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Intuitively, materials become both shorter and wider when compressed along their length. 

Here we show how a composite material or structure can display a simultaneous reversal in 

the direction of deformation for both the axial and transverse dimensions, corresponding to 

negative values of effective stiffness and effective Poisson’s ratio, respectively. A negative 

Poisson’s ratio[1] (NPR or auxetic[2]) host assembly stabilising (otherwise unstable) embedded 

negative stiffness[3] (NS) elements is presented and modelled analytically. Composite 

assemblies containing 3 alternative NS elements are demonstrated experimentally, confirming 

both NPR and NS responses under quasi-static loading over certain strain ranges and in good 

agreement with model predictions. We report systems demonstrating NS values over two 

orders of magnitude, ranging from -1.4 N mm-1 to -160 N mm-1. Such systems are scalable 

and are expected to lead to increased enhancements in other useful properties such as 

vibration damping, finding application across transport, healthcare, defence and space sectors, 

amongst others. 
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Metamaterials derive macroscale properties from a (usually) periodic arrangement of smaller 

scale sub-units or building blocks. The properties are sometimes considered unknown or 

unusual in natural materials, and can be counter-intuitive or opposite to our everyday 

experience.[4,5] Metamaterials include negative refractive index[6] and negative effective mass 

density[7] materials finding use in, for example, electromagnetic and acoustic cloaking/lensing 

applications, respectively. Examples of mechanical metamaterials are negative 

compressibility transition,[4] NPR[1] and NS[3] materials.  

 

Auxetic materials and structures exist, and are stable in the unconstrained state, at the 

nanoscale (e.g. crystalline forms of silica,[8] zeolites[9] and cellulose[10]), microscale 

(microporous polymers[11] and microfabricated truss-like structures[12]) and macroscale 

(composite laminates,[13] foams,[14,15] honeycombs[16] and patterned elastomeric spherical 

shells[17]). Enhanced shear modulus,[18] energy absorption[19] and indentation resistance[20] are 

some of the benefits known for auxetic materials and structures.[21] Periodic arrangements of 

sub-units leading to auxetic behaviour include truss,[16,22] corner-sharing polygon,[23,24] and 

hybrid truss-polygon[25] frameworks, and particle assemblies.[26,27] 

 

NS materials and structures, on the other hand, are thermodynamically unstable unless 

stabilised by an external constraint.[28] Examples of NS materials include polymethacrylimide 

(PMI) foams,[16] honeycombs and lattices,[29,30,31] and certain crystals (VO2, BaTiO3) 

undergoing constrained phase transformation.[32,33] The NS effect can also be displayed by 

constrained buckled tube[34], buckled beam[35] or multiple magnet[36] systems. Whereas our 

system is demonstrated to display NS under quasi-static loading, it should be pointed out that 

a number of these previous studies[3,32-34] measured the dynamic modulus. Dynamic loading of 

NS materials can give rise to beneficial temporary effects demonstrated, for example, in 
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composite systems containing NS inclusions or elements which display extreme stiffness[32] 

and vibration damping[3,34] responses.  

 

Our ‘double-negative’ mechanical metamaterial displaying simultaneous negative Poisson’s 

ratio and negative stiffness properties comprises an auxetic host framework constraining 

embedded NS elements. The framework consists of a regular array of interlocked rigid 

hexagonal sub-units with 3 male and 3 female keys per sub-unit, arranged in an alternating 

fashion around the six sides of the hexagon[27] (Figure 1a). Assembly connectivity is via 

male-female key pairs formed between adjacent sub-units. When the maximum external width 

of the male key matches the internal width of the female key, deformation of the assembly in 

response to an applied mechanical load is constrained to be via cooperative translation of the 

rigid sub-units through relative sliding of the male and female keys along the keyways. This 

produces auxetic behaviour for the metamaterial. The stiffness of the metamaterial arises from 

each key pair containing a spring element attaching the end of the male key of one sub-unit to 

the base of the female key in the other sub-unit (Figure 1b). 

 

In the Supporting Information we apply strain energy considerations to a semi-infinite array 

of sub-units containing multiple spring types distributed (in a regular or random manner) to 

predetermined keyway locations. Further, we allow spring stiffness to vary with applied 

global strain and to include the possibility of negative stiffness values. In this case, the 

effective Young’s modulus in the y direction is: 
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where l1 and l2 are edge lengths and  is the angle of the sub-unit (Figure 1c), a is a gap 

parameter (Figure 1b), m is the number of spring types, i = 1…m, ni
v = Ni

v/N and ni
o = Ni

o/N 

are the number densities of the spring having stiffness ki in the ‘vertical’ and ‘oblique’ 

locations, respectively (Figure 1d), N is the total number of springs in the system, Ni
v and Ni

o 

are the number of springs having stiffness ki located in vertical and oblique key positions, 

respectively, and ky is the metamaterial (assembly) stiffness in the y direction. 

 

Poisson’s ratio is defined as the negative of the ratio between the strain transverse and parallel 

to the loading direction. The metamaterial effective Poisson’s ratio expression for 

deformation due to cooperative sub-unit translation along the keyways is independent of 

spring stiffness, and obeys a reciprocal relationship:[27] 
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where yx is the Poisson’s ratio for loading in the y direction (x is the transverse direction). 

Note the incremental Poisson’s ratio (
y

x
yx d

d


  ) has been used for Equation 2, corresponding 

to the negative of the slope of the transverse strain vs axial strain data in reality. The on-axis 

Poisson’s ratios are both -1 for regular hexagonal sub-units (l1 = l2 and  = 60). 
 

