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Highlights 10 

 11 

1. Fabrication of superhydrophobic aluminum alloy surfaces by chemical etching followed by 12 

organic molecule passivation. 13 

2. The formation of flake-like micro-nanostructure morphology of the low surface energy 14 

aluminum stearate on aluminum 15 

3. The complementary corrosion studies by polarization resistance and electrochemical 16 

impedance spectroscopy (EIS) 17 

4. The modulus of impedanceis found be 70 times larger for the superhydrophobic surfaces 18 

compared to the as-received aluminum alloy surface 19 

 20 
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 21 

ABSTRACT 22 

 23 

Superhydrophobic aluminum alloy surfaces are obtained by chemical etching using 1 M NaOH 24 

solution followed by passivation using 0.01 M ethanolic stearic acid (SA) solution. The formation 25 

of low surface energy aluminum stearate takes place during the passivation process between stearic 26 

acid and hydroxyl group terminated aluminum alloy surfaces. A schematic model of the SA 27 

passivation process on the –OH terminated Al-surfaces is presented in this work. The flake-like 28 

micro-nanostructure morphology of the low surface energy aluminum stearate increases the water 29 

contact angle by more than 150°, demonstrating the superhydrophobic properties. The corrosion 30 

current density reduces and polarization resistance increase systematically with increasing 31 

passivation time. The polarization resistance, calculated from the Tafel curve of the 32 

superhydrophobic surfaces prepared by stearic acid passivation for 60 min, is determined to be 137 33 

times larger than that of the as-received aluminum alloy substrate. Similarly, the modulus of 34 

impedance, as determined from electrochemical impedance spectroscopy (EIS), is found be 70 35 

times larger for the superhydrophobic surfaces compared to the as-received aluminum alloy surface. 36 

These results demonstrate that the superhydrophobic aluminum alloy surfaces created by chemical 37 

etching followed by passivation have superior corrosion resistance properties than the as-receive 38 

aluminum alloy substrate.  39 

 40 

Keywords: Corrosion resistance, Superhydrophobic aluminum alloy surfaces, Chemical etching, 41 
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Aluminum stearate, Potentiodynamic polarization, Electrochemical impedance spectroscopy (EIS) 42 

 43 

1. Introduction 44 

 45 

Superhydrophobicity is the property that describes the non-wetting characteristics of material 46 

surfaces. Superhydrophobic surfaces are attracting ever increasing attention from the scientists and 47 

engineers due to wide applications in corrosion resistance and anti-sticking of snow and ice and 48 

potential incorporation into eyeglasses, windows, self-cleaning automobile windshields, and other 49 

technologies [1-3]. Recently, various fabrication methods for superhydrophobic surfaces have been 50 

explored [4-16]. These methods are guided by the common principles of optimizing topography and 51 

lowering surface energy. In other words, both the surface geometrical structure and the chemical 52 

composition control the wettability of the solid surface. 53 

Chemical etching process is the process of removing a layer on a metal surface through a 54 

chemical reaction and is an effective method for obtaining rough surfaces. It has been widely 55 

used to fabricate superhydrophobic aluminum alloy surfaces [6, 7, 17-21]. Sarkar et al. obtained 56 

superhydrophobic aluminum surfaces by chemical etching followed by coating with an ultrathin rf-57 

sputtered Teflon film [14]. Saleema et al. used a one-step etching process to obtain a 58 

superhydrophobic aluminum alloy substrate with a NaOH and fluoroalkylsilane (FAS-17) mixed 59 

solution [6, 7]. Ruan et al. utilized HCl mixed with HF as an etchant on an aluminum alloy 60 

substrate followed by passivation with different modifiers such as dodecyl mercaptan (DDM), 61 

lauric acid, myristic acid and palmitic acid [17]. Similarly，HCl was also used by Escobar et al. 62 
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in a chemical etching process, together with passivation employing dodecanoic acid, to obtain 63 

superhydrophobic aluminum alloy substrates [18]. In addition, Liao et al. fabricated 64 

superhydrophobic aluminum alloy substrates by copper assisted chemical etching with HCl 65 

solution followed by passivation with hexadecyltrimethoxysilane [19]. 66 

A number of investigations have been performed on other superhydrophobic surfaces 67 

(apart from aluminum alloy substrates) obtained by chemical etching, such as 68 

superhydrophobic silicon etched by HF mixed with AgNO3 followed by passivation with 69 

trimethoxysilane [22], superhydrophobic titanium etched by NaCl followed by passivation with 70 

tridecafluoroctyltriethoxysilane [23], superhydrophobic zinc (Zn) etched by NaCl/NaNO3 71 

followed by passivation with fluorinated polymer [24], superhydrophobic magnesium etched by 72 

H2SO4/H2O2 followed by passivation with stearic acid (SA) [25] and superhydrophobic copper 73 

etched by HNO3 followed by passivation with 1H,1H,2H,2H-perfluorodecyltriethoxysilane 74 

(FDTES) [26]. 75 

It is well known that the contact of metals with water triggers corrosion; therefore, one may 76 

consider using superhydrophobic surfaces to repel water and thus prevent corrosion. The corrosion 77 

resistance properties of superhydrophobic aluminum alloy substrates have been studied in the 78 

literature [3, 27-29]. He et al. investigated the corrosion resistance of superhydrophobic aluminum 79 

alloy substrates, prepared by anodizing followed by passivation with myristic acid, via 80 

potentiodynamic polarization experiments as well as electrochemical impedance spectroscopy (EIS) 81 

[3]. A similar method for preparing superhydrophobic aluminum alloy substrates has also been used 82 

by Liu et al., and the reduced microbiologically influenced corrosion of superhydrophobic 83 



Page 5 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

5 
 

aluminum alloy substrates was investigated using EIS, polarization as well as scanning electron 84 

microscopy (SEM) [28]. Furthermore, Liang et al. developed a facile sol–gel method, with 85 

tetraethylorthosilicate (TEOS) and vinyltriethoxysilane (VTES) as co-precursors at room 86 

temperature, to create a superhydrophobic aluminum alloy substrate [27], the authors then 87 

characterized the corrosion resistance and durability of the superhydrophobic silica-based surface 88 

formed on the aluminum substrate in a corrosive NaCl solution via EIS measurements [27]. In 89 

another study by Liu et al. [29], the corrosion resistance properties of a superhydrophobic 90 

aluminum alloy substrate, fabricated by graphene spin-coated on the surface, were investigated and 91 

compared with those of the as-received aluminum alloy substrate. 92 

In our previous study, superhydrophobic copper surfaces were fabricated by a one-step 93 

electrochemical modification process with ethanolic stearic acid solution using a DC voltage [13]. 94 

Furthermore, the corrosion resistance of the superhydrophobic copper substrates was investigated 95 

by potentiodynamic polarization experiments [30]. The decrease of corrosion current density (Icorr) 96 

as well as the increase of polarization resistance (Rp) obtained from the polarization curves revealed 97 

that the superhydrophobic film on the copper surfaces improved the corrosion resistance of the 98 

copper substrate. In a recent study from our group, anti-corrosion and anti-icing superhydrophobic 99 

steel coatings were achieved by electrodeposition of Zn on steel followed by functionalization of Zn 100 

using an ultra-thin film of commercial silicone polymer [31].  101 

In the present study, superhydrophobic aluminum alloy substrates were prepared by chemical 102 

etching using alkaline NaOH solution followed by passivation with ethanolic stearic acid (SA) 103 

solution. Chemical etching has the technological advantages of being both cost-effective and easy to 104 
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scale up. The fabricated superhydrophobic aluminum alloy substrates were analyzed using both 105 

potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) to evaluate their 106 

corrosion properties.  107 

 108 

2. Experiments 109 

 110 

As starting materials, rolled sheets of AA 6061 aluminum alloy were chemically etched using 1 111 

M alkaline NaOH solution (pH of 14) in an ultrasonic bath. After cleaning with distilled water, the 112 

etched aluminum alloy substrate was dried at 70 °C in a closed oven for more than 10 hr. The 113 

passivation process was performed by immersing the etched aluminum alloy substrate at room 114 

temperature in 0.01 M ethanolic SA solution for a range of passivation times. The morphological 115 

analyses of the samples were performed using a scanning electron microscope (SEM, JEOL JSM-116 

6480 LV). The chemical composition of surfaces was analyzed by X-ray diffraction (XRD, D8 117 

discover with Cu Kα wavelength 0.154 nm), Fourier Transform Infrared spectroscopy (FTIR, 118 

Perkins Elmer Spectrum One) and x-ray photoelectron spectroscopy (XPS, VG ESCALAB 220iXL) 119 

The XPS spectra were collected using an Al Kα (1486.6 eV) x-ray source. The wetting 120 

characterization of the sample surfaces was carried out by measuring static and dynamic contact 121 

angles using a First Ten Angstrom contact angle goniometer (the static contact angle has been 122 

abbreviated as CA and the dynamic contact angle has been abbreviated as contact angle hysteresis 123 

(CAH)). The adhesion of the superhydrophobic aluminum alloy substrates was carried out 124 

according to the ASTM D3359 standard test method using a Cross Hatch Cutter, model Elcometer 125 
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107. The corrosion resistance properties of the samples were investigated via both potentiodynamic 126 

polarization experiments as well as electrochemical impedance spectroscopy (EIS). Electrochemical 127 

experiments were performed using a PGZ100 potentiostat and a 300 cm3-EG&G PAR flat cell 128 

(London Scientific, London, ON, Canada), equipped with a standard three-electrode system with an 129 

Ag/AgCl reference electrode, a platinum (Pt) mesh as the counter electrode (CE), and the sample as 130 

the working electrode (WE) [6]. For the potentiodynamic polarization experiments, the open-circuit 131 

potential was scanned from -250 mV to +1000 mV in a 3.5 wt.% NaCl solution. An attempt was 132 

made to perform EIS measurements using 3 wt.% NaCl, as 3.5 wt.% was more reactive, in the 133 

frequency ranges between 0.01 Hz and 100 kHz with a sine-wave amplitude of 10 mV at room 134 

temperature. 135 

 136 

3. Results and Discussion 137 

3.1 Superhydrophobic aluminum alloy surfaces prepared by chemical etching followed by 138 

SA passivation 139 

Figure 1(a) shows the SEM image of the surface of an as-received aluminum rolled sheet, 140 

which had a surface root-mean-square (rms) roughness of 0.45 µm and water contact angle (CA) of 141 

87 ± 3° (inset of the Figure). The surface of rolled aluminum sheets generally exhibits the rolled 142 

lines and therefore will have a certain inherent roughness [32]. The CA of the SA passivated 143 

aluminum alloy substrate was found to be only 110 ± 1°. Therefore, a pretreatment of chemical 144 

etching using a 1 M alkaline NaOH solution was performed to modify the surface of the as-received 145 

aluminum alloy substrate. The morphology of the etched aluminum alloy substrate is shown in 146 
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Figure 1(b). The NaOH etched aluminum alloy substrate (Figure 1(b)) was found to be rougher 147 

compared with the as-received aluminum alloy substrate (Figure 1(a)). Consequently, the surface 148 

roughness of the etched aluminum alloy substrate was increased to 1.38 ± 0.17 µm from 0.45 ± 0.03 149 

µm of the as-received aluminum alloy substrate. The CA on the NaOH etched aluminum alloy 150 

substrate was decreased to 34 ± 4°, which can be attributed to the increase of surface area as well as 151 

the possible change of surface composition. The Wenzel model and its mathematical equation 152 

(Equation (1)) [33] can be used to explain the decrease of CA assuming no change of surface 153 

composition due to chemical etching.  154 

 155 

                                              (Equation 1) 156 

 157 

where  is the CA of a smooth surface and  is the CA of a rough surface without any alteration 158 

of surface composition, the roughness factor Rw is the ratio of the true to the apparent surface areas. 159 

It is evident that Rw is always more than 1 as true surface area is larger than the apparent surface 160 

area due to the presence of roughness; therefore, as the CA of the as-received aluminum alloy 161 

substrate (assumed to be smooth) is 87 ± 3°, the CA of the etched rough surface would be smaller 162 

than 87 ± 3°. As the CA of the NaOH etched aluminum alloy substrate was 34 ± 4°, the Rw 163 

associated with the roughness of the etched substrate was calculated to be 15.84. However, it was 164 

not evident from the surface morphology that the surface area of the etched substrate could be 15 165 

times more than that of as-received aluminum alloy. Therefore, the change of chemical composition 166 

due to the chemical etching process also played a role in the change of CA on the etched aluminum 167 



Page 9 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

9 
 

alloy substrate. We will see further that the SA passivation can modify the morphology of the NaOH 168 

etched aluminum alloy substrate but is unable to modify the as-received aluminum alloy substrate, 169 

which may due to the surface composition of the latter. 170 

 171 
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Figure 1 SEM images of the surface of (a) as-received aluminum alloy substrate; 

(b) NaOH etched aluminum alloy substrate; (c-e) 5 s-, 1 min- and 24 min-SA 

passivated NaOH etched aluminum alloy substrates. The insets of Figure 1(a-e) 

show the water drops and CA on the respective surfaces. 

