
MCTS/EA Hybrid GVGAI Players
and Game Difficulty Estimation
Hendrik Horn∗, Vanessa Volz∗, Diego Pérez-Liébana†, Mike Preuss‡

∗Computational Intelligence Group
TU Dortmund University, Germany

Email: firstname.lastname@tu-dortmund.de
† School of Computer Science and Electronic Engineering

University of Essex, Colchester, UK
dperez@essex.ac.uk

‡Department of Information Systems
Westfälische Wilhelms-Universität Münster, Germany

Email: mike.preuss@uni-muenster.de

Abstract—In the General Video Game Playing competitions of
the last years, Monte-Carlo tree search as well as Evolutionary
Algorithm based controllers have been successful. However, both
approaches have certain weaknesses, suggesting that certain
hybrids could outperform both. We envision and experimentally
compare several types of hybrids of two basic approaches, as
well as some possible extensions. In order to achieve a better
understanding of the games in the competition and the strength
and weaknesses of different controllers, we also propose and
apply a novel game difficulty estimation scheme based on several
observable game characteristics.

I. INTRODUCTION

The General Video Game AI (GVGAI) competition is an
attempt to create artificial intelligence that is not tailored
towards a specific game (akin to General Game Playing, GGP).
In contrast to GGP games, GVGAI games are modeled after
real, well known (albeit simple) video games and incorpo-
rate non-deterministic behavior of NPCs. Thus, learning to
play these games is not trivial, despite the forward model
offered by the GVGAI setup that can be used to explore
possible futures of the current game state. The inherent non-
determinism discourages plain game-tree search methods and
renders this environment suitable to non-deterministic learning
algorithms such as Monte-Carlo Tree Search (MCTS) and
Evolutionary Algorithms (EA). Both approaches have been
shown to work well, but MCTS based controllers tend to
exhibit the best overall performance [14]. Still, as of yet,
no submitted controller has been able to consistently be
successful on all games, showing that all controllers have their
weaknesses and strengths. A hybrid controller that combines
the strengths of both methods therefore seems promising. But,
to our knowledge, few combinations of the aforementioned al-
gorithms into a single GVGAI controller have been suggested
(cf. section III).

In this work, we therefore explore different hybridizations,
namely (1) integrating parts of the MCTS method into a rolling
horizon EA [7, 12], and (2) splitting the computation budget
between both methods. Both combinations are experimentally

shown to perform well, with the first hybrid possessing a small
advantage. Next to these two naı̈ve hybrids, we also try out
further modifications addressing weaknesses discovered during
the experiments. However, while improvements are visible in
one area, the variations introduced new weaknesses to the
controllers. For a more robust controller, further research is
needed on how to balance the different components.

As a first step in this direction, we analyze the charac-
teristics of different games and their correlation with the
overall winrates of the different controllers in an attempt
to uncover strengths and weaknesses. The analysis is based
on a difficulty estimation scheme that uses different models
to predict controller winrates as a proxy for difficulty from
several observable game characteristics.

In the following, we first introduce the GVGAI framework
(sect. II) and discuss related work in sect. III. The proposed
hybrid controllers are explained in sect. IV and experimentally
analyzed in sect. V. Section VI contains the analysis of the
difficulty of the games. The paper concludes with a brief
summary and outlook in sect. VII.

II. THE GVGAI FRAMEWORK AND COMPETITION

The General Video Game AI framework is an extension
of py-vgdl, a benchmark for planning and learning problems
implemented by Tom Schaul [15]. This environment proposes
a Video Game Description Language (VGDL) to describe two-
dimensional real-time games games in a very concise and
object oriented manner. GVGAI utilizes this implementation,
providing a responsive forward model to simulate actions
within the game and an interface for controllers to participate
in an open competition. The results and rules of this contest,
which was initiated in 2014, can be found in [14].

The GVGAI framework communicates information about
the game state to the controller via Java objects, although
information about the nature of the game, its rules, the type
of sprites present and the victory conditions are not provided.
Information received contains the game status (score, winner -

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/77601841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


if any -, and current time step), the available set of actions on
the game, the player’s state (position, resources collected) and
the position of the different sprites, identified by an integer id,
in the level.