Consider now a buckled beam spring element. The buckled beam is a bi-stable or metastable 

system, generally occupying one of two c-shaped stable equilibrium states (regions (1) and (3) 

in Figure 2a) separated by an unstable snap-through transition state (region (2)). In Figure 2a 

the force-displacement curve has been generated using a 4th order polynomial function 

arbitrarily selected to generate a curve similar to the buckled beams used in the experimental 
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metamaterial assembly (see below). In the assembly, a buckled beam connected at its 

midpoint to the end of the male key by a rigid connector has its maximum negative 

displacement (-max) in the initial fully-expanded state. The transverse force applied to the 

mid-point of the buckled beam as the assembly is compressed initially meets with resistance 

from the buckled beam, displaying positive stiffness behaviour (region (1)). Under further 

compression, the stiffness of the buckled beam element changes to the extent that the beam 

assists rather than resists the force in displacing the system (region (2)) - it displays 

incremental NS response and is stabilised under displacement control by the rigid connection 

to the auxetic host framework. Under high compression, the buckled beam enters region (3) 

where further increases in transverse beam deformation ( → +max) again meet with 

resistance, requiring an increase in applied force (positive stiffness). For the case of the force 

in region (3) attaining negative values, the configuration is stable and the buckled beam 

displays total or absolute NS. Otherwise it is a metastable state (i.e. when the force is always 

positive) and the buckled beam only displays the incremental NS determined from the slope 

of region (2). 

 

The buckled beam displacements 1 and 2 are related to the assembly geometry by 


tan

2

3
1

1
a  and 

sin3
2

2
a , respectively, where 1  and 2  are the interlock depths 

(maximum distance between end of male key and base of female key) in the vertical and 

oblique keyway locations. For rigid (infinitely stiff) sub-units, corresponding to fixed values 

of l1, l2, , 1  and 2 , then a is the parameter that varies under displacement control applied 

to the ends of the assembly (by, for example, a mechanical testing machine). In the idealised 

metamaterial where the width of the male interlock key matches the width of the female 

interlock key, the variation in a is geometrically constrained to be homogeneous throughout 

the assembly and applying displacement control to the end sub-units constrains internal sub-
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units also (i.e. they move cooperatively with the end units). The true strain of the assembly in 

the y direction is related to the geometry of the assembly through 

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(Equation S15 and y-directed equivalent to S10), where ao is the value of the gap parameter in 

the undeformed configuration. Hence knowledge of the assembly geometrical parameters 

enables the global strain to be related directly to the spring displacements. For a single 

buckled beam element type (Figure 2a) occupying all key positions (m = 1, n1
v = 0.333 and 

n1
o = 0.667) in an assembly of keyed regular hexagons, and attached at its mid-point to the 

end of the male key by a rigid connector in each keyway, Equation 1 predicts ky  k1 (Figure 

2b). In this case the metamaterial displays simultaneous NPR and NS responses over the 

strain range where k1 is negative. 

 

The metamaterial stiffness can be tailored by the use of multiple spring types in the assembly. 

For example, replacing the buckled beams in the oblique positions with a second spring type 

having constant stiffness k2 (Figure 2c and 2d; m = 2, n1
v = 0.333, n1

o = 0, n2
v = 0 and n2

o = 

0.667) leads to an increase in strain range and magnitude of negative ky when k2 < 0. When k2 

> 0, the strain range and magnitude of negative ky are diminished and disappear altogether 

when k2 is sufficiently large. The minimum values of ky and k1 always coincide at the same 

strain for this configuration. 

 

When the second spring is also a buckled beam, but having an offset force-displacement 

function relative to the first buckled beam (Figure 2e), achieved for example by having 

different length rigid connectors in the vertical and oblique keyways, then the strain range for 

negative ky, and strain at minimum ky, do not coincide with either of the buckled beam 

elements (Figure 2f). In Figure 2f we have used m = 2, N = 54, N1
v = 7 (giving n1

v = 7/54 = 

0.130), N1
o = 26 (n1

o = 0.481), N2
v = 11 (n2

v = 0.204) and N2
o = 10 (n2

o = 0.185). This 
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corresponds to a 3 x 3 array of unit cells with the two spring types arbitrarily distributed 

throughout the array to demonstrate the model is applicable to a semi-infinite assembly and is 

not, therefore, restricted to a single unit cell. More spring types, up to the limiting value of N 

= 54 for the 3 x 3 array, are also accommodated within the semi-infinite assembly model 

expressions (e.g. Equation 1) but not pursued further here. 

 

To demonstrate the double negative metamaterial concept experimentally we first establish a 

number of spring element configurations (Figure 3). A conventional spring provides a 

‘control’ positive stiffness element (compressive axial displacement increasing with 

increasing compressive axial force, Figure 3a). The first example of a negative stiffness 

element comprises PMI foam and corresponds to axial compressive displacement in 

opposition to the force direction at higher compressive displacement (region (2)), following 

an initial positive stiffness response (region (1)) – Figure 3b. A buckled beam element 

displays an extended negative stiffness region (region (2)) intermediate between two stable 

(‘c’-shaped) positive stiffness configurations (regions (1) and (3) – Figure 3c). Finally, we 

reproduce the buckled beam response using an assembly of 4 stationary magnets, in a square 

arrangement with north poles facing diagonally ‘up’, and a moveable magnet with north pole 

facing vertically ‘down’ (Figure 3d). 