 
 

 172 

The NaOH etched aluminum alloy substrate was then passivated by SA for a range of 173 

passivation times varying from couple of seconds to a maximum of an hour. Figure 1(c-e) shows the 174 

morphologies of the NaOH etched aluminum alloy substrates followed by SA passivation for 5 s, 1 175 

min and 24 min. The flake-like micro-nanostructure features appeared on the etched surface after 176 

SA passivation for 5 s as shown in Figure 1(c). The inset of Figure 1(c) shows the image of a water 177 

drop with a CA of 145 ± 2°. The enhancement of the CA was due to the formation of low surface 178 

energy aluminum stearate (AlSA). The chemical analysis of these flake-like molecules is given in 179 

Figure 2(a). The number density of these flake-like micro-nanostructures increased by increasing 180 

the SA passivation time to 1 min, as shown in Figure 1(d). Consequently, the surface of etched 181 

substrate is nearly covered with these flake-like structures just after 1 min of SA passivation. In this 182 
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situation, the CA of this surface further increased to 154 ± 2°, as shown in the inset of Figure 1(d). 183 

The compactness of these structures was further increased on the surface by increasing the SA 184 

passivation time to 24 min, as shown in Figure 1(e). However, the CA did not increase much as 185 

shown in the inset of Figure 1(e), yielding a value of 155 ± 1°. Because the surface morphology 186 

from 60 min-SA passivation on etched aluminum alloy is very similar to that from 24 min-SA 187 

passivation, the SEM image of that surface is not presented. 188 

 189 

  

Figure 2(a) FTIR spectra of (a0) as-received aluminum alloy substrate, (a1) NaOH etched 

aluminum alloy substrate, and (a2) 5 s-, (a3) 1 min-, (a4) 24 min- and (a5) 60 min-SA passivated 

NaOH etched aluminum alloy substrates. Figure 2(b) depicts the variation in the area under the 

hydrocarbon (–CH2 and -CH3) peaks as a function of the SA passivation time. 

 190 

The infrared spectra of the as-received aluminum alloy substrate, the NaOH etched aluminum 191 

alloy substrate, and the SA passivated NaOH etched aluminum alloy substrates for a range of 192 

passivation times are shown in Figure 2(a). The four main infrared absorption zones were observed 193 

in all spectra. These zones are (i) a broad absorption peak between 3000-3500 cm-1, (ii) two sharp 194 



Page 12 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

12 
 

absorption peaks at 2856 and 2917 cm-1, (iii) an absorption zone approximately 1500 cm-1, and (iv) 195 

a peak approximately 750 cm-1. The broad absorption peak at 3420 cm-1 in zone (i) is assigned to -196 

OH bonding on the NaOH etched aluminum alloy substrate, as shown in Figure 2(a1). As is evident 197 

in comparing with the spectrum of the as-received aluminum alloy substrate (Figure 2(a0)), the 198 

presence of –OH bonding at the surface of the NaOH etched aluminum alloy substrate may be due 199 

to possible –OH bond formation during the reaction of NaOH with the aluminum alloy substrate, as 200 

shown below using Equations (2-5):  201 

 202 

                           (Equation 2) 203 

                                       (Equation 3) 204 

                                   (Equation 4) 205 

                                   (Equation 5) 206 

 207 

A similar reaction mechanism based on Equations 2 and 3 have been presented by Saleema et al. 208 

[6], who studied how to obtain superhydrophobic properties through a one-step process on 209 

aluminum alloy substrates using an alkaline NaOH solution containing FAS-17 molecules. 210 

However, they did not specify that the sodium aluminate (NaAlO2) further hydrolyzed in the 211 

continuing reaction to produce Al(OH)3 and NaOH. Furthermore, the presence of native oxides on 212 

aluminum alloy substrates most likely consists of aluminum oxide (Al2O3). Al2O3 on the surface of 213 

the aluminum alloy substrate can react with NaOH and form sodium aluminate (NaAlO2), which 214 

can then hydrolyze to Al(OH)3 and NaOH, as presented in Equation 4-5. Therefore, the above 215 
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chemical reactions show that the aluminum alloy substrates will be covered with a layer of Al(OH)3 216 

after chemical etching with NaOH. Evidently, the appearance of the –OH peak in the IR spectrum 217 

(Figure 2(a1)) of the NaOH etched aluminum alloy substrate is in good agreement with the 218 

chemical reactions.  219 

It was observed from the IR spectra of Figure 2(a) that the intensity of the –OH peak increased with 220 

the time of SA passivation. The formation of aluminum stearate (AlSA) (CH3(CH2)16COOAl(OH)2) 221 

(in Equation 6) as a reaction product between Al(OH)3, present on the aluminum alloy substrates 222 

after NaOH etching, and SA was what led to the enhancement of the –OH peak after SA passivation 223 

(Figure 2(a2-a5)). The schematic illustration of the formation of AlSA on NaOH etched aluminum 224 

alloy substrates, engrafted with Al(OH)3, is shown in Figure 3.  225 

           (Equation 6) 226 

 

Figure 3 Schematic illustration of the formation of the superhydrophobic surface prepared by SA 

passivation on NaOH etched aluminum alloy substrate. 
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 227 

It should be mentioned that, the appearance of –OH bonding on the NaOH etched aluminum alloy 228 

substrate is responsible for the formation of a superhydrophobic aluminum alloy substrate. 229 

However, the as-received aluminum alloy substrate without –OH bonding was unable to be 230 

passivated by SA solution, where it shows a maximum CA of 110 ± 1° 231 

Furthermore, the peaks at 414, 536 and 607 cm-1 in zone (iv) may have appeared due to the Al-O 232 

bonding. The peaks at 1582 cm−1 in zone (iii) as well as 750 cm-1 in zone (iv) have also been 233 

assigned to the bending absorption mode of –OH, and the intensity of the peaks was also found to 234 

increase with the SA passivation time. The increasing intensity of the –OH peak as well as –CH2 235 

bonding with increasing passivation time indicate that greater AlSA formation took place, or, in 236 

other words, more amounts of SA molecules were adsorbed on the NaOH etched aluminum alloy 237 

substrates during the passivation process. Furthermore, in zone (iii), the infrared absorption peaks at 238 

1586 and 1466 cm-1 were arising from –COOAl bonding; these peaks are more distinct on the IR 239 

spectrum of the samples passivated for 24 min (Figure 2(a5)). This is also in line with the analysis 240 

from SEM images (Figure 1(c-e)), where an increasing SA passivation time led to a thicker 241 

deposition of flake-like micro-nanostructures. 242 

Compared with the –COOZn bonding at 1550 cm-1 presented in our recent publication on the 243 

superhydrophobic aluminum alloy substrate by SA-functionalized ZnO nanoparticles [32], the –244 

COOAl bonding has shifted towards higher a wavenumber of 1586 cm-1 due to the lower atomic 245 

number of Al compared to that of Zn.  246 

In addition, the two main sharp absorption peaks in zone (ii), which appeared at 2917 and 2851 cm-247 
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1, are ascribed to the asymmetric, symmetric C-H stretching modes, respectively, of –CH2 groups on 248 

the AlSA molecules. Additionally, a very small peak at 2956 cm-1 was present in the spectrum due 249 

to the asymmetric in-plane C-H stretching mode of the –CH3 group on the AlSA molecules.  250 

The presences of absorption bands from –OH, –COOAl, -CH2 as well as –CH3 confirmed the 251 

engrafting process of SA on NaOH etched aluminum alloy substrates, as modeled in Figure 3. The 252 

model illustrates how hydrophilic components, such as –COO and –OH, bonding with the 253 

aluminum alloy substrates kept the hydrophobic components, such as –CH2 and –CH3, away from 254 

the surface, which effectively reduced the surface energy; hence, they are responsible for the 255 

superhydrophobic properties. In our previous study, -CH2, -CH3 and –COO absorption peaks were 256 

also observed in the spectrum of superhydrophobic copper surfaces fabricated by one-step 257 

electrochemical modification [30]. It should be mentioned that unlike copper stearate (CuSA), 258 

which does not have any –OH bonds [13], AlSA has two –OH bonds [34]. 259 

Because the intensity of the IR absorption peak of a molecule is proportional to its quantity, the 260 

peak area of –CH2 peak was monitored with the SA passivation time. It was observed that the 261 

intensity of the –CH2 peak of the passivated SA molecules increased with increasing SA passivation 262 

time, as shown in Figure 2(a2-a5). Figure 2(b) depicts the variation of the peak areas of the –CH2 263 

and –CH3 peaks as a function of the SA passivation time. Initially, a fast and almost linear increase 264 

in the peak area was observed. The peak area was calculated to be 216 for the sample with 5 s-SA 265 

passivation; the peak area increased to 388 for the sample with 1 min-passivation; the peak area 266 

further increased to 886 for the sample with 24 min-SA passivation. Further increase of the peak 267 

area to 1115 was also observed for the sample with 60 min-passivation. These observations are 268 
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consistent with the morphological analysis by SEM, where an increase in the SA passivation time 269 

led to an increase in the density and thickness of AlSA flake-like micro-nanostructures.  270 

Both XRD and XPS have been carried out to complement the observation of FTIR and validate the 271 

model on the formation of aluminum stearate. Figure 4 shows the low angle XRD between 2-12° 272 

and high angle XRD between 12-70° for both NaOH etched aluminum alloy substrate and SA 273 

passivated NaOH etched aluminum alloy substrates.  274 

 275 

  
Figure 4 X-ray diffraction (XRD) patterns of (1) chemical etched aluminum alloy substrate and 

(2) stearic acid (SA) passivation on NaOH etched aluminum alloy substrate in the 2θ range of (a) 

12-70° and (b) 2-12°. (Aluminum stearate is abbreviated as AlSA). 

 276 

The X-ray diffraction (XRD) patterns of (1) chemical etched aluminum alloy substrate and (2) 277 

stearic acid (SA) passivation on NaOH etched aluminum alloy substrate are presented in Figure 4. 278 

As evident from the patterns at higher 2θ range of 12-70° in Figure 4(a), the characteristic peaks of 279 

Al (111), Al (200) and Al (220) at 38.47°, 44.72° and 65.1°, respectively, due to the aluminum alloy 280 

substrate [JCPDS # 01-085-1327]. Others small peaks are due to the intermetallic phases or the 281 
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alloying elements. Figure 4 (b) shows the low angle XRD pattern between 2o to 12o. Figure 4(b2) 282 

shows two distinct diffraction peaks at 2.26° and 6.68° as compared to Figure 4(b1). These two 283 

peaks are due to the formation of aluminum stearate (AlSA). It is also complementary with the 284 

FTIR spectra of the SA-passivated NaOH etched aluminum alloy substrate, where the formation of 285 

aluminum stearate (AlSA) is discussed.  286 

 287 

  

  

Figure 5 XPS spectra of the SA passivated NaOH etched aluminum alloy substrates (a) survey, 

(b) C 1s, (c) O 1s, (d) Al 2p 
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 288 

Figure 5(a) shows the survey spectrum of the SA passivated NaOH etched aluminum alloy 289 

substrate. Two strong peaks of C 1s and O 1s are accompanied with a small peak of Al 2p. The 290 

Figure 5(b) shows the high resolution peak of C 1s that composed of a strong peak at 285 eV 291 

corresponds to C-C or C-H bonds and a tiny peak at 288.6 eV due to the –COO peak due to the 292 

formation of aluminum stearate. The ratio of the peaks area of –COO and C-C is found to be the 293 

0.06 which is the finger print on the engrafting of stearic acid on a metal surface. Similar 294 

observations are reported on interaction of stearic acid with zinc [35, 36]. Figure 5(c) shows the O 295 

1s peak that composed to two peaks having binding energy 530.2 eV and 531.9 eV corresponds to 296 

the bonding of Al-O and Al-OH, respectively [36]. Figure 5(d) shows the Al 2p that has two distinct 297 

peaks at 74.4 eV and 77.5 eV due to the bonding of Al-O and Al-OH, respectively [37]. The high 298 

resolution XPS peaks analysis on the C 1s, O 1s and Al 2p confirm the presence of –COO, C-H (or 299 

C-C) as well as Al-O and Al-OH as found by FTIR in Figure 2 and proposed in the model in Figure 300 

(3). 301 

 302 

Figure 6(a-c) depict the variation of surface rms roughness, CA and CAH as a function of SA 303 

passivation time on the NaOH etched aluminum alloy substrates. The substrate has a surface rms 304 

roughness of 1.38 ± 0.17 µm and a CA of 34 ± 4°. The surface rms roughness and CA of the 5 s-SA 305 

passivated NaOH etched aluminum alloy substrate increased to 2.23 ± 0.18 µm and 145 ± 2°, 306 

respectively, due to the formation of flake-like micro-nanostructures of AlSA. The transition from a 307 

hydrophilic surface, i.e., the NaOH etched aluminum alloy substrate, to superhydrophobic surfaces 308 
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occurred at the 1 min-SA passivation time mark, with a surface rms roughness of 2.29 ± 0.2 µm, a 309 

CA of 154 ± 2° and a CAH of 1.88 ± 0.4°. The appearance of surface superhydrophobicity was due 310 

to the formation of low surface energy AlSA, evident from the FTIR spectra, XRD patterns and 311 

XPS spectrum in Figure 2(a), Figure 4 and 5, respectively, as well as the presence of a micro-312 

nanorough flake-like morphology, evident from the SEM images in Figure 1(d). The surface rms 313 

roughness remained constant from 1 min- to 24 min-SA passivation time but there was a slight 314 

tendency towards reduced roughness for SA passivation longer than 24 min. This reduction might 315 

be an indicator of the compactness of the passivated AlSA formation on the NaOH etched 316 

aluminum alloy substrates. On the other hand, the CA and CAH of the surfaces prepared by SA 317 

passivation were observed to remain constant with SA passivation times between 1 min to 60 min. 318 

The CA variation with SA passivation time has been reported in the literature [17, 38]. Ruan et al. 319 

prepared a superhydrophobic aluminum alloy substrate via chemical etching with HCl/HF solution 320 

followed by passivation with a different fatty acid. An optimum modified time of 1.5 h on the 321 

etched aluminum alloy substrate (with a CA of 167.6°) was observed by using lauric acid as the 322 

modifier, and the CA reduced to 155.2° for 2 h passivation [17]. The authors mentioned that the 323 

appearance of the optimum CA might have resulted from the change of surface morphology and 324 

microstructure due to different etching and modification parameters. However, the change of the 325 

surface morphology or the chemical composition with passivation time in their study was not 326 

investigated as performed here using SEM and FTIR, XRD as well as XPS. In the study by Kim et 327 

al., a superhydrophobic substrate with a CA of 153° was produced by using a reactive ion etching 328 

process combined with hydrophobic coatings with PTFE [38]. The variation of the morphology 329 
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with PTFE passivation time was found to contribute to the variation of the CA. However, the 330 

chemical composition, one of the most important factors in superhydrophobicity, was not analyzed 331 

in their study. In the literature, NaOH as an etchant has been utilized to prepare superhydrophobic 332 

aluminum alloy substrates utilizing both one- and two-step processes [6, 21, 39].  333 

 334 

  

 

Figure 6(a) Surface root-mean-square (rms) roughness; (b) CA and (c) CAH variation as a 

function of SA passivation time on NaOH etched aluminum alloy substrates. 

 335 

We have recently reported the formation of superhydrophobic aluminum alloys substrates, 336 
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fabricated by electrodeposition of copper on aluminum alloy substrates followed by electrochemical 337 

modification using SA organic molecules, which provided similar CA [15]. Furthermore, Sarkar et 338 

al. (including one of the current authors) also studied superhydrophobic properties of ultrathin rf-339 

sputtered Teflon films coated HCl etched aluminum alloy substrates [14]; the authors reported the 340 

effect of the etching time on the aluminum alloy substrates. A maximum CA of 164 ± 3° was 341 

observed on the ultrathin rf-sputtered Teflon coated aluminum substrates that were HCl etched for 342 

2.5 min. Another study in our group fabricated superhydrophobic aluminum alloy substrates by 343 

monodispersive silica nanoparticles spin coating [40]. 344 

3.2 Corrosion resistance properties of superhydrophobic aluminum alloy substrates  345 

Figure 7(a) shows the potentiodynamic polarization curves of the as-received aluminum alloy 346 

substrate, NaOH etched aluminum alloy substrate, and 5 s-, 1 min-, and 24 min-SA passivated 347 

NaOH etched aluminum alloy substrates. Icorr was calculated from the extrapolation of the cathodic 348 

curves [41]. Rp was calculated by the Stern-Geary equation, given by 349 

                                                (Equation 7) 350 

where  are the anodic and cathodic Tafel slopes, respectively. 351 

 352 
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Figure 7(a) Potentiodynamic polarization curves of as-received aluminum alloy substrate, NaOH 

etched aluminum alloy substrate, and 5 s-, 1 min-, and 24 min-SA passivated etched aluminum 

alloy substrates. Variation of (b) Icorr and (c) Rp as a function of the SA passivation time on 

NaOH etched aluminum alloy substrates.  

 353 

The Icorr and Rp of as-received aluminum alloy substrate were found to be 2.89 ± 0.8 µA/cm2 354 

and 3.79 kΩ·cm2, respectively. The NaOH etched aluminum alloy substrate exhibited a larger Icorr of 355 

16.29 ± 2.8 µA/cm2 as well as a smaller Rp of only 2.24 kΩ·cm2. This could be explained by the 356 

increase of surface area as well as the loss of the protective oxide layer during the chemical etching 357 
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process. This is consistent with the existing literatures, where it has been shown that the increase of 358 

surface roughness leads to similar trends in Icorr and Rp [42-44]. For example, in the study by Walter 359 

et al. [43], different surface roughness of AZ91 magnesium alloy, were obtained by polishing with 360 

different grits of silicon carbide (SiC) and 3 µm diamond paste, measured using atomic force 361 

microscopy (AFM). Consequently, it was observed that the Icorr of the AZ91 alloy in 362 

potentiodynamic polarization tests increased from 2.19 µA/cm2 to 6.92 µA/cm2 with an increase in 363 

the surface roughness from 0.08 µm to 0.43 µm. 364 

 365 

Table 1 CA and CAH values and their respective Icorr and Rp values calculated by the 366 

Stern-Geary equation, as extracted from Figures 6 and 7 for SA passivation on 367 

NaOH etched aluminum alloy substrates for a range of passivation times. 368 

 369 

Sample 

condition/SA 

passivation time 

Contact angle 

CA (°) 

Contact angle 

hysteresis 

CAH (°) 

Corrosion 

current density 

Icorr (µA/cm2) 

Polarization 

resistance 

Rp (kΩ·cm2) 

As-received Al 87 ± 3 - 2.89 ± 0.8 3.79 ± 1.8 

Etched Al 34 ± 4 - 16.29 ± 2.8 2.24 ± 0.98 

5 s 145 ± 2 - 8.16 ± 2.3 2.50 ± 1.4 

1 min 154 ± 2 1.88 ± 0.4 1.76 ± 0.64 14.53 ± 2.72 

8 min 155 ± 1 2.03 ± 0.3 1.30 ± 0.53 21.83 ± 5.16 
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16 min 156 ± 2 2.09 ± 0.8 0.31 ± 0.12 101.59 ± 45 

24 min 156 ± 1 2.21 ± 0.6 0.035 ± 0.003 283.28 ± 120 

60 min 156 ± 1 1.96 ± 1.2 0.023 ± 0.003 521.59 ± 171 

 370 

In our case, the hydrophobic aluminum alloy substrate, prepared by 5 s-SA passivation on a 371 

NaOH etched aluminum alloy substrate, exhibited a lower value of Icorr of 8.16 ± 2.3 µA/cm2 and a 372 

higher Rp of 2.5 kΩ·cm2 compared with the aluminum alloy substrate treated with only NaOH 373 

etching, implying that the hydrophobic substrate inhibits corrosion of the substrate. However, these 374 

results are still inferior to that of the as-received aluminum alloy substrate, indicating that the 375 

hydrophobic surface having a water CA of 145 ± 2° is not resistant enough to prevent chemical 376 

attack from a corrosive environment. 377 

However, both the anodic and cathodic current densities of superhydrophobic substrates, 378 

prepared with SA passivation longer than 1 min on NaOH etched alloy substrates, were 379 

significantly reduced, as observed in Figure 7(a). This reduction is due to a restricted supply of 380 

oxygen, as well as due to water-limiting oxygen and water reduction [45]. It is generally believed 381 

that the air trapped on the superhydrophobic surfaces behave as a dielectric for a parallel plate 382 

capacitor, which inhibits the electron transfer between the aluminum alloy substrate and the 383 

electrolyte and hence protects the substrate. The reduction in anodic current density of the 384 

superhydrophobic aluminum alloy substrates indicated that the anodic dissolution process was 385 

inhibited or postponed compared with the as-received aluminum alloy substrate [46]. Table 1 and 386 

Figure 7(b-c) show the variation of Icorr and Rp of the prepared samples. It should be mentioned that 387 

the 1 min-passivated NaOH etched aluminum alloy substrate, exhibiting a CA of 154 ± 2°, had a 388 
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much lower Icorr of 1.76 ± 0.64 µA/cm2 and a higher Rp of 14.53 kΩ·cm2 compared with the as-389 

received aluminum alloy substrate. With increasing SA passivation time up to 8 min and 16 min, 390 

Icorr values of the superhydrophobic aluminum alloy substrates reduced to 1.3 ± 0.53 µA/cm2 and 391 

0.31 ± 0.12 µA/cm2, and Rp values increased to 21.83 kΩ·cm2 and 101.59 kΩ·cm2, respectively. The 392 

Icorr further decreased notably to 0.035 ± 0.003 µA/cm2 and Rp increased to 283.28 kΩ·cm2 for 24 393 

min-SA passivation on NaOH etched aluminum alloy substrate. The Rp was found to increase as 394 

high as 521.59 kΩ·cm2 after 60 min-SA passivation. It can be concluded that the Icorr value for the 395 

superhydrophobic aluminum alloy substrates were much lower than that of the as-received sample, 396 

and Icorr was found to decrease gradually with the increase of SA passivation time; on the other 397 

hand, the Rp values increased with the extended SA passivation time. Both the reduced Icorr and the 398 

enhanced Rp indicate that preparation by chemical etching followed by SA passivation process is 399 

effective for improving the corrosion resistance properties. It has been further shown that the 400 

corrosion inhibition of superhydrophobic surfaces by longer SA passivation times is superior to that 401 

of shorter passivation times. 402 

It was observed that the corrosion potential (Ecorr) increased as a function of the SA passivation 403 

time, from -0.627 V for 5 s-SA passivation to -0.578 V for 60 min-passivation on NaOH etched 404 

aluminum alloy substrates. This also suggests increasing corrosion resistance of the samples with 405 

extended passivation time. The more positive Ecorr indicated that the surface could better prevent 406 

corrosion owing to the increasing density of AlSA molecules formed on the etched aluminum alloy 407 

substrates. Brassard et al. [31] has discussed the variation of Ecorr on different Zn coated steel 408 

substrates followed by passivation with RTV-silicone and showed that superhydrophobic surfaces 409 
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had higher Ecorr compared to as-received aluminum alloy substrates. In our case, however, the Ecorr 410 

increased with an increasing number density of AlSA molecules, that is, the Ecorr still increased even 411 

when the CA remained constant on the superhydrophobic substrates prepared by different SA 412 

passivation times on the NaOH etched aluminum alloy substrates. 413 

In the present study, another method was applied for calculating Rp, namely from the slope of 414 

the linear potential-current (E-I) curves by varying the potential ±10 mV around the corrosion 415 

potential (Ecorr) and using Ohm’s law (as shown in Figure 8(a)) 416 

                                                     (Equation 8) 417 

where E and I are the potential and current, respectively. 418 

The Rp calculated by Ohm’s law (Rp1) values versus the Rp calculated by Stern-Geary equation 419 

(Rp2) values are plotted in Figure 8(b). As can be observed, there is excellent agreement between 420 

the Rp values calculated by the two methods. Furthermore, to evaluate the difference between Rp1 421 

and Rp2, the relative error between them can be expressed as follows: 422 

                                  (Equation 9) 423 

According to the calculation, the relative error associated with corresponding Rp1 and Rp2 424 

values is in the range of 10-20%, which indicates a good agreement between the Rp calculated by 425 

both Ohm’s law and the Stern-Geary equation. The presence of small differences between the Rp 426 

values may be due to the differences in the Tafel slopes (βa and βc) and the slope of  chosen in 427 

the analysis of the polarization curves. In this article (as well as in Table 1), the presented Rp was 428 

calculated using Stern-Geary equation (Equation 7). 429 

The corrosion inhibition mechanism of superhydrophobic substrates by NaOH etching and SA 430 
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passivation is similar to that in our previous study on the corrosion properties of superhydrophobic 431 

copper surfaces [30]. In that study, the superhydrophobic copper surfaces, fabricated by one-step 432 

electrochemical modification in an ethanolic SA solution, demonstrated improved corrosion 433 

resistance properties with increasing electrochemical modification time. In the present study, the 434 

corrosion properties of the etched and passivated substrates are significantly improved compared to 435 

the as-received substrate. The presence of the superhydrophobic AlSA flake-like morphology on the 436 

aluminum alloy substrate acted as a physical barrier to retard electrolyte penetration, as 437 

demonstrated by the gradual reduction of Icorr as well as enhanced Rp for longer SA passivation 438 

times. The corrosion test performed by Saleema et al. on a superhydrophobic aluminum alloy 439 

substrate prepared by a one-step process using a mixture of NaOH and FAS-17 solution did not 440 

provide any polarization data [6]; however, the superhydrophobic substrates formed corrosion pits 441 

after the polarization experiment. In the published literature, polarization curves have been widely 442 

used to analyze the corrosion resistance of superhydrophobic substrates; however, the Rp of 443 

superhydrophobic substrates compared with those of the as-received substrates were not presented 444 

in these studies [3, 47-49]. On the other hand, superhydrophobic coatings have been fabricated 445 

using myristic acid with cerium chloride solution on copper substrates [50]. In this study, 446 

polarization curves were presented to quantify the corrosion properties of Ce deposited 447 

superhydrophobic coatings, which had better corrosion resistance than the bare copper substrate. As 448 

the authors did not present the Rp of their coatings, we have used their values for βa, βc and Icorr to 449 

calculate the Rp of superhydrophobic Ce coatings in NaCl solution (3.5 wt.%) using the Stern-Geary 450 

equation (Equation 7): the calculated value of Rp was found to be 7.81 kΩ·cm2. This calculated Rp 451 
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value of for the Ce coated superhydrophobic copper substrate is much less than those for our 452 

fabricated superhydrophobic substrates. Evidently, the Rp value of our superhydrophobic substrate 453 

prepared by 60 min-SA passivation after NaOH etching is 66 times more than that of the 454 

superhydrophobic copper substrate with Ce coating.  455 

 456 

  

Figure 8(a) Potential-current (E-I) curves from varying the potential ±10 mV around the 

corrosion potential (Ecorr) for calculating Rp by Ohm’s law; (b) Correlation between Rp 

calculated by (i) Ohm’s law (Rp1) and (ii) the Stern-Geary equation (Rp2). R2 quantifies a 

measure of the goodness-of-fit of the linear regression. 

 457 

Figure 9 shows the morphological and chemical composition changes of the hydrophobic substrates 458 

prepared by 5 s-SA passivation and of superhydrophobic substrate that was prepared by 24 min-SA 459 

passivation after corrosion tests. Compared with the image of the hydrophobic substrate before 460 

corrosion testing, (Figure 9(a)), the SEM image of hydrophobic aluminum alloy substrate after 461 

corrosion testing clearly indicates the formation of corrosion pits as marked by arrows in Figure 462 

9(c); additionally, the CA was found to decrease from 145 ± 2° to 124 ± 6° after the corrosion test. 463 
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The intensities of the –CH2, -CH3 and -COO peaks in the FTIR spectrum of the hydrophobic 464 

substrate after corrosion were found to clearly decrease, as shown in the inset of Figure 9(e). 465 

However, the surface morphology of superhydrophobic substrate remained the same before and 466 

after the corrosion test, as shown in Figure 9(b, d)). Furthermore, no discernible variation in the 467 

intensities of the –CH2, -CH3 and -COO peaks in the FTIR spectrum of the superhydrophobic 468 

substrate were found before and after the corrosion test, as shown in Figure 9(f)). The inset images 469 

of water drops also indicate the wetting properties remained the same. These results are consistent 470 

with those from the polarization curves, which indicated that the superhydrophobic aluminum alloy 471 

substrates had superior corrosion resistance as compared with both the as-received and hydrophobic 472 

aluminum alloy substrates. As mentioned before, in the study by Saleema et al. on the corrosion 473 

resistance property of superhydrophobic aluminum substrates prepared by chemical etching [6], a 474 

poor corrosion resistance was observed in the superhydrophobic substrates, where a number of pits 475 

formed after corrosion testing. Several other studies have also reported on the corrosion resistance 476 

properties of superhydrophobic substrates [51-53]; however, until the current study, other works 477 

have not reported on the variations in morphological, compositional and wetting properties of 478 

superhydrophobic substrates.  479 

 480 
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Figure 9 SEM images of the surfaces of the (a) 5 s- and (b) 24 min-passivated NaOH 

etched aluminum alloy substrates before corrosion, and (c-d) the surfaces after 
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corrosion testing, respectively. The inset images show the water drops on the 

corresponding surfaces. Figure 9(e-f) shows FTIR spectra of the 5 s- and 24 min-

passivated NaOH etched aluminum alloy substrates before (I) and after (II) 

corrosion, respectively. 

 481 

An attempt has been made to evaluate the corrosion resistance of superhydrophobic surfaces using 482 

electrochemical impedance spectroscopy (EIS) as a complementary tool to polarization resistance. 483 

EIS was performed after immersing the samples in a salt solution for approximately 10 hr. The EIS 484 

data have been analyzed in light of the analysis presented on the superhydrophobic surfaces 485 

prepared on aluminum alloy substrates by Liu et al. [29] and Liang et al. [27]. Figure 10 shows the 486 

Nyquist and Bode plots as well as the equivalent electrical circuits for the EIS data from the as-487 

received aluminum alloy substrate and the superhydrophobic aluminum alloy substrate prepared by 488 

24 min-SA passivation. The graphs were plotted from the fitted data based on the equivalent 489 

electrical circuit (see the supporting information for both original and fitted EIS plots). Specifically, 490 

Figure 10(a) shows the Nyquist plots, which present the real component of impedance (Zreal or ) 491 

versus the imaginary component (Zimaginary or ) on a linear scale. Additionally, Figure 10 shows 492 

the Bode plots, (b) modulus of impedance (|Z|) vs. frequency and (c) phase angle vs. frequency. The 493 

diameter of the semicircle in the Nyquist plot signifies the charge transfer resistance (Rct) of the 494 

double layer formed at the interface between the sample surface and the corrosive medium. The 495 

semicircle diameter of the Nyquist plot of the as-received aluminum alloy substrate was found to be 496 

1.46 kΩ·cm2 and is presented as an inset in Figure 10(a). On the other hand, two semicircles were 497 

observed on the Nyquist plot of the superhydrophobic aluminum alloy substrate, as shown in Figure 498 
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10(a). Among them, the smaller semicircle with a diameter of 29 kΩ·cm2 at higher frequency (close 499 

to the coordinate origin) represents the resistance of the superhydrophobic thin films (RSH), and the 500 

second large semicircle with a diameter of 95 kΩ·cm2 represents charge transfer resistance (RctSH) 501 

of the double layer at the interface between the superhydrophobic surface and the salt solution. The 502 

large value of impedance of the superhydrophobic film compared to the as-received aluminum alloy 503 

surfaces shows that the superhydrophobic surfaces are more resistant against corrosion.  504 

 505 

 

 

 

Figure 10(a) Nyquist plots, (b) Bode modulus diagrams and (c) Bode phase angle 

diagrams of as-received aluminum alloy substrate and superhydrophobic aluminum 
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alloy substrate. (d) Electrical equivalent circuits for EIS of (d1) as-received 

aluminum alloy substrate and (d2) superhydrophobic aluminum alloy substrate. The 

insets image in (a) shows the enlargement of the high frequency region of the plots. 

 506 

The top of Figure 10(b) shows the Bode plot of the superhydrophobic substrate, and bottom portion 507 

shows the Bode plot of the as-received aluminum alloy substrate. As observed in the bottom part of 508 

Figure 10(b), the as-received aluminum alloy substrate had a |Z| value of only 11.6 Ω·cm2 at the 509 

high frequency of 104 Hz, in good agreement with the results presented by Liu et al. [29] and Liang 510 

et al. [27]. However, the superhydrophobic substrate exhibited a |Z| value of 1.74 kΩ·cm2, which is 511 

nearly 150 times larger than that of the as-received aluminum alloy substrate at the same frequency. 512 

Similarly, at the low frequency of 0.01 Hz, the |Z| value of the as-received aluminum alloy substrate 513 

was found to be 1.06 kΩ·cm2. In contrast, it was as high as 73.4 kΩ·cm2 on the superhydrophobic 514 

aluminum alloy substrate. In general, AC impedance at high frequencies is the response of coatings 515 

with the solution and, at low frequency, reflects Rct and the double-layer capacitance [54]. It is well 516 

known that the larger value of |Z| in the low frequency region signifies a better barrier in the thin 517 

film [52]. Therefore, according to the analysis of the Bode plots, the superhydrophobic substrate 518 

was found to have better corrosion resistance as compared with the as-received aluminum alloy 519 

substrate. It agrees well with the results from the polarization experiments, where Rp of the 520 

superhydrophobic surface was larger than that of the as-received aluminum alloy substrate, as 521 

shown in Table 1. This is comparable to the study by Liu et al. [29], where it was concluded, based 522 

on results from Bode plots, that the corrosion resistance of the graphene coated aluminum alloy was 523 

an order of magnitude higher than that of the uncoated aluminum alloy substrate. In the present 524 
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study, compared with the as-received substrate, the corrosion resistance of the superhydrophobic 525 

aluminum alloy substrate was close to two orders of magnitude higher at low frequencies. This 526 

indicates that our superhydrophobic aluminum alloy substrate has better corrosion resistance than 527 

the graphene coated substrate [29]. This difference may be due to differences in the physical 528 

properties of graphene, in the case of Liu et al., and aluminum stearate, in the current case.  529 

Recently, Liang et al. fabricated silica-based superhydrophobic coatings on aluminum alloy 530 

substrates and performed EIS analysis [27]. In their work, the |Z| at 10 kHz of the superhydrophobic 531 

aluminum alloy substrate with a silica-based film, immersed for 30 minute in a salt solution, was 532 

reported to be 100 Ω·cm2; the |Z| of the same sample was reported to be 2.5 Ω·cm2 after increasing 533 

the immersion time to 24 hr. This reported |Z| value is even lower than those of their as-received 534 

aluminum alloy substrates. While comparing the impedance at 0.01 Hz, the |Z| value of the 30 min-535 

immersed silica-based film coated superhydrophobic samples was reported to be 560 kΩ·cm2, 536 

which further reduced to 16 kΩ·cm2 after 8 hr of immersion. This value is very similar to that from 537 

our observations.  538 

The Bode phase plot of the superhydrophobic substrate exhibits the two time constants, as shown in 539 

Figure 10(c). At the frequency of 25 Hz, the phase angle of the as-received aluminum alloy 540 

substrate arrived at the maximum value of 78°. However, the phase angle of the superhydrophobic 541 

surface exhibited the minimum value of 18.4° at a similar frequency. It is comparable with the 542 

study of Liu et al., where two time constants were observed on the superhydrophobic aluminum 543 

alloy substrate fabricated by graphene spin coating [29]. The authors observed that the maximum 544 

phase angle value for the AA2024 aluminum alloy substrate was 75° and the lowest phase angle 545 
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value of for the sample with the superhydrophobic graphene coating was 40° at the same frequency. 546 

It is well known that phase angle (φ) is defined by the expression in Equation 10. 547 

 548 

                                         (Equation 10) 549 

 550 

Thus, a smaller phase angle indicates a larger value of Zreal (or ), which corresponds to a large 551 

diameter in the Nyquist plot. In the current results from the Bode plots, the obtained phase angle of 552 

18.4° for the superhydrophobic substrate is much smaller than that of 40° as reported by Liu et al., 553 

suggesting our superhydrophobic surface has better corrosion resistance than samples from the 554 

latter.  555 

Figure 10(d1) shows the equivalent electrical circuit of the as-received aluminum alloy surface in 556 

reaction with the salt solution, as modeled by EIS. In this circuit, Rs is the resistance of the solution; 557 

Rct and CPE are the charge transfer resistance and the constant phase element associated with the 558 

double layer formed at the interface between the aluminum surface and salt solution, respectively. 559 

In the case of superhydrophobic coatings on the aluminum surface, an extra resistance RSH and 560 

constant phase element CPESH have been included in the circuit due to the dielectric nature of the 561 

superhydrophobic coating. As the interaction of the salt with the superhydrophobic surface will be 562 

different compared to that with untreated aluminum, the charge transfer resistance and constant 563 

phase element associated with the double layer at the interface have been presented by RctSH and 564 

CPEctSH. The assumption of this model is well supported by the observation of two time constants in 565 

the Bode plot.  566 
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Finally, the mechanical properties of the superhydrophobic substrate are very important for its uses 567 

against surface erosion, friction and corrosion [30]. The adhesion strength of all surfaces prepared 568 

by SA passivation after NaOH etching was found to be 5B, tested according to the ASTM D3359 569 

standard. 570 

 571 

4. Conclusions 572 

 573 

Chemical etching of aluminum alloy substrates by NaOH followed by stearic acid (SA) passivation 574 

was used to prepare superhydrophobic aluminum alloy surfaces, and their corrosion resistance 575 

properties were investigated. The SA passivation process produces flake-like aluminum stearate 576 

micro-nanostructures on NaOH etched aluminum alloy substrates. The number density of these 577 

flake-like structures is observed to increase with the extension of SA passivation time. 578 

Investigations into the wetting properties of these surfaces demonstrated water contact angles of 579 

more than 150° after 1 min of SA passivation, which remained constant to 60 min of passivation 580 

time. However, the polarization resistance determined from polarization curves increases gradually 581 

from 3.79 to 521.59 kΩ·cm2 for the as-received aluminum alloy substrates and the 582 

superhydrophobic surface prepared SA passivation for 60 min, respectively. Electrochemical 583 

impedance spectroscopy (EIS) shows that the moduli of impedance |Z| at lower frequencies for the 584 

as-received aluminum substrate and superhydrophobic aluminum substrate are 1.06 kΩ·cm2 and 585 

73.4 kΩ·cm2, respectively. The higher values of the polarization resistance and modulus of 586 

impedance of the superhydrophobic aluminum surfaces with respect to the as-receive aluminum 587 



Page 37 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

37 
 

alloy surface demonstrate that the superhydrophobic surfaces prepared by chemical etching 588 

followed by SA passivation have superior corrosion resistance properties. 589 
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