Controllers can use 1s of CPU time for initialization, and
40ms at every game tick to return a valid action to play the
game. If these limits are not respected, the controller loses
the game automatically, with the exception of actions returned
between 40 and 50ms, in which case the action executed in
the game is NIL (no movement applied). During the allocated
time, the controller can employ a forward model to explore the
effects of actions, by rolling the current game state forward
and reaching potential future states. It is important to highlight
that most games have non-deterministic elements, so it is a
responsibility of the controller to deal with the distribution of
next states that the forward model provides from the same pair
of state and action.

At the time of writing, the framework contains 80 single-
player (some of them used in this research) and 10 two-
player games. The single-player planning track was run as
a competition in 2014 [14] and 2015, attracting more than 70
entries in total.

III. BACKGROUND

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [2] is a very popular
technique that iteratively builds an asymmetric tree by sam-
pling the search space. It builds estimates of the action-values
for the different states found during the search, by repeating
a sequence of 4 consecutive steps: Tree Selection, Expansion,
Monte Carlo Simulation and Back-propagation.

During the Tree Selection phase, the tree is navigated from
the root according to a Tree Policy, until a node with
actions not yet expanded is reached. A very common policy
is UCB1, described in equation 1 [8],

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) indicates the number of visits to state s, N(s, a)
the number of times an action a is taken from s, and Q(s, a)
the empirical average of the rewards obtained from s through
a. This policy balances between exploitation (first term of
equation 1) and exploration (second term), tempered with the
value of C.

During the Expansion phase, a new node is added to
the tree as a new child. Then, a Monte Carlo Simulation
starts from that point until reaching the end of the game
or a predetermined depth, selecting actions according to a
Default Policy, which typically selects moves uniformly
at random. Finally, the Back-propagation step updates the
Q(s, a) values of all nodes visited during the Tree Selection
step using the reward observed in the state reached at the end
of the Monte Carlo Simulation.

MCTS has been successfully used in General Game Playing
(GGP) [1], winning the 2007 and 2008 AAAI GGP com-
petitions, and it has been extensively used in the GVGAI
competitions up to date. The winner of the 2014 GVGAI
competition, Adrien Couëtoux, implemented OLETS (Open
Loop Expectimax Tree Search) [14], a variant of MCTS
without Monte Carlo simulations. The tree is navigated from
the root, using a variant of UCB1, until a new node is added,
which state is evaluated and the result Back-propagated to
the nodes of the tree. Also in the 2014 competition, the third
ranked entry was the provided sample MCTS controller. It’s
worth highlighting that this controller employed a very simple
state evaluation function, which used the game score plus a
high positive (negative) value if the game was won (resp. lost),
but it still performed well across several games.

B. Rolling Horizon Evolutionary Algorithms

Traditionally, in planning problems, evolutionary algorithms
(EA) are used offline to train a controller or solver that then
tackles the real problem [5]. A rolling (or receding) horizon
EA (RHEA) operates by evolving a sequence of actions online,
out of which only the first one of the best sequence or
individual is performed in the real game. A fast EA, executed
at every time step, tries to determine the best action sequence
from the current state, evaluating each individual with an
evaluation of the state reached at the end of such sequence.

This algorithm was first implemented for the Physical
Travelling Salesman Problem (PTSP) by Perez et al. [12],
showing a better performance than MCTS in the PTSP. More
recently, the work by Justesen et al. [7] shows that RHEA can
achieve high performance in Hero Academy, a game with a
very large branching factor.

The GVGAI framework includes a sample controller that
implements a steady state RHEA, known as microbial GA [6].
In this controller, individuals are compared in pairs, chosen
at random, and the one with the worst fitness is mutated
randomly, also taking parts from the other’s genome with a
small probability. Although this controller ranks worse than the
MCTS Sample controller in all game sets, many participants
have worked with different versions of this algorithm, and
about 50% of the top 10 entries in the final rankings of the
2015 competitions were RHEA based algorithms1.

C. Hybrids and Hyper-heuristics

The GVGAI Competition took place in three different legs
during 2015, with a different winner for each one of them. Al-
though the algorithms were different, all three had something
in common: they were a combination of techniques that were
selected depending on certain characteristics observed in the
games. The winner of the first leg (YOLOBOT; and overall
winner of the championship), employs Best First Search or
MCTS to reach a targeted sprite in the game, depending on the
game being identified as deterministic or not, respectively. The
winner of the second leg, Return42, differentiates the game

1Results available at www.gvgai.net



according to the same concept, using A-Star for pathfinding in
deterministic games, and random walks for stochastic scenar-
ios. Finally, the winner of the last leg, YBCRIBER, combines
a danger prevention mechanism with iterative width (IW [9]),
using pruning and a dynamic look-ahead scheme to perform
statistical learning on the different sprites of the game [4].

A different approach, which the research expands on, is
the combination of several techniques into a hybrid algo-
rithm. Specifically, combinations of MCTS and EA in GVGAI
have been tried in previous works. For instance, Perez et
al. [11] combined Fast Evolution with MCTS for General
Video Game Playing. The objective was to evolve a set of
weights W = {w0, w1, . . . wn} to bias action selection during
the Monte Carlo simulations of the algorithm. In this work,
every MC simulation evaluates a single individual, providing
as fitness the reward calculated at the state reached at the
end. For each state, a set of features F = {f0, f1, . . . fn}
is extracted, and the relative strength of each action (ai) is
calculated as a linear combination of features and weights. On
each move during the simulation, actions are picked at random
with probabilities derived from applying a Softmax function
to the relative strengths of each action. For more information
about this algorithm, the reader is referred to [10].

In a different approach [13], a RHEA builds a tree search
while evaluating the different individuals. Every time a se-
quence of actions is executed from the current state, new
nodes will be added to this tree, one per action performed.
As some initial sequences are repeated during the evaluation
of the different individuals, most children of the root node
will be visited repeatedly, allowing it to calculate an average
of the rewards or fitness obtained by the different individuals.
Finally, the recommendation policy (that chooses which action
to take in the real game), can select the move based on
this value, rather than depending only on the best individual.
This helps reduce the effect of noise in the state evaluation
of stochastic games without the need of evaluating the best
individual multiple times.

IV. MCTS/EA HYBRIDIZATIONS FOR GVGAI

Of course, there are many ways to combine MCTS and
EAs within one controller, and some of these possibilities
have already been explored, as described in sect. III-C. When
envisioning more direct hybrids, it appears to be simpler to
augment a RHEA (see sect. III-B) with components taken from
MCTS than the other way around. Something we have to keep
in mind is that we are situated in a realtime environment. As
there is a constant limit (40 ms) of time that can be employed
for computing the next move, inserting a new mechanism into
an existing controller at the same time means to reduce the
available resources for the original algorithm.

Note that the parameter values employed for the different
controllers stem from manual testing limited by the runtime
of the experiments and could still be improved. Running a
controller on 10 games with 5 levels each and several repeats
can take several hours.

A. RHEA with rollouts: EAroll

This simple scheme takes over the RHEA algorithm and
extends it with rollouts: when the simulation of the moves
contained in the currently simulated individual/genome is
finished, a predefined number of rollouts of parametrized
length is performed from that point on, and the fitness of a
move combination is computed as the average of the EA part
and the MCTS part.

In order to characterize the type of hybridization, one could
say that a minimal MCTS is performed during the assessment
of move combinations within an EA. We therefore call this
an integrated hybrid. The expected benefit of adding rollouts
is that the algorithm can look into the future a bit further
and thus the chance of detecting a critical path (that would
with high probability lead to a loss) increases. It can therefore
avoid such paths much earlier. Just extending the length of the
genome (the number of consecutive moves evolved) would
not have the same effect as that would mean that only one
specific move combination (albeit a longer one than before)
is tried. Taking into account that GVGAI games are usually
non-deterministic, the chances of finding exactly that move
combination that leads into a critical path can be expected to be
much higher if we sparsely sample a game tree from a specific
starting point than if we try only one move combination.

However, this advantage comes at a cost: adding rollouts
of course uses up precious computation time, so that the
number of moves that can be evaluated within the time
constraints decreases. The results reported in this work have
been obtained with the following parameters: genome length: 8
steps, simulation depth 9 steps, population size 7, and number
of rollouts 300.

B. RHEA, then MCTS for alternative actions: EAaltActions

This alternative hybrid approach resembles an ensemble
approach: after running the RHEA for a predefined time, we
use MCTS for checking alternative solutions. That is, the
MCTS is allowed to compute a suitable move first, excluding
the one chosen by the RHEA. After finishing the MCTS run,
we compare the results of the best moves detected by both
algorithm and use the better one.

It is an open question how the available time (40 ms) should
be distributed between the two approaches. For reasons of
simplicity, we spend approximately the same amount of time
on both. Our results have been obtained with the following
parameters: genome length = simulation depth = 9 steps,
population size 5, and number of rollouts 20.

