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Abstract 
 
Repeated measurements and multimodal data are common in neuroimaging research. Despite this, 

conventional approaches to group level analysis ignore these repeated measurements in favour of 

multiple between-subject models using contrasts of interest. This approach has a number of drawbacks 

as certain designs and comparisons of interest are either not possible or complex to implement. 

Unfortunately, even when attempting to analyse group level data within a repeated-measures 

framework the methods implemented in popular software packages make potentially unrealistic 

assumptions about the covariance structure across the brain. In this paper, we describe how this issue 

can be addressed in a simple and efficient manner using the multivariate form of the familiar general 

linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is 

discussed, paying particular attention to methods of inference by permutation. Comparisons with 

existing approaches and software packages for dependent group-level neuroimaging data are made. 

We also demonstrate how this method is easily adapted for dependency at the group level when 

multiple modalities of imaging are collected from the same individuals. Follow-up of these 

multimodal models using linear discriminant functions (LDA) is also discussed, with applications to 

future studies wishing to integrate multiple scanning techniques into investigating populations of 

interest. 

 

Keywords: multivariate GLM, permutation, multimodal, repeated measures, discriminant functions 
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1. Introduction 

Group-level repeated measurements are commonplace in neuroimaging research, from neurocognitive 

paradigms with multiple activation conditions to longitudinal intervention studies. Despite this, 

conventional summary statistic approaches to modelling these data ignore the repeated measurements 

in favour of the construction of contrasts at the subject level. These contrasts are then explored using 

multiple group-level linear models. Though this approach is advantageous due to its simplicity, when 

the design contains more than two repeated-measurements many of the typical ANOVA tests used to 

investigate the repeated measures and their interactions are either overly complex to implement or 

simply not possible. Furthermore, for approaches such as the p-block method of analysing 

pharmacological challenge fMRI data (phMRI; e.g. McKie et al., 2011), the use of contrasts at the 

individual-level is not a useful method and repeated-measurement models become a necessity. 

Despite this, the approaches currently implemented in two of the most popular fMRI analysis 

packages, FSL (http://fsl.fmrib.ox.ac.uk/fsl/) and SPM (http://www.fil.ion.ucl.ac.uk/spm/), are not 

able to easily account for dependent group-level neuroimaging data. FSL FEAT must assume 

sphericity at every voxel so that F-tests follow an exact F-distribution (Huynh and Feldt, 1970). Cases 

where the sphericity condition is not met can lead to a poorer control of the Type I error rate due to 

overly liberal F-statistics (Box, 1954; Kogan, 1948). SPM, on the other hand, has a method for 

correcting departures from sphericity (Glaser and Friston, 2007). However, the estimated structure 

used in this correction is assumed to be the same for every voxel. In both cases these assumptions 

may not always be valid for complex dependent data. 

Further to the issues of dependent group-level analyses, it is also commonplace to collect 

multiple imaging sequences from the same subjects during the same scanning session (e.g. functional, 

T1 structural, arterial spin labelling). In some cases, there may even be different modalities of imaging 

collected from the same individuals (e.g. MR and PET). Analysing these different 

sequences/modalities is similar to repeated-measures designs due to the assumed correlation between 

measurements taken from the same individual. The biggest difference with repeated-measurement 

models is simply that the data are not guaranteed to be commensurate as they are generally not 

measured on the same scale. Although questions of interest often focus on the sequences and 
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modalities individually, pooling the information provided by different imaging techniques may be 

advantageous in exploring how a combination of measurements may provide information on group 

differences above and beyond the information they provide individually. To achieve this, methods that 

accommodate both the assumed correlation and the differing scales of the measurements are needed.  

In this paper we will demonstrate how both the issues of repeated-measures and multimodal1 

group models can be addressed using the multivariate form of the familiar univariate general linear 

model (GLM). We introduce a MATLAB toolbox for fitting these models called Multivariate and 

Repeated Measures (MRM), comparing results from real neuroimaging datasets between this approach 

and other implementations of repeated-measures modelling of neuroimaging data. We also highlight 

the ability of this approach to integrating multimodal group-level imaging datasets. In addition, we 

discuss facilities in the MRM software to perform descriptive linear discriminant analysis (dLDA) to 

investigate how information from different modalities and sequences can be combined to maximally 

separate groups of interest. We also discuss the use of permutation-based approaches to p-value 

calculation, and multiple comparison corrections at both the voxel and cluster level, highlighting the 

utility of these methods when applied to the multivariate GLM. 

 

2. Theory 

The theory behind the multivariate extension of the univariate GLM is well documented (Christensen, 

2001; Davis, 2002; Rencher and Christensen, 2012), and has recently been advocated for use in 

neuroimaging by Chen et al. (2014). Here we present a brief overview for completeness, emphasising 

how this approach is naturally adapted for repeated-measures/longitudinal models as well as 

multimodal integration. We also present the theory behind dLDA as an extension of the multivariate 

framework for understanding the contribution of multimodal imaging data to the separation of groups 

of interest. 