 

Manufactured assemblies of laser-cut interlocking regular hexagonal sub-units containing 

each of these element types in turn (Figure 4a-d) all display negative Poisson’s ratios (yx) ~ -

1 (Figure 5a), as predicted from Equation 2. The auxetic effect is demonstrated in initial and 

final stills from the compression test on the magnetic assembly (Figure 4d). Supporting 

Information Videos S1 and S2 show the auxetic response of the magnetic and buckled beam 

mechanical metamaterials, respectively, undergoing compression testing. The stabilisation of 

the NS elements via the auxetic host framework is also clearly demonstrated in Supporting 
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Information Video 2 for the buckled beam mechanical metamaterial. The experimental 

magnetic mechanical metamaterial displays homogeneous deformation via the cooperative 

sub-unit translation mechanism of the idealised model. On the other hand, the buckled beam 

experimental mechanical metamaterial shows some buckled beam elements towards the 

bottom of the assembly commence the NS transition before others, accompanied by evidence 

of some rotation of the left-hand and right-hand side sub-units (initially at the lower portion of 

the assembly and then at the upper end). We attribute this to the potential for slight variation 

in beam and/or connecting rod lengths leading to the NS transition occuring at different global 

strain in different elements, and slight mis-match in male and female interlock key widths 

(19.65mm vs 20.25mm, respectively – Figure S6), allowing a small amount of sub-unit 

rotation for the side sub-units with free edges which is not considered in the idealised model.  

 

The ‘control’ assembly containing conventional springs displays positive stiffness (ky) for all 

strains investigated (Figure 5b). The assembly containing PMI foam elements, on the other 

hand, initially displays positive stiffness but at higher strains transitions to a double negative 

system displaying both negative yx and negative ky simultaneously. The measured control 

and PMI foam assembly stiffnesses agree well with the predicted values from Equation 1 

using the independently measured single element stiffnesses from Figure 3a and 3b (Figure 

5b), validating the analytical model and confirming the predominant deformation mode of 

particle translation through cooperative inter-particle sliding along keyways. Effects due to 

mis-match in male and female interlock key widths and/or individual spring/foam element 

properties of dimensions, which may lead to uneven stiffness element deformation and/or sub-

unit rotation, and which would lead to a departure of the predicted response from the 

experimental response are, then, shown to be minor in these systems. The assemblies 

containing the buckled beam and magnetic (Figure 4c and 4d) spring elements both display 
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NS at intermediate strains between initial and final positive stiffness configurations. The 

double negative metamaterial concept is, thus, demonstrated experimentally. 

 

We use the validated analytical model to demonstrate we can further tune the mechanical 

metamaterial response by modifying the sub-unit geometry. Figure 6a shows the variation in 

incremental Poisson’s ratio yx as a function of strain y for the metamaterial containing 

buckled beams (k1) in the vertical locations and constant stiffness springs (k2) in the oblique 

positions (m = 2; n1
v = 0.333, n1

o = 0, n2
v = 0 and n2

o = 0.667) for various values of sub-unit 

angle  (dashed curves). As  increases above the regular hexagon value of 60° the 

magnitude of the negative value of yx becomes larger whilst the y strain range from the fully 

expanded (y = 0) to fully densified structure decreases. This is accompanied by the 

introduction of anisotropic mechanical response due to the reciprocal relationship between yx 

and xy (Equation 2) - the negative value of xy becomes smaller whilst the x strain range 

from the fully expanded (x = 0) to fully densified structure increases as  increases above the 

regular hexagon value of 60° (Figure 6b). 

 

Within the geometrical limits imposed by the fully expanded and fully densified structures, 

and those imposed by the sub-unit geometry, the region of yx-y space where both NPR and 

NS occur simultaneously is bounded by ky = 0 contours in Figure 6a. For reference, points P 

and Q indicate the strain at which ky = 0 when  = 60° and k2 = 0 and correspond to the same 

points P and Q in Figure 2d. Similarly, points R and S in Figures 2d and 6a correspond to ky = 

0 when  = 60° and k2 = -0.25k10. For the configuration considered in Figure 6, the double 

negative metamaterial exists over a larger range of yx-y space as k2 decreases. The 

mechanical response of this metamaterial can be further tuned by varying sub-unit edge 

lengths (Figure S1 and S2), and employing alternative/additional spring types (Figure S3). 
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Figures 6a,b and S1-S2 show it is possible to design the mechanical metamaterial with 

extreme values of the mechanical properties by employing sub-unit geometrical parameters 

leading to high aspect ratio sub-units. So, for example, if a large magnitude negative value of 

incremental Poisson’s ratio is required then Figure 6a demonstrates this will be achieved for 

yx when  → 90°. This corresponds to a high aspect ratio sub-unit with the long axis aligned 

along the y direction. Note, however, that whilst the length of the sub-units and, therefore, 

assembly increase in the loading direction as  → 90° (or l2 increases) the maximum 

displacement due to sub-unit translation along the keyways remains the same, leading to the 

decrease in loading y strain range noted above. Similar arguments apply to xy and x range 

when  tends to low values (22.5° for the system in Figure 6b) or l1 increases (Figure S1). If 

an increase in both the magnitude of the incremental negative Poisson’s ratio and the loading 

strain is desired, Figure S2 shows this is achieved for xy and x by decreasing l2 towards its 

minimum value. This achieves high sub-unit aspect ratio and also a reduction in assembly 

length along the loading direction to provide increases in both the magnitude of Poisson’s 

ratio and loading strain range, respectively. The stiffness of the system (ky and kx) in each 

direction is determined by the spring element force constants and the sub-unit angle (e.g. 

Equation 1 and equivalent term on right hand side of Equation S17). Trivially, the more 

negative the spring constants of the elements the more negative the stiffness of the overall 

assembly. Extreme particle aspect ratios yield extreme stiffness values and large negative ky 

and kx are achieved as  → 90 and 0°, respectively. The metamaterial Young’s moduli have 

an additional dependence on sub-unit lengths (Equations 1 and S17) – large negative Ey is 

achieved as l1 decreases and l2 decreases, with Ex showing the reverse dependency on these 

parameters. 
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Returning to the force-displacement response of the buckled beam system (Figure 5b), steps 

are evident at ~5 and 10 mm displacement and these are attributed to the sequential or 

staggered on-set of the NS buckling response in individual beam elements noted above. 

