalling through these pathways regulates the de-differentiation of SCs and 

immune cell entry into the nerve following injury (Harrisingh et al., 2004; Napoli et al., 

2012; Yang et al., 2012). 

The Merlin tumour suppressor has been well characterised for its roles in controlling 

cell signalling, contact mediated inhibition of growth and tumourigenesis. Loss of 

function of Merlin, either sporadically or in the inherited condition of 

Neurofibromatosis type 2 leads to the formation of tumours within the nervous 

system, including schwannomas, meningiomas and ependymomas in affected 

individuals (Hanemann, 2008; Hilton and Hanemann, 2014). Loss of Merlin leads to 

dysregulation of many cell processes including control of the CRL4DCAF1 E3 ubiquitin 

ligase, regulation of MAPK signalling and a decrease in Hippo signalling pathway 
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leading to increased activity of the Hippo effectors Yes Associated Protein (YAP) and 

Transcription co-activator with PDZ-binding motif (TAZ) (Ammoun et al., 2008; 

Cooper and Giancotti, 2014).  

While much of the research has focussed upon the role of Merlin in schwannoma 

formation, many patients with NF2 also have a peripheral neuropathy and it has 

been shown that expression of the Merlin isoform 2 within the neurons of the PNS is 

necessary for maintaining axonal integrity through maintaining correct neurofilament 

heavy chain phosphorylation (Schulz et al., 2013). More recently, axonal Merlin has 

been also been shown to regulate neuregulin 1 type III expression on PNS axons 

and expression of the ErbB2 receptor on SC (Schulz et al., 2014a). The combined 

axonal and SC heterozygosity for Merlin in patients with neurofibromatosis type 2 

has also been proposed as a likely contributor to potential tumour formation in the 

peripheral nervous system (Schulz et al., 2016). 

Although the generation of Merlin null SC tumours, schwannomas, in the peripheral 

nervous system (PNS) has been well studied, the function of Merlin-dependent 

signalling in the processes and control of PNS regeneration and repair has not been 

fully investigated. Using a sciatic nerve crush model of nerve repair in mice with SC-

specific deletion of Merlin, we find that Merlin function is crucial for the generation of 

the repair-competent SCs, which facilitate axonal regeneration and functional repair 

in the PNS. We observe significant increases in SC proliferation and macrophage 

infiltration in Merlin null nerves, a severely impaired axonal regeneration and 

remyelination, together with a reduced induction of cJun following injury. In addition 

to this, analysis of signalling in Merlin null nerves following injury shows changes in 

MAP kinase signalling and a specific injury-dependent activation of YAP in Merlin 

null SCs. We have further tested the significance of this altered Hippo pathway 
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signalling and show, remarkably, that removal of YAP alone functionally corrects the 

PNS repair defects seen in Merlin null nerves, restoring cJun and neurotrophin 

expression together with axonal regeneration and functional recovery following injury. 

These findings identify completely novel functions for both Merlin and the YAP 

protein in the regenerative capacity of the PNS and may point to potential new ways 

to boost PNS function and repair in disease or following injury.  
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Results. 

Loss of Merlin in Schwann cells causes a transient hypomyelination in the peripheral 

nervous system. 

Little is known about the effects of Merlin loss upon the control of SC development 

and myelination, although previous studies in Merlin conditional null animals have 

assessed the potential for schwannoma tumour development. (Denisenko et al., 

2008; Gehlhausen et al., 2015; Giovannini et al., 2000).  Using the well characterised 

mP0TOTA-CRE (P0-CRE) line to specifically remove Merlin in SCs of the PNS at 

E13.5 (Feltri et al., 1999), we first tested the roles of Merlin in controlling SC 

myelination and cell number. Analysis of myelination at post-natal day (P) 6 showed 

a hypomyelination of the sciatic nerve in mice with SC-specific loss of Merlin by both 

electron microscopy (EM) and western blot analysis (Figs. 1 A, B and E and S1 D). 

Numbers of SCs were slightly but significantly raised in Merlin null animals at both 

P6 and in adult animals (Figs. 1 F and S1 E-G) and in confirmation of previous data 

(Denisenko et al., 2008), we also observed a shorter internodal distance together 

with increased numbers of Schmidt-Lanterman incisures in the peripheral nerves of 

Merlin null animals at P60 (Fig. S5 H-M). Analysis of P21 and P60 nerves showed 

that by these later timepoints, however, myelination appeared normal with only small 

non-significant differences in myelin thickness (G ratio) between control and Merlin 

null animals and comparable myelin protein expression (Figs. 1 C, D, G, S1 A-C, 2 M 

and 9 F). All measures of peripheral nerve function such as nerve conduction 

velocity, compound muscle action potential and functional testing of animals using a 

rotarod to check sensory-motor co-ordination showed no significant differences 

between adult control and Merlin null animals (Figs. 5, E-G and S5 G). 
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Loss of Merlin in Schwann cells causes a failure of regeneration and remyelination 

following injury. 

Injury to the peripheral nervous system starts a series of well characterised events 

distal to the site of the injury that include degeneration of axons, immune cell 

infiltration and reprogramming of SCs to assume a repair-competent state (Arthur-

Farraj et al., 2012; Jessen and Mirsky, 2016; Kim et al., 2013). As Merlin is a key 

regulator of cell signalling, we analysed the control of repair following crush injury in 

sciatic nerve with SC-specific deletion of Merlin. 

For Merlin null nerves we observed a large decrease in the numbers of regenerating 

axons and almost no remyelination as compared to controls (Fig. 2 C-L); we also 

observed a significant expansion of the entire nerve distal to the site of injury (Fig. 2 

A, B and G-J). Corresponding to the lack of remyelination, western blotting for myelin 

basic protein (MBP) showed almost undetectable levels in Merlin null distal nerves at 

21days (d) following injury, but MBP was re-expressed in control nerves 

demonstrating the onset of remyelination in these animals (Fig. 2 M). Even at 60d 

post-crush injury, axonal regeneration and remyelination were both very poor in 

Merlin null nerves as compared to controls (Fig. 2 I, J and L).  

Numbers of regenerated axons within the tibial nerve showed a large reduction in 

Merlin null animals at both 21d and 60d following injury and those axons that do 

regenerate associated poorly with SCs (Fig. 3 A-F). Even when larger diameter 

axons regenerate into the distal tibial Merlin null nerve, they were poorly myelinated 

with increased G ratios at both 21d and 60d after crush injury (Fig. 3 G, H). Following 

injury we also observed greatly increased numbers of SCs, which displayed 

extensive cellular processes; many SCs ensheathed groups of collagen fibres (Fig. 3 
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B, D, I and J). Even when correctly associating with and myelinating an axon, Merlin 

null SCs exhibited the same multiple cell processes and discontinuous basal lamina 

(Fig. 3 I). To test whether this SC behaviour within the Merlin null distal nerve may 

be due to the lack of regenerating axons, we performed experiments in which a 

section of nerve was removed to prevent axonal regeneration into the distal stump. 

We never observed such SC behaviour or collagen wrapping in control animals, 

even at 60d post injury (unpublished data), indicating that this effect was specific to 

nerves containing Merlin null SCs and not an effect of the continued absence of 

axons within the nerve distal to the crush site. 

We next extended this analysis to an even longer timepoint of 8 months post-crush 

injury.  Remarkably, even at this time, analysis of distal nerve samples from Merlin 

null animals still showed a lack of axonal regeneration and re-myelination, 

demonstrating that the regeneration defect does not correct in nerves containing 

Merlin null SCs (Fig. S2 A-H). Staining with Masson’s trichrome stain also revealed 

the large amount of collagen within the injured Merlin null nerves at this timepoint.  