 

 

                                                        
1 We use the term multimodal generically to cover both multiple sequences from the same imaging modality 
(e.g. fMRI, ASL, DTI) as well as the different imaging modalities themselves (e.g. MR, PET) 
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2.1. The multivariate GLM 

The multivariate form of the univariate GLM is expressed as 

� = �� + � (1) 

where Y is an � ×  � matrix of observations, X is the � ×  � design matrix, B is the � ×  � matrix of 

model parameters, and E is the � ×  � matrix of errors. This can be written in matrix form as 

�	��⋮	��
⋯
⋅

…

	��
⋮	��
 =  ����⋮���

…
⋅

…

���
⋮���
 ���� … ���

⋮ ⋅ ⋮��� … ���
 +  �
��⋮
��
…
⋅

…


��
⋮
��
 (2) 

where � can be taken as the number of subjects, � as the number of dependent variables, here referred 

to as the repeated measurements or modalities, and � as the number of independent variables, here 

referred to as the predictors. Traditionally it is assumed that ��  ~ � (���,�) so that each ith row of Y 

is considered drawn from a multivariate normal distribution with a mean vector given by ���, and an 

unstructured covariance matrix �. As with the univariate case, these assumptions can more usefully be 

expressed using the errors so that 

Vec��� ~ �(�, �� ⊗  �) (3) 

where the Vec operator is used to re-express a matrix as a vector by stacking the transposed rows 

(Christensen, 2011; Rencher and Christensen, 2012). Here 0 is a vector of zeros, ��  is the � ×  � 

identity matrix, and ⊗ denotes the Kronecker product.  

Estimation of B is usually performed using ordinary least squares, 

�� = (�′�)���′� (4) 

identical to performing t univariate estimates using the columns of Y. Here the most salient difference 

with univariate approaches is evident as we no longer have a vector of estimated parameters but a 

matrix, with one column for each of the t dependent variables and one row for each of the k predictors 

in X. Calculation of the multivariate residuals follows using �� = � − ��� so that an unbiased estimate 

of � can be made using  
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�� =
1� − � ��′�� (5) 

(Davis, 2002; Rencher and Christensen, 2012). Here we see that the covariance structure of the model 

is both unconstrained and very simple to estimate. When applied to imaging data the residual matrix �� 
is estimated on a per-voxel basis and thus it is trivial to estimate a unique covariance structure for 

every voxel. This is a distinct advantage of mass multivariate approaches to dependent neuroimaging 

data. However, it should be clear from Eq. 3 that in this framework the covariance structure is 

assumed identical across groups. We shall return to this issue later. 

The multivariate framework allows for the modelling of both repeated-measures and 

multimodal group-level imaging data. In both instances each row of Y represents measurements from 

a single subject (for a particular voxel), with the columns of Y representing the multiple observations 

for that subject. Whether modelling repeated-measurements or multiple modalities, there is an 

assumed degree of correlation between the columns of Y. This correlation is expressed using the 

estimated variance-covariance matrix ��, as indicated above. The utility of mixed-effects approaches 

for dependent data is in part due to their flexibility in specifying a variety of covariance structures 

(Mcculloch et al., 2008; Searle et al., 1992), whereas the assumption of a spherical covariance 

structure is one of the main reasons the traditional repeated-measures ANOVA approach is typically 

avoided (Davis, 2002). In the multivariate approach, an unconstrained covariance structure at every 

voxel provides the opportunity for inference without making any assumptions on the form that the 

covariance may take across the brain. As such, we argue that this is the safest approach without the 

computational burden of estimating variance components using iterative maximum-likelihood at every 

voxel (Guillaume et al., 2014). Notably, such a structure can also be fit uniquely at each voxel using 

marginal models, where the covariance structure is treated as a nuisance factor, allowing simplification 

of the mixed-effects scheme where both fixed and random effects must be specified directly 

(Guillaume et al., 2014; Li et al., 2013; Skup et al., 2012). 

Extension of the multivariate GLM to accommodate continuous covariates is identical to the 

univariate domain and simply involves adding the, usually mean-centred (Poldrack et al., 2011), 

covariate ��  as another column in the design matrix � . The parameters associated with ��  are 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 7

therefore slopes of the relationship between �� and Y for each column of Y. If a grouping variable is 

used to split the covariate then a per-condition, or per-modality, slope is estimated for each group 

separately.  Comparisons of changes in slope across groups are then easily specified. This scheme is 

more straightforward than integrating continuous covariates into traditional univariate approaches to 

repeated measurements, although it does not allow for the specification of time-varying covariates. 

With no groups and only continuous covariates the model becomes a multivariate regression (see 

Rencher and Christensen, 2012). 

