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Background: A novel test using whole-body barometric plethysmography (WBBP) was developed recently to diagnose

brachycephalic obstructive airway syndrome (BOAS) in unsedated French bulldogs.

Hypothesis/Objectives: The hypotheses of this study were: (1) respiratory characteristics are different between healthy non-

brachycephalic dogs and brachycephalic dogs; and among pugs, French bulldogs, and bulldogs; and (2) obesity and stenotic

nares are risk factors for BOAS. The main objective was to establish a diagnostic test for BOAS in these 3 breeds.

Animals: A total of 266 brachycephalic dogs (100 pugs, 100 French bulldogs, and 66 bulldogs) and 28 nonbrachycephalic

dogs.

Methods: Prospective study. Exercise tolerance tests with respiratory functional grading, and WBBP were performed on

all dogs. Data from WBBP were associated with functional grades to train quadratic discriminant analysis tools to assign

dogs to BOAS+ and BOAS- groups. A BOAS index (0–100%) was calculated for each dog. Receiver operating characteristic

(ROC) curves were used to evaluate classification ability.

Results: Minute volume was decreased significantly in asymptomatic pugs (P = .009), French bulldogs (P = .026), and

bulldogs (P < .0001) when compared to nonbrachycephalic controls. Respiratory characteristics were different among breeds

and affected dogs had a significant increase in trace variation. The BOAS index predicted BOAS status for each breed with

94–97% (95% confidence interval [CI], 88.9–100%) accuracy (area under the ROC curve). Both obesity (P = .04) and steno-

tic nares (P = .004) were significantly associated with BOAS.

Conclusions and Clinical Importance: The WBBP can be used as a clinical tool to diagnose BOAS noninvasively and

objectively.

Key words: Brachycephalic obstructive airway syndrome; Quadratic discriminant analysis; Respiratory function test;

Whole-body barometric plethysmography.

Brachycephalic obstructive airway syndrome (BOAS)
is common among extremely brachycephalic breeds

of dogs.1,2 Physical examination, history, and lesion
assessment under sedation or general anesthesia are used
to diagnose BOAS.3 These methods however are either
subjective or invasive, which creates difficulty when eval-
uating disease progression and the effectiveness of treat-
ment in a clinical setting. Hence, development of new
methods for non-invasive and objective measurements of
respiratory function in affected dogs is crucial.

The use of pneumotachographs along with analysis
of tidal breathing flow volume loops (TBFVL), as well
as the forced oscillation technique, have allowed pre-

vious measurement of respiratory function in conscious
dogs and detection of airway obstructions.4–6 However,
these techniques require use of a tight-fitting facemask
attached to the pneumotachograph, which is particu-
larly difficult to apply to a brachycephalic dog’s muzzle
without having air leakage or causing stress in
untrained dogs. Whole-body barometric plethysmogra-
phy (WBBP) is a non-invasive technique of measuring
respiratory function that has been validated and utilized
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AIC Akaike’s information criterion

BCS body condition score
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BW body weight
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EMMS electromedical measurement systems
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MV minute volume

OR odds ratio

PEF peak expiratory flow rate

PENH enhanced pause

PIF peak inspiratory flow rate

QDA quadratic discriminant analysis

ROC receiver operating characteristic

RR respiratory rate
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SD standard deviation

TBFVL tidal breathing flow volume loops

Te expiratory time

Ti inspiratory time

TV tidal volume

WBBP whole-body barometric plethysmography
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in unrestrained unsedated experimental mice to charac-
terize respiratory patterns during sleep and wakeful-
ness.7–10 This technique has also been used in
experimental and clinical studies using dogs and cats
for pharmacological studies and respiratory disor-
ders.11–21 Our previous study on French bulldogs
showed that respiratory airflow characteristics obtained
from WBBP are distinguishable between BOAS-affected
and clinically healthy French bulldogs.18 Affected dogs
showed high variations in respiratory parameters caused
by dynamic obstructions and multiple lesion sites.
Quadratic discriminant analysis (QDA) was developed
as a classifier using the respiratory data obtained from
WBBP and the BOAS index that was proposed can be
used for diagnostic and screening purposes.

In addition to French bulldogs, pugs and bulldogs also
are reported to be highly predisposed to BOAS.1,2,22,23

Although the differences in anatomy and BOAS lesion
sites among the 3 extremely brachycephalic breeds have
been investigated recently,24–27 studies on respiratory
characteristics in different brachycephalic breeds are lim-
ited. A previous study investigated the differences in res-
piratory parameters among healthy nonbrachycephalic
dogs, BOAS-affected and clinically healthy bulldogs and
Boston terriers.5 Another study compared respiratory
parameters between healthy nonbrachycephalic dogs and
BOAS-affected dogs (bulldogs, pugs, Bordeaux dogs,
and Shar-Pei dogs) before and after upper airway correc-
tive surgery.11 Both studies identified significant differ-
ences in respiratory variables between healthy
nonbrachycephalic dogs and BOAS-affected brachy-
cephalic dogs, but did not show differences in most respi-
ratory variables between clinically healthy (or BOAS-
affected dogs postoperatively) and BOAS-affected
brachycephalic dogs. Brachycephalic characteristics that
have been associated with BOAS include stenotic nares
and obesity.1,28–30 Their effects on respiratory function,
however, have not yet been assessed.

The questions asked in this study were: (1) whether
respiratory characteristics are distinguishable between
affected and nonaffected dogs of different breeds, and
among the 3 extremely brachycephalic breeds; and (2)
whether obesity and stenotic nares are risk factors for
BOAS. A major purpose of this study was to develop a
noninvasive diagnostic test for BOAS.

Materials and Methods

Animals

Our prospective study included pugs, French bulldogs, and bull-

dogs referred for upper airway consultation to the Queen’s Veteri-

nary School Hospital (QVSH), University of Cambridge (termed

“clinical dogs”), as well as pet dogs of the selected 3 breeds that

were volunteered by UK owners and breeders between September

2011 and June 2015 (termed “study dogs”). A detailed history of

each dog was taken from owners including type, severity, fre-

quency and circumstances of occurrence of respiratory signs.

Exclusion criteria included age <1 year, previous upper airway sur-

gery, history and clinical findings of lower airway disease, or some

combination of these. Nonbrachycephalic dogs referred to the

QVSH for reasons other than respiratory disease, and staff-owned

dogs were included in the study as controls. All control dogs

underwent physical examination by the investigators to rule out

airway disease. Dogs that were on medications that may change

respiratory parameters (eg, prednisolone, other anti-inflammatory

drugs) were excluded from the study. Work was performed under

informed ethical consents CR62 and CR63 from the Department

of Veterinary Medicine, University of Cambridge.

Methods

Respiratory Functional Grading and Risk Factor Assessments for

BOAS. Each dog was graded for functional severity of BOAS

using a previously established 4-point functional grading system

(Table 1) based on clinical evaluation before and after a 3-minute

exercise tolerance test (ETT).18 BOAS functional Grade 0 dogs

(asymptomatic, BOAS free) and Grade I dogs (mild BOAS, dog

shows mild respiratory noise but exercise tolerance is unaffected)

were considered clinically healthy for their breed. Grade II dogs

(moderate BOAS, dog requires medical attention such as weight

control, surgical intervention or both) and Grade III dogs (severe

BOAS, dog requires immediate surgical intervention) were consid-

ered clinically affected. These results were used in further training

of the computational classifier.

In addition to body weight measurement, a standard assessment

of body fat (body condition score [BCS] on a 1–9 point scale)31

was performed on each dog. A BCS ≥7 was categorized as obese.

Severity of nostril stenosis was examined. Open or mild stenotic

nares were considered normal for the breeds, whereas moderate or

severe stenosis was defined as “stenotic nares” (Fig 1).

Non-Invasive Respiratory Function Test Using Whole-Body

Barometric Plethysmography. Whole-body barometric plethysmog-

raphy was performed using 2 barometric chambers: ElectroMedi-

cal Measurement Systems (EMMS) model PLY370 (inner volume

175 L) for small dog breeds and model PLY360 (inner volume

280 L) for middle-sized to large breeds.a The chambers were

equipped with 4 ports (pneumotachographs) on the upper surface.

A balanced bias airflow of room air (20 L/min) was supplied (bias

flow regulator BFL0404, EMMS) to maintain the O2 concentra-

tion and prevent CO2 accumulation. A CO2 concentration sensor

was equipped at the side of the chamber. One pole of a pressure

transducer (TRD5701, EMMS) was open to the main chamber

and the other pole was open to a reference chamber (chamber

PLY370) or to the exterior room environment (chamber PLY

360). Transducer signals were amplified using a strain gauge

amplifier and were sampled by a commercial software.b Calibra-

tion of the chamber pressure signal was performed dynamically

before each test by injecting 50 mL of room air into the chamber

and integrating under the resultant flow curve. The flow reading

was tested by continuous cycles of injecting and withdrawing

10 mL, 20 mL, 30 mL of air into and from the chamber. The cali-

bration procedure was repeated if tidal volume reading errors

exceeded �10%. The flow was measured via pseudoflow, with the

animal completely unrestrained inside the chamber. The pressure

transducer measured the pressure increase caused by the added

temperature and humidity of the inspired air on inspiration, and

the pressure decrease caused by cooling on expiration (minus any

small changes caused by oxygen, CO2, and water vapor exchange

across the lung surface). This pressure difference, again measured

via a reference environment, was directly proportional to flow.

The pseudoflow signals were analyzed to obtain respiratory

parameters including: respiratory rate (RR, breaths/minute), inspi-

ratory time (Ti, s), expiratory time (Te, s), tidal volume (TV, mL),

minute volume (MV = TV 9 RR, mL), peak inspiratory flow rate

(PIF, mL/s), peak expiratory flow rate (PEF, mL/s), relaxation

time (RT, time point when 65% of TV was expired), pause ([Te-

RT]/RT), and enhanced pause (PENH = [PEF/PIF] 9 pause).
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Detailed protocols, data acquisition of variables, and data pro-

cessing using WBBP for unrestrained, unsedated conscious dogs

have been described previously.18 Briefly, after clinical examina-

tion, each dog was placed in the chamber. Acclimatization

(5–10 minutes) was followed by a recording period of 20 minutes.

Dogs that were intolerant to the procedure (ie, showed signs of

anxiety) after 2 attempts were excluded from the study. Each

breath cycle was recognized automatically by the eDacq software.b

All respiratory cycles that had differences >20% between inspira-

tory and expiratory volumes were excluded automatically. Periods

of body movement, sniffing, or vocalization that caused artifacts

were identified using the recorded surveillance video and elimi-

nated manually. Twenty representative, consecutive, resting

breaths during wakefulness were collected for further data analy-

sis. An ETT for functional grading was performed after WBBP

testing to avoid possible alterations of baseline respiratory func-

tion after exercise.

Classifier Design for Discrimination between Grade 0/I and Grade

II/III Dogs. The classifier design was based on the model estab-

lished for French bulldogs in our previous study.18 Briefly, the

4-point functional grades of dogs were used as classes in training

the QDA-based classifier.32 The QDA generates a quadratic deci-

sion surface in the feature space to separate classes. In a proba-

bilistic setting where 4-class QDA corresponds to minimum-error-

probability classification of new samples into four multivariate

Gaussian classes, this value reflects the relative prior probabilities

of the 4 classes. A predictive index, the BOAS index, was gener-

ated by modeling the caudal probabilities obtained from a 4-class

QDA model using 6 variables: means and standard deviations

(SDs) of 3 ratios of WBBP parameters (ie, Te/Ti_m; Te/Ti_sd;

PEF/PIF_m; PEF/PIF_sd; MV/BW_m and MV/BW_sd) for the

20 breaths obtained from each dog.

The parameters were used in the following Equation (1):

dkðxÞ ¼ 1

2
log jRkj � 1

2
ðx� lkÞTR�1

k ðx� lkÞ þ logpk ð1Þ

where Σk are the covariance matrices, lk are the parameter

means and pk are the prior probabilities for the different grades

in the training set (data published in Data S1). The matrix x

contains the measured parameters of the actual dog so that the

equation results in a matrix dk (x) containing logarithmic proba-

bilities. This matrix then is corrected to contain normal probabil-

ity values.

dk xð Þcorr ¼ e
dk xð Þ�max

k
dk xð Þ ð2Þ

The final caudal probabilities are calculated using the normalized

values in dk (x)
corr.

pk xð Þ ¼ dk xð Þcorr
Rdk xð Þcorr ð3Þ

The final caudal probability values (pk) are calculated in percent-

age format for the 4 grades (p0 + pI + pII + pIII = 100%). The cau-

dal probabilities are weighed to suggest relative severity of the

disease. For this study, the interval of disease severity was assumed

to be equal. Hence, the BOAS index (IBOAS) is derived as:

IBOAS ¼ 1

3
pI þ 2

3
pII þ pIII ð4Þ

Note that p0 is omitted from the equation because it is multi-

plied by 0 during the weighting.

The BOAS index ranges from 0 to 100%. The initial cut-off

point of BOAS index was set at 50% to discriminate between

BOAS� (ie, BOAS index <50%) and BOAS+ (ie, BOAS index

≥50%) after a binary classification. The cut-off values then were

refined based on receiver operating characteristic (ROC) curves.

Three breed-specific models and 1 general model were built:

● Model (PD): breed-specific model based on 100 pugs

● Model (FB): breed-specific model based on 100 French bull-

dogs

● Model (BD): breed-specific model based on 66 bulldogs

● Model (PFB): general model based on 266 brachycephalic

dogs (100 pugs, 100 French bulldogs, and 66 bulldogs).

Statistical Analysis

Differences in subject characteristics among groups were tested

using nonparametric Mann–Whitney tests. Associations of age,

Table 1. Functional grading system of brachycephalic obstructive airway syndrome (BOAS) based on respiratory
signs before and after an exercise tolerance test (ETT)

Respiratory Noisea Inspiratory Effortb Dyspnea/Cyanosis/Syncopec

Grade 0 Pre-ETT Not audible Not present Not present

Post-ETT Not audible Not present Not present

Grade I Pre-ETT Not audible or mild Not present Not present

Post-ETT Mild Not present to mild Not present

Grade II Pre-ETT Mild to moderate Mild to moderate Not present

Post-ETT Moderate to severe Moderate to severe Mild dyspnea; cyanosis or syncope not present

Grade III Pre-ETT Moderate to severe Moderate to severe Moderate to severe dyspnea; may or may not

present cyanosis. Inability to exercise.

Post-ETT Severe Severe Severe dyspnea; may or may not present cyanosis or syncope.

The grading system was established previously.18 The clinical grading was based on respiratory signs before (pre-ETT) and immediately

after a 3-minute exercise tolerance test (post-ETT) with trotting speed of approximately 4–5 miles/hour performed by the study investiga-

tors. Presentation of at least one sign in the highest grade determines the final grading result.
aRespiratory noise was diagnosed by pharyngolaryngeal auscultation. Mild: only audible under auscultation; moderate: intermittent audi-

ble noise that can be heard without stethoscope; severe: constant audible noise that can be heard without stethoscope.
bAn abnormal respiratory cycle characterized by evidence of increased effort to inhale the air with the use of diaphragm and/or accessory

muscles of respiration and/or nasal flaring with an increase in breathing rate. Mild: regular breathing patterns with minimal use of dia-

phragm; moderate: evidence of use of diaphragm and accessary muscles of respiration; severe: marked movement of diaphragm and acces-

sary muscles of respiration.
cDogs that have had episodes of syncope and/or cyanosis as documented by owner’s report are classified into Grade III without ETT.

Mild dyspnea: presents sign of discomfort; moderate dyspnea: irregular breathing, signs of discomfort; severe dyspnea: irregular breathing

with signs of breathing discomfort and difficulty in breathing.
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sex, obesity, and nostril stenosis with BOAS status (normal and

clinically affected) were assessed using forward stepwise logistic

regression. For each WBBP parameter, means and SDs of 20 rep-

resentative breaths from each dog were calculated. The normality

of the data within groups was assessed using descriptive statistics

and the Kolmogorov–Smirnov test. Homogeneity of variance was

evaluated using Levene’s test. Variables of the nonbrachycephalic

controls and Grade 0 brachycephalic dogs were compared using

nonparametric Mann–Whitney tests. A simple 3-way QDA was

used to discriminate the respiratory characteristics (Te/Ti_m, Te/

Ti_sd, PEF/PIF_m, PEF/PIF_sd, MV/BW_m, and MV/BW_sd)

among the 3 Grade 0 brachycephalic breeds. To compare WBBP

data obtained for the 2 groups of BOAS functional Grade 0/I and

Grade II/III dogs, a multi-level mixed linear regression model was

used. Breed was included as a random effect encompassing both

body size and morphometric differences among breeds. Model fit

was assessed using Akaike’s information criterion (AIC). Other

predictors such as obesity (yes/no; yes = BCS 7–9; no = BCS 3–6),
age (years), and sex (male/female) were tested as fixed effects or

covariates. Bonferroni correction was used for adjustment for mul-

tiple comparisons except in table 3, where raw P values are indi-

cated. The statistic analyses were performed with a commercial

statistical software.c Significance was set at P < .05.

The diagnostic value of the BOAS index was assessed by calculat-

ing the area under each ROC curve. Performance metrics were com-

puted over 2,000 bootstrap samples of the whole dataset to generate

95% CI to delineate the expected range of classifier performance.

Diagnostic accuracy was estimated using sensitivity, specificity, posi-

tive and negative predictive values, and positive and negative likeli-

hood ratios. The cut-off values selected from the ROC curves were

those that best identified BOAS+ animals where the sensitivity and

specificity were approximately equal. Computations for data pro-

cessing, feature extraction, QDA, bootstrap resampling, and ROC

construction were implemented using the packages “MASS,” “verifi-

cation,” and “caret” available in the R Project.d

Results

Subjects and Clinical Assessments

Characteristics of the subjects are summarized in
Table 2. In total, 294 dogs were recruited including 28
nonbrachycephalic controls and 266 brachycephalic
dogs (100 pugs, 100 French bulldogs, and 66 bulldogs).
Of the 266 brachycephalic dogs, 44 were “clinical dogs,”
and the remainders were “study dogs.” Body condition
score (BCS) was found to be significantly higher in pugs
(P < .0001) and bulldogs (P = .003) compared to non-
brachycephalic controls. This was particularly so in
pugs, where 62% of dogs were diagnosed as obese (ie,
BCS ≥7). Stenotic nares were found in >50% of pugs
and French bulldogs, and approximately 40% of bull-
dogs. The prevalence of Grade II/III BOAS among the
“study dog” population was 60% of pugs, 46% of
French bulldogs, and 40% of bulldogs.

Comparison of Respiratory Parameter Measurements
and Risk Factor Analysis

Respiratory parameters from nonbrachycephalic con-
trols and Grade 0 brachycephalic dogs are presented in
Table 3 and Fig 2A.

Fig 1. Definition of the degree of nostril stenosis in brachycephalic dogs. Representative nostrils of French bulldogs with different degrees

of stenosis. (A) Open nostrils: nostrils are wide open; (B) Mild stenotic nostrils: slightly narrowed nostrils but the lateral nostril wall does

not touch the medial nostril wall. Immediately after the exercise tolerance test (ETT), the nostril wings should move dorsolaterally to open

on inspiration. (C) Moderately stenotic nostrils: the lateral nostril wall touches the medial nostril wall at the dorsal part of the nostrils and

the nostrils are only open at the bottom. Immediately after the ETT, the nostril wings are not able to move dorsolaterally and there may

be nasal flaring (ie, muscle constraction around the nose trying to enlarge the nostrils); (D) Severely stenotic nostrils: nostrils are almost

closed. The dog may switch to oral breathing from nasal breathing with stress or very gentle exercise such as playing.
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In general, MV/BW_m in all the Grade 0 brachy-
cephalic breeds was significantly decreased (P = .009 in
pugs; P = .026 in French bulldogs; P < .0001 in bull-
dogs) when compared to nonbrachycephalic controls.
Te/Ti_m was significantly lower in Grade 0 French
bulldogs (P < .0001) and bulldogs (P < .0001), but not
in pugs (P = .284), when compared to nonbrachy-
cephalic controls. RR_m was significantly higher
(P = .043) in Grade 0 French bulldogs when compared
to controls.

Most of the individual respiratory variables in Grade
0 bulldogs were significantly different from those of the
other 2 brachycephalic breeds, whereas respiratory char-
acteristics in Grade 0 pugs and Grade 0 French bull-
dogs were more similar. Only Te/Ti_sd was significantly
different (P = .005). Altogether, the classification results
for respiratory characteristics from 3-class QDA using 6
variables (ie, Te/Ti_m, Te/Ti_sd, PEF/PIF_m, PEF/
PIF_sd, MV/BW_m, and MV/BW_sd) show that the
Grade 0 dogs of the 3 breeds display distinct respiratory
characteristics. All dogs could be accurately classified
into the correct breed (Data S2) using the QDA tool.
Obesity was found in 29% and 20% of the Grade 0
pugs and bulldogs, respectively. None of the non-
brachycephalic controls and Grade 0 French bulldogs
was obese. Stenotic nares only were found in 1 of the
Grade 0 pugs. None of the Grade 0 French bulldogs
and bulldogs had stenotic nares.

Figure 3 illustrates representative examples of base-
line WBBP flow traces in different breeds with varying
BOAS grades. The WBBP flow traces were clearly dis-
tinguishable between Grade 0/I and Grade II/III
brachycephalic dogs. Grade 0/I dogs had smoother flow
traces with relatively equal inspiratory and expiratory

phases (Fig 3B). In Grade II/III dogs, the waveforms
varied among breeds and also among the affected indi-
viduals within breeds (Fig 3C). Affected bulldogs com-
monly had dynamic obstructions with high frequency
airflow fluctuations over respiratory cycles. Affected
French bulldogs showed a range of different wave-
forms, but most of them had additional clearly identifi-
able waveforms where the inspiratory phase was
extremely restricted with noticeable airflow fluctuations
and a high peak at the early stage of expiration, fol-
lowed by a gradual tapering (Fig 3C, French bulldog
Type B).

Analysis of respiratory parameter measurements of
Grade 0/I and Grade II/III dogs is shown in Table 4.
The relationship between BOAS status and respiratory
parameters varies significantly across the different
breeds as shown by a decrease in AIC index when the
effect of breed was added into the models. TV/BW_m,
MV/BW_m, PIF/BW_m, PEF/BW_m, and PEF/PIF_m
were significantly greater in Grade II/III dogs com-
pared to the Grade 0/I dogs. SDs of all respiratory
parameters were greater in Grade II/III dogs. This is
reflected by the much larger scatter of breath parame-
ters for grade III dogs, which is graphically illustrated
in Fig 2B when compared to Fig 2A as well as intra-
breed comparisons in Fig 2C–E. RR_m and Te/Ti_m
were not significantly different between Grade 0/I and
Grade II/III dogs.

Among the three brachycephalic breeds, obesity
(b = 0.64, odds ratio [OR] = 1.90, 95%CI = 1.03–3.50,
P = .04), male sex (b = 0.90, OR = 2.47, 95%
CI = 1.35–4.53, P = .004), and stenotic nares (b = 1.81,
OR = 6.09, 95%CI = 3.40–10.89, P < .0001) were posi-
tively associated with BOAS Grade II/III. There were

Table 2. Characteristics of the study subjects (n = 294).

Pugs French Bulldogs Bulldogs

Nonbrachycephalic

Controlsa

Dog number 100 100 66 28

Clinical dogsb/study dogsc 18/82 20/80 6/60 0/28

Female %/intact % 54%/76% 62%/68% 65.2%/94% 60.71%/60.71%

Age (years) 3.13 [1–12.25] 2.5 [1–10.5] 1.83 [1–10.5] 2.75 [1–12]
Body weight (kg) 8.4 [4.6–14.4] 11.5 [8–17] 24.9 [15–32] 11.62 [6–27]
BCS (1–9), Obesityd% 7 [4–9]ee, 62% 5 [3–7], 13% 6 [4–8]e, 36.4% 5 [4–6], 0%
Stenotic nares % 58.2%ee 66.7%ee 40.9%ee 0%

Functional Grade Grade 0: 7% Grade 0: 10% Grade 0: 15.2% Grade 0: 100%

Grade I: 26% Grade I: 34% Grade I: 40.9%

Grade II: 50% Grade II: 41% Grade II: 28.8%

Grade III: 17% Grade III: 15% Grade III: 15.2%

Prevalence of BOAS in

study dogs

59.8% (CI95: 48.9–69.7%) 46.3% (CI95: 35.8–57.1%) 40% (CI95: 28.6–52.6%) 0%

Data are presented as median [minimum–maximum]. CI95 = 95% confidence interval.
aBreeds of control dogs: Border collie (n = 1), Cairn terrier (n = 1), Cross (n = 4), Jack Russell terrier (n = 4), King Charles spaniel

(n = 1); Springer spaniel (n = 2); Beagle (n = 6); West Highland white terrier (n = 1); miniature Schnauzer (n = 2); King Charles spaniel

(n = 1); Labrador retriever (n = 3); American bullterrier (n = 1); Dachshund (n = 1).
bClinical dogs: dogs that were referred to the Queen’s Veterinary School Hospital for upper airway corrective surgery.
cStudy dogs: dogs from owners who participated in the study voluntarily. The dogs may or may not present clinical signs of brachy-

cephalic obstructive airway syndrome (BOAS).
dBCS = body condition score; obesity defined here as BCS ≥7.
eSignificantly different from nonbrachycephalic control dogs at P < .01 or at eeP < .001.
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no interactions between any of the factors. Obesity had
a negative effect on the means of all the volume-related
respiratory parameters (ie, TV/BW_m, MV/BW_m,
PIF/BW_m, PEF/BW_m), but had no significant effect
on the SD of any respiratory parameters. Age was not
significantly associated with BOAS status. Stenotic
nares were significantly associated with BOAS status in
Pugs (b = 1.46, OR = 4.3, 95%CI = 1.69–10.97,
P = .002), French bulldogs (b = 2.97, OR = 19.56, 95%
CI = 5.48–69.80, P < .0001), and bulldogs (b = 1.15,
OR = 3.147, 95%CI = 1.05–9.45, P = .011). After
adjusting for the stenotic nares, male dogs were more
likely to be affected if they were French Bulldogs
(b = 1.82, OR = 6.17, 95%CI = 1.68–22.67, P = .006)
or Bulldogs (b = 1.50, OR = 4.49, 95%CI = 1.44–14.05,
P = .01), but not if they were pugs.

Quadratic Discriminant Analysis (QDA) to Classify
BOAS Status

Classification results using the BOAS index for each
model are presented in Table 5 and Data S3. The ROC
curves derived from each BOAS index are shown in
Fig 4. Each of the 3 breed-specific models, Model (PD),
Model (FB) and Model (BD), had better classification
results than the general model, Model (PFB). Neverthe-
less, positive predictive values in all models were >90%,
and all final ROC curves had good or excellent discrim-
ination: area under the curve (AUC) = 91.2% (95%CI:
87.5–94.8%) for Model (PFB), AUC = 93.9% (95%CI:
88.9–98.9%) for Model (PD), AUC = 97.2% (95%CI:

94.1–100%) for Model (FB), and AUC = 97.0% (95%
CI: 91.2–100%) for Model (BD). The best cut-off points
for the breed-specific models (BOAS index = 55.38% in
pugs, 49.41% in French bulldogs, and 43.53% in bull-
dogs) were similar to the original classification setting
(BOAS index = 50%), whereas the cut-off points on
Model (PFB) for each breed varied (49.90% in pugs,
66.37% in French bulldogs, 31.11% in bulldogs). The
overlap of BOAS index between Grade 0/I and Grade
II/III dogs in this model can be clearly seen in Data S3,
but is decreased by specifying different cut-off points
for each breed.

Discussion

We have developed a tool that allows quantification
of BOAS severity utilizing the respiratory variables
obtained from WBBP in unrestrained brachycephalic
dogs. The baseline respiratory characteristics were sig-
nificantly different among asymptomatic pugs, French
bulldogs, bulldogs, and nonbrachycephalic breeds. In
addition, the proposed BOAS index can distinguish
BOAS-affected and clinically healthy brachycephalic
dogs using breed-specific models. Obesity and stenotic
nares in brachycephalic dogs are highly associated with
BOAS.

Ours is the first study on respiratory function in
BOAS-predisposed breeds that recruited a large number
of both affected and clinically healthy dogs. BOAS has
a high prevalence in all 3 breeds, but it often is unrec-
ognized. In this study, approximately 40–50% of the

Table 3. The baseline respiratory parameters in nonbrachycephalic control dogs and Grade 0 pugs, French
bulldogs, and bulldogs.

Nonbrachycephalic

controls (n = 28) Grade 0 pugs (n = 7)

Grade 0 French

bulldogs (n = 10) Grade 0 bulldogs (n = 10)

Obesity (%) 0% 28.57% 0% 20%

Stenotic nares (%) 0% 14.29% 0% 0%

RR_m 20.81 (16.95–25.02)‡ 22.50 (16.81–24.1) 23.16 (21.82–29.85)* 23.46 (19.81–28.13)
TV/BW_m 11.64 (9.71–12.85)‡‡,§§§ 10.17 (8.55–13.11)§§ 8.59 (7.83–10.32)** 6.66 (6.05–8.18)***,††

MV/BW_m 233.42 (224.56–254.69)††,‡,§§§ 217.57 (190.57–219.95)**,§§ 211.14 (190.33–235.11)* 176.97 (140.52–183.51)***,††,‡‡

Te/Ti_m 1.37 (1.28–1.55)‡‡‡,§§§ 1.29 (0.83–1.66) 0.90 (0.82–1.12)*** 0.95 (0.81–1.20)***
PIF/BW_m 16.40 (13.72–18.11)‡‡‡,§§§ 13.68 (12.55–15.92)§§ 11.90 (10.07–12.80)*** 9.83 (8.10–10.56)***,††,‡

PEF/BW_m 13.42 (10.92–14.75)§§§ 12.15 (10.99–14.84)§§ 11.92 (11.19–13.46) 8.38 (7.07–9.94)***,††,‡‡

PEF/PIF_m 0.83 (0.75–0.89)‡‡‡,§ 0.89 (0.81–1.12) 1.02 (0.96–1.10)* 0.90 (0.83–0.98)*,‡

RR_sd 2.14 (1.49–2.76) 2.85 (2.09–3.79) 2.37 (2.05–3.09) 2.73 (1.38–3.27)
TV/BW_sd 1.45 (1.22–1.82)§§ 1.73 (1.17–1.85)§ 1.35 (1.06–1.62) 0.82 (0.69–1.06)**,†,‡

MV/BW_sd 24.64 (15.09–31.19)§ 23.95 (13.92–28.10) 25.23 (16.32–37.02) 14.52 (11.31–22.56)*,‡

Te/Ti_sd 0.24 (0.17–0.32)‡,§ 0.32 (0.22–0.36)‡,§ 0.16 (0.13–0.24)*,†† 0.14 (0.11–0.22)*,†

PIF/BW_sd 1.89 (1.51–2.65)‡,§§ 1.85 (1.40–2.70)§ 1.42 (1.20–1.86)* 1.05 (0.79–1.74)**,†

PEF/BW_sd 1.93 (1.48–2.55)§ 2.39 (1.90–2.72)§ 1.92 (1.57–2.41) 1.33 (0.86–1.92)*,†

PEF/PIF_sd 0.11 (0.09–0.12)† 0.19 (0.08–0.21)* 0.13 (0.12–0.17) 0.11 (0.08–0.14)

Data are presented as median with interquartile range.

RR = respiratory rate (breath/minute); Te/Ti = expiratory time (s)/inspiratory time(s); PEF/PIF = peak expiratory flow rate (ml/s)/peak

inspiratory flow rate (mL/s); MV/BW = minute volume (mL)/body weight (kg); m = mean of the parameter calculated from the 20 breaths

of each dog; sd = standard deviation of the parameter calculated from the 20 breaths of each dog.

*Significantly different from the non-brachycephalic controls P(raw) < .05; **P(raw) < .01; ***P(raw)< .0001.
†Significantly different from the Grade 0 pugs at P(raw) < .05; ††P(raw) < .01.
‡Significantly different from the Grade 0 French bulldogs at P(raw) < 0.05; ‡‡P(raw) <0.01; ‡‡‡P(raw) < 0.001.
§Significantly different from the Grade 0 bulldogs at P(raw) < 0.05; §§P(raw) <0.01; §§§P(raw) < 0.001.
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pet dogs in the study group that were moderately or
severely affected had not been treated for the disease.
French bulldogs, pugs, and bulldogs recently have
become extremely popular worldwide and all were listed
among the top 10 breeds registered with the United
Kingdom Kennel Club in 2014. These breeds have expe-
rienced a great increase in annual registration in the last
10 years with 343% increase in pugs, 2,985% increase
in French bulldogs, and 199% increase in bulldogs.33

Respiratory function in bulldogs and French bulldogs
has been characterized in a small number of dogs previ-
ously.5,18 However, pugs have not been investigated and
these 3 extremely brachycephalic breeds have not been
compared.

Respiratory Characteristics Are Different among
NonBrachycephalic Dogs, Pugs, French Bulldogs, and

Bulldogs

In this study, Grade 0 bulldogs and French bulldogs
showed a decrease in mean MV/BW and mean Te/Ti.
They also had higher PEF/PIF compared to nonbrachy-
cephalic dogs. Similar findings were obtained when
breathing patterns in healthy nonbrachycephalic dogs
and clinically healthy bulldogs and Boston terriers were
investigated.5 Grade 0 pugs showed relatively similar
respiratory characteristics to nonbrachycephalic con-
trols. By contrast, Grade 0 bulldogs showed changes in
respiratory characteristics that indicate upper airway

Fig 2. Breaths plotted against three selected respiratory parameters. Twenty representative breaths per dog (represented as crosses),

assigned colors for each group with a marked centroid (co-ordinates of each axis). (A) Nonbrachycephalic control dogs vs Grade 0 brachy-

cephalic dogs; (B) Grade III brachycephalic dogs to be compared with Grade 0 groups in (A); (C)–(E), breed-specific comparisons between

Grade 0 and Grade III dogs. PEF/PIF = peak expiratory flow rate (mL/s)/peak inspiratory flow rate (mL/s); MV/BW = minute volume

(mL)/bodyweight (kg); Te/Ti = expiratory time (s)/inspiratory time (s).
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restrictions and dynamic obstructions. We looked fur-
ther at the differences among the 3 brachycephalic
breeds. A multivariable classification method using
QDA showed that the respiratory characteristics are
clearly distinguishable. Grade 0 bulldogs showed lower
minute volume and slower flow rate during both inspi-
ration and expiration when adjusted for weight, and rel-

atively higher variations in most of the variables.
Differences in respiratory characteristics reflect the
anatomical differences among skull types and among
brachycephalic breeds. Therefore, breed-specific models
were developed in this study. Clinically, these Grade 0
dogs are considered “asymptomatic for BOAS.” How-
ever, there is very limited evidence about whether the

Fig 3. Respiratory flow trace samples. (A) Flow traces of a nonbrachycephalic control; (B) Flow trace samples of Grade 0 brachycephalic

dogs; (C) Flow trace samples of Grade II/III brachycephalic dogs, showing variations in amplitude, flow pattern, and noise within the

trace. Take French bulldog as an example, Type A shows extremely low amplitude when compared to Type B and C; however, the peak

flow rates of inspiration and expiration are equal while they are significantly different in Type B. Noise, low amplitude high frequency fluc-

tuations can be seen in all three types mainly during inspiration.
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respiratory changes seen in clinically healthy brachy-
cephalic dogs will cause long-term secondary effects on
health such as gastrointestinal disorders, metabolic
changes, or other problems.34,35 Large studies on gas-
trointestinal disorders in healthy brachycephalic dogs
are needed. Hypomagnesemia and hypercoagulation
were found in clinically healthy bulldogs compared to
nonbrachycephalic control dogs and boxers.36,37 Hyper-
tension also was reported in systemically healthy pugs,
Boston terrier, French bulldogs, and bulldogs.38 These
findings support the argument that the bulldog is a nat-
ural model for sleep apnea and hypopnea syndromes in
humans with similar metabolic changes.29

Respiratory Characteristics in Grade II/III pugs,
French Bulldogs, and Bulldogs

Grade II/III dogs are “awake snorers” with increased
respiratory noise after exercise and labored breathing.
Loss of constancy in the breathing pattern is an obvious
change in respiration in BOAS (Fig 3C). In Grade II/

III dogs, the breathing appears more chaotic and
requires continuous adjustment, which contrasts with
the consistent airflow patterns seen in Grade 0/I dogs
(Fig 3B). The TBFVL of BOAS-affected bulldogs has
been recorded.5 The study commented that the most
common loop shape in brachycephalic dogs was charac-
terized by a flattened (fixed-type obstruction) or a
rounded expiratory phase (nonfixed-type) with a flat-
tened inspiratory phase. The loop often contained
bursts of high frequency flow oscillations during inspi-
ration and occasionally during expiration. The WBBP
flow traces of a bulldog were collected before and after
surgery,11 and were similar to the Type B Bulldog
BOAS traces in this study. So far, interpretation of the
flow waveforms in BOAS-affected dogs remains unclear.
As can be seen in Fig 3C, flow waveforms of Grade II/
III dogs in all 3 breeds are not uniform. Nevertheless, 1
of the advantages of using QDA is that its quadratic
boundary allows inclusion of different types of traces
into the models.

The BOAS Index is an Useful Tool to Discriminate
Objectively between Affected and Clinically Healthy

Pugs, French Bulldogs, and Bulldogs

Marked variations of respiratory characteristics in
Grade II/III dogs, not only among breeds but also within
breeds, were observed in this study. Such variations were
taken into account in the QDA classifier, which finds a
novel application in characterizing respiratory flow
traces. The QDA is a classic classifier with a quadratic
decision surface, generated by fitting class conditional
densities to the data and using Baye’s rule to perform
predictions.32 In our previous study on French bulldogs,
a training group, approximately 60 dogs, was evaluated
by a test dataset and found to have good sensitivity and
specificity.18 We thus used a minimal number of 60 dogs
to train the QDA classifier. We further used the caudal
probabilities generated from QDA to calculate a predic-
tive BOAS index. The BOAS index proposed here is a
numeric scale to quantify the relative severity of BOAS.
Our previous study of 89 French bulldogs showed that
once the model is trained, QDA could accurately classify
new dogs.18 After a preliminary test using a test dataset
(20% of the total dog number), an internal permutation
test was performed to validate the final models presented
in this study. The finding that the discriminant perfor-
mance is better when we use breed-specific instead of
general models is consistent with the differences that exist
in the respiratory pattern and anatomy of the 3 breeds.
Positive predictive values are all >94% in the 3 breed-
specific models. The protocol to collect WBBP data, pro-
cess the data, and generate the BOAS index is straight-
forward and can be widely used in general practice with
minimal staff training.

Obesity and Stenotic Nares are Associated with
BOAS

Obese brachycephalic dogs have a higher risk of
being BOAS-affected, and obesity has a significant effect

Table 4. The differences in respiratory parameters
between BOAS functional Grade 0/I and Grade II/III
brachycephalic dogs, and the effect of obesity on respi-
ratory parameters.

Grade 0/I

Brachycephalic

Dogs (n = 114)a

Grade II/III

Brachycephalic

Dogs (n = 152)b

Obesity (%) 28.95% 43.42%

Stenotic nares (%) 31.37% 74.65%

RR_m 22.46 � 5.03 22.12 � 4.57

TV/BW_m 9.25 � 2.49 10.28 � 3.33**,†

MV/BW_m 195.81 � 31.73 218.60 � 67.18***,††

Te/Ti_m 1.08 � 0.27 1.10 � 0.31

PIF/BW_m 11.77 � 2.52 13.58 � 4.46***,††

PEF/BW_m 11.17 � 2.66 17.58 � 8.46**,††

PEF/PIF_m 0.96 � 0.14 1.32 � 0.43*

RR_sd 2.74 � 0.94 3.12 � 1.16**

TV/BW_sd 1.44 � 0.58 1.95 � 0.82***

MV/BW_sd 22.87 � 8.49 35.15 � 15.09***

Te/Ti_sd 0.21 � 0.10 0.39 � 0.15***

PIF/BW_sd 1.64 � 0.76 2.39 � 1.25***

PEF/BW_sd 1.79 � 0.74 3.78 � 2.14**

PEF/PIF_sd 0.13 � 0.06 0.30 � 0.16**

A linear mixed model was used with level 1 individual dog and

level 2 breeds (random effect). Data are presented as mean � stan-

dard deviation.

RR = respiratory rate (breath/minute); Te/Ti = expiratory time

(s)/inspiratory time(s); PEF/PIF = peak expiratory flow rate (mL/

s)/peak inspiratory flow rate (mL/s); MV/BW = minute volume

(mL)/body weight (kg); m = mean of the parameter calculated

from the 20 breaths of each dog; sd = standard deviation of the

parameter calculated from the 20 breaths of each dog.
aGrade 0/I pugs = 33, Grade 0/I French bulldogs = 44, Grade

0/I bulldogs = 37.
bGrade II/III pugs = 67, Grade II/III French bulldogs = 56,

Grade II/III bulldogs = 29.

*Significantly different from the BOAS� dogs at P < .05;

**P < .01; ***P < .001.
†Obesity has a significant negative effect on the respiratory

parameter at P < .05; ††P < .01.
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on decreasing TV/BW and MV/BW as well as PIF/BW
and PEF/BW. Flow limitation during both inspiratory
and expiratory phases suggests that obesity worsens res-
piration in brachycephalic dogs. An increase in soft tis-
sue abutting the fixed bony structures results in a
decreased airway lumen and increased stiffness of the
respiratory system, which limits lung expansion.39,40

Similarly, experimental beagles had significantly
decreased TV/BW and significantly increased RR after
being fed to obesity.19 The TV/BW often is decreased in
severely obese humans, and breathing follows a rapid,
shallow pattern with significant decreases in PEF/
BW.39,41 We have not separated the effects of obesity
and other conformational effects associated with
brachycephaly on respiratory function because there
were insufficient obese Grade 0 dogs in each breed.
Therefore, further study into changes in respiratory
function after weight loss in brachycephalic dogs is war-
ranted. In this study, obesity was defined based on
BCS. In human medicine, in addition to the use of body
mass index as an indication of obesity when investigat-
ing associations between obesity and obstructive sleep
apnea, measurements of waist circumference (central
obesity), neck circumference, deposition of fat around
specific parts of the body such as neck or the base of
the tongue were reported.42–46 Additional studies on the
predictive obesity-related parameters that may increase
the risk of developing BOAS are required.

Until now, it has been difficult to distinguish in
BOAS the functional consequences of each individual
anatomic change associated with brachycephaly. Our
study shows that severe stenosis of nares in brachy-
cephalic dogs is a very important contributor to (by
restricting airflow), or consequence of BOAS (through
further collapse after a period of chronic high negative
pressure within the airway). For French bulldogs in
particular, the risk of BOAS in dogs with stenotic nares

increases about 20 times. This breed previously has
been shown to be at particular risk of mucosal contact
points between the plica recta and nasal septum.28 The
Starling resistor model47 equates airway function to a
hollow tube with a constriction within the nasal cavity
and near the nostrils, and a caudal collapsible segment,
the oropharynx. This model predicts that a nose
obstruction upstream will generate a negative intralumi-
nal pressure downstream at the oropharynx, resulting in
pharyngeal collapse.48 Even when the dog breathes
orally, the majority of inspired air passes through the
nose, and the expired air goes through the mouth, both
during shallow thermal panting and deep panting.49,50

Therefore, nasal obstructions not only restrict the air-
flow during nasal breathing at rest but also affect ther-
mal regulation during panting in dogs.

Limitations

This study has several limitations. First, the preva-
lence of BOAS observed here reflects a mixed group of
clinical cases and volunteer dogs and may not represent
the true prevalence in the 3 breeds. However, it does
not affect the aim of this study because both the num-
bers of affected dogs and clinically healthy dogs are suf-
ficient for QDA. Second, we have not separated the
effects of obesity and BOAS on respiratory function
because there were insufficient obese Grade 0 dogs in
each breed. Therefore, further study of the changes that
occur in respiratory function after weight loss in
brachycephalic dogs is warranted. Third, only the clini-
cal dogs had computed tomography scans of the thorax
to exclude lower airway disease. Invasive diagnostic
assessments (eg, radiography, CBC, and serum bio-
chemistry panel) on volunteer study dogs were not pos-
sible because of ethical considerations. For these dogs,
lower airway disease was ruled out based on history

Table 5. Classification results of BOAS� and BOAS+ in pugs, French bulldogs, and bulldogs using quadratic
discriminant analysis (QDA).

Model (PD) Model (FB) Model (BD) Model (PFB)

Prevalence 67%

(CI95: 56.88–76.08%)

56%

(CI95: 45.72–65.92%)

43.94%

(CI95: 31.74–56.70%)

57.14%

(CI95: 50.96–63.17%)

Sensitivity 88.06%

(CI95: 77.82–94.70%)

94.64%

(CI95: 85.13–98.88%)

89.66%

(CI95: 72.65–97.81%)

80.92%

(CI95: 73.76–86.83%)

Specificity 93.94%

(CI95: 79.77–99.26%)

93.18%

(CI95: 81.34–98.57%)

100%

(CI95: 90.51–100%)

92.98%

(CI95: 86.64–96.92%)

Positive predictive value 96.72%

(CI95: 88.65–99.60%)

94.64%

(CI95: 85.13–98.88%)

100%

(CI95: 86.77–100%)

93.89%

(CI95: 88.32–97.33%)

Negative predictive value 79.49%

(CI95: 63.54–90.70%)

93.18%

(CI95: 81.34–98.57%)

92.50%

(CI95: 79.61–98.43%)

78.52%

(CI95: 70.63–85.12%)

Positive likelihood ratio 14.53

(CI95: 3.78–55.83)
13.88

(CI95: 4.65–41.46)
N/A* 11.53

(CI95: 5.89–22.59)
Negative likelihood ratio 0.13

(CI95: 0.07–0.24)
0.06

(CI95: 0.02–0.17)
0.10

(CI95: 0.04–0.30)
0.21

(CI95: 0.15–0.29)

Model (PD): breed-specific model based on 100 Pugs. Model (FB): breed-specific model based on 100 French Bulldogs. Model (BD):

breed-specific model based on 66 Bulldogs. Model (PFB): general model based on 266 brachycephalic dogs (100 Pugs, 100 French Bulldogs,

and 66 Bulldogs).

CI95 = 95% confidence interval.

*Not calculable as specificity = 1.
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and chest auscultation. Mild underlying lower airway
compromise may affect ventilatory variables. Neverthe-
less, the proposed classifier closely reflects overall func-
tional respiration as seen in the ETT, and so is of
considerable value to the owners of tested animals.
Fourth, we deliberately chose dogs that were ≥1 year
old after consideration of maturity in terms of body
dimension and respiratory physiology. However, there

are limited studies on changes in respiratory physiology
with age in dogs. Therefore, whether the model can be
applied to puppies will require a cohort investigation.
Last, only 3 brachycephalic breeds were included in the
study. Classification models for other commonly
affected breeds such as Pekingese, Japanese Chin,
Boston terriers, and Shih-Tzu might require further
validation.

Fig 4. Receiver operating curves (ROC) assess the classification accuracy on diagnostic models for brachycephalic obstructive airway syn-

drome. The area between 95%CI for the curve is shaded. A cross and the associated values show the cut-off values chosen for use in the

diagnostic test. AUC, area under the curve.
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Conclusions and Relevance of the Study

In conclusion, breed-specific WBBP-based QDA clas-
sification tools for pugs, French bulldogs, and bulldogs
showed excellent discrimination accuracy between
Grade 0/I and Grade II/III dogs. The use of a BOAS
index represents a large advance over the subjective cri-
teria previously used to identify BOAS. This testing has
the potential to facilitate clinical practice in monitoring
disease progression and evaluating surgical outcome
after upper airway surgery.51 The use of QDA may be
relevant to other respiratory function studies that
require characterization of respiratory flow traces.

Footnotes

a Whole-body Barometric Plethysmography PLY 370 and PLY

360, Electro-Medical Measurement Systems, Bordon, UK
b Data Acquisition for Microsoft Windows XP ESS-102, Electro-

Medical Measurement System, Bordon, UK
c SPSS statistics for Mac version 22.0, IBM Corporation, Armonk,

NY
d R: A Language and Environment for Statistical Computing for

Mac OX version 3.1.1. (http://www.R-project.org), R Founda-

tion for Statistical Computing, Vienna, Australia
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