(Fig. S2 I-J). Together, these findings show a crucial role for the Merlin in SCs to 

generate the repair-competent Büngner cells required for efficient axonal 

regeneration and remyelination following injury to the PNS.  

Reduced axonal regeneration, elevated cell proliferation together with increased and 

sustained macrophage numbers in Merlin null nerves following injury. 

We have previously described the use of wholemount staining to visualise axonal 

regeneration following both cut and crush injuries (Dun and Parkinson, 2015). Using 

this technique, we saw that the distance of the leading regenerating axon was 

significantly reduced in Merlin null nerves at 7d post-crush injury (Fig. 4 A-C). Using 
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neurofilament staining to identify regenerating axons in transverse sections of sciatic 

nerve distal to the injury site, there was a clear reduction in the numbers of 

regenerating axons in the distal sciatic nerve at both 7d and 21d post-crush injury in 

Merlin null nerves (Fig. 4 D-G).  

Injury to peripheral nerves induces distal SC demyelination and proliferation, 

breakdown of the blood-nerve barrier and consequent macrophage influx to the 

nerve (Jessen and Mirsky, 2016). We found that post-crush injury at 7d, both 

proliferation, measured by Ki67 labelling, (Fig. 4 H) and macrophage numbers, 

measured by Iba1/F4/80 double labelling (Iba1 staining shown), were significantly 

elevated in Merlin null nerves. Even at later timepoints, 21d and 60d post-injury, 

significantly more macrophages were present within Merlin null nerves (Fig. 4 I-K), 

demonstrating an ongoing inflammatory response in these animals. 

Loss of functional recovery in Merlin null nerves. 

Next, we used a number of measurements to assess functional recovery in Merlin 

null nerves following injury. Following a sciatic nerve crush injury, control animals 

recover function fully by 21d as previously reported (Arthur-Farraj et al., 2012; Yang 

et al., 2008) (Fig. 5 A) and our analysis of the tibial nerves from control animals show 

normal axonal regeneration and remyelination at this timepoint (Fig. 2 G). 

Assessment of functional recovery by the static sciatic index (SSI), a gait analysis 

which measures sensory-motor recovery (Baptista et al., 2007), showed no 

functional recovery at 21d in Merlin null animals as compared to a full recovery by 

control animals using this test (Fig. 5 A). Analysis of functional recovery using single 

frame motion analysis of both foot-base angle and lateral foot-base angle, to 

measure recovery of motor function (Fey et al., 2010), both showed significant 
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deficits in function in Merlin null animals at 35d and foot-base angle at 105d post-

injury, confirming the long-term loss of nerve function in these animals (Fig. 5 B-D). 

Furthermore, measurements of both nerve conduction velocity and compound 

muscle action potential, to assess axon regeneration, re-innervation and 

remyelination, in nerves 35d after crush injury showed significant reductions in Merlin 

null animals (Fig. 5 E-G).  Measures of the recovery of sensory function in the foot by 

the toe pinch test also showed little or no recovery even at 35d in Merlin null animals 

as compared to control animals that showed full recovery at 21d (Fig. S3). 

Alterations in Hippo pathway signalling, cJun expression and MAP Kinase activation 

in Merlin null nerves following injury. 

The poor axonal regeneration seen in Merlin null animals partly resembles that seen 

in animals with SC-specific loss of the transcription factor cJun, although there are 

also clear differences in the phenotypes between these two transgenic lines, for 

instance the increased macrophage infiltration seen in Merlin null nerves is not seen 

in cJun null nerves following injury (Arthur-Farraj et al., 2012).  

Measurement of cJun protein levels in Merlin null nerves showed a reduced 

induction of cJun protein at 4d, 7d and 11d post-crush injury (Fig. 6 A, B and D) and 

at 7d post-transection injury (Fig. 6 C) in Merlin null animals by both immunolabelling 

and western blotting. In the nerve crush experiments, as cJun levels began to drop 

at 21d post-crush injury in control animals, presumably reflecting the remyelination of 

the distal nerve, weak cJun expression was maintained in Merlin null animals at this 

timepoint, underlining the lack of re-myelination seen (Figs. 2 H, M and 9 F). In 

keeping with this effect and lack of remyelination in Merlin null animals, we observed 

increased levels of the immature SC marker N-cadherin in Merlin null animals at later 
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timepoints following injury and reduced levels of E-cadherin (Fig. 6 D); E-cadherin is 

induced in SCs as they begin to myelinate (Crawford et al., 2008). In addition we 

saw increased levels of active beta-catenin in Merlin null nerves following injury.  

Although we observed reduced levels of cJun in Merlin null SCs following injury, we 

did not observe in vitro nor in vivo the delayed dedifferentiation and loss of myelin 

proteins seen in cJun null animals at 7d post-transection injury (Fig. 6 C and 

unpublished data). 

Induction of the SC chemokine monocyte chemoattractant protein 1, MCP1/CCL2, is 

known to be important for entry of macrophages into the nerve following injury and is 

regulated by activity of the MEK/ERK1/2 pathway in SCs; in addition, activation of 

the p38 MAP kinase pathway has been implicated in macrophage recruitment and 

activation following injury (Fischer et al., 2008a; Myers et al., 2003; Napoli et al., 

2012; Tofaris et al., 2002). Activity of both the ERK1/2 and p38 MAP kinase 

pathways were elevated in Merlin null nerves following both crush and transection 

injury, as well as levels of MCP-1 protein (Fig. 6 C, D), in accordance with the 

increased numbers and persistent presence of macrophages within the Merlin null 

nerves following injury (Fig. 4 I-K). 

The failure of Merlin null nerves to repair is dependent upon activation of the Hippo 

pathway effector YAP. 

A key function of the Merlin tumour suppressor in cells is to regulate activity of the 

Hippo pathway. The Hippo pathway effectors YAP and TAZ are phosphorylated by 

the LATS1/2 kinases which inactivates their function by increasing YAP/TAZ 

retention in the cytoplasm (Cooper and Giancotti, 2014). Loss of Merlin in tumour 

cells leads to increased YAP/TAZ-dependent signalling and the formation of Merlin 
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null liver tumours requires YAP function (Zhang et al., 2010). Western blotting of 

distal nerve samples post-injury showed an increase in YAP levels only in Merlin null 

nerves following injury, whereas for TAZ we saw an increase in levels in both control 

and Merlin null animals, albeit at higher levels in the Merlin null animals (Fig. 6 D). 

The level of connective tissue growth factor, CTGF, which is a Hippo target 

(Shimomura et al., 2014; Zhao et al., 2010), was also strongly increased, together 

with raised levels of collagen type IV in Merlin null nerves after injury (Fig. 6 D).  

Given the strong injury-specific activation of YAP in Merlin null nerves, we next 

tested the effects of removing YAP function in SCs. Mice with a conditional allele of 

the YAP locus (Zhang et al., 2010), YAPfl/fl, were crossed with Merlin conditional 

animals, NF2fl/fl, to generate Merlin null animals with the loss of either one, NF2-/-

YAP+/-, or both, NF2-/-YAP-/-, YAP alleles. Analysis of mice with a SC-specific 

deletion of YAP alone (NF2+/+YAP-/-) revealed no developmental abnormalities in 

the nerve as measured by transmission EM of sciatic nerve at P6 and P21 (Fig. S4 

A-E) and injury experiments in these animals showed a recovery profile, as 

measured by SSI analysis, indistinguishable from control wild-type animals (Fig. S4 

G). Proliferation following injury at 7d showed no change in the numbers of Ki67 

positive proliferating SCs or numbers of Iba1-positive macrophages recruited to the 

nerve in YAP-/- single null animals (Fig. S4 F, H). Both NF2-/-YAP+/- and NF2-/-

YAP-/- animals were phenotypically normal and analysis of adult intact nerve in 

these animals revealed no abnormalities in axon number, diameter, or myelination 

by G ratio analysis and western blotting (Figs. S5 A-F and 9 F). Functional testing of 

mice by rotarod analysis showed no differences between adult NF2+/+YAP+/+, NF2-

/-YAP+/+ and NF2-/-YAP-/- animals (Fig. S5 G.)  
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As described above and previously (Denisenko et al., 2008), loss of Merlin in SCs 

causes both a shortening of the internodal distance in the adult nerve, increased 

numbers of SCs and increased numbers of Schmidt-Lanterman incisures within 

myelinated SCs. Analysis of NF2-/-YAP+/- and NF2-/-YAP-/- adult P60 nerves 

showed that these three phenotypes were all corrected by the loss of YAP function in 

intact adult Merlin null nerves (Fig. S5 L-N.) 

Western blotting of NF2+/+YAP+/+, NF2-/-YAP+/+ and NF2-/-YAP-/- nerves at 11d 

post-crush injury showed the loss of YAP induction in NF2-/-YAP-/- animals, 

confirming the SC-specificity of YAP induction in Merlin null (NF2-/-YAP+/+) nerves 

following injury (Fig. 8 G). 

Next, we performed sciatic nerve crush injury experiments and assessment of 

recovery in NF2+/+YAP+/+, NF2-/-YAP+/+, NF2-/-YAP+/- and NF2-/-YAP-/- animals.  

Remarkably, loss of even one copy of YAP in the NF2-/-YAP+/- animals was 

sufficient to restore some axonal regeneration and remyelination compared to the 

Merlin null (NF2-/-YAP+/+) animals at 21d post-crush injury. Loss of the second YAP 

allele in NF2-/-YAP-/- animals further restored axonal regeneration and numbers of 

myelinated fibres within the distal nerve (Fig. 7 A-D and F). Neurofilament staining in 

the distal sciatic nerve at 7d following crush injury showed increased numbers of 

regenerating axons in both NF2-/-YAP+/- and NF2-/-YAP-/- animals as compared to 

NF2-/-YAP+/+ animals even at this early timepoint following injury (Fig. 7 G-J). At 

60d, there was a further improvement of regeneration in NF2-/-YAP-/- animals 

compared to 21d with larger numbers of myelinated axons present within the distal 

sciatic nerve (Fig. 7 F). 
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As above, mice with SC-specific loss of Merlin failed to recover by 21d as measured 

by SSI analysis (Fig. 5 A). In accordance with the axon regeneration and numbers of 

myelinated fibres in the distal nerve, loss of even one YAP allele in NF2-/-YAP+/- 

animals almost completely restored functional recovery by this measure in animals at 

21d; loss of the second YAP allele (NF2-/-YAP-/-) led to complete functional 

recovery at 21d by SSI analysis with a recovery profile indistinguishable from the 

control NF2+/+YAP+/+ animals (Fig. 7 E). Sensory recovery, as measured by the toe 

pinch test showed a slight delay, but all NF2-/-YAP-/- animals showed a full recovery 

by this test at 26d compared to 21d for control animals. Transmission EM showed 

increased myelin thickness and decreased G ratios, for regenerated axons in the 

NF2-/-YAP+/- and NF2-/-YAP-/- animals as compared to Merlin null (NF2-/-YAP+/+) 

nerves at 21d post-injury (Fig. 8 A-D, H, I).  

However, it should be noted that while there is a restoration of axonal regeneration, 

remyelination and functional recovery with the loss of YAP in Merlin null SCs, we still 

observed some, but reduced, numbers of abnormalities such as increased numbers 

of collagen fibres, collagen wrapping by SCs and large numbers of SC processes 

within NF2-/-YAP-/- distal nerves at 21d following injury (Fig. 8 D-F).  

To further examine the role of YAP in the phenotype of Merlin null animals, we 

examined SC proliferation and macrophage infiltration, both of which are elevated in 

Merlin null animals (Fig. 4 H-K), in NF2-/-YAP-/- animals following crush injury. We 

found that loss of YAP reduced both the elevated cell proliferation and macrophage 

influx seen in Merlin null animals to that seen in control (NF2+/+YAP+/+) animals at 

7d post injury (Fig. 8 J, K); these findings once again underline the importance of 

YAP signalling on the phenotype observed in Merlin null animals. 
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cJun and neurotrophin expression are reduced in Merlin null nerves following injury 

in a YAP-dependent manner. 

The analysis of mice with SC-specific deletion of cJun has previously identified a 

reduced expression of the neurotrophins brain derived neurotrophic factor, BDNF, 

glial cell line-derived neurotrophic factor, GDNF, and artemin; administration of 

GDNF or artemin was shown to significantly improve the axon regeneration defect in 

cJun null animals (Arthur-Farraj et al., 2012; Fontana et al., 2012). Given that we 

observed a reduced induction of cJun in Merlin null nerves, we tested for mRNA and 

protein levels of cJun and these neurotrophins following injury. At 4 days post-crush 

injury, we observed a significant reduction in mRNA levels for cJun, BDNF, GDNF 

and artemin in Merlin null nerves as compared to controls. In all cases, these 

changes were partially reversed in Merlin/YAP double null animals (Fig. 9 A-D). 

These findings clearly identify for the first time that Merlin either directly or indirectly 

controls cJun expression in vivo in SCs following injury in a YAP-dependent manner. 

The partial restoration of cJun expression, together with the reduction in ERK1/2 

activation, following injury in Merlin/YAP double null animals was also confirmed by 

western blotting (Fig. 9 E). In addition, an increase in TAZ protein was also observed 

in Merlin/YAP double null nerves following injury (Figs. 8 G and 9 E). In keeping with 

the normalised macrophage numbers seen in Merlin/YAP double null nerves 

following injury (Fig. 8 K), lower levels of MCP1 were observed in these nerves 

compared to Merlin null nerves (Fig. 9 E).   

Finally to check the direct relationship between YAP expression and cJun expression, 

rat SCs were infected with adenovirus expressing either LacZ as a control or the 

non-phosphorylatable constitutively active FLAG-tagged YAPSer127Ala (Shao et al., 

2014) and levels of cJun protein measured. Immunolabelling of infected SCs showed 
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both nuclear and cytoplasmic localisation of the YAPSer127Ala protein (Fig. 9 I and S5 

O, P). We found that expression of YAPSer127Ala alone was sufficient to lower cJun 

protein levels in rat SCs (Fig. 9 G-J). 

These findings clearly identify that following PNS injury, Merlin-dependent signalling 

controls the correct up-regulation of cJun in SCs, together with neurotrophin 

expression, to ensure efficient axonal regeneration and functional repair. Loss of 

Merlin and consequent activation of YAP function in SCs suppresses this part of the 

regenerative response, leading to a failure of repair in the nerve following injury.   
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Discussion. 

We have examined the consequences of Merlin loss upon the regenerative capacity 

of SCs in the peripheral nervous system following injury. In this system, SCs adopt, 

by cellular reprogramming, a repair-specific phenotype following injury that is 

required for the full axonal regeneration and the functional repair that can occur in 

this tissue (Arthur-Farraj et al., 2012; Jessen and Mirsky, 2016; Jessen et al., 2015). 

Given the multiple functions of the Merlin protein, it was somewhat surprising that 

loss of Merlin in SCs developmentally has only minor consequences in the 

development of the post-natal and adult nerve but, highlighting the potential 

differences between development and repair in the PNS, loss of Merlin in SCs 

causes the almost complete failure of repair following injury.  

Following injury in Merlin null nerves we observe an increase in SC proliferation, an 

inhibition of axonal regeneration and a failure of SCs to correctly re-myelinate the 

few large diameter axons that do regenerate. In addition to this we observe an 

ongoing inflammatory state with increased numbers of macrophages within the nerve. 

It is interesting that these features are also characteristic of human schwannoma 

tumours in patients with NF2 (de Vries et al., 2013) and the possibility of local nerve 

compression or small injury as a trigger for such tumour formation is possibly 

consistent with the sites of such tumours on the 8th cranial nerve and at the spinal 

nerve roots of the PNS (Asthagiri et al., 2009; Hilton and Hanemann, 2014). Our 

analysis of the histology of distal Merlin null nerves at either 60 days or 8 months 

after injury indicates that they do show similarities to cellular schwannomas, but we 

have not observed the hallmark signs of human schwannoma such as Antoni type A 

or B regions or Verocay bodies in our experiments (Hilton and Hanemann, 2014)  

(Fig. S2 K, L and unpublished data). 
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Previous work in both transgenic knockout and older animals has identified the cJun 

transcription factor as a key protein in the generation of the repair-competent SC, or 

Büngner cell, in the distal nerve following injury (Arthur-Farraj et al., 2012; Painter et 

al., 2014; Parkinson et al., 2008) and we find that the up-regulation of cJun is 

delayed in Merlin null nerves, however we do not observe the block in myelin protein 

down-regulation or the reduced recruitment of macrophages seen in cJun null 

animals.  It is unclear as to how much of a role this lack of myelin clearance plays in 

the reduced axonal regeneration seen in the cJun null nerves, but other work has 

shown that increased myelin debris seen following injury in aged animals causes 

stalling of motor axon re-growth in the PNS (Kang and Lichtman, 2013). The 

apparently normal myelin clearance we observe in Merlin null nerves would 

seemingly exclude this as a reason for the very poor regeneration of axons in our 

experiments. This, together with the altered cell proliferation and immune response 

we observe highlights clear differences between the SC cJun and Merlin null 

phenotypes following injury. 

One possible explanation for the normal myelin clearance in Merlin null nerves is that 

we also observe increased activation of both ERK1/2 and p38 pathways following 

injury in Merlin null animals; both pathways have been shown to regulate SC 

demyelination and macrophage recruitment and it is unclear whether the effect of 

either MAPK is cJun dependent in vivo (Fischer et al., 2008b; Harrisingh et al., 2004; 

Napoli et al., 2012; Yang et al., 2012). It is possible that increased activation of these 

MAPK pathways, together with increased macrophage numbers, may compensate 

for the reduced induction of cJun in regulating these events of Wallerian 

degeneration. While the loss of axonal regeneration in Merlin null nerves may be 

cJun-dependent, both the increased SC proliferation and the inability to re-myelinate 
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the few regenerating axons following injury we observe are not apparent in cJun null 

animals (Arthur-Farraj et al., 2012). The increased severity of the regeneration defect 

seen in Merlin null nerves indicates other targets of Merlin and YAP-dependent 

signalling in controlling these processes.  

Other phenotypes observed in the Merlin null nerves following injury, such as the 

wrapping of collagen fibres by SCs are not observed in cJun null nerves, but have 

been seen in mice with SC-specific loss of the phosphatase and tensin homologue 

(PTEN), with resulting increased PI3-kinase activity, and in mice expressing an 

activated form of Akt in SCs (Domenech-Estevez et al., 2016; Goebbels et al., 2010; 

Goebbels et al., 2012). Levels of p-Akt are increased in Merlin null nerves following 

injury (Fig. 9 E), in keeping with the increased PI-3 kinase/Akt signalling that has 

been shown in human Merlin null schwannoma cells in vitro (Ammoun et al., 2008). 

However, although this increased signalling through the PI3-kinase pathway may 

underlie the collagen wrapping by SCs and, perhaps, the increased deposition of 

basal lamina components (eg. collagen type IV, Fig. 6 D) in Merlin null nerves 

following injury (Domenech-Estevez et al., 2016), we clearly do not see the 

hypermyelination of axons seen in the PNS of these mouse PTEN mutants or Akt 

over-expressing nerves either before or following injury in the Merlin null nerves; 

indeed, we observe thinner re-myelination of the few larger diameter axons that do 

regenerate following injury (Fig. 3 G, H).  Loss of YAP in Merlin null nerves appears 

to reduce levels of p-Akt following injury to those seen in control nerves (Fig. 9 E) 

and is associated with an improved re-myelination of regenerating axons. One 

possible mechanism for this effect upon Akt activity is that YAP has been shown to 

down-regulate levels of PTEN protein by inducing the microRNA miR-29 that inhibits 

PTEN mRNA translation in cells (Tumaneng et al., 2012). 
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The cause of the increased collagen fibres seen in Merlin null nerves following injury  

(Figs. 3 B, D, I and J and S2 I, J) is not clear but recent data, using a mouse 

transgenic expressing a constitutively active Mek1 (Mek1DD), has shown that 

increased ERK1/2 activity in SCs is associated with increased collagen fibre 

deposition in the intact adult peripheral nerve (Ishii et al., 2016). Thus, it is possible 

that the increased ERK1/2 activity in Merlin null nerves following injury (Fig. 6 C, D) 

drives a similar increase in collagen fibres within the nerve seen in our experiments.  

Signalling through the Hippo pathway regulates multiple facets of cell behaviour, 

including cell proliferation, cell fate and ultimately tissue homeostasis and organ size 

(Yu et al., 2015). Regulation of the Hippo pathway by the Merlin protein has similarly 

been highly studied in the control of cell behaviour in tumours with the loss of Merlin 

function and in particular schwannomas and meningiomas of the nervous system 

(Asthagiri et al., 2009; Cooper and Giancotti, 2014; Li et al., 2014). While the 

increase expression of YAP following injury is only seen in Merlin null nerves, 

increased TAZ expression following injury is also seen in control nerves.  Such a 

differential expression of YAP and TAZ has also been observed in the dorsal horn 

following nerve injury as well as in hepatocellular carcinoma tumours, highlighting 

potentially different roles for YAP and TAZ proteins in these situations (Hayashi et al., 

2015; Xu et al., 2016). It remains to be determined whether there are distinct roles 

for these two Hippo pathway effectors in SCs in the events of nerve repair. 

YAP null nerves show no developmental defects and no defects in repair (Fig. S4 A-

H), whereas TAZ null nerves show some defects in axonal sorting (Poitelon et al., 

2016 and our unpublished data). Recent work has shown that absence of both YAP 

and TAZ in SCs during development causes a severe peripheral neuropathy due to 

defects in axonal sorting and that YAP/TAZ-dependent transcription regulates 
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laminin receptors in SCs (Poitelon et al., 2016).  The effects of TAZ loss alone in 

SCs upon PNS repair and whether loss of TAZ function will revert part or all of the 

phenotype of Merlin null nerves following injury remains to be tested. 

In conclusion, we have identified a completely novel function for the Merlin tumour 

suppressor in the control of SC reprogramming and PNS repair following injury. The 

finding that increased expression of YAP in Merlin null nerves blocks the 

regenerative capacity of SCs to accomplish repair also demonstrates a new function 

for the Hippo/YAP pathway in this phenotype of Merlin null nerves. These findings 

identify a potential novel mechanism for situations in which SCs may not be fully 

supportive and nerve repair may not be optimal, such as diabetic neuropathy, in the 

aging nerve (Painter et al., 2014) or situations that lead to longer term denervation of 

the distal nerve (Dahlin, 2013). Targeting of YAP-dependent signalling in such 

circumstances may, perhaps, offer an improvement in functional repair and outcome. 
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Figures and Figure Legends: 

 

Figure 1: Merlin null nerves show a transient hypomyelination and slight increase in 

Schwann cell numbers. A, B. Transmission EM pictures of post-natal day (P) 6 

sciatic nerves of control (NF2+/+, A) and Merlin null (NF2-/-, B) animals (n=3 mice). 

Scale bar 5µm. C, D. Transmission EM pictures of P60 sciatic nerve from control (C) 

and Merlin null (D) animals (n=3 mice). Scale bar 10µm. E. Western blot of control 

and Merlin null nerves at P6 (n=3 pools, 1 pool=3 nerves from 3 mice for each 

genotype). β-tubulin is used as loading control. F. Counts of Hoechst stained nuclei 

from transverse cryostat sections of P6 and P72 sciatic nerves showing increase in 
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cell number in Merlin null nerves; (NF2+/+ n=3, NF2-/- n=4). G. Small but non-

significant increase in G ratio in P60 Merlin null nerves as compared to control (n=3 

mice). Two-sided Two-Sample Student’s t test **P≤0.004 (P6, F), **P≤0.005 (P72, F), 

P=0.1 (G). 
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Figure 2: Loss of Merlin in Schwann cells causes a severe regeneration defect 

following injury. A, B. Phase photos showing sciatic nerve 21 days (d) after crush 

injury in control (NF2+/+, A) and Schwann cell-specific Merlin null (NF2-/-, B) nerves; 

white arrow marks the site of crush injury. There is a substantial expansion of the 

distal nerve in Merlin null nerves (observed in all analysed NF2-/- nerves following 

injury). Scale bar 2mm. C-F.  Semi-thin sections of distal sciatic nerve at 21d (C, D) 

and 60d (E, F) post crush injury. Scale bar 50µm. G-J. Low vacuum scanning EM of 

control (G, I) and Merlin-null (H, J) tibial nerves at 21d and 60d post-crush injury; 
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insets show higher magnification images of the samples showing remyelination in 

control samples but almost no remyelination in Merlin null nerves. Arrows in inset in 

panels H and J show thinly remyelinated axons; arrowhead in inset in panel J shows 

presence of macrophages in the nerve at 60d (n=3 mice for each genotype and time 

point). Scale bar 50µm. Insets scale bar 25µm. K, L. Counts of numbers of 

myelinated fibres in tibial nerves at 21d (K) and 60d (L) post-crush injury with 

significantly fewer myelinated fibres in NF2-/- nerves at both timepoints (n=3 mice for 

each genotype and time point). M. Western blot of myelin basic protein (MBP) in 

intact and injured distal sciatic nerves 21d after nerve crush (n=3 mice for each 

genotype and time point). Two-sided Two-Sample Student’s t test ***P≤0.001 in both 

time points (K, L).
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Figure 3: Remyelination and morphological analysis of control and Merlin-null 

nerves after injury. A-D. Transmission EM pictures of control (A, C; NF2+/+) and 

Merlin null (B, D; NF2-/-) distal sciatic nerves at 21d (A, B) and 60d (C, D) following 

nerve crush. Arrowheads in D indicate small diameter axons that are un-associated 
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with Schwann cells (n=3 mice). Scale bar 2µm. E, F. Counts of axons and Schwann 

cell-axon association in sciatic nerves of control and Merlin-null animals at 21d (E) 

and 60d (F) post-injury (n=3 mice), indicating poor association of Merlin null 

Schwann cells with both small (<1µm) and larger (>1µm) diameter axons and 

corresponding increased numbers of un-associated axons in these nerves post-

injury. G, H. G-ratio vs axon diameter scatter plot graphs for control and Merlin null 

sciatic nerves at 21d (G) and 60d (H) post injury (n=3 mice). I, J. Transmission EM of 

Merlin null sciatic nerves at 60d post-injury showing large amounts of collagen fibres, 

extensive Schwann cell processes and large degree of collagen wrapping by 

Schwann cells within the nerve. Arrow in I indicates a small diameter axon that is un-

associated with a Schwann cell and residing inside the discontinuous basal lamina of 

the myelinating Schwann cell. Notice in J the Schwann cell ensheaths the collagen 

fibres with multiple membrane bilayers. (Representative images from 3 biological 

replicates). Scale bar 1µm. Two-sided Two-Sample Student’s t test *** P≤0.001 for 

all comparisons in Schwann cell-axon association graphs against the control NF2+/+ 

at both time points (E, F), P=0.464 for un-associated axons >1µm (E), *** P≤0.001 

for the G ratio at 21d and 60d post crush (G, H).



 
 

39 

 

Figure 4: Loss of Merlin causes a failure in axonal regrowth and distal nerves are 

characterised by increased Schwann cell proliferation and ongoing presence of 

macrophages. A, B. Wholemount staining of control (NF2+/+) and Merlin null (NF2-/-) 

nerve at 7d after crush injury. Nerves are stained with neurofilament antibody 

(NF200), the crush site is marked, and arrowheads mark the leading regenerating 

axons in control and Merlin-null nerves. Scale bar 1mm. C. Quantification of distance 
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of leading axons relative to injury site at 7d post crush in control and Merlin null 

nerves (n= 3 mice). D-G. Immunolabelling with neurofilament antibody of distal 

sciatic nerve at 7d (D, E) and 21d (F, G) after nerve crush (n=3 mice). Scale bar 

25µm. H. Increased Schwann cell proliferation, as measured by Ki67 labelling, in 

Merlin null distal sciatic nerve at 7d after crush injury (n=3 mice). I-K. Labelling (I, J) 

and quantification (K) of Iba1 positive macrophages in control and Merlin null sciatic 

nerves at 7d, 21d and 60d post crush injury (n=3 mice for each genotype and time 

point). I, J Scale bar 100µm. Two-sided Two-Sample Student’s t test ***P≤0.001 (C), 

**P≤0.01 (H), **P≤0.01, ***P≤0.001 (K). 
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Figure 5: Merlin null animals display diminished functional recovery at all time points 

following injury. A. Static sciatic index (SSI) measurements of control (NF2+/+), 

heterozygous (NF2+/-) and Merlin null animals (NF2-/-) (n=3 mice for each time 



 
 

42 

point). B-D. Single frame motion analysis of animals for foot-base angle (B) and 

lateral foot-base angle (C) up to 28d after injury. D. Measurement of foot-base angle 

in animals at fifteen weeks (105d) post-crush injury (n=7 mice for each time point). E. 

Measurements of nerve conduction velocity (NCV) of control and Merlin null animals 

from contralateral control and side of nerve crush at 35d after crush injury (n=7 mice). 

F, G. Measurements of compound muscle action potential (CMAP) with distal (F) 

and proximal (G) stimulation (n=7 mice). One-way ANOVA with Bonferroni’s multiple 

comparison test ***P≤0.001 for all time points compared to NF2+/+ (B-D). Two-sided 

Two-Sample Student’s t test *P=0.014 (E), ***P≤0.001 (F, G). 
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Figure 6: Merlin function in Schwann cells regulates cJun expression together with 

MAP Kinase and Hippo pathway signalling following injury. A, B. Immunolabelling of 

distal sciatic nerve in control (NF2+/+) and Merlin null (NF2-/-) sciatic nerve 7d after 

nerve crush injury with cJun antibody (n=3 mice). Scale bar 25µm. C. Western blot of 

intact and injured distal sciatic nerves 7d after nerve cut in control and Merlin null 

nerves (n=3 pools, 1 pool=3 nerves from 3 mice for each genotype). Values 

represent normalised expression against the control for each time point. Vinculin is 

used as a loading control. D. Western blots of distal control and Merlin null nerves at 

4d, 11d and 21d after nerve crush injury (n=3 pools, 1 pool=3 nerves from 3 mice for 
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each genotype). Values represent normalised expression against the control for 

each time point. Vinculin is used a loading control.  
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Figure 7: Loss of YAP in Merlin null Schwann cells improves both axonal repair and 

functional recovery following injury. A-D. Toluidine blue stained semi-thin sections of 

distal sciatic nerve at 60d post crush injury showing increased numbers of 

myelinated axons in NF2-/- YAP-/- double null nerves (D) compared to NF2-/- 

YAP+/+ Merlin single null animals (B). Mice with loss of one YAP allele (NF2-/- 

YAP+/-, C) have an intermediate phenotype (n=3 mice for all genotypes). Scale bar 

10µm. E. SSI analysis of control, Merlin single null and Merlin/YAP double null 

animals (n=3 mice for each experiment and time point). F. Counts of myelinated 

axons in distal sciatic nerve of control, single Merlin null and Merlin/YAP double null 

animals at 21d (n=6 for each genotype and time point) and 60d (n=3 mice for each 

genotype and time point) following crush injury. G-J. Immunolabelling of distal sciatic 

nerve with neurofilament antibody in control, single Merlin null and Merlin/YAP 
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double null animals 7d post crush injury (n=3 mice). Scale bar 50µm. One-way 

ANOVA with Bonferroni’s multiple comparison test ***P≤0.001 in the comparisons 

shown (E).
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Figure 8: Morphological analysis of nerves following injury and normalisation of 

proliferation and macrophage infiltration in Merlin/YAP double null nerves. A-D. 

Transmission EM images of distal sciatic nerve at 21d post crush injury showing 

remyelination of axons in NF2-/- YAP-/- double null nerves (D) compared to NF2-/- 

YAP+/+ Merlin null animals (B). Mice with loss of one YAP allele (NF2-/- YAP+/-, C) 

have an intermediate phenotype (n=3 mice for all genotypes). Scale bar 5µm.  E, F. 
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Transmission EM pictures of Merlin/YAP double null distal sciatic nerves at 21d post-

injury showing Schwann cell processes and collagen wrapping by Schwann cells 

within the nerve. Black arrow in E showing the continuous basal lamina of a 

myelinating Schwann cell with Schwann cell processes inside. Black arrowhead in E 

points to collagen wrapping, as also observed in F (representative images from 3 

biological replicates). Scale bar 1µm. G. Western blot 11d after nerve crush injury 

showing loss of YAP induction in NF2-/- YAP-/- distal sciatic nerves compared to 

NF2-/- YAP+/+ nerves. TAZ is upregulated in both Merlin single null and Merlin/YAP 

double null distal sciatic nerves compared to control nerves post injury. Vinculin is 

used as a loading control (n=3 pools, 1 pool=3 nerves from 3 mice for each 

genotype). H, I. Scatter plot graph (H) and average (I) G ratio measurements 21d 

post crush in Merlin null and Merlin/YAP double null distal sciatic nerves (n=3 mice). 

J, K. Graphs showing numbers of Ki67 positive proliferating cells (J) (n=3 mice) and 

numbers of Iba1 positive macrophages (K) (n=3 mice) in distal nerves of control, 

Merlin single null and Merlin/YAP double null animals at 7d post crush injury. One-

way ANOVA with Bonferroni’s multiple comparison test **P=0.003, *P=0.013 

compared to NF2-/- YAP+/-, *P=0.021 compared to NF2-/- YAP-/- (F), ***P≤0.001 in 

the comparisons shown (J, K), P=0.862 (J), P=0.995 (K). 
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Figure 9: Loss of YAP increases both cJun and neurotrophin expression in Merlin-

null Schwann cells following injury. A-D. Quantitative PCR measurement (n=3 pools, 

1 pool=3 nerves from 3 mice for each genotype) of cJun (A) and neurotrophin 

(GDNF, B; Artemin, C; BDNF, D) expression 4d after crush injury in control (NF2 +/+ 

YAP+/+), Merlin single null (NF2-/- YAP+/+) and Merlin/YAP double null (NF2-/- 

YAP-/-) animals. E. Western blot showing cJun, p-ERK1/2, TAZ, MCP-1 and p-Akt 

activation in control uninjured nerves and 4d after crush injury in control, Merlin 

single null and Merlin/YAP double null animals (n=3 pools, 1 pool=3 nerves from 3 
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mice for each genotype). Values represent normalised expression against the control. 

Vinculin is used as a loading control. F. Western blot showing loss of YAP in Merlin 

null Schwann cells increases Myelin Protein Zero (MPZ), reduces N-cadherin 

expression, but does not affect levels of activated β-catenin at 21d after crush injury 

(n=3 pools, 1 pool=3 nerves from 3 mice for each genotype). Values represent 

normalised expression against the control. Vinculin is used as a loading control. G-J. 

YAP expression reduces levels of cJun in Schwann cells. Immunolabelling of rat 

Schwann cells expressing control LacZ (G, H) or YAPSer127Ala  (I, J) showing reduced 

levels of cJun protein in YAPSer127Ala expressing cells (I, J) (n=3 experiments). Arrows 

in I and J indicate non-YAP-overexpressing Schwann cells with unchanged levels of 

cJun protein. Scale bar 20µm. One-way ANOVA with Bonferroni’s multiple 

comparison test *P=0.048, P=0.07 (A), *P=0.033 to NF2-/- YAP+/+, *P=0.028 to 

NF2+/+ YAP+/+ (B), ***P≤0.001, P=0.218 (C), *P=0.016, P=1 (D). 
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Methods 

Mice. 

All animal experiments conformed to UK Home Office regulations under the Animals 

(Scientific Procedures) Act 1986. All breeding and surgical experiments have been 

approved by the Plymouth University Animal Welfare and Ethical Review Board. 

Animals with a Schwann cell-specific null of Merlin (NF2fl/fl-P0-CRE+) were made as 

previously described (Doddrell et al., 2013; Feltri et al., 1999; Giovannini et al., 2000); 

NF2fl/fl-P0-CRE- littermates were used a controls. Merlin null animals were crossed 

with YAP conditional null (YAPfl/fl) animals (Zhang et al., 2010) to generate Merlin 

null animals with loss of either one or both YAP alleles in P0-CRE+ animals; 

appropriate P0-CRE- animals were used as controls in these experiments. 

Genotyping of animals was performed as previously described (Feltri et al., 1999; 

Giovannini et al., 2000; Truett et al., 2000; Zhang et al., 2010). For developmental 

studies approximately equal numbers of male and female mice were used with the 

appropriate sex and age matched littermate controls.  

Sciatic nerve injury, cut or crush, was carried out in adult animals, between 6 weeks 

and 2 months of age, under isoflurane anaesthesia as previously described (Dun 

and Parkinson, 2015) and distal sciatic or tibial nerve samples taken at various time 

points following injury; contralateral uninjured nerves were used as controls. Once 

more, equal numbers of male and female mice were used with the appropriate sex 

and age matched littermate controls for each experiment. 
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Electron Microscopy. 

Samples for low vacuum (LV) scanning or transmission electron microscopy 

(SEM/TEM) were fixed in glutaraldehyde and embedded in resin blocks. For LV-SEM 

sample block surfaces were polished and analysed using a JEOL 6610 LV-SEM 

machine. For TEM, ultrathin sections were prepared, stained and visualised using a 

JEOL 1400 microscope. Myelin thickness or G ratio (myelin thickness/myelin + axon 

thickness) measurements were made from at least 200 myelinated fibres mid-sciatic 

nerve per animal at stated timepoints.  Measurements of axon and myelinated fibre 

(axon + myelin) diameter were made using ImageJ software. Statistical significance 

difference was measured using the Mann Whitney U test. 

Mouse Functional Tests. 

The mouse static sciatic index (SSI) measurement (Baptista et al., 2007) was used 

to assess sensory-motor co-ordination in animals following sciatic nerve injury. Toe 

pinch tests were also used to assess recovery of sensory function (pressure 

sensitivity) as previously described (Arthur-Farraj et al., 2012). For single frame 

motion analysis to evaluate recovery of locomotor function, mice were accustomed 

to beam-walking 1 week prior to surgery. Here, animals walk voluntarily from one 

end of a horizontal beam (length 1 m; width 4 cm) towards the other end. For all 

mice, a rear view of one walking trial was captured with a video camera prior to 

surgery and at different time-points following surgery. These video sequences were 

examined using VirtualDub 1.6.19 software. Selected frames, in which the animals 

could be seen in defined phases of the step cycle, were used for measurements of 

the foot-base angle (FBA), as described (Fey et al., 2010).  
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For rotarod testing, to measure motor function, 6-8 week old animals were placed on 

a rotating rod which accelerated from 2 to 30 rotations per minute over a time period 

of 250 seconds. The time taken for the animal to fall off (latency) was measured and 

recorded  (Kuhn et al., 1995). 

Electrophysiology. 

Investigation of sciatic nerve conduction characteristics was performed 5 weeks after 

experimental crush injury, using previously described methods (Schulz et al., 2014b). 

Nerve conduction velocity (NCV) tests in mice following crush injury were used to 

measure the efficiency of re-myelination of the in control and Merlin null mouse 

nerves. The compound muscle action potential (CMAP) is a measure of the number 

of functional axons within the repairing nerve following injury and is an indicator of an 

impaired axonal regeneration when significantly reduced. 

 In brief, mice were anesthetized using isoflurane/O2 inhalation. Hind limb fur was 

removed. Constant body temperature of 37°C was maintained by a heating plate and 

continuously measured by a rectal thermal probe. Needle electrodes were used to 

stimulate the sciatic nerve at both a proximal and distal stimulation site relative to the 

crush site. A ring electrode recorded the neuromuscular response from the 

gastrocnemius muscle. 

Immunocytochemistry and western blotting. 

Nerve samples were fixed in 4% paraformaldehyde/PBS overnight, cryoprotected in 

30% sucrose/PBS overnight at 4°C, and embedded in O.C.T. compound and frozen 

for cryosectioning. Sections for immunostaining (10µm) were cut using a Leica 

CM1860 UV cryostat. For measurement of proliferation and macrophage numbers, 

control and mutant nerves were mounted within the same OCT block and sections 
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between 3-4mm distal to the injury site, equidistant form the injury site for each 

genotype, were used for immunolabelling and counts. Sections were washed in PBS 

and blocked in either antibody diluting solution (Parkinson et al., 2004) or 10% goat 

serum/PBS, supplemented with 0.2% Triton X-100 before addition of primary 

antibody. A two or three layer labelling system was used, either directly fluorophore 

conjugated secondary antibody or a biotinylated secondary antibody followed by a 

streptavidin fluorophore conjugate. Samples were counterstained with Hoechst to 

reveal nuclei. Results presented for proliferation (Ki67 positive cells) and 

macrophage numbers (Iba1) are for the total number of positively stained cells within 

the nerve section. Three or more individual nerve sections of the same genotype 

were counted for each immunolabelling. Staining of teased nerve fibres with a 

fluorophore conjugated phalloidin for assessment of internodal distance and 

Schmidt-Lanterman incisures was performed as described previously (Sharghi-

Namini et al., 2006).  Wholemount staining of nerve samples after injury was 

performed as previously described (Dun and Parkinson, 2015). Preparation, culture 

and adenoviral infection of rat Schwann cells was performed as previously 

(Parkinson et al., 2008; Parkinson et al., 2004), using an adenovirus expressing 

YAPSer127Ala or LacZ control (Shao et al., 2014). For western blotting, samples from 

control and injured nerves were frozen in liquid nitrogen. Nerves from 3 mice were 

grouped together for each genotype and time point to create a pooled sample. 

Sample extraction, gel electrophoresis and analysis were all as previously described. 

Equal loading of samples was ensured by both protein estimation and use of 

colloidal gold to stain membranes following transfer (Parkinson et al., 2004; 

Parkinson et al., 2003). 

Primary antibodies. 
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The following primary antibodies were used for immunofluorescence staining at the 

indicated dilutions: Neurofilament (NF-200) heavy 200 kDa (1/500, Abcam ab4680), 

cJun (1/200, Cell Signaling Technology 9165S), Iba1 (1/300, WAKO 019-19741), 

F4/80 (1/300, Abcam ab16911), Ki67 (1/200, Abcam ab15580). 

The following primary antibodies were used for western blotting: MPZ (1/1000, 

Sigma Aldrich SAB2500665), MBP (1/2000, Santa Cruz Biotechnology sc-13912), 

Krox20 (1/500, Covance PRB-236P-100), β-Tubulin (1/2000, Santa Cruz 

Biotechnology sc-134229), cJun (1/1000, Cell Signaling Technology 9165), p-cJun 

(1/500, Cell Signaling Technology 9261), p-Erk1/2 (1/2000, Cell Signaling 

Technology 9101), p-p38 (1/500, Cell Signaling Technology 4631), YAP/TAZ (1/1000, 

Cell Signaling Technology 8418), TAZ (1/1000, Cell Signaling Technology 4883), 

YAP (1/1000 Cell Signaling Technology 14074), CTGF (1/1000, Abcam ab6992), 

Collagen IV (1/1000, Abcam ab6586), MCP1 (1/500, Peprotech 500-P113), active β-

Catenin (1/1000, Millipore 05-665), N-Cadherin (1/1000, Abcam ab76057), E-

Cadherin (1/1000, BD Pharmingen Clone 36 610181), p-Akt (1/2000, Cell Signaling 

Technology 4060), Vinculin (1/1000, Cell Signaling Technology 4650). 

Histology and Immunohistochemistry. 

For hematoxylin and eosin (H&E) staining, mice were sacrificed, sciatic nerves were 

dissected and post-fixed in 10% formalin for 24 hr at 4°C. Sciatic nerves were cut 

into three segments, proximal, injury site and distal. Samples were then dehydrated 

in ethanol followed by xylene and embedded in paraffin. Sciatic nerve segments 

were cut transversally into 4 µm sections using a Leica microstat. Sciatic nerve 

sections were deparaffinized with xylene and rehydrated through a graded ethanol 

series to water before H&E (Sigma) staining. For MBP staining, the sections were 
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subjected to pretreatment with ethylenediamine tetraacetic acid (EDTA) pH 9.0 for 

30 mins. Sections were then incubated overnight with the primary antibody goat anti-

MBP (1:1000, Santa Cruz Sc-13912). Immunostaining was visualised by an avidin-

biotin complex method, followed by light counterstaining with haematoxylin. For the 

axonal visualisation, 10 µm sections were cut and stained according to Palmgren’s 

silver stain method.  Staining with Masson’s Trichrome stain was performed as per 

manufacturer’s protocol (Abcam).   

Quantitative PCR analysis. 

Distal nerve stumps to the crush site were collected at day 4 post-crush injury in 

mice and frozen in liquid nitrogen. Nerves from three mice were grouped together for 

each genotype and time point to create a pooled sample.  Samples were crushed 

and homogenised on dry ice, then lysed in QIAzol Lysis Reagent (Qiagen) and RNA 

was purified using miRNeasy Mini Kit (Qiagen). After RNA purification, RNA was 

reverse-transcribed using High Capacity RNA-to-cDNA Kit (Applied Biosystems). 