Sequential buckling of rows of buckled beams29,30,37 and other hinged/buckled systems31 is 

known to occur due to the strongly non-linear response of such multistable metamaterials. 

Indeed, sequential buckling, caused by small imperfections in the elements, has been 

deliberately designed into lattices for enhanced energy absorption.29,30,37 The effective 

stiffness k of such systems follows a series arrangement of row stiffnesses ki
row, i.e. 

1

1



 



 m

i

row
i i

kNk , where here m is the total number of rows, and Ni is the number of rows 

having row stiffness ki
row. The deformation of such systems is inhomogeneous throughout the 

lattice – occurring row-by-row, rather than all rows at the same time, and occurs in order of 

the collapse stress of each row.  

 

For the mechanical metamaterial presented in this work comprising of a semi-infinite 

assembly of interlocking hexagonal sub-units, when the width of the male interlock key 

matches the width of the female interlock key then cooperative translation of the sub-units 

along the sub-unit keyways occurs. A distinctive feature then of the concept presented here is 

that the deformation is homogeneous throughout the assembly and it is not possible in the 

idealised assembly for one sub-unit, row of sub-units, or localised group of sub-units to move 

(or collapse) without all other sub-units moving in the same manner. This is consistent with 

the absence of any stiffness element term in the Poisson’s ratio expression (Equation 2), and 

leads to an effective stiffness according to a parallel (rather than series) arrangement of 

elements (i.e. the weighted average expression in Equation 1). In the case of interlocking 

regular hexagonal sub-units, this precludes sequential on-set of the NS transition in identical 

elements located in different keyways of the assembly. 
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In reality, a degree of tolerance may be required between the male and female key widths and, 

therefore, some contribution from rotation of the sub-units to the deformation of the 

mechanical metamaterial. This would allow some sequential on-set of NS transitions to take 

place in distributed identical elements. The semi-infinite assembly model does not account for 

sub-unit rotation but can, nevertheless, be applied for the prediction of the effects of 

sequential buckling (due to sub-unit rotation) on the overall stiffness response of the system. 

For example, Figure 7a shows three arbitrarily off-set buckled beam curves. The curves for 

spring types 2 and 3 each show a correspondingly slightly larger amplitude and period than 

spring type 1 to account for inherent variability due to manufacturing in a real system – 

shown to better effect in Figure 7b where the curves are presented without off-set. The 

response of a 3 x 3 array of unit cells with spring type 1 occupying all keyways (m = 1, N = 

54, n1
v = 0.333, n1

o = 0.667) is compared to that of a 3 x 3 array containing equal numbers of 

off-set springs 1, 2 and 3 distributed evenly throughout the system (m = 3, N = 54, n1
v = n2

v = 

n3
v = 0.111, n1

o = n2
o = n3

o = 0.222) in Figure 7c (solid and dashed curves, respectively). The 

presence of off-set buckled beams modifies the effective stiffness response significantly, 

including the presence of steps consistent with those in the force-displacement response of the 

experimental buckled beam system (Figure 5b). 

 

The sub-unit rotation mechanism giving rise to the staggered on-set of the NS response will 

be particularly evident for sub-units at the edges of the assembly due to the incomplete set of 

neighbours for these sub-units. The small finite assemblies tested experimentally (Figure 4) 

then represent a worst case scenario in this respect and we expect the steps in the force-

displacement response for the buckled beam system would be less evident as the contribution 

due to sub-unit rotation diminishes with increasing number of sub-units in the assembly. 

However, increasing the number of sub-units and potentially, therefore, number of elements 



 Submitted to  

   13      13   

increases the likelihood of sequential NS transition on-set due to imperfections in the 

elements themselves. Note, however, that this is confined to individual elements, rather than 

whole rows in the previously reported sequential buckling systems. The model predictions for 

the 3D array with spring types 1-3 without off-set (representing variabilty due to 

imperfections – Figure 7b) are shown by the dot-dashed curve in Figure 7c. The predictions 

indicate the modification to the response from that of the array with uniform distribution of 

spring type 1 only will be less than that for the off-set spring types (i.e. when sub-unit rotation 

is significant). For the level of variability employed in spring types 1-3, the ‘parallel‘ nature 

of the effective stiffness response in Equation 1, as a consequence of the homogeneous 

deformation of the interlocking assembly, means that steps are not present in the effective 

stiffness response. This is contrary to the previously reported honeycomb systems, or the 

current mechanical metamaterial when sub-unit rotation is significant. 

 

The double negative metamaterial concept presented here needs not be restricted to either the 

auxetic host framework or negative stiffness guest elements considered above. In addition to 

particle assemblies, negative stiffness elements can be envisaged to be constrained within 2D 

truss,[16,22] connected polygon[23] and truss-polygon[25] frameworks, and their 3D 

counterparts.[12,24] The effects are also independent of scale, with microfabrication techniques 

enabling scaling down to micron-sized features,[5,12] whilst molecular analogues (e.g. to the 

interlocking hexagon framework and buckled beams in the form of ‘hard cyclic multimer’ 

assemblies[26] and buckled nanotubes,[38] respectively) provide intriguing possibilities. 

Naturally, there will be issues of robustness, efficiency, reliability and, in the case of the 

magnetic system, potential for interference between magnets associated with different sub-

units when scaling down the assembly. Nevertheless, in this respect, the recent successful 

microfabrication using 3D laser lithography of 3D polymer microlattice structures 

incorporating buckled beam elements, all using a single material, is especially noteworthy.[37] 
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Microlattices displaying repeatable yet irreversible energy absorption, and also self-recovery, 

were reported. No damage was observed following 80 load-unloading cycles, and overall 

hysteresis behaviour remained largely unchanged, demonstrating a degree of robustness and 

reliability. Clearly this could be extended to auxetic microlattices containing built-in buckled 

beam elements as per the concept demonstrated here. Buckled beams have also been 

incorporated as elements connecting resonating metal masses to surrounding elastomeric 

matrix to produce a tunable and switchable acoustic metamaterial.[39] Considering non near-

neighbouring magnetic interactions, at the nanoscale these interactions tend to be significantly 

reduced because the magnetic forces scale with r6.[40] From a materials perspective, at the 

nanoscale the influence of non near-neighbouring effects may simplify the magnetic design 

significantly. 

 

A recent review of approaches and challenges for achieving negative elastic moduli provides 

alternative options for NS constituents under dynamic loading.[41] This includes a simple-

cubic lattice of metal-rubber core-shell spheres embedded within a host material, where 

negative effective values of the mass density and/or of the elastic moduli can be achieved by 

appropriate selection of the resonance frequencies of the core-shell unit and the lattice.[42] An 

oscillating system of masses and springs shows resonances with three independent negative 

elastic moduli and negative scalar mass density.[43] A single-phase material chiral 

microstructure has been developed which possesses simultaneous negative effective mass 

density, bulk modulus and refraction of elastic waves at the deep-subwavelength scale due to 

simultaneous translational and rotational resonances in hexagonal sub-units.[44] A novel 

extension of the interlocking hexagon system reported here might include architecturing the 

hexagonal sub-units in our assembly with the chiral microstructure to give multiple 

resonances for improved multifunctionality. 
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The magnetic NS mechanism allows electromagnetic active control, in addition to mechanical 

displacement control, to switch on or off the NS effect. Embedded magnets have been 

employed to enable elastomeric kagome lattice structures to display magneto-elastic 

reconfigurable properties, switching between open and closed equilibrium states, but neither 

negative Poisson’s ratio nor negative stiffness were claimed in these systems.[45] Stabilisation 

of the NS property can be achieved by sandwiching the metamaterial between stiff outer skins 

or, for scaled down double negative metamaterial inclusions, embedding within a matrix 

(similar to the previous reports on NS inclusion composites[3,32,34]). Forseeable benefits of the 

"double negative" response described here include a sandwich panel with aligned skin and 

core planes which would present excellent drape (due to the tendency for synclastic curvature 

under bending of an auxetic core)[14,46] and damping (in-plane auxetic and NS core),[3,19,34] 

combined with high in-plane stiffness (skin) and through-thickness stiffness (core) for 

structural aspects. The high volume change of the auxetic host also provides the potential for 

a damping structure (due to the NS elements) that is deployable from a small volume 

configuration for transportation to a large volume in the final deployed state. The high volume 

change in auxetic porous materials has also been shown to lead to tuneable response mass 

filters[47], and the wave propagation in cellular lattice phononic filters is known to be 

dependent on topology and stiffness with different responses for auxetic and non-auxetic 

systems.[48] The presence of mechanically- or magnetically-activated snap-through NS 

elements provides an enhanced mechanism for providing dramatic porosity (and cell shape) 

variation to provide instantaneous and complete opening of the auxetic filter pores for 

cleaning of foulant from a mass filter or to alter the band gap in a phononic material, for 

example. Consequently, applications for such double negative metamaterials are likely in, but 

not limited to, aerospace components, vibration damping tables, neonatal transporters, impact 

protectors, sensors and actuators, smart deployable and morphing structures, and MEMs 

devices. 



 Submitted to  

   16      16   

 
 
Experimental Section 

Fabrication of Spring Elements: Conventional positive stiffness springs, 5 mm in diameter 

and 12 mm in length, were supplied by RS Components Ltd. PMI foam (200WF, 205 kg m-3, 

supplied by Rohacell) samples of dimensions 25 mm × 25 mm × 35 mm were cut from a 

larger block for compression testing along the foam rise direction. Smaller PMI foam samples 

(5 mm (rise direction) × 10 mm × 10 mm) were cut for incorporation into the interlocked 

hexagon assembly. Buckled beams were created by cutting a general purpose steel tape 

measure into 35 mm x 5 mm x 0.5 mm steel strips. A hole was created at the midpoint of each 

strip and attached to the free end of a square cross-section copper tube (the rigid connector) 

via a nail and glue (inside the copper tube). A single strip was located in slits in opposing 

internal walls of a U-shaped holder (acrylic) having an internal width of (28 mm) to create the 

buckled beam specimen for compression testing (Figure S4). The 5-magnet system concept 

demonstrator (Figure 3d) was created using corrugated board in which a series of square holes 

were created, using a laser cutter, along directions at ± 45 ° to the horizontal direction to 

accommodate the 4 stationary neodymium block magnets (part number C0350, supplied by 

SuperMagnetMan). The mobile block magnet was placed inside a holder for attachment to the 

mechanical testing machine along the vertical bisector of the magnetic quadrupole formed by 

the 4 stationary magnets. The magnets used in the interlocked hexagon assembly were 

neodymium bar magnets (NdFeB, grade N42, part number B422, supplied by KJ Magnetics) 

with dimensions of 6.35 mm × 3.175 mm × 3.175 mm.  

 

Fabrication of Interlocked Hexagon Assemblies: A CAD model of the sub-unit for each 

assembly was exported to a laser cutting machine (World Lasers LR1612 laser cutter (40 W 

CO2 laser) for the PMI assembly; Trotec Speedy 400 laser cutter (80 W CO2 laser) for the 

control, buckled beam and magnet assemblies). For the PMI assembly a 12 mm thick 
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transparent perspex sheet was used as the base material from which individual sub-units 

(Figure S5) were cut. The sub-units were subsequently polished and greased to minimise the 

friction between the male and female keys. The assembly comprised of seven sub-units 

(Figure 4b). White acrylic paint was applied to the surface of the initially transparent sub-

units and black dots were marked at equivalent points on the terminals of the male keys to 

provide fiducial markers for subsequent strain determination. Two PMI foam elements were 

placed in the central vertical keyway positions of the assembly and attached to the adjacent 

sub-units using double-sided adhesive tape. Lower modulus open-cell polyurethane foam 

inserts were placed in other keyways to minimise rotation of sub-units due to edge effects, 

and movement of sub-units due to their own weight, and thus ensure translation of sub-units 

along the keyways was the predominant deformation mode in response to compressive 

loading of the assembly. To avoid out-of-plane buckling during compression testing, the 

assembly was sandwiched between two 4 mm thick transparent perspex face sheets connected 

to each other by four copper wire bands. A 12 mm × 10 mm × 4 mm perspex cuboid, glued to 

the middle of the painted surface of each sub-unit, minimised friction between the painted 

surface and the face plate. 

 

The sub-units for the buckled beam assembly were constructed from three separate 3 mm 

thick layers (Figure S6). The bottom and middle layers were cut from opaque yellow acrylic 

sheet whereas the top layer was a transparent acrylic. The middle layer included the male and 

female keys, with a slit at the end of each male key to accommodate the rigid connection to 

the associated buckled beam element, and slits on either side of the opposing internal female 

key walls to house the buckled beam itself. The width of the male key was slightly smaller 

than the female key width to assist sub-unit translation by reducing friction between the key 

surfaces. The top and bottom layers were cut to the shape of a regular hexagon having edge 

length equal to the edge length of the keyed middle layer. Each layer of the sub-unit contained 
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four locating holes to ensure layer alignment when constructing the sub-unit. A steel strip (as 

described above) was attached at its mid-point to the rigid connector of the male key, and the 

ends of the steel strip were inserted into the slits either side of the female key. The steel strip 

became naturally buckled due to having a longer length than the width of the female key. 

Since the degree of buckling is determined at this stage by the length of the strip and the 

width of the female key, there is no directional dependency on the ease of buckling during 

fabrication. Of course, during subsequent mechanical testing the ease of buckling for any 

given element is determined by the location of the element within the assembly and its 

orientation with respect to the direction of loading (being easier to buckle when located in a 

keyway aligned along the loading direction). This is accounted for in the strain energy 

approach to deriving the model expressions for the mechanical metamaterial effective 

Young’s moduli (Equations S1 to S18) and the subsequent comparison of the model with 

experiment (Equations S19 to S26). Buckled beams were distributed in this manner 

throughout the assembly of middle layer sub-unit sections and grease was applied on the male 

keys to reduce friction. The top and bottom hexagon layers were then attached to the middle 

layer of each sub-unit using 3 mm screw nails in the 4 locating holes of each layer. Washers 

were placed between each layer to minimise friction in the key ways. The top and bottom 

layers of the sub-units prevent the system from buckling out of plane and so face sheets were 

not required for the buckled beam assembly during subsequent testing (Figure 4c). 

 

A 3-layer grooved sub-unit, and similar layer construction procedure, was also used for the 

Magnets assembly. Sub-unit layers where cut from white Perspex sheet. The mobile magnet 

was placed in a rectangular hole located at the terminal of the male key in the top layer, while 

the 4 stationary magnets were arranged in rectangular holes around the top layer female key 

(Figure S7). Tape was applied to hold the magnets securely in the accommodating holes of 

the top layer. 
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Fabrication of the ‘Control’ assembly was similar to that of the buckled beam assembly, with 

the buckled beam elements replaced by the positive stiffness springs. A layered sub-unit was 

assembled following a similar scheme to the buckled beam assembly sub-unit (all 3 layers cut 

from yellow acrylic, Figure S8). 

 

Mechanical Testing: The individual PMI foam compression test specimens were sandwiched 

between two polypropylene sheets and subjected to compression testing in an Instron 3369 

mechanical testing machine fitted with a 25 kN load cell at a displacement rate of 5 mm min-1. 

The single buckled beam sample (Figure 3c and Figure S4) and single conventional spring 

samples (Figure 3a) were both compression tested in an Instron 3369 (50 kN load cell, 10 mm 

min-1 displacement rate). The 5-magnet system concept demonstrator (Figure 3d) was 

compression tested in an Instron 3369 (25 kN load cell, 10 mm min-1 displacement rate). 

 

Mechanical characterisation of the PMI foam assembly was carried out using a 

MESSPHYSIK ME46-NG video extensometer, employing a tripod-mounted Digitale CMOS 

Kamera ueyele 752 x 480 1/3’’ camera with high precision zoom lens (TAMRON 1110522 

JAPAN, 1: 1.6, 25 mm). The video extensometer dot matrix x-y strain mapping capability 

allowed measurement of local strains of the test specimen undergoing compression testing in 

an Instron 3369 mechanical testing machine fitted with a 50 kN load cell. Tests were 

performed at a displacement rate of 2 mm min-1. Field-of-view x and y coordinates for each 

fiducial dot marker were recorded throughout the duration of the compression test, with y 

corresponding to the axial (loading) direction and x the transverse direction. Dot pairs (A,B), 

(C,D) and (E,F) (Figure 4b), corresponding to two repeat unit-cell lengths along the y 

direction, were used to determine the axial true strain (y). Dot pairs (G,H), (I,J) and (K,L), 

separated by one repeat unit-cell length along the x direction, were used to determine the 
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transverse true strain (x). For example, the local axial true strain was determined from point 

pair (A,B) using   00
ln

AB

d
A

d
B

y
yy

yy


  where yA and yB are the y coordinates for points A and B, and 

the superscripts 0 and d correspond to initial and instantaneous (deformed) values, 

respectively. The global true loading strain was determined using 



0

ln
Y

Y
y  with the 

instantaneous (Y) and initial (Y0) lengths in the y direction given by the separation of the jaws 

during and at the start of the test, respectively.  

 

The buckled beam, magnet and control assemblies were compression tested in an Instron 

3369 (50 kN load cell, 10 mm min-1 displacement rate), and digital photographs taken every 5 

seconds from the beginning of the test using a high resolution digital camera (CANON 5D 

Mark II) with 24-105 mm high precision zoom lens and image stabilizer attached. The digital 

images were subsequently imported in to the “ImageJ” image processing software to generate 

the coordinates of the screw heads (Figure 4a, 4c and 4d) on each sub-unit. Local and global 

strains were then generated using the same protocol as for the PMI foam assembly. Force-

displacement data were generated directly by the Instron testing machine for all single 

element (Figure 3) and assembly (Figure 5b) tests. 

 

Supporting Information 
Supporting Information is available online from the Wiley Online Library or from the author. 
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Figure 1. Mechanical metamaterial design of auxetic framework with constrained embedded 
spring elements. a) Extended interlocking hexagon assembly with spring elements located in 
the key-keyway interlocks. Each hexagon sub-unit has two edges of length l1 along the x 
direction, and four edges of length l2 oriented at an angle of  to the x direction. b) Expanded 
view of a key-keyway interlock. c) Representative volume element. d) Individual hexagonal 
sub-unit showing vertical and oblique positions of the keys/keyways. 



 Submitted to  

   25      25   

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Predicted metamaterial stiffness responses for different spring configurations in an 
assembly of keyed regular hexagons. l1 = l2 = 35 mm,  = 60, 1 = 2 = 0.5l1, a0 = 0.288l1, 10 = 20 = 0 = -0.167l1. a) Typical force-displacement curve for a buckled beam (F = [-(/l1)4 
+ 4,230.8(/l1)3 + 0.01563(/l1)2 - 103.91(/l1) + 0.0001]/12). b) Metamaterial stiffness (ky) 
and spring stiffness (k1 - derived from slope of force-displacement curve in (a), normalised to 
the zero strain spring stiffness (k10), as a function of global applied compressive strain (y) for 
a single buckled beam spring type occupying all key locations (n1

v = 0.333 and n1
o = 0.667). 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-7 -5 -3 -1 1 3 5 7

Fo
rc

e
 (

N
)

Displacement, 1,2 (mm)

F1

F2 (k2/k10=0.25)

F2 (k2/k10=0.125)

F2 (k2/k10=0)

F2 (k2/k10=-0.25)
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2

k
1

,2
/k

1
0

k
y
/k

1
0

y

k1

0.25 0.125 0 -0.25

P QR S

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

-3

-2

-1

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2

k
1
/k

1
0

k
y
/k

1
0

y

ky/k10
k1/k10

    

-5

-4

-3

-2

-1

0

1

-7 -5 -3 -1 1 3 5 7

Fo
rc

e
 (

N
)

Displacement, 1,2 (mm)

Spring 1

Spring 2

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-25

0

25

50

75

100

125

150

175

0 0.05 0.1 0.15 0.2

k
1

,2
/k

1
0

k
y
/k

1
0

y

ky/k10

k1/k10

k2/k10

    

    

    

    

-1.25

-0.75

-0.25

0.25

0.75

1.25

-7 -5 -3 -1 1 3 5 7

Fo
rc

e
 (

N
)

Displacement, 1 (mm)     

      -                      

            

         



 Submitted to  

   26      26   

c) Typical force-displacement curves for a buckled beam (as in (a)) and springs having 
constant stiffness k2 equal to -0.25k10, 0, 0.125k10 and 0.25k10. d) Normalised metamaterial 
stiffness (ky/k10 - dashed lines, empty symbols) and spring stiffness (ki/k10 - solid lines, filled 
symbols) as a function of y for a buckled beam spring type (k1 derived from (a), (c)) 
occupying all vertical key locations (n1

v = 0.333 and n1
o = 0) and a constant stiffness spring 

type (k2 = -0.25k10, 0, 0.125k10 and 0.25k10) occupying all oblique key locations (n2
v = 0 and 

n2
o = 0.667). Points P and Q correspond to the strains where ky = 0 when k2 = 0, and points R 

and S to the strains where ky = 0 when k2 = -0.25k10. e) Force-displacement curves for two 
offset buckled beams (spring 1 as in (a), (c), spring 2: F = [-(/l1)4 + 4,231.2(/l1)3 - 
1269.3(/l1)2 + 23.015(/l1) + 6.1604]/12). f) Normalised metamaterial stiffness (ky/k10) and 
spring stiffness (ki/k10) as a function of y for a buckled beam spring type (k1 derived from (a), 
(c)) and a second (offset) buckled beam spring type (k2 derived from slope of spring 2 
function in (e)) arbitrarily distributed in a 3 x 3 unit cells assembly with n1