C. EAroll plus sequence planning: EAroll-seqPlan

The basic idea of this controller is to reuse a computed
sequence of moves (a plan). In keeping an existing plan, one
could just start the computation from the next planned move.
After every move, the first move is removed from the plan
and the whole plan is shifted upwards. In a deterministic
environment, this would make a lot of sense because in
GVGAI one-player games, we have no opponent, and the
NPCs are usually not very aggressive. Thus, continuing the



plan at least a few steps could save computation time for
further exploration of future states. However, it is known that
the GVGAI games are often heavily non-deterministic, so that
it is not easy to predict how well our approach works. In
contrast all other controllers suggested here, we cannot react
quickly if something unforeseen happens.

We run this controller with the following parameters:
genome (plan) length 8 steps, simulation depth 9 steps, pop-
ulation size 5, and number of rollouts 20.

D. EAroll + occlusion detection: EAroll-occ
Looking at the behavior of the EAroll controller, from time

to time we observe that it stands still for some iterations
and then performs a sequence of moves it could have started
earlier. The reason for this is that an action sequence which
leads to a reward (as, e.g., moving onto a diamond in the game
boulder dash) has the same fitness if some inconsequential
actions are added to the beginning of the list. In the literature,
this problem is sometimes addressed with decaying rewards,
but this approach needs to be parameterized. Instead, we
want to completely remove any unnecessary actions from the
sequence to improve the overall performance of the controller.
In order to be able to detect the right position within the action
sequence to start the execution, we need to reserve some time
(5 ms) so that we can do a binary search for the starting
position from the middle of the sequence to the beginning,
watching out for the first occasion for which the reward stays
the same. We then remove all earlier moves from the sequence.

This controller is run with the following parameter values:
simulation depth 9 steps, population size 6, and number of
rollouts 100.

E. EAroll + NPC attitude check: Earoll-att
The last controller variant also employs EAroll as base

controller and tries to determine the attitude of the different
NPC characters in order to allow or forbid moves into their
neighborhood. As there is no information available at the
start of the game that allows us to infer the consequences
of collisions between the avatar and specific NPCs, this has
to be learned during runtime. Fortunately, while setting up
the next move, we simulate a lot of steps we do not actually
perform, but we obtain information about when the controller
would be rewarded or would lose a game. We assume that the
behavior of a specific NPC type does not change completely
over time (which is not always true, cf. Pac Man) and
memorize if the collision had a good, negative or no effect.
During the following game phases, we utilize this knowledge.
Whenever the avatar moves into the vicinity of an NPC (this is
parametrizable, we use a distance of 2 here), the corresponding
move gets an extra reward or penalty.

The parameter values employed for this controller are:
genome length 7 steps, simulation depth 8 steps, population
size 10, and number of rollouts 300.

V. EXPERIMENTAL ANALYSIS

The most promising hybridizations and corresponding
parametrizations as described in IV, as well as the original

MCTS and RHEA examples were tested and compared exten-
sively using the GVGAI framework (see II). Each of the 7
controllers was run 20 times on each of the 5 levels of every
game in game sets 1 and 2. This results in 100 playthroughs
per controller per game and thus in 14 000 runs total.

In this section, the generality of the controllers will be
examined based on their performances on all 20 games. In
contrast, in section VI, the results are inspected more closely in
terms of how certain aspects of a game affect the performance
of different controllers.

In order to obtain interpretable results that are comparable
across games, we use winrates as a measure of performance
since the scoring systems differ between games. However,
it has to be noted that the scores potentially contain more
information that could help distinguish different controllers
in a statistically significant manner. In terms of measuring
performance, we first compute the confidence intervals for
the true winrates π of a controller on a game based on its
measured winrate π̂ in the experiment with n = 100 samples
and α = 0.05 (see Figure 1), assuming a binomial distribution
and using the Pearson-Klopper method2. The experimental
winrates are each marked with a circle within the respective
interval.

From Figure 1 it is apparent that there are some games
where all controllers either perform similarly badly (Camel-
race, Dig Dug, Firecaster, Eggomania, Boulderdash) or well
(Aliens, Butterflies). In most other games, the controllers
EAaltActions, EAroll-seqPlan, EAroll-occ perform a little
worse than the rest. However, there does not seem to be a
clear pattern which of the other controllers is ahead of the
rest in all games. Even if just taking the experimental winrates
into account, there is no clear winner across all or most of the
games.