Quantitative PCR was then performed using the Power SYBR® Green PCR Master 

Mix (Applied Biosystems). Analysis was carried out with three technical replicates 

per sample. Relative expression values for each gene of interest were obtained by 

normalizing to Rpl13 (Pratt-Hyatt et al., 2013) and fold-changes were determined 

with the Livak method. Primer sequences used for qPCR have been published 

previously (Arthur-Farraj et al., 2012).  

Statistical analysis. 

Statistical analysis was performed using SPSS or Microsoft Excel. The two-sided two 

sample Student’s t-test or one-way ANOVA with Bonferroni’s multiple comparison 

test, due to the power it has for small sample sizes, were used depending on the 
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number of the samples. Statistical significance has been reported as * P≤0.05, ** 

P≤0.01, *** P≤0.001. Due to the small sample sizes (n<5 for most statistical 

comparisons), assumptions of how well normality and equal variances fit the data 

could not be reliably assessed. Sample size was not predetermined by statistical 

methods and randomisation was not applied. The investigators were not blinded to 

group allocation during the experiments because the mutant nerves display obvious 

behavioural and morphological characteristics following nerve injury. No samples or 

data were excluded from the analysis. Biological replicates were used in all the 

experiments and these are represented in all the data plots. The n number of each 

experiment has been reported in all the figures. In brief, in most cases n is defined 

as the number of mice from the same genotype and same experiment. Samples for 

western blotting and quantitative PCR were prepared by grouping nerves from three 

mice together for each genotype and time point to create a pooled sample. We have 

used pooled biological replicates for the repetition of these experiments. All data are 

represented in the figures as Mean values ± Standard Error of the Mean. 

Online supplemental material 

Fig. S1 describes the G-ratio of Merlin null nerves at an additional timepoint, post-

natal day 21, and the nuclei counts in longitudinal sections of adult Merlin null nerves. 

Fig. S2 shows the regeneration, remyelination, collagen and tissue histology of 

Merlin null nerves at 8 months post injury. Fig. S3 presents the sensory recovery, as 

measured by toe pinch, of Merlin null animals following sciatic nerve crush injury. Fig. 

S4 characterises the YAP null animals prior to and post injury. Fig. S5 characterises 

the Merlin/YAP double null animals prior to sciatic nerve crush injury. 
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Supplementary data: 

 

S Figure 1: Myelination and nuclei counts in nerves with Schwann cell-specific loss 

of Merlin. A, B. TEM pictures of P21 control (NF2+/+, A) and Merlin null (NF2-/-, B) 

nerves (n=3 mice). Scale bar 5µm. C. G-ratio measurements of sciatic nerves from 

P21 control, Merlin heterozygous (NF2+/-) and Merlin null nerves (n=3 mice). D. 

Graph showing distribution of myelin thickness in P6 control and Merlin null nerves 

(n=3 mice). E-G. Hoechst stained nuclei (E, F) and quantification (G) of longitudinal 
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cryostat sections from adult intact sciatic nerves showing increase in cell number in 

Merlin null (F) compared to control (E) nerves; (NF2+/+ n=3, NF2-/- n=5). Two-sided 

Two-Sample Student’s t test *P=0.017 (G).  
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S Figure 2: Axonal regeneration, remyelination and histology of control and Merlin-

null nerves eight months after injury. A-F. Palmgren’s silver stain to show axonal 

regeneration in control (NF2+/+; A, C and E) and Merlin-null (NF2-/-; B, D and F) 

nerves at 8 months after crush injury. Sections of proximal nerve (A, B), injury site (C, 

D) and distal nerve (E, F) were stained to visualise axons with Palmgren’s silver 

stain (n=6 mice). Scale bar 10µm. G, H. MBP immunolabelling of sections of control 

(G) and Merlin null (H) distal sciatic nerve showing low levels of MBP-positive 

remyelinated fibres in Merlin null nerves at 8 months post-injury (n=6 mice). Scale 

bar 50µm. I, J. Masson’s trichrome stain to show collagen deposition (blue) in control 

(I) and Merlin null (J) distal nerves at 8 months post-injury. Masson’s trichrome stains 

the connective tissue blue and the cytoplasm red. Scale bar 50µm. K, L. 



 61 

Haematoxylin and eosin (H & E) stain of control (K) and Merlin null (L) distal nerves 

at 8 months post-injury (n=6 mice). Scale bar 50µm. 
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S Figure 3: Functional sensory testing of control and Merlin null animals following 

crush injury. A, B. Graph of toe pinch data to measure sensory recovery at timepoints 

up to 35d following injury for control (NF2+/+, A) and Merlin null (NF2-/-, B) animals 

(n=5 mice). 
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S Figure 4: Characterisation of YAP single null animals prior to and post injury. A-D. 

Transmission EM pictures of P6 (A, C) and P21 (B, D) sciatic nerves from control 

(YAP+/+, A, B) and YAP null (YAP-/-, C, D) animals (n=3 mice). E. G ratio 

measurements of control and YAP null animals at P21 (n=4 mice). F. Counts of cell 

proliferation in distal nerve 7d after nerve crush injury (n=3 mice). G. SSI 

measurements of control and YAP null animals up to 21d following nerve crush injury 

(n=3 mice). H. Numbers of Iba1 positive macrophages in the distal nerve at 7d after 

nerve crush injury in control and YAP null animals (n=3 mice). Two-sided Two-

Sample Student’s t test P=0.525 (E), P=0.27 (F), P=0.252 (H). 
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S Figure 5: Characterisation of adult Merlin/YAP double null sciatic nerves. A, B. 

Toluidine blue stained semi-thin sections of adult control (NF2+/+ YAP+/+, A) and 

Merlin/YAP double null (NF2-/- YAP-/-, B) sciatic nerves. Scale bar 10µm. C, D. 

Transmission EM images of adult control (C) and Merlin/YAP double null (D) sciatic 

nerves. Scale bar 5µm. E, F. G ratio measurements of control and Merlin/YAP null 

nerves showing average (E) and scatter plot of axon diameter vs G ratio (F) (n=3 

mice per genotype). G. Results of the rotarod test showing latency to fall on adult 

control, Merlin single null and Merlin/YAP double null animals. H-K. Phalloidin 

staining of teased nerve fibres of sciatic nerve visualising Schmidt-Lanterman 

incisures in control, Merlin single null and Merlin/YAP double null adult nerves. Scale 

bar 25µm. L-N. Loss of YAP in Merlin null nerves normalises the distance between 

adjacent Schmidt-Lanterman incisures (L), internodal distance (M) in teased nerve 

fibres and cell number (counts of Hoechst stained nuclei in transverse cryostat 

sections (N)) at P60 (n=4 mice). O, P. Hoechst (O) and Flag (P) immunolabelling of 

rat Schwann cells expressing YAPSer127Ala  (n=3 experiments). Arrows in P indicate 

Flag-labelled YAP-overexpressing rat Schwann cells showing clear cytoplasmic and 

nuclear localisation of the YAPSer127Ala protein. Scale bar 10µm. Two-sided Two-

Sample Student’s t test P=0.103 (E). One-way ANOVA with Bonferroni’s multiple 

comparison test P=1 for NF2-/- YAP+/+ and P=0.659 for NF2-/- YAP-/- compared to 

NF2+/+ YAP+/+ (E),  ***P≤0.001 (L-N) for NF2-/- YAP+/+ compared to the other 

genotypes. P=0.626 (L), P=1 (M, N) for NF2-/- YAP-/- compared to NF2+/+ YAP+/+. 

 