 

2.2. Hypothesis testing 

Hypothesis testing in the multivariate GLM is based on the contrast  

���� =  � (6) 

Here the univariate scheme is extended by combining standard hypotheses on the rows of B, coded by 

the matrix A, with hypotheses on the columns of B, coded by the matrix C. For multivariate ANOVA 

(MANOVA) models contrasts of main effects and interactions involve setting � = �� , the � ×  � 
identity matrix, as the dependent variables are not assumed to be commensurate. This is the scheme 

most suitable for multimodal neuroimaging applications. For repeated-measures models the variables 

are guaranteed to be commensurate and comparisons between the measurements are usually of 

interest. As such, C can take on a number of forms. Here the hypothesis testing approach can be 

conceptualised as combining hypotheses about the groups using A, and hypotheses about the repeated-

measures using C. As an example, and assuming a cell-means coded design matrix, an interaction 

between 2 groups with 3 repeated-measurements per-subject can easily be specified with � =

 �1 −1� and � =  �1 −1    0
0    1 −1

�. This is simply a combination of a between-subject main effect and 

within-subject main effect. Setting � =  �1/2 1/2� would provide the within-subject main effect 

alone, with � =  �1/3 1/3 1/3� providing the between-subject main effect alone. In each case the 

effects of no interest are simply averaged. This scheme is also particularly flexible as the standard 

univariate GLM analyses on the individual dependent variables can be recovered using e.g. � =

 �1 0 0�.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 8

 

 

2.3. Test statistics in the multivariate GLM 

Whether a repeated-measures or MANOVA model the calculation of test statistics from the 

multivariate GLM is identical. There is a choice of four standard test statistics that can be constructed 

based on the calculation of two sums-of-squares and cross products (SSCP) matrices. For any 

particular contrast there is an SSCP matrix associated with the hypothesis  

����� = (����′)′����′�����′���(����′) (7) 

and an SSCP matrix associated with the error 

����	 = ���� ��� �′ (8) 

These matrices are generalisations of the numerator and denominator sums-of-squares from the 

univariate GLM hypothesis-testing framework (Green et al., 1999; Searle, 1987). For example, when 

� = �� the main diagonal of ����� contains the sums-of-squares for the hypothesis in A as applied to 

the estimated parameters for each dependent variable separately. When � ≠ �� these are the sums of 

squares for the linear combinations of parameters across the dependent variables, as given by the rows 

of �. For univariate cases, or when ��′ reduces to univariate form, ����� becomes the single sums-

of-squares for the hypothesis. Similarly, when � = �� the ����	 matrix is simply an unscaled form of 

the estimated covariance matrix �� . When � ≠ ��  the ����	  matrix is the appropriate linear 

combination of unscaled variances and covariances dictated by the form of C. When there is only one 

dependent variable, the ����	  returns to the univariate residual sums-of-squares, demonstrating that 

the univariate GLM is simply a special case of the multivariate framework. 
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Construction of a test statistic from this hypothesis-testing scheme can be done in a number 

of ways. Generally speaking the different methods all rely on some linear combination of the q 

eigenvalues �!�, … , !
  of ����	�������. The four standard tests statistics (attributable to Hotelling, 

1951; Lawley, 1938; Pillai, 1955; Roy, 1945; Wilks, 1932) are: 

Pillai's trace = trace������� + ����	��������� =  " !�
1 +  !�




���

  

Wilks' lambda =
|����	||����� + ����	|  =  $ 1

1 + !�



���

 

Hotelling-Lawley trace = trace�����	�������� =  "!�



���

 

Roy's largest root =
!∗

1 +  !∗ 

(9) 

Where !∗  is the largest eigenvalue of ����	������� . Approximations to an F-statistic, and the 

corresponding degrees of freedom can be calculated for all these statistics, allowing the designation of 

an approximate p-value (see Christensen, 2001; Rencher and Christensen, 2012 for derivation). It 

should be noted, however, that the F-approximation for Roy’s largest root is an upper-bound on the 

true F. As such it carries with it the greatest Type I error risk, and generally is only safe to interpret for 

those tests where the null hypothesis is not rejected (see Rencher and Christensen, 2012, p. 165). A 

further point for neuroimaging is that all hypothesis tests in the multivariate GLM framework are 

based on F-statistics, meaning that it is not possible to test directional (one-tailed) hypotheses. See 

Appendix A for discussion on the choice between these test statistics. Later we present some 

comparisons between these tests within a neuroimaging setting. 

 

2.4. Descriptive linear discriminant analysis (dLDA) 

When using MANOVA models, the calculation of a sufficiently large multivariate test statistic 

naturally leads to the question of the degree to which any of the dependent variables are contributing 

to the rejection of the null hypothesis. Although it is possible to simply follow up any significant 
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multivariate tests with multiple univariate tests this is generally discouraged (Rencher and 

Christensen, 2012; Tabachnick and Fidell, 2007). