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Abstract

Repeated measurements and multimodal data are cormmoeuroimaging research. Despite this,
conventional approaches to group level analysiorigrthese repeated measurements in favour of
multiple between-subject models using contrasiatefest. This approach has a number of drawbacks
as certain designs and comparisons of interesteither not possible or complex to implement.
Unfortunately, even when attempting to analyse grdevel data within a repeated-measures
framework the methods implemented in popular softwpackages make potentially unrealistic
assumptions about the covariance structure adneslrain. In this paper, we describe how this issue
can be addressed in a simple and efficient mansiaguhe multivariate form of the familiar general
linear model (GLM), as implemented in a new MATLABolbox. This multivariate framework is
discussed, paying particular attention to methotsni@rence by permutation. Comparisons with
existing approaches and software packages for depérgroup-level neuroimaging data are made.
We also demonstrate how this method is easily adafiir dependency at the group level when
multiple modalities of imaging are collected frorhet same individuals. Follow-up of these
multimodal models using linear discriminant funago(LDA) is also discussed, with applications to
future studies wishing to integrate multiple scagntechniques into investigating populations of

interest.
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1. Introduction
Group-level repeated measurements are commoniaeuroimaging research, from neurocognitive
paradigms with multiple activation conditions tonditudinal intervention studies. Despite this,
conventional summary statistic approaches to miogdethese data ignore the repeated measurements
in favour of the construction of contrasts at thbjsct level. These contrasts are then exploretgusi
multiple group-level linear models. Though this aggeh is advantageous due to its simplicity, when
the design contains more than two repeated-measuatermany of the typical ANOVA tests used to
investigate the repeated measures and their itianacare either overly complex to implement or
simply not possible. Furthermore, for approacheshsas thep-block method of analysing
pharmacological challenge fMRI data (phMRI; e.g.K¥Me et al., 2011), the use of contrasts at the
individual-level is not a useful method and repdateasurement models become a necessity.
Despite this, the approaches currently implementedwo of the most popular fMRI analysis
packages, FSL (http://fsl.fmrib.ox.ac.uk/fsl/) asdPM (http://www.fil.ion.ucl.ac.uk/spm/), are not
able to easily account for dependent group-levelragimaging data. FSL FEAT must assume
sphericity at every voxel so thattests follow an exadt-distribution (Huynh and Feldt, 1970). Cases
where the sphericity condition is not met can l&ad poorer control of the Type | error rate due to
overly liberal F-statistics (Box, 1954; Kogan, 1948). SPM, on tlikeo hand, has a method for
correcting departures from sphericity (Glaser andtén, 2007). However, the estimated structure
used in this correction is assumed to be the samevery voxel. In both cases these assumptions
may not always be valid for complex dependent data.

Further to the issues of dependent group-levelyarg| it is also commonplace to collect
multiple imaging sequences from the same subjaecigsg the same scanning session (e.g. functional,
T1 structural, arterial spin labelling). In somees, there may even be different modalities of intag
collected from the same individuals (e.g. MR and TRE Analysing these different
sequences/modalities is similar to repeated-mesgigsigns due to the assumed correlation between
measurements taken from the same individual. Thygesi difference with repeated-measurement
models is simply that the data are not guaranteetet commensurate as they are generally not

measured on the same scale. Although questionsitefest often focus on the sequences and



modalities individually, pooling the information quided by different imaging techniques may be
advantageous in exploring how a combination of measents may provide information on group
differences above and beyond the information threyige individually. To achieve this, methods that
accommodate both the assumed correlation and fleeinly scales of the measurements are needed.
In this paper we will demonstrate how both the éssaf repeated-measures and multimbdal
group models can be addressed using the multieafden of the familiar univariate general linear
model (GLM). We introduce a MATLAB toolbox for fittg these models called Multivariate and
Repeated Measures (MRM), comparing results fromnearoimaging datasets between this approach
and other implementations of repeated-measures limgdef neuroimaging data. We also highlight
the ability of this approach to integrating multidad group-level imaging datasets. In addition, we
discuss facilities in the MRM software to performsdriptive linear discriminant analysidLDA) to
investigate how information from different modadgi and sequences can be combined to maximally
separate groups of interest. We also discuss tkeofipermutation-based approachespiealue
calculation, and multiple comparison correctiondeth the voxel and cluster level, highlighting the

utility of these methods when applied to the maltiste GLM.

2. Theory
The theory behind the multivariate extension ofuhe/ariate GLM is well documented (Christensen,
2001; Davis, 2002; Rencher and Christensen, 20dra}, has recently been advocated for use in
neuroimaging by Chen et al. (2014). Here we preadrief overview for completeness, emphasising
how this approach is naturally adapted for repeatedsures/longitudinal models as well as
multimodal integration. We also present the thdmhinddLDA as an extension of the multivariate
framework for understanding the contribution of imibdal imaging data to the separation of groups

of interest.

! We use the term multimodal generically to covehbultiple sequences from the same imaging madalit
(e.g. fMRI, ASL, DTI) as well as the different imag modalities themselves (e.g. MR, PET)



2.1 The multivariate GLM

The multivariate form of the univariate GLM is egpsed as
Y=XB+E (1)
whereY is ann X t matrix of observations( is then x k design matrixp is thek X t matrix of

model parameters, aifitlis then x t matrix of errors. This can be written in matrixrfoas

Yiin - Ve X1 - X1k\ /P11 - Pit €11 - €1t
: . )= : : ) : . E NI : : ) (2)
Ynl Ynt Xn1 - Xnk ﬁkl ﬁkt €n1 - €Ent

wheren can be taken as the number of subjecés the number afependent variables, here referred
to as the repeated measurements or modalitiesk andhe number ahdependent variables, here
referred to as the predictors. Traditionally ingsumed thaf; ~ ' (X;B, Z) so that eacfth row of Y
is considered drawn from a multivariate normalréistion with a mean vector given BB, and an
unstructured covariance matiix As with the univariate case, these assumptionsreare usefully be
expressed using the errors so that
Vec(E) ~ V' (0,1, ® X) ©)
where theVec operator is used to re-express a matrix as a wvégtastacking the transposed rows
(Christensen, 2011; Rencher and Christensen, 284 0 is a vector of zerod,, is then X n
identity matrix, and® denotes the Kronecker product.
Estimation ofB is usually performed using ordinary least squares,
B = (XX)"X'Y (4)
identical to performing univariate estimates using the column¥oHere the most salient difference
with univariate approaches is evident as we nodoritave avector of estimated parameters but a
matrix, with one column for each of th@&ependent variables and one row for each ok{medictors
in X. Calculation of the multivariate residuals followsingE = Y — XB so that an unbiased estimate

of X can be made using



1 (5)

3= E'E
n—k

(Davis, 2002; Rencher and Christensen, 2012). iversee that the covariance structure of the model
is both unconstrained and very simple to estimatieen applied to imaging data the residual méefrix

is estimated on a per-voxel basis and thus itivgatrto estimate a unique covariance structure for
every voxel. This is a distinct advantage of mas#tivariate approaches to dependent neuroimaging
data. However, it should be clear frofg. 3 that in this framework the covariance structure is
assumed identical across groups. We shall retuttmgassue later.

The multivariate framework allows for the modellimgf both repeated-measures and
multimodal group-level imaging data. In both instes each row of represents measurements from
a single subject (for a particular voxel), with t@umns ofY representing the multiple observations
for that subject. Whether modelling repeated-meamants or multiple modalities, there is an
assumed degree of correlation between the colurhné. dhis correlation is expressed using the
estimated variance-covariance magixas indicated above. The utility of mixed-effeafsproaches
for dependent data is in part due to their flekipiin specifying a variety of covariance structire
(Mcculloch et al., 2008; Searle et al., 1992), velasr the assumption of a spherical covariance
structure is one of the main reasons the traditicef@eated-measures ANOVA approach is typically
avoided (Davis, 2002). In the multivariate apprqaah unconstrained covariance structure at every
voxel provides the opportunity for inference withonaking any assumptions on the form that the
covariance may take across the brain. As such,rgigeahat this is the safest approach without the
computational burden of estimating variance comptasing iterative maximum-likelihood at every
voxel (Guillaume et al., 2014). Notably, such aisture can also be fit uniquely at each voxel using
marginal models, where the covariance structuteéed as a nuisance factor, allowing simplifmati
of the mixed-effects scheme where both fixed anddoen effects must be specified directly
(Guillaume et al., 2014; Li et al., 2013; Skuplet2012).

Extension of the multivariate GLM to accommodatettaious covariates is identical to the
univariate domain and simply involves adding theyally mean-centred (Poldrack et al., 2011),

covariatew; as another column in the design maiXix The parameters associated withare



therefore slopes of the relationship betwegmndY for each column of. If a grouping variable is
used to split the covariate then a per-conditianper-modality, slope is estimated for each group
separately. Comparisons of changes in slope agrosgps are then easily specified. This scheme is
more straightforward than integrating continuousari@tes into traditional univariate approaches to
repeated measurements, although it does not atbovthé specification of time-varying covariates.
With no groups and only continuous covariates theleh becomes a multivariate regression (see

Rencher and Christensen, 2012).

2.2. Hypothesis testing
Hypothesis testing in the multivariate GLM is basedthe contrast

ABC'= 0 (6)
Here the univariate scheme is extended by combitiangdard hypotheses on ttosvs of B, coded by
the matrixA, with hypotheses on thelumns of B, coded by the matri€. For multivariate ANOVA
(MANOVA) models contrasts of main effects and iatgions involve setting =1;, thet x t
identity matrix, as the dependent variables areasstimed to be commensurate. This is the scheme
most suitable for multimodal neuroimaging applicati. For repeated-measures models the variables
are guaranteed to be commensurate and comparisingedn the measurements are usually of
interest. As suchC can take on a number of forms. Here the hypothesisng approach can be
conceptualised as combining hypotheses about thggrusing?, and hypotheses about the repeated-
measures usin@. As an example, and assuming a cell-means codeidndenatrix, an interaction
between 2 groups with 3 repeated-measurementsupgres can easily be specified with=

1 -1

1 —1)andC=(O 1

_2) This is simply a combination of a between-subjeatn effect and

within-subject main effect. Settiy= (1/2 1/2) would provide the within-subject main effect
alone, withC = (1/3 1/3 1/3) providing the between-subject main effect aloneedch case the
effects of no interest are simply averaged. Thiest is also particularly flexible as the standard
univariate GLM analyses on the individual dependestiables can be recovered using €&

(1 o 0.



23.  Tes datisticsin the multivariate GLM
Whether a repeated-measures or MANOVA model theutation of test statistics from the
multivariate GLM is identical. There is a choicefolir standard test statistics that can be coristiuc
based on the calculation of twaums-of-squares and cross products (SSCP) matrices. For any
particular contrast there is an SSCP matrix aststiaith the hypothesis

SSCP, = (ABC)'[A(X'’X)"*A’]"1(ABC) (7
and an SSCP matrix associated with the error

SscP; = C(E'E)C’ ©)

These matrices are generalisations of the numematdr denominator sums-of-squares from the
univariate GLM hypothesis-testing framework (Grestral., 1999; Searle, 1987). For example, when
C = I, the main diagonal BSCPy contains the sums-of-squares for the hypothesis és applied to
the estimated parameters for each dependent varsgplarately. Whe@ # I, these are the sums of
squares for the linear combinations of parametenssa the dependent variables, as given by the rows
of C. For univariate cases, or wh¥@' reduces to univariate forr8BSCP, becomes the single sums-
of-squares for the hypothesis. Similarly, whes: I, theSSCP; matrix is simply an unscaled form of
the estimated covariance matdx. When C # I, the SSCP; matrix is the appropriate linear
combination of unscaled variances and covarianixateld by the form o€. When there is only one
dependent variable, tI8SCP; returns to the univariate residual sums-of-squatemonstrating that

the univariate GLM is simply a special case ofrthdtivariate framework.



Construction of a test statistic from this hypotkdssting scheme can be done in a number
of ways. Generally speaking the different methollsredy on some linear combination of thge
eigenvalue{ll, ...,Aq) of SSCP; 1SSCP,. The four standard tests statistics (attributablelotelling,
1951; Lawley, 1938; Pillai, 1955; Roy, 1945; Wilk932) are:

Ai
1+ 4

q
Pillai's trace = trace[(SSCPy + SSCP;) 'SSCP,] = Z
i=1

q
Wilks' lambda = —— >SCrE| = || !
1S 1ambaa = 155cp,, + SSCP| L1157
i=

9)
q

Hotelling-Lawley trace = trace(SSCP;1SSCPy) = Z A
i=1

*

Roy's 1 t t=
oy's largest root = ——3

Where1* is the largest eigenvalue 88CP;1SSCP,. Approximations to arF-statistic, and the
corresponding degrees of freedom can be calcufateall these statistics, allowing the designatodn

an approximatep-value (see Christensen, 2001; Rencher and Chsiter2012 for derivation). It
should be noted, however, that tReapproximation for Roy’s largest root is an uppetsd on the
trueF. As such it carries with it the greatest Typerberisk, and generally is only safe to interpiat f
those tests where the null hypothesis is not reje¢éee Rencher and Christensen, 2012, p. 165). A
further point for neuroimaging is that all hypotisetests in the multivariate GLM framework are
based orF-statistics, meaning that it is not possible td theectional (one-tailed) hypotheses. See
Appendix A for discussion on the choice between these tedistits. Later we present some

comparisons between these tests within a neuroimgagitting.

2.4. Descriptive linear discriminant analysis (dLDA)
When using MANOVA models, the calculation of a suifintly large multivariate test statistic
naturally leads to the question of the degree thvhny of the dependent variables are contributing

to the rejection of the null hypothesis. Althoughs possible to simply follow up any significant



multivariate tests with multiple univariate testhist is generally discouraged (Rencher and
Christensen, 2012; Tabachnick and Fidell, 2007)approach more closely tied to the calculation of
the MANOVA test statistics known as LDA is more davable.The use of LDA as a follow-up tool
for MANOVA models is well documented (Huberty andefik, 2006; Klecka, 1980; Rencher and
Christensen, 2012), and can either take the forrdL&fA or predictive LDA (Hastie et al., 2009;
Rencher and Christensen, 2012). Here we focuglldbA as a tool for indicating the relative
importance of each dependent variable to groupratpa.

The dLDA approach is a reversal of the MANOVA model, ldag those linear combinations

of dependent variables that best separate thefigaegroups. Formally, thdLDA model is given as

Zij = WYij1 + QYijz + o+ apyije = a'Yyj (10)
wherey;; is the column vector of responses for subjegt=1...n;), from groupi (i = 1... k),
measured ort dependent variable® = 1...t). As with the traditional MANOVA model it is
assumed that eadhy; is drawn from a multivariate normal distributioritva group-dependent mean
vector and a common covariance matrix. The weightgctora represent a discriminant function and
are calculated so that the transform of the muia@ response ifY;; to the scalarz;;, the
discriminant score, maximises the standardised group difference; pri-or example, for two groups
is estimated to maximisg; — 7, )/s,, wherez; denotes a mean for groupnds, denotes the pooled
standard deviation. The absolute values of the hgiga are therefore of interest as they indicate the
contribution of each dependent variable to maxingisihe difference between the groups. For

multimodal neuroimaging data, this allows a quédtion of the degree to which each modality is

able to contribute to group separation at a pdeiotoxel. Seppendix B for more details.

3. Approachestoinference and multiple comparison correction
In basic voxel-by-voxel neuroimaging analyses a geint of contention is the multiple comparison
problem engendered by testing across a large nuaibarxels. Application of the multivariate GLM
to neuroimaging data is no exception. In addittbere may be some concern that the test statestics

only approximatelyF distributed, and therefore only provide approxinptvalues. In the MRM
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software we make use of permutation testing astaadeof improving this approximation (Finch and
Davenport, 2009), and as a method of providing nilfawise error (FWE) analogue to standard
Gaussian random field (GRF) theory approaches titipteutesting in neuroimaging (Worsley et al.,
1996). Although GRF results exist for some multiats test statistics (Cao and Worsley, 1999;
Carbonell et al., 2011; Taylor and Worsley, 20@B¥ permutation approach provides much greater
flexibility. Adopting a permutation approach allows to relax the distributional assumptions about
the outcome data as well as use non-standardtisgtisrespective of their tractability under thell.
Though we currently restrict this to cluster sizad acluster mass (Bullmore et al., 1999), the
framework provides flexibility to use many othentsitics in the future, so long as they meet the
condition ofpivotality (Winkler et al., 2014). Here cluster size is siyngtle number of voxels within a
cluster, defined using some cluster-forming thrés$laod a cluster counting scheme. Cluster mass, on
the other hand, allows one to make use of the viexel information in the image by summing the
test-statistics within a cluster, an approach #mtears more sensitive (Bullmore et al., 1999)ng/si
the multivariate framework also allows for a relaty easy solution to the problem of permutations
under dependence, foregoing the specification chamgeable blocks of data as necessitated by
univariate approaches (Winkler et al., 2014). 8ppendix C for details on the implementation in

MRM.

4. Software
The MRM software is a MATLAB-based toolbox desigrfed the specification of mass multivariate
group models of neuroimaging data using the sumratatystic approach-igure 1 shows the main
window used for specifying a repeated-measuremesdein Contrasts, followindeq. 6, are user
specified in terms of the weights in matridesandC for the general linear hypothesis tABC' = 0.
There is also an auto-generation procedure fortingeatandard MANOVA and repeated-measures
contrasts of main effects and interactions forteaby designs up to a 4-way interaction. Any number
of continuous covariates measured at the betwelgieets level are easily added to the design matrix,
with automatic mean-centring conducted by defaliis mean-centring can be switched off at the

user’s discretion. For theLDA follow-up all covariates are removed from thesiyn prior to
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estimation. A number of options for inference available including thresholding at both the voxel
and cluster level, as well as using permutationhotg to generatp-values that can be corrected
using an FDR procedure, or used to provide a FWection. For permutation inference, the use of
the randomise algorithm (detailed Appendix C) allows permutation in the presence of nuisance
covariates by orthogonalising the data with respedhe nuisance partition of the model. It isoals
possible to provide a mask in order to restricti@hce to pre-defined regions of interest.

After model estimation, the MRM Post-estimationlsoare available to explore results. These
facilities are shown ifrigure 2 and include interactive assessment of threshatubgas, plots of linear
combinations of the model parameters, and modeingsson checking. The checking of parametric
assumptions is rarely conducted in neuroimaging @aialysis, an issue discussed by a number of
authors (Poline and Brett, 2012; Zhang et al., 2006 MRM the ability to check assumptions in
voxels of interest is readily provided through antner of standard residual plots and inferentiaktes
Although it is not practical to check every voxilshould be encouraged to at least check that the
model assumptions appear reasonable at peak vokéhserest. Examples of these plots are given

later.

4.1. Computational speed
Previous publications discussing multivariate apphes in neuroimaging have commented that the
approach can be slow (Chen et al., 2014). As siddre may be concern that the switch from the
univariate GLM to the multivariate GLM involves arwiderable additional computational burden.
Generally speaking, MRM model estimation is fasgking full use of the compiled MATLAB
routines for large matrix operations. Using MATLA®013a on a 2.3GHz quad-core i7 MacBook
Pro with 16GB of RAM, estimation of 5 dependentiables from 4 groups (a total of 53 subjects and
265 images with dimensios8 x 63 X 52) takes approximately 17 seconds. This is inclusivihe
estimation and writing of images of the paramegtineates and covariance structure to disk. As such,
the only real computational burden is when pernmtanethods are invoked for inference.

As detailed inAppendix C, the permutation approach in MRM is based on #mglomise

algorithm published in Winkler et al. (2014). Fantrasts that simplify to univariate comparisons th
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method is fast, generally completing 5,000 permamat in around 10 minutes. For multivariate
contrasts, this approach is much slower, compoubgédte fact that each voxel no longer represents a
scalar but an instance of an SSCP matrix. Althaaghe optimisation of the calculations is possible,
the speed of the permutations remains influencethéyumber of non-empty voxels in an image and
the particular multivariate tests statistic chodeigure 3 demonstrates speed differences for each of
5,000 permutations between a univariate contragtaamultivariate contrast using the different test
statistics, performed using the hardware detailedve. Generally, Wilks' lambda is the fastest
statistic to compute, around 6x slower than theanmte contrast, with Roy’s largest root the slsive
at nearly 10x slower than the univariate contrBstai’'s trace, as the most robust of the four test
statistics, is around 8x slower than the univargproach. Unsurprisingly, given their similarity i
Eq. 9, Pillai’'s trace and the Hotelling-Lawley trace arear identical for speed. Further work on
integrating GPU computing in neuroimaging softwaray be able to render processing time for such

tests negligible (Eklund et al., 2012).

5. Comparisonswith existing univariate approachesfor repeated measurements

To demonstrate the utility of the repeated-measaspgct of the multivariate GLM we conducted a
number of comparisons between the approach impletddan MRM and univariate approaches to
dependent neuroimaging data implemented in othg@ulpo MATLAB toolboxes. The software
packages chosen for comparison included SPM12:{mttpw.fil.ion.ucl.ac.uk/spm/), GLM FLEX
(http://mrtools.mgh.harvard.edu/index.php/GLM_Fleaixd the recently released Sandwich Estimator
(SWE v1.2.2; Guillaume et al., 2014; http://www2rwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/software/swe). In our experietiese are the most popular MATLAB packages that
researchers use when faced with repeated-measocedsmof neuroimaging data. We did not conduct
comparisons with iterative maximum-likelihood medko as applying such approaches to
neuroimaging data has many disadvantages, as destusy other authors (Chen et al.,, 2014;
Guillaume et al., 2014), including computationalrden and uncertainties with respect to the
covariance structure that can be sensibly imposedeh voxel. We also did not make comparisons

using FSL FEAT given the restrictive necessity e$taning sphericity in order for exaEttests.
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Excluding FSL FEAT also allowed us to only compacdutions written in MATLAB using SPM
functions, allowing for sensible comparisons innterof speed as well as direct scrutiny and
comparison of the MATLAB code, an approach that Mddae unnecessarily complicated by inclusion
of compiled programmes written in languages suc/&s-+.

Both GLM FLEX and SwE use SPM as their base, byiard upon the default mass
univariate functions in a number of ways. GLM FLEKows for the implementation of traditional
repeated-measures ANOVA models by allowing the ifipation of different error terms for each
contrast. These error terms are user-specifiedaamdbuilt using the MATLAB scripting interface. In
these models derivation of the correct error tesrteft up to the user, and can be achieved usiag th
expected mean squares of the model (Casella, 2088gr et al., 2005). Importantly for the current
comparisons, GLM FLEX uses the SPM non-sphericitgetling procedureto estimate a covariance
structure using restricted maximum likelihood (RMin a pooled selection of voxels from an initial
model fit. This estimated structure is then usegrmswhiten the data in attempt to render the error
covariance structure closer to its assumed forrad@land Friston, 2007; Poldrack et al., 2011). As
mentioned earlier, a key problem with this approscthe assumption that the estimated covariance
structure is the same for every voxel in the ima§eE, by comparison, allows for a unique
covariance structure to be estimated for every v@ienilar to the approach in MRM, SwE uses the
model residuals at each voxel to estimate a uniguariance structure. This structure is then ueed t
construct ‘robust’ standard errors of the estimaediel parameters using a formulation referredsto a
‘sandwich’ estimation due to the form that the rastion equation takes (Guillaume et al., 2014).

Some of the differences between these packagesvareinTable 1.

5.1 Data, preprocessing, and subject-level models
The data used for comparison between the softwackages was taken from an investigation into the
influence of a history of major depressive disor@iDD) on affective processing in older and

younger adults (McFarquhar, 2015). Twenty-nine gminadults (aged 30-50) and 29 older adults

2 This is in fact only true of the older GLM FLEX Zhe latest incarnation of GLM FLEX (known as GLMEX FAST) does
not use the non-sphericity correction, and thu$essiffrom the same issues as FSL FEAT. Here we faays on the older
GLM FLEX 2.
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(aged 60-85) were recruited primarily from the GeedManchester area. All participants completed an
initial screening questionnaire followed by a facdace clinical interview to assess inclusion and
exclusion criteria. The final groups comprised &Mmitted MDD (rMDD) older adults, 12 rMDD
younger adults, 14 older adult controls, and 15ngeu adult controls. All participants provided
informed consent and the study was given a favdeiratinion by the local research ethics committee
(REC ref. 11/NW/0009).

During the scanning session participants perforrapdAffective Go/No-go (AGN) task
(Elliott et al., 2004, 2002, 2000). In brief, wordslected from two categories (e.g. ‘positive’ and
‘negative’) were presented rapidly on a screen iarelom order. Participants were instructed to only
respond by pressing a button when a word was shoslonging to one category (the ‘target’
category), but not the other (the ‘distractor gate). Across the task, five variants of the
combination of ‘target’ and ‘distractor’ categorieere used. This task is therefore a within-subject
design due to all participants engaging in all foaanditions. There were also two between-subject
factors in the investigation consisting of age éoldnd younger) and diagnostic history (control and
rMDD). SeeAppendix D for details of the scanning parameters.

Prior to group analysis the data were preprocess&PM12 by realigning the images to the
first volume, coregistering the structural image the mean functional image, segmenting the
structural image into its constituent tissue classpplying the estimated transformations to MNI
space derived from the segmentation to the funatigsnans, and finally smoothing the functional
scans using a Gaussian kernel with FWHM ot 9 x 9mm. As an additional step we made use of
the artefact detection tool (ART; http://www.nitveg/projects/artifact_detect/) to identify high noot
volumes using a volume-to-volume shift of >1.5mna anvolume-to-volume change in mean signal
intensity >3 standard deviations. Any scans witld%2volumes identified by ART as outliers were
excluded. Subject-level models were fit in SPM1ihgghe HRF + derivatives basis set with the
addition of the per-subject regressors producedRY to ‘censor’ high-motion volumes (Power et
al., 2012; Siegel et al., 2014). Specifically, wedelled the five conditions of the task leaving tast
periods as an implicit baseline. As such there igeeparameters, one per condition, that wereriake

to the group level from each participant.
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5.2. Group-level modelling approach
To allow for maximum comparability between the s@ifte packages a number of restrictions were
placed on the initial modelling procedure (see Wwefor comparisons with these restrictions lifted).
Firstly, we assumed that the covariance structéithendata was homogenous across the groups. This
involved setting the group variance options to ayin SPM and GLM FLEX, and defining only a
single covariance matrix group in SwWE. This is prely the only option in MRM. Secondly, we
restricted thresholding to an uncorrecped 0.01 in an effort to best visualise the differenbetween
the packages, foregoing amyvalue correction in an effort to rule out any difnces due to
implementation of correction techniques acrossttitware.

Using these restrictions, we estimated a classgdated-measures ANOVA model using
the SPM Flexible Factorial module for the withirbgact main effects and interaction tests, and a
second between-subject ANOVA model averaging okerrepeated-measurements for the between-
subject main effects and interaction tests. Althoygevious authors have suggested that SPM
incorrectly estimates between-subject effects ipeaged-measures models (Chen et al., 2014;
McLaren et al., 2011) this is only true when noaam is given to the error term for the tests. This
an issue that has a long history in the analysiptif-plot designs (Casella, 2008; Christensed, 120
where the issue dofrror strata has been thoroughly discussed for those situatidren a random-
effect (e.g.subject in a repeated-measures design) is included irGibid (Nelder, 1977). Here we
include the comparisons with SPM in part to shoat ihis possible to fit these models correctly in
SPM. How easy this is to do, however, is a differgmestion given that multiple models are often
needed, and that in the Flexible Factorial modoletrasts need specifying as estimable functions in
an overparameterised linear model frame\ﬁl(ﬂreen et al., 1999). In GLM FLEX, SwE, and MRM
only a single model was needed to correctly esenadit comparisons of interest. In GLM FLEX,
features such as accommodating missing voxel-léatd across subjects and outlier detection were

switched off in order to facilitate comparisons.terms of the extra options available in SwE, we

3tis also possible to fit these partitioned ertenm ANOVA models in SPM using more basic grougelenodels by applying
the Kronecker product rules outlined in Penny & stam(2007).
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specified the small sample adjustment as type ‘@2'this is the recommended option in the software
for the most accurate bias correction. The calmriabf the degrees of freedom was set to use the
‘approximate II' approach as, similar to the smsdimple adjustment, this is recommended by the
authors of the toolbox as the most accurate appra@en there is no missing data. In MRM, Wilks’
lambda was used as the test statistic. Becausmthparisons in this example were exact, this choice
made no difference to the resul@gure 4 shows the model setup from all four software paekag
Here we display the full factorial design in SPM foaximal comparability with the other design. It
should be noted, however, that not all the preseotdumns are strictly necessary to form the tekts
interest, and that tests of any pure between-subjéects in this model would not be suitable as th

error term derived from the model residuals wowddrzorrect.

5.3. Results

Figure 5a shows the results across the four software paskimgyeghe main effect of age contrast. Of
note is the fact that SPM and MRM are identicalisTé as expected given that the multivariate GLM
simplifies to univariate form under between-subjaaiparisons. Although identical in principle, the
results from GLM FLEX differ from both SPM and MRMhis appears to be a result of differing
implementations of the SPM non-sphericity corretémd the subsequent whitening that is applied to
the design. As demonstratedAppendix E, this has direct consequences for the parametenasts
from the model, leading to the discrepancy in thlewdated test statistics. Because the SPM between-
subject comparisons are performed using a modetemMie repeated-measures have been averaged,
and because we assume covariance homogeneitysiexfinple, no whitening will have been applied.
This leads to identical results in SPM and MRM. sTtg not true in GLM FLEX, as the between-
subject comparisons are performed within the sarodeinas the within-subject comparisons. This
means any whitening applied due to the repeatedunes has the potential to also impact the
between-subject comparisons. SwE, on the other ,hapdears the more conservative of the
approaches. That being said, results are so sialass the software packages that this would be of

little practical significance.
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The contrast for the main effect of the repeatedsuement conditions is shown in
Figure 5b. Here a number of differences between the methedsme apparent. Firstly, although
largely similar, there are again differences betwise thresholded maps provided by SPM and GLM
FLEX. In this example, GLM FLEX appears to be gafigrestimating largeF-values than SPM,
leading to the discrepancy in the number of vokeds survive thresholding. As an example, the tesul
from 0 20 47 is given d5;196= 41.35 in SPM ané, 19s= 45.84 in GLM FLEX. Again, this appears to
be a consequence of differing implementations efSPM non-sphericity correction, and is explored
in more detail inAppendix E. The results from MRM and SwE, on the other haphear largely
comparable, with SwE slightly more sensitive. Ofticallar interest is comparing SPM/GLM FLEX to
MRM/SwWE given that the former methods choose tol plo® covariance estimate whereas the latter
estimate a unique covariance matrix per-voxel. @l@e a number of regions in these maps where,
despite subtle differences in their estimates, St GLM FLEX have generally provided a larger
test statistic value compared with MRM and SwE. &se these differences are consistent with the
different methods of covariance estimation this maggest that the pooled approach is artificially
inflating the test statistic at certain voxels. §hoint is further explored iRigure 6 where an example
voxel is compared in terms of the estimated cowasastructure across the different software
packages.

As a final comparison, the age x condition intdoactis shown inFigure 5c. A similar
result to the main effect of condition is eviderdrdy Again, subtle differences in the calculated
statistics are present in SPM and GLM FLEX, howgeuee discrepancy between the pooled
covariance approaches and the unique covarianaeages is again clear in the SPM/GLM FLEX
and MRM/SwE divide. Both SPM and GLM FLEX appearreeensitive, though whether this is due
to differences in power (because of differenceghi@a number of parameters each method must
estimate) or differences in the estimated covagastaicture is unclear. Again, MRM and SwE largely

agree, with SWE the slightly more conservativehef two.

54. Unrestricted model comparisons
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To further compare these approaches, we estimagechddels in each of the software packages using
fewer restrictions. For SPM 12 and GLM Flex thisdlved setting the group variances to unequal.
For SwE this involved requesting a unique covaganatrix to be estimated for each group. As
previous authors have demonstrated, assuming eow&i homogeneity when the reality is
heterogeneity can lead to either conservative loerdil inference (Guillaume et al., 2014). It is
therefore important for researchers to realiseptitential limitations of making this assumptionttire
multivariate GLM.Figure 7 shows the comparisons between the models estineartidr and those
estimated with fewer assumptions. Voxelsink indicate overlaps between the previous model and
the unrestricted model. Voxels anange indicate those found in the restricted model ongh voxels

in green indicating those found in the unrestricted mod@l/oLooking across these results it is clear
that although the number of voxels surviving thoddimg do differ between the restricted and
unrestricted models, these are generally fringesas the edges of clusters that appear irrespeativ
the covariance assumptions. In addition, it is atkgar that assuming covariance heterogeneity
generally leads to more conservative inference,vamitst this is preferable to overly liberal infeie

it will lead to a reduction in power if homogeneitgn be assumed. This appears particularly true of
SwE, where the reduction in surviving voxels wheovariance heterogeneity is assumed is
consistently the greatest. Again, SPM and GLM Fldpyear to differ due to their implementations of
the non-sphericity correction, with the SPM/GLM BEXEand MRM/SwE split still apparent. This
would suggest that the biggest differentiator betwethese methods is not their ability to
accommodate a different covariance structure peawngrrather it is their use of unique vs pooled
structures across an image. As such both MRM anH Sre the preferred approaches, with SwE
providing more flexibility in allowing the covariae structure to differ between groups, but seeming|
losing some sensitivity, particularly in the betwesibject comparisons. It is also worth noting that
the multivariate approach is capable of incorpatpttovariance heterogeneity using approximate
degrees of freedom corrections such as the Weltlegdand Brown-Forsythe approaches (Keselman
and Lix, 1997; Lix et al., 2003; Vallejo et al.,@0). These are, generally speaking, more complex to
implement than the standard multivariate test &ia, and given that they are not widely used they

will require further investigation before applying imaging data. Presently, assumptions of
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covariance homogeneity can be checked in MRM dtpetinterest, allowing researchers to caution

interpretation if this assumption appears violated.

55. Assumption checking

One advantage of the MRM software is the abilityckeeck model assumptions at peak voxels of
interest. These checks include both standard infiatetests of the model assumptions, as well as a
wealth of plotting devices that allow the researdbeassess the plausibility of the model at voxls
their choosing. Though assumptions of multivariatgmality can be relaxed when using non-
parametric permutation methods, the plausibility tiois assumption can still be checked using
qguantile-quantile plots of the model residuals. eHere follow the recommendations of Christensen
(2001) and provide plots of the residuals for edependent variable separately, as well as a single
linear combination (the sum). For covariance homedgg we provide both Box'M test (Box, 1950,
1949), and, again following from Christensen (20@19ts of dependent variable pairs for each dell o
the design. For the moment researchers are en@tlitagexercise caution and use Pillai’s trace as th
test statistic in cases where this assumption appgalated. For between-subject comparisons we
similarly provide Levene’s test for homogeneityvafiance (Levene, 1960)(Levene, 1960), as well as
plots of the fitted values against residuals. EXasf some of these plots and tests are given in
Figure 8 for a peak voxel from the main effect of conditimmtrast. Results from these checks imply
that the assumption of covariance homogeneity appesasonable at this voxel. There is some
suggestion of violations of normality in the tadisthe distribution, and as such we may wish to use
permutation approaches to calculptealues for the hypothesis tests. It is also waoting that such
tests can easily be applied to univariate grouptleeuroimaging data in MRM by setting the number
of within-subject factors to 0 (or the number opdedent variables to 1), allowing MRM to be used

as a more generic group-level modelling tool.

5.6. Comparison of approaches to FWE correction
Though the utility of the multivariate frameworkrfdependent data has been demonstrated, it may be

of some concern that the methods used for FWE ctiorein this framework do not make use of the
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standard neuroimaging approach provided by GRF.aABnal comparison we investigated the
difference between the GRF FWE correction and tMEFEorrection resulting from permutation tests.
We also included comparison with the non-paramelidotstrap option provided in SwE. We
compared the main effect of task from the SPM madatg GRF FWE correction, from the MRM
model using permutation-based FWE after 5,000 pttions, and the SwE model using bootstrap-
based FWE after 5,000 bootstraps. As both pernoatedind bootstrap approaches depend on the
number of model re-fits to dictate the precisiop-afalue estimation this allowed both non-parametric
approaches to calculate values in the rahgep < 0.0002. Figure 9 shows the comparison between
the results as well as the permutation and bogptstisiributions of the maximurk in the image.
Table 2 shows comparisons between ffwalues for the seven smallest peaks reported by. SP
Generally, results are similar across the appraackieh the GRF method providing largewralues in

all cases. Both the permutation and bootstrapppaaches lead to very similar estimated null-
distributions and subsequent 5% thresholds. In éxample the MRM permutation approach is
slightly more liberal than the bootstrapping apptoaThese results may therefore suggest that the
GRF approach to voxel-level statistics is overlynsgrvative, consistent with results presented

previously by Nichols & Hayasaka (2003) and mokently by Eklund, Nichols, & Knutsson (2015).

6. Comparisonsbetween the multivariate test statistics

As indicated earlier, when using the multivariateMGthere is a choice of four potential test statist
Such a choice provides greater complexity to tleeafghe multivariate GLM in neuroimaging when
using contrasts that produce non-exactalues. Though these tests have been comparedrousne
times in the statistical literature (Ito, 1962; | .eE971; Mikhail, 1965; Olson, 1974; Pillai and
Jayachandran, 1967) we sought to briefly investigHieir behaviour when applied to real
neuroimaging data. To do this we used@heatrix from the main effect of condition contrdstailed
earlier withA = I,. We compared both the approximgieralues associated with the different test
statistics as well as thpevalues derived from 5,000 permutatioRggure 10a shows the results for the
classicalp-value approximations, with the test statisticspldiged from most conservative to least

conservative. Here the nature of Roy’s largest esoan upper-bound on tkevalue is clear. Pillai's
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trace, Wilks’ lambda, and the Hotelling-Lawley teaare all similar, with the Hotelling-Lawley trace
the most liberal, and Pillai’'s trace the most covetve. These results agree with previous
recommendations suggesting Pillai’s trace is tHessdest to use as it provides the best contret ov
Type | errors. These results also suggest thatFtreproximation to Roy’s largest root should
generally be avoided unless there is good reasonlyoconsider the upper-bound. Figure 10b we
present the same comparisons thresholded ysirsdues derived from permutation testing. Because
we only ran 5,000 re-shuffles the largest possilee in the map is log,, 1/5000 = 3.70 . What

is noticeable is that for Roy’s largest root thétgra of results is much more in keeping with the
activation maps found for the other test statistiise permutation approach therefore appears to
converge the behaviour of the test statistics a@gmupermutation thp-values of Roy’s largest root no
longer represent an upper-bound, rather they mtosely reflect the true=. In addition, it is
interesting to note that in this example Wilks' lasha appears the most consistent between the
approximate and permutation-basqsvalues. This suggests that, although not necdgsari
generalisable to every dataset and contrast, wissmg upermutation approaches the differences
between the test statistics may be less of a conaed the choice can be driven more by the

computational considerations discussed earlier.

7. Multimodal integration
Although much detail has now been given about #peated-measures aspect of the multivariate
GLM we have yet to demonstrate its utility in theegration of multimodal and multi-sequence
imaging data. To do so we present a combined Vioxetéd morphometry (VBM) and functional MR
analysis using the younger adults of the sampleribes! earlier. Specifically, we sought to compare
those with a history of depression to those withhigtory of depression under the condition of
viewing negative images. The task performed bypaicipants was based on a memory paradigm
reported in Whalley et al. (2009), but was altei@include negative images alongside the originally
reported positive and neutral. Seventy-two imagesewselected from the International Affective
Picture System (IAPS; Lang et al., 2008) compristigpositive, 24 negative, and 24 neutral. Stimuli

were presented in blocks of 6 images from one al@ategory. A period of rest was provided for 15
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seconds after each cycle of positive, negative, rendral blocks. During the task 145 volumes were

collected, with all other scanning parameters idahto those described fppendix D.

7.1. Image preprocessing

For the functional scans, preprocessing was coeduit an identical fashion to the procedure
described earlier. Again, subject-level models westimated in SPM 12 using the HRF + derivatives
basis set with the addition of the per-subjectesgors produced by ART. Here we modelled the three
picture conditions of the task again using the w@stditions as an implicit baseline. Unlike the
demonstration earlier, only the parameter estimaggeciated with theegative image condition were
taken to the group modelling stage. For the strattscans the SPM DARTEL tools (Ashburner,
2007) were used to produce normalised grey matiagés using the segmented tissue images from
the preprocessing.

One particular issue in using the MANOVA approaoh rfhodelling multimodal data is
that different modalities often provide images fedent resolution. For example, a typical struatu
MRI image may have around 10 times as many voxels gypical task-based fMRI image. In order
for a voxel-by-voxel analysis to work it is necagsto rescale one of the modalities to match the
other. Our own limited investigation of this issaeggests that results are relatively invariant to
whether one up-samples the functional to the diiessof the structural, or down-samples the
structural to the dimensions of the functional. Vhthe benefit of resampling the higher resolution
image becomes clear is with the increase in contipnt speed and decrease in computational
burden for model estimation and inference by peatmut, as well as a reduction in the number of
hypothesis tests that must be corrected for avdixel-level. That being said, the choice of apphoac
will likely depend on the modality of most intereand the investigator’'s opinion on the trade-off
between increased computational speed and theofosgormation engendered by interpolating a
higher-resolution image to smaller dimensions.

Another issue, typical to VBM investigations, i®thecessity of a correction for head size
to allow for sensible between-subject comparistm&PM it is possible to provide values to perform

proportional scaling of the images before the model is estimated. Aeetis no such facility in MRM,
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the proportional scaling was performed manuallytloe normalised grey matter images before they
were entered into the model. Specifically, the galt each voxel of the normalised grey matter
images was divided by the participant’s total iateaial volume (estimated using tBasy_volume
tool http://www.sbirc.ed.ac.uk/cyril; as described Pernet et al., 2009) to produce proportionally
scaled versions of the DARTEL results. For the mattate GLM this strategy is preferable to
entering these values as covariates given thatcangriate will influenceall the model parameters,
irrespective of the modality. This could be seemaadisadvantage of the multivariate approach to
multimodal integration, particularly in those caselsere co-varying for a nuisance variable in one
modality is seen as preferable to rescaling thedata. Other covariates that may be relevant fdr bo
modalities can be entered into the model diredtipugh for simplicity of presentation we do not
include any here. Only after the proportional swlwere the grey matter images resampled to the
same dimensions as the images of parameter estirfitata the functional models. In addition, it is
worth mentioned that at present the permutatiomagmh implemented in MRM does not account for
non-stationarity when using cluster-level inferen&e approaches to permutation that accommodate
non-uniform smoothness of the images have beenopeabby Hayasaka et al. (2004) this could be
implemented in the future to allow researcherspir@priately use cluster-level statistics for asaly
of data such as structural MR images.

As a final step we produced a mask to restrictataysis to only regions of grey matter.
This was done by averaging the scaled and resargpdgdmatter images and then producing a binary
image including voxels with an intensity > 0.2. Buan approach is in keeping with the

recommendations given by Ashburner (2010).

7.2. Mode estimation and results

The group-level model used for these data consistéy of the grouping variable for controls or
remitted depression. The model was therefore etgrivdo a multivariate form of a simple two-
samplet-test. As this design was specified as a MANOVA widthe structural and functional data
were treated as non-commensurate. As suchCtiratrix of the general linear hypothesis test &f th

main effect of Diagnosis was specifiedlgsResults of this contrast, thresholded at an usctedp <
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0.001, revealed a cluster of 48 voxels in thelle§ual gyrus (peak at -15 -73 -7 wiH 25 = 19.26).
Following up this result usindLDA at the peak voxel revealed a single discrimtnfamction with
absolute values of the standardised weights giseéh&26 for the structural modality and 0.850 Far t
functional modality. This result is particularlytémesting because it suggests that at this peadl wox
near equal balance of the modalities provides malxsaparation of the groups. Using the paffal
test methodology described appendix B gives significant results for both the structueald
functional modalities (bottp < 0.001), suggesting that each modality is countiily to group
separation.

Of further interest here is that conducting thevanate equivalents of this analysis on each
modality separately revealed smaller test stasidicthis peak, as shown kigure 11. Here a clear
advantage of the multivariate approach is seemeasndividual results from the univariate analyses
have been strengthened by virtue of the fact thatvalent results are seen across modalities. The
results of thelLDA at this voxel enhance this interpretation gitkeat nearly equal weight is given for
each modality. Although thresholded liberally farr@lemonstration, these findings suggest that the
multivariate approach has the scope for providingg tintegration of functional and structural
information in a single model, allowing researcherinvestigate those regions where the information

across modalities can be effectively pooled to maliy discriminate between groups of interest.

8. Limitations of the multivariate GLM for neuroimaging
Although there are clearly many advantages to thétivariate GLM for group-level analyses of
neuroimaging data there remain a number of dransdbrhaps most problematic are times when the
power of the multivariate approach is limited comggbwith univariate methods due to the number of
parameters it must use (Davis, 2002). Indeed,possible that for some models a more parsimonious
number of parameters could be estimated when wsinglternative univariate framework, allowing
certain questions to be more easily addressed usimalternative modelling scheme. This is
particularly true of thg-block approach to pharmacological challenge MRIMRI; e.g. McKie et
al., 2011) where the number of time bins is moreesady limited in the multivariate framework

compared to the univariate. Similarly, there ds® dimitations in the number of subjects necessary
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for an analysis compared with the number of regkateasurements or modalities (Chen et al., 2014).
The current assumptions of covariance homogenedy aiso prove problematic for instances of
multiple groups, particularly when the data areesely unbalanced and the robustness of the
multivariate test statistics can no longer be guaed. Here permutation approaches may help, but ar
certainly not guaranteed solutions when faced waithitrary violations of the parametric assumptions
(Finch and Davenport, 2009). The integration ofetimarying covariates into the model is also not
possible. In addition, the fact that for multimodabdels any continuous covariate may influence
estimates for both modalities can also be seen disavantage, reducing the flexibility of this
approach to deal with factors specific to one mibgdalut not the other. Finally, it is not possiltte
incorporate subjects who have missing data on dnthe modalities or repeated-measurements.
Although generally not problematic when modellimmditions of a task, missing data may be an issue
for longitudinal designs with significant subjectrion. This is one advantage of the SwE approach
over MRM as within-subject missing data can be mmeadily accommodated using the sandwich
estimator framework. For well-powered investigasiomith no missing repeats and no critical time-
varying covariates, we believe that the multivaiapproach is one of the most straightforward
method of analysing the data given that it a singpliension of the existing univariate GLM. Indeed,
given that the approach is not restricted to ompeated measurements, and easily simplifies to
univariate GLM analyses identical to those alreadlyuse in neuroimaging, we argue that the
multivariate GLM is the most generic and concepyuatraightforward approach to dealing with

dependent neuroimaging data.

9. Summary
In this paper we have provided an exposition of uke of the multivariate GLM in neuroimaging
applications specifically as a method for analyslmgth repeated-measurement and multimodal
imaging data at the group-level. We have exploredhods of making inference in these forms of
models, and have show comparable results to otperoaches to dependent imaging data.
Furthermore, the use of this approach combined aifbA for multimodal investigations opens up a

wealth of possibilities for integrating differemhaging tools to better understand distinctions betw
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groups of interest. We believe the multivariaterapph is ideal for application to neuroimaging data
due to its computational speed, straightforward oflypsis-testing framework, and minimal
assumptions. The MRM software is free to downlaadnf The University of Manchester’s Click2Go

service at http://www.click2go.umip.com/i/softwarem.html.
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Appendix A. The choice of multivariatetest statistics
As detailed in the text, there are four potentsits statistics that can be used with the mulatari
GLM. The natural question of which of the four testtistics should be chosen is somewhat
problematic as the answer largely depends upoddteeitself. Because of this it is not uncommon for
most statistical software to provide all four. Fexample, when the population eigenvalues are
roughly equal Pillai’s trace is the most powerfestt whereas when they are unequal the Hotelling-
Lawley trace is the most powerful test (Davis, 200hese values are never known in practice, as
they are population parameters, making decisionsvdsn the tests difficult. Luckily in many
circumstances thE-approximation to these tests are exact and wéliegfore be identical irrespective
of the test chosen. Although the conditions undeickv exact tests are produced differ between the
four statistics (see Rencher and Christensen, gf¥ldetails of each), all the tests will be exattew
rank(SSCP,) = 1. This can be tested for within MRM. When the tests not exact, decisions can be
made based on the power and the robustness oesheFor example, Davis (2002) recommends
Wilks’ lambda on the basis that its power remaielatively consistent across simulation studies.
Pillai’s trace, however, is often quoted as the tmalsust of the four tests (Olson, 1974) and ab $sic
often recommended when parametric assumptions @rsuificiently met (Tabachnick and Fidell,
2007). Of all the test statistics, Roy’s largesitris the most liberal (as it is based solelyithand as
such carries with it the greatest risk of a tygeror (it is an upper bound on tRevalue; Rencher and
Christensen, 2012). Despite this, some authorsostipipe utility of this test statistic, arguing fis
characterisation of the ‘optimal’ linear combinatiof the dependent variables (Harris, 2013, pp—231
233). Indeed, for those cases where the largeshesdue dwarfs all others it can be argued that our
interest should only be on this single dimensiond d&oy’s largest root would be the most
appropriate. For further discussion on the diffeemnbetween these test statistics see Anderson

(1984), Davis (2002), and Rencher & Christensei1220

28



Appendix B. dLDA details

As described in the main text, tHeDA model is given by
Zij = Yij1 T QYijz + o+ aye = a'yYy; (B.1)

Values fora can be found using the eigenvectors, and assocgitmhvalues, 0$SCP; 'SSCP,
(Klecka, 1980; Rencher and Christensen, 2012). BsSSCP; ~'SSCP, is generally not symmetric,
the calculation of eigenvalues and eigenvectorpeidormed using the Cholesky factorisation of
SSCP; (see Rencher and Christensen, 2012, p. 290). Thoognecessarily an issue for the standard
multivariate statistics (as all but Roy’s largesbtr have a form that does not depend on direct
calculation of the eigenvalues), fditDA it is therefore a requirement th88CP; is positive-definite.
In this scheme§SCPy reflects the MANOVA null hypothesis of no groupfdiences. The use of
SSCP; "'SSCP, is a generalisation dfz; — z, )/s, to accommodate more than two groups. This
generalisation provides a useful indication of twmnection between the MANOVA amdlLDA
approach as in the MANOVA approach it is theeigenvalues(ll, ...,Aq) of SSCP; ~'SSCP;, that
form the test statistics, whereasdhDA it is the associated eigenvectorgv, ...,vq) that provide
information on group separation. The number of nere eigenvalues, and therefore the number of
discriminant functions, ig = rank(SSCPy). Although there may be multiple functions, it imgeally
the case that one or two are enough to explainmajerity of variance. This can be formalised by
examining the percentagél;/ XL, 1;) x 100 for eigenvalues.

In terms of the discriminant functions themselvess typical to scale the eigenvectors by
VN — k to form unstandardisediscriminant functions. Although possible to use tawv, vectors
the values of;; given by these weights are not immediately inttgisle. Scaling each vector by
VN —k allowsz;; to be interpreted as the distance, in standaréatien units, of each case from the
grand centroid of the groups (Klecka, 1980). The weights of diséniant functions are therefore
given bya = v,v/N — k with constant, = —Z§,=1 a,yp, wherea, is thepth element oh andy, is
the mean of dependent varialpleAlthough these weights provide more interpretablealues, they

still relate to dependent variables on their omdjiscale. For dependent variables that are not
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commensurate it is generally more useful to intrfite values of the discriminant function when the

weights relate to standardised variables. To aehins, standardised discriminant functionsare

calculated. Definingl = diag(\/SSCPEn,\/SSCPEZZ, -,/SSCPg,,) We usea™ = v;M to scale the

individual elements of,;. The standardised weights giveraihare therefore those associated with the

following function

a Yij1 — Via fota Yijp — Vip fetal Yijt — Vit (B.2)
1 Sp St

zij =
wherey;, is the mean of group associated with dependent varialpie ands, is the standard
deviation for dependent varialyielt should be clear that these are simply the latsigssociated with
dependent variables that have be¢ransformed.

Although the aim ofiLDA is largely descriptive, it may be desirableperform hypothesis
tests on the functions. Note that in order to donsaltivariate normality must be assumed. This was
not necessary for the calculation of the discrimirffanctions themselves, only the assumption that
the covariance matrices were constant over grolipgerform tests on the individual discriminant

functions Wilks’ lambda can be used on a subseh@feigenvalues. Fan discriminant functions a

sequential elimination procedure can be used, wioereachmth step the test statistic is

1 (B.3)

q
mn=] ]
m 1+ 4

I=m

The F-approximation given in Rencher & Christensen (204.2296) allows for designation of an
approximatep-value which, if significant, allows one to concludhat at least function m is
significant. With regards to interpreting the cdmition of each dependent variable to group
separation, one can move beyond examining the alesehlues of the coefficients (though this is
usually the most informative method) to calculatipgrtial F-tests for each of the dependent
variables. Here, again, we make use of Wilks’ lambal testing a single dependent variable after
adjusting for all other dependent variables. Thiddne by calculatingartial Wilks’ lambda, which

for therth column ofY is given by
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(B.4)
AWV oo, Yooy, Yy, o, V) = —2

p-1

WhereA,, is the test statistic from the model containirigpalependent variables, ant,_, is the test
statistic from the model where thiln dependent variable has been removed. This candrpreted as
the contribution of theth variable to group separation above and beyoedctintribution of the
remainingp-1 variables. Again, using tHe-approximation given by Rencher & Christensen (2qil2
300) allows designation of an approximatgalue. Of note is the fact that the parftatests given
here do not relate to a single discriminant functi@ather they are a general index of the contiobut
of the rth dependent variable to group separation acros®rdiions. For models with a single
function, or for those where the first function agnots for most of the variance, these tests caelar

be interpreted as the singular ~ contribution of theth dependent variable.
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Appendix C. Permutation details
The permutation approach implemented in the MRMwge is based on the randomise algorithm
published in Winkler et al. (2014), and on the iwaliate approach detailed in Zeng et al. (2011).
This approach allows for permutations in the presesf nuisance covariates. Firstly, we simplify the
contrastABC’' = 0 by re-expressing the test A8* = 0 in the modelY* = XB* + E*, where
Y* =YC',B* =BC’, andE* = EC’ (Zeng et al., 2011). Although this may appear itoptify the
model to univariate form the number of column¥inwill be dependent on the rank @f This is
easiest to see wheh= I, as the model will not change. Once the model leas lbe-expressed we use
the model partition scheme from Ridgway (Ridgwa§02, described in Winkler et al., 2014) to allow
for permutation in the presence of nuisance cotemiaHere we partition the model ¥s= MK +
ZG + E* where M = XAt , Z=X-XA'(A*)’, and superscript + denotes the Moore-Penrose
pseudoinverse (Lay, 2012). Orthogonalising the ctffeof interest with respect to the nuisance
partition is achieved by replacingywith the firstm columns of the left-hand matrix from the singular
value decomposition (SVD) & (denotedZ;), wherem = rank(X) — rank(A). Orthogonalisation of
M is then achieved usirld* = R,M whereR, = 1 — Z,Z], the residual forming matrix due to the
nuisance partitio,. The hypothesis of interest, as originally coded j can now be tested by simply
assessing wheth®& = 0. This can also be expressed in terms of testieditst q rows of parameters
in the combined mod&™ = [M* Z;]0 + E*, whereq = rank(A).
In terms of the steps involved, for each voxel we

1. Calculate the reduced mod&! = XB* + E*
2. Partition the model int¥y* = M*K + Z,G + E* as indicated above
3. Estimate the reference test statistic using thénaséd parameter8 = V*¢, and residuals

E* = (1-VV*")e, from the combined model, whele= [M* Z,], andé, = R,Y*, the

residuals due to nuisance effects alone
4. Randomly generate a permutation maRigncoding row shuffles and sign-flips
5. Estimate the test statistic using the param@iprs V*PE, and residualg, = (I - VV*)PE,

of the permuted model



6. Repeat steps 4-5 a sufficient number of times il lup an approximate null distribution of the
test statistic of interest

Using the sequence above we can calculate uncedrpetalues by counting the number of
times at each voxel the permuted test statistitifar voxel exceeds the reference test statistithf
voxel. Dividing this by the number of permutatiomsvides an estimateptvalue for each voxel.
These values could either be left uncorrected, ®ican calculatg-values to provide standard FDR
correction (Storey, 2002). For FWE correction wey count the number of times at each voxel the
largest permutated test statistic in the image exceedsefieeence test statistic for that voxel. Here we
are building a distribution of the largest testister in an image, and the correction thereforeates
to finding the probability under the null of a testhtistic as large, or larger, than the reference
anywhere in the image. Similarly, for cluster-based inferenon every reshuffle we threshold the
image using a parametrigvalue to form clusters, and save the size of trgelst cluster. The
correctedp-values for the clusters in the original image #ren calculated based on the number of
times across reshuffles the maximum cluster excktusr size.

An important concept in permutation-based inferenise exchangeability. Formally,
exchangeability refers to the assumption thataf@articular set of variables, their joint probepil
distribution does not alter under rearrangement. Hoivariate approaches to dependent data
exchangeability can prove problematic, requiring $pecification of exchangeable blocks of data that
can be shuffled as a whole. For the multivariatéiGhis issue is less problematic as we can simply
shuffle the rows of the outcome matix or more generallf, but not the columns. This scheme is
then identical to permutation of exchangeable Bogiven by the rows & or E, with sign-flipping
performed as a whole within each block (Winklealet 2014). This can easily be seen by considering
that for am x n permutation matriXP the multivariate permutations of the residuglgiven by
E* = PE and the within-block permutations of the equivalanivariate residuale = Vec(E) given
by € = (P ® I;)e produce identical shuffles. Here the latter is@inthe univariate expression of the
former so that* = Vec(E*). We therefore assunechangeable, independent, andsymmetric errors

for each row of data ilY. The assumption of symmetric errors can be reldyeswitching off sign-
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flipping. Although suitable for MANOVA contrastserdain repeated-measures contrasts will no
longer be permuted correctly given that any cohtitsst compares the estimated parameters for the
columns ofY will not change under row swapping when sign-filijgpis not performed. This is

similar in spirit to the restrictions imposed onree-samplé-test under univariate permutations.
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Appendix D. Scanning parameters
In this appendix we briefly detail the scanninggmaeters used when collecting the example datasets.
All scans were collected using a Philips Achievaa8The Salford Royal NHS Foundation Trust. Data
were acquired using a T2*-weighted EPI sequench @iTR of 2500ms and a TE of 30ms (matrix
size80 x 80, FOV 240mm, flip angle 90°). Each volume consistéd45 contiguous axial slices
with voxel size o3 x 3 x 3mm. 290 volumes were collected in total. A T1-wegghstructural
image was also acquired (128 coronal slices, veizell x 1 X 1mm, matrix size 256 x 164, FOV

256mm, flip angle 8°).
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Appendix E. Discrepancies between SPM 12 and GLM FLEX
As indicated in the text, a number of discrepanbisveen the test statistics given by SPM 12 aad th
test statistics given by GLM FLEX have been notaespite the fact that both software packages
implement the same repeated-measures ANOVA mo@élparticular interest was the discrepancy
betweenFspy = 41.35 andFg v = 45.84, seen at 0 20 47 in the main effect of thgeated
measurement conditions. In this appendix we outlive factors that appear to be influencing this
difference. Largely, we believe that this not doalifferences in numeric precision, rather it ida
the way the SPM non-sphericity correction is usedhe different packages. Given that in the non-
sphericity correction procedure the final paranse@e estimated using the pre-whitened data and
design,By = (WX[WX])*(WX)'WY, the form that the whitening matriw/ takes will directly
influences the values of the estimates. Becauseth® current example, we assumed covariance
homogeneity we can expre®é = I,, ® K, wheren is the number of subjects. In the current example,
the SPM estimate &f was

1.0053 0.1379 —-0.1217 -0.0211 0.0741
1.0058 —0.0228 —-0.0686 —0.0020

Kepy = 1.0707 —0.0015 0.0170
1.0755 —0.0548
0.9954

whereas th& estimated by GLM FLEX is given by

/0.9538 0.1079 —0.0999 0.0011 0.0314\
09713 -0.0113 —-0.0692 -0.0101

Kooy = 1.0661  0.0376  0.0113
1.1001 —0.0613
1.0369

In terms of the subsequent influence on the pammastimates in this voxel, the estimated values of
interest (the factors and their interactions) adiffered between SPM and GLM FLEX around the
eighth decimal of the estimate. Differences wemydwver, seen in the estimates for each subject

parameter, with a maximum discrepancy of aroundZ10 Because the residuals dependMnas
€ = WY — WXB,, , the estimate of the within-subject variance wilto change by virtue of the
differences inW and the differences By,. In this voxel the within-subject variance estigthtoy

SPM wass2spy, = 0.0821, and in GLM FLEX wawr2;;,, = 0.0837.
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In terms of the discrepancies in thaest, we first review the standard formula fomavariate

F-test within the pre-whitening framework

_ (LBw) W[(WX)'WX] L) (LBw)
r o2

F

Already we can see how differences in the estimatdW will enter into this calculation. The
numerator of this statistic given by SPM is 13.57&3d by GLM FLEX is 15.3504. Dividing these
values by the estimated model variances, scaled=byank(L), provides the different test statistics
highlighted earlier (when calculated at double @iea). From this we can see that the discrepancies
between the SPM and GLM FLEX approaches are larg@dyto their respective implementations of
the SPM non-sphericity correction, and the subsetjore-whitening.

From our investigations, the difference in impleta¢gion between GLM FLEX and SPM
centres on which voxels are selected to enter tloded covariance estimation. This is evidenced by
the fact that in the current example GLM FLEX poéfs128 voxels, whereas SPM pools only 2,623.
This is due to GLM FLEX usinf, as the contrast for selecting voxels to poaherek is the number
of columns inX. When SPM is forced to use this contrast by sgt8RM.xVi.Fcontrast =
eye(size(SPM.xX.X,2))’ the same number of voxels as GLM FLEX are usdtierestimation
procedure, the degrees of freedom for the infdést agrees with GLM FLEX, and/ is nearly
identical across the software. Thoufh may seem like a reasonable contrast to use, in the
overparameterised framework it is not an estimabietion of the model (Searle, 1987). It is therefo
debatable how sensible a test this is for selectingls to use in the pooled covariance estimatiyn.
comparison, the ‘effects of interest’ contrast gaterl by SPMs an estimable function of the model
and would therefore seem the better choice. Thesdts also highlight one of the major problems
with the pooling approach as the number of voxelering the estimation directly influences the
estimated whitening matrix and thus the estimate@mpeters of the model. In the current example,

this difference lead to 781 more voxels survivingesholding in GLM FLEX compared with SPM.

* GLM FLEX actually calculates the sum of squareedicted values from the model, which is the eqeinabf
using an identity matrix as a contrast
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(a) Main effect of Age
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Figure 7
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(a) Thresholded with approximate p < 0.01
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(b) Thresholded with permuted p < 0.01
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Figure 10
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Figure 11

Structural univariate

Coordinates: -15 -73 -7
F-value: 13.51
p-value: 0.00108

Functional univariate

Coordinates: -15 -73 -7
F-value: 15.00
p-value: 0.00065

Multivariate - structural
+ functional
Coordinates: -15 -73 -7

F-value: 19.26
p-value: 0.00001
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Tables for manuscript: Multivariate and Repeatedsdees (MRM): A new toolbox for
dependent and multimodal group-level neuroimagiaig-d McFarquhar, McKie, Emseley,
Suckling, Elliott, Williams

Table 1. Comparison between a number of the features peitito repeatedaeasures models available
the four software packages

Voxel-level Cluste-level o LU |
nique voxel Unequal grou
Software GUl FWE FDR Cluster Cluster co?/ariance Coeariaﬁce P
correction correction size mass
SPM 12 4 v, v, v X X v
GLMFLEX X v, 4 X X X v
MRM 4 v, 4 v v v X
SWE v v v v % v v

3

lUsing Gaussian random field theory
2Using permutation testing

3Using a non-parametric bootstrap
“SettingtopoFDR = 0 in spm_defaults.m

Table 2. P-value comparisons between the different FWE metliodthe seven smallest maxima reported

by SPM
Peak location (mm)
p-GRF p-PERM p-BOOT

X y z
-45 -37 17 0.002 <0.001 0.001
42 -16 35 0.00¢ 0.00: 0.004

0 -25 -1 0.01¢ 0.00¢ 0.007
21 59 5 0.026 0.008 0.011
-33 -1 -37 0.035 0.010 0.015
-21 35 38 0.03¢ 0.01¢( 0.01¢t
51 11 2 0.047 0.011 0.02(

p-GRF = FWE-correcteg-values from the SPM GRF approach
p-PERM = FWE-correcteg-values from the MRM permutation approach (5,0Ghudfles)
p-BOOT = FWE-correcte@-values from the SWE non-parametric bootstrap agprg5,000 bootstrap resamples)
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