However, there are some obvious differences when analyz-
ing the controllers’ overall performance, for example using
the GVGAI rating system (see [14]). The GVGAI framework
determines the ranking of all competing controllers on each
game and rewards them according to the Formula 1 scoring
system with between 25 and 0 points. The rankings on each
game are determined using the winrate as a first criterion and
the obtained scores as a tiebreaker. Usually, the completion
time is used as a secondary tie breaker, which was dropped
for this paper as we were not looking at computational speed
in this context. The resulting ratings for all controllers on game
sets 1 and 2 are listed in table V.

According to the ratings, EAroll performs best on both game
sets, although its lead is bigger on game set 1. Overall, the
ratings are much more consistent in game set 1 with EAroll-
seqPlan and EAroll-occ constantly on the last two ranks while
sometimes placing 2nd and 3rd on game set 2. In contrast, the
rating of the MCTS controller is very robust and steady across
all games. This is reflected in the total rating: EAroll-seqPlan
and EAroll-occ are on the last two ranks regarding overall
performance and MCTS is on 2nd place, benefiting from its

2R package binom



(a) (b)
Fig. 1. Confidence Intervals (α = 0.05) for the winrates of all tested controllers on game set 1 (fig. 1a) and 2 (fig. 1b)

consistent performance. The RHEA controller and EAroll-att
score similarly, with EAaltActions following behind.

However, as is apparent in figure 1, many confidence
intervals for the winrates overlap and are therefore not as
clear an indicator of controller performance as the resulting
difference in GVGAI scores might suggest. Therefore, in order
to obtain a better idea of significant differences between the
overall performances of the controllers, we compute the Elo-
ratings based on a pairwise comparison. The idea of the Elo-
rating is to estimate the skill of a player based on the outcomes
of past matches, taking into consideration the skill-level of the
opponents. For more details, refer to [3].

The pairwise-comparison is conducted based on the con-
fidence intervals for the winrates depicted in figure 1. The
performances of two controllers are incomparable if the cor-
responding confidence intervals overlap. If they do not, one
controller plays significantly better (α = 0.05) than the other.
In order to translate the comparisons to a format suitable
for the Elo-rating, a controller performing significantly better
than another wins a comparison, the other one loses. If the
controllers are incomparable, the result is a draw.

It is important to note that in the GVGAI context, there
is no performance development to be expected across games,

TABLE I
GVGAI-RATINGS FOR ALL TESTED CONTROLLERS FOR GAME SETS 1 & 2

Rank Player Rating Set 1 Rating Set 2 Total
1 EAroll 206 178 384
2 sampleMCTS 163 163 326
3 sampleRHEA 138 152 290
4 EAroll-att 175 110 285
5 EAaltActions 118 141 259
6 EAroll-seqPlan 80 113 193
7 EAroll-occ 62 86 148

since no data is transferred between games (or even runs).
Therefore, for the purpose of computing the Elo-rating, all
comparisons are considered to have occurred within the same
time period, to avoid a bias towards the last games played.
The resulting ratings and ranks are listed in table V. Both the
Elo as employed by FIDE and the Glicko rating systems result
in the same ranks for the controllers.

The GVGAI- and Elo-Ratings agree on placing EAroll-
seqPlan and EAroll-occ on the last two ranks, which is
unsurprising since they frequently seem to be performing
worse than the other controllers. The Elo-Rating indicates that
the first place for EAroll is due to statistically significant
performance differences as well. While EAaltActions is on
rank 5 in both rankings, the rest of the controllers EAroll-
att, MCTS and RHEA have different rankings which seem
to indicate that between those controllers, there is no clear
difference in terms of overall performance.

VI. GAME DIFFICULTY ESTIMATION

Even though some of the developed controllers are clearly
not performing as well as others across all games, it is
apparent from figure 1 that some games seem to be easier for
all controllers than others. Additionally, despite performing

TABLE II
ELO-RATINGS FOR ALL TESTED CONTROLLERS BASED ON PAIRWISE
PERFORMANCE COMPARISONS ON ALL GAMES IN GAME SETS 1 & 2

Rank Player Rating Win Draw. Loss
1 EAroll 2510 27 89 4
2 EAroll-att 2497 25 92 3
3 sampleRHEA 2443 20 98 2
4 sampleMCTS 2376 27 79 14
5 EAaltActions 2348 17 97 6
6 EAroll-seqPlan 1700 2 79 39
7 EAroll-occ 1525 0 70 50



at a similar level for most games, in some games, certain
controllers perform significantly better or worse than the
others. The best example for this is Whack-A-Mole where
the standard MCTS performs significantly better than all other
controllers. In this section, we take a closer look at the games
in question to explain the discovered patterns.

As a preparation for a more detailed analysis we identified
10 characteristics of games that might impact the performance
of controllers, extending the characterization in [14]. In most
cases, the values assigned to the games per characteristic
correspond to the fragment of time that the game exhibits the
specific characteristic:
• enemies: Do opposing NPCs exist?
• puzzle: Does the game contain a puzzle element?
• indestructible: Are the NPCs indestructible?
• random: Is the NPCs’ behavior stochastic?
• stages: Are there multiple stages to a winning condition?
• pathfinding: Is finding a path through the level necessary?
• traps: Does the game contain traps or missiles?
• chase: Do NPCs chase the player with negative effects?

There are a few exceptions, however:
• actions: Number of actions allowed in the game divided

by number of actions a controller within the GVGAI
framework can access (5)

• NPCs: Normalized average number of NPCs
The evaluation of the respective characteristics is done man-

ually and may therefore contain a bias, but the characteristics
were chosen so that a minimal amount of personal judgment
is needed. The resulting difficulty estimation for all games in
game sets 1 and 2 is shown in figure 2a with table III as legend.
Considering the plot, the games seem to vary considerably in
terms of difficulty and the type and combination of challenges
a controller faces are diverse as well. Since the purpose of
the GVGAI competition is to determine general video game
players, this diversity between the games is expected and
advantageous.

However, only in some cases does the sum of the various
difficulty characteristic seem to correspond to the actual per-
formance of the controllers, even if the controllers all perform
on a similar level. For example, while Boulderdash is very
difficult according to figure 2a and seems to be problematic for
all controllers (cf. figure 1a), Camelrace and Firecaster result
in similarly low winrates (cf. 1b) despite being considered to
be much easier (cf. figure 2a). It is thus obvious, that even
if the identified characteristics can describe the difficulty of
a game appropriately, some factors are more important than
others, some even have a positive effect on controller winrates.

To analyze the importance of the characteristics, we estimate
the variable importance based on the R2 statistic of a non-
parametric regression model using only one predictor against
the intercept only null model as described in the minerva
R package documentation3. According to the Maximal In-
formation Coefficient (MIC) that estimates the relationship

3https://cran.r-project.org/web/packages/minerva/minerva.pdf

strength between a difficulty characteristic and the winrate
of each controller, none of the identified characteristics seem
to be irrelevant. However, with average MIC values across
controllers of between 0.18 and 0.41, it is clear that the rela-
tionship is more complex and can not be expressed with only
one predictor. Nevertheless, the characteristics pathfinding and
NPCs seem to have the highest linear relationship strength,
followed by indestructible and traps. The Total Information
Coefficient (TIC) reports high statistical dependence between
the aforementioned characteristics and the controller winrates
as well. With an average Maximum Asymmetry Score (MAS)
of 0.08, all relationships appear to be relatively monotonous.
Additionally, the Minimum Cell Number (MCN) is 2 for
almost all relationships, indicating simple functions that can
be covered with very few cells.

The various metrics mentioned indicate that it should be
possible to create relatively simple models to predict the win-
rates of the controllers based on the difficulty characteristics.
We will first learn a model that predicts controller performance
based on the performance data of all controllers on both game
sets. Naturally, the model in this case will only be able to
pick up on the general trend, not on individual strength and
weaknesses of single controllers. We used
• a regression (linear, logit and logistic),
• an artificial neural network (1 hidden layer, 10 nodes),
• a random tree and forest

model with 10-fold cross-validation and a randomly drawn
90%/10% split to predict the winrates.

The neural network had the lowest mean squared error
consistently (average of ≈ 0.02), but linear regression and both
the random tree and random forest have very acceptable error
rates as well (average MSE of 0.05, 0.03, 0.03, respectively).
Therefore, it can be seen that the identified difficulty character-
istics have an effect on the winrates throughout the controllers
and explain them decently. In order to analyze the influence of
the different characteristic in greater detail, regression models
are used for further analysis since they are easily interpretable
and comparable, while still making accurate predictions for
this problem. The result of a linear regression model trained
on all available data is shown in figure 2b along with the
predicted winrates.

The plot shows that, while most of the characteristics have
an adverse effect on the predicted winrates, higher NPC, stages
and action values actually seem to benefit the controllers.
For NPC and action, this can be explained by the fact that
all controllers are based on using the forward model in the
GVGAI framework to try out different actions. This strategy
works better, the earlier a sequence of actions can be evaluated
in terms of the expected outcome. Having more NPCs (i.e. a
high NPC value) and actions bound to every possible option
available to the controller (i.e. a high actions value) results
in more frequent events in the games and thus facilitates the
evaluation of an action sequence. It is not clear why more
complex winning conditions (as expressed by stages) improve
the winrates of a controller or if this behavior is the result of
having only 5 of the game with stacked winning conditions.



(a) (b)
Fig. 2. Difficulty characteristics (see table III) of all games in game sets 1 and 2. Fig. 2a as estimated and fig. 2b as weighted by linear regression model.
Crosses in fig. 2b represent predicted winrates to be read with the right y-axis.

TABLE III
COLORS ASSIGNED TO DIFFERENT DIFFICULTY CHARACTERISTICS

actions enemies puzzle indestructible
random stages pathfinding traps
chase NPCs

The most important characteristics in terms of the collective
model are random, NPCs, chase, traps, pathfinding and stages.
This can also be explained by common traits of the controllers.
For example, non-deterministic games (with a high random
value) decrease the reliability of the forward model. If the
game involves the need to find paths and avoid traps, a general
video game player that is forced to rely on exploration is at a
disadvantage to strategically searching players.

However, while the collective model presented in figure 2b
explains the general difficulty of games well, it is not pos-
sible to ascertain the strengths and weaknesses of individual
controllers or explain the differences between controller per-
formances on a single game. For this reason, we also learned
linear regression models on all available data separately for
each controller, but across all games. The resulting model
coefficients are visualized in figure 3.

There are several clear differences between the controllers.
For example, for the MCTS controller, pathfinding seems to
be a much bigger problem than for the others, while a high
number of enemies has a positive influence on its winrate. The
number of actions also appears to be a much larger positive
influence when compared to the other controllers, whereas the
number of NPCs is less important. All these factors influence
the branching factor of the game-tree and/or the number of
viable options for the next action, thus indicating games where

Fig. 3. Linear regression model coefficients for difficulty characteristics (see
table III) visualized per controller

a Monte-Carlo approach is less likely to succeed. The MCTS
controller deals well with games where the NPCs exhibit
randomized behavior, probably for as long as it can execute
enough rollouts. The observations also explain why MCTS is
doing so well on the game Whack-a-Mole as it exhibits none
of the problematic characteristics.

For the RHEA controller, being able to distinguish action se-
quences quickly is very important, as is reflected by the stress
on the number of NPCs and events in the game. Interestingly,
EAroll seems to not be affected by this difficulty as much. It
seems to deal with almost all of the difficulty characteristics
equally well, which explains its robust performance across all
games. Its winrate seems to be almost independent from the
existence of indestructible NPCs, while the modifications of



this controller have more trouble dealing with this. This is also
true for the MCTS controller, while the RHEA controller is
also not affected by this difficulty.

Generally, it does seem that the hybrid controllers have
inherited characteristics of both controllers, resulting in more
robust controllers (especially with controllers EAroll and
EAroll-att), thus leading to a better overall performance. The
modifications of the EAroll controller seem to fix some of its
weaknesses as intended, but at the same time opening up new
problems. EAroll-seqPlan, for example, is much less affected
by the unpredictability of some games, possibly because it
is able to save and propagate a lot more information. On
the flipside, the controller is much more susceptible to inde-
structible enemies. However, it could very well be that these
modifications and the hybridzation in general could achieve
better spread of strengths and weaknesses, even eliminating
some, if tuned more thoroughly.

VII. CONCLUSION AND OUTLOOK

Although not all of the presented hybrid RHEA/MCTS
controller variants play better than the original sample con-
trollers, we can state that there is obviously some potential in
putting these two base algorithms together in order to obtain
better GVGAI controllers. Judging from the difficulty analysis,
the hybridization made the resulting controllers more robust.
We intend to continue this line of research in (at least) two
directions: a) the parametrization of our controllers has not
been analyzed systematically, performance may deviate largely
from our results with different parameter values, and b) it may
be good to dynamically switch on/off the single modules we
suggested (sequence planning, occlusion detection and NPC
attitude check) as they fit for a given game. The same could
also be envisioned on a larger scale for the base algorithms.