v = 0.130 and n1
o = 

0.481, n2
v = 0.204 and n2

o = 0.185. 
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Figure 3. Spring element configurations. a) Conventional (control) spring showing 
monotonically increasing compressive force-displacement behaviour characteristic of positive 
stiffness response. b) PMI foam displaying positive stiffness response in region (1) followed 
by negative stiffness (decreasing compressive force for increasing compressive displacement) 
in region (2). c) Buckled beam displaying positive stiffness responses at low and high 
compressive strain (regions (1) and (3)) and negative stiffness response at intermediate strain 
(region (2)). d) 5-magnet assembly displaying similar response to buckled beam: positive 
stiffness in region (1) occurs due to repulsion between the north pole of the moveable magnet 
and the north poles of the top two stationary magnets providing resistance to the compressive 
force vertically; in region (2) the repulsion between the north poles of the moveable magnet 
and the top two stationary magnets assists the force in displacing the system (i.e. reversal of 
the direction of deformation with respect to the force) corresponding to negative stiffness; 
repulsion between the north poles of the moveable magnet and the bottom two stationary 
magnets returns the system to positive stiffness response in region (3). 
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Figure 4. Interlocking hexagon assemblies and corresponding transverse contractile strain vs 
compressive axial strain data and compressive force vs displacement data. a) Assembly 
containing single conventional spring type occupying all key locations, corresponding to n1

v = 
0.333 and n1

o = 0.667. b) Assembly containing two PMI foam elements in the central vertical 
keyway positions (n1

v = 0.167 and n1
o = 0) and lower modulus open-cell polyurethane foam 

inserts in other keyways (n2
v = 0.167 and n2

o = 0.667) to minimise rotation of units due to 
edge effects, and thus ensure translation of units along the keyways was the predominant 
deformation mode in response to compressive loading of the assembly. Two 4mm thick 
transparent perspex face sheets connected to each other by four copper wire bands ensured 
out-of-plane buckling of the assembly during compression testing did not occur. c) Assembly 
containing single buckled beam spring type occupying all key locations (n1

v = 0.333 and n1
o = 

0.667). d) Assembly containing single 5-magnet spring type occupying all key locations (n1
v = 

0.333 and n1
o = 0.667).  
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Figure 5. a) Transverse strain as a function of axial strain for assemblies shown in Figure 4a-
d. b) Compressive force as a function of compressive axial displacement for assemblies 
shown in Figure 4a-d. Dot-dashed lines correspond to model predictions based on the 
measured single-element stiffnesses (Figure 3a and 3b) for the control and PMI foam 
assemblies (Supporting Information), and the dashed line is the least squares best fit line to 
the negative stiffness region of the magnets assembly. 
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Figure 6. Dependency of mechanical metamaterial properties and strain on sub-unit angle. (a) 
Incremental Poisson’s ratio (yx) as a function of global applied compressive strain (y) for an 
assembly of sub-units of edge lengths l1 = l2, infinitesimally narrow keyways having depths 1 = 2 = 0.5l1, containing a buckled beam spring type (k1 as in Figure 2a and 2c) occupying 
all vertical key locations (n1

v = 0.333 and n1
o = 0) and a constant stiffness spring type (k2) 

occupying all oblique key locations (n2
v = 0 and n2

o = 0.667). Dashed curves are yx vs y data 
for the cases of  = 22.5, 45, 60, 75 and 90° (y = 0 corresponds to the fully expanded 
structure in each case). Curves with symbols correspond to yx vs y data when Ey = 0 (for 
22.5 <  < 90°) for k2 = -0.25k10, 0 and 0.25k10, and define enclosed regions of simultaneous 
negative Poisson’s ratio and negative stiffness response. Points P and Q correspond to the 
strains where ky = 0 when k2 = 0, and points R and S to the strains where ky = 0 when k2 = -
0.25k10, and are the same data points as in Figure 2d for comparison. The boundaries (solid 
curves) are defined by the fully expanded (zero strain) and fully densified structures, and 
when one female keyway intersects with another sub-unit edge in the same sub-unit (i.e. when  = 22.5° for the parameter set used here). (b) xy vs x for same system as in (a) - curves with 
symbols correspond to Ex = 0. 
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Figure 7. Predicted metamaterial stiffness responses for off-set and/or variable spring 
configurations in an assembly of keyed regular hexagons. l1 = l2 = 35 mm,  = 60, 1 = 2 = 
0.5l1, a0 = 0.288l1, 10 = 20 = 0 = -0.167l1. a) Force-displacement curve for 3 off-set buckled 
beams (Spring 1: F = -0.000177075 + 0.00000071944 + 0.0153723 - 0.0000324362 - 
0.29619+ 0.00021464; Spring 2: F = -0.119768451 when < -3.33 mm and F = -
0.000122395 + 0.001816904 + 0.001576333 - 0.078755942 + 0.00131133 + 0.54337551 
when  > -3.33 mm; Spring 3: F = -0.120584879 when < 0 mm and F = -0.000085875 + 
0.002942544 - 0.029827223 + 0.060975632 + 0.24200148 - 0.12058488 when  > 0 mm). 
b) Force-displacement curve for 3 buckled beams (Spring 1: as in (a); Spring 2: F = -
0.000122395 + 0.000287034 + 0.0120963 - 0.0179232 - 0.27326+ 0.13808; Spring 3: F 
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= -0.0000858655 + 0.000438144 + 0.0096143 - 0.0306712 - 0.25227 + 0.27256). c) 
Normalised metamaterial stiffness (ky/k10) as a function of y for a 3 x 3 array of unit cells 
with spring type 1 occupying all keyways (m = 1, N = 54, n1

v = 0.333, n1
o = 0.667, solid 

curve), equal numbers of off-set springs 1, 2 and 3 from (a) distributed evenly throughout the 
system (m = 3, N = 54, n1

v = n2
v = n3

v = 0.111, n1
o = n2

o = n3
o = 0.222, dashed curve), and 

equal numbers of springs 1, 2 and 3 from (b) distributed evenly throughout the system (m = 3, 
N = 54, n1

v = n2
v = n3

v = 0.111, n1
o = n2

o = n3
o = 0.222, dot-dashed curve). 
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