However, this requires a clear understanding of and the
reasons for the effects of different modifications as well as
a way to detect the difficulty characteristics of a game in real-
time. A feature based difficulty rating as utilized here can be a
step into that direction. Feature-based surrogate models could
be employed for predicting which controller should be used
for an unknown game after testing a number of actions and
events. An interesting further use of the difficulty rating could
be to support the selection of a set of games with balanced
and distinct challenges for the GVGAI competition.

REFERENCES

[1] Y. Björnsson and H. Finnsson. “Cadiaplayer: A
Simulation-Based General Game Player”. In: IEEE
Trans. on Computational Intelligence and AI in Games
1.1 (2009), pp. 4–15.

[2] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S.
Samothrakis, and S. Colton. “A Survey of Monte Carlo
Tree Search Methods”. In: IEEE Trans. on Computa-
tional Intelligence and AI in Games 4:1 (2012), pp. 1–
43.

[3] A. E. Elo. The Rating of Chessplayers, Past and Present.
B.T. Batsford, London, UK, 1978.

[4] T. Geffner and H. Geffner. “Width-based Planning for
General Video-Game Playing”. In: Proc. of the IJCAI
Workshop on General Intelligence in Game Playing
Agents (GIGA). 2015.

[5] F. J. Gomez and R. Miikkulainen. “Solving Non-
Markovian Control Tasks with Neuroevolution”. In:
Proc. of the International Joint Conference on Artifi-
cial Intelligence. Kaufmann, San Francisco, CA, 1999,
pp. 1356–1361.

[6] I. Harvey. “The Microbial Genetic Algorithm”. In:
Advances in artificial life. Darwin Meets von Neumann.
Springer, Berlin, Germany, 2011, pp. 126–133.

[7] N. Justesen, T. Mahlmann, and J. Togelius. “Online
Evolution for Multi-Action Adversarial Games”. In:
Applications of Evolutionary Computation. Springer,
Berlin, Germany, 2016, pp. 590–603.

[8] L. Kocsis and C. Szepesvári. “Bandit based Monte-
Carlo Planning”. In: Proc. of the European Conference
on Machine Learning. Springer, 2006, pp. 282–293.

[9] N. Lipovetzky and H. Geffner. “Width and Serializa-
tion of Classical Planning Problems”. In: Proc. of the
European Conference on Artificial Intelligence. 2012,
pp. 281–285.

[10] S. Lucas, S. Samothrakis, and D. Perez. “Fast Evo-
lutionary Adaptation for Monte Carlo Tree Search”.
In: Applications of Evolutionary Computation. Springer,
Berlin, Germany, 2014, pp. 349–360.

[11] D. Perez, S. Samothrakis, and S. Lucas. “Knowledge-
Based Fast Evolutionary MCTS for General Video
Game Playing”. In: Proc. of the IEEE Conference on
Computational Intelligence and Games. IEEE Press,
Piscataway, NJ, 2014, pp. 1–8.

[12] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen.
“Rolling Horizon Evolution versus Tree Search for Nav-
igation in Single-Player Real-Time Games”. In: Proc. of
the Conference on Genetic and Evolutionary Computa-
tion. ACM Press, New York, NY, 2013, pp. 351–358.

[13] D. Perez-Liebana, J. Dieskau, M. Hunermund, S.
Mostaghim, and S. Lucas. “Open Loop Search for Gen-
eral Video Game Playing”. In: Proc. of the Conference
on Genetic and Evolutionary Computation. ACM Press,
New York, NY, 2015, pp. 337–344.

[14] D. Perez-Liebana, J. Togelius, S. Samothrakis, T.
Schaul, S. M. Lucas, A. Couetoux, J. Lee, C.-U. Lim,
and T. Thompson. “The 2014 General Video Game
Playing Competition”. In: IEEE Trans. on Computa-
tional Intelligence and AI in Games (2015).

[15] T. Schaul. “A Video Game Description Language for
Model-based or Interactive Learning”. In: Proc. of
the IEEE Conference on Computational Intelligence in
Games. IEEE Press, Piscataway, NJ, 2013, pp. 193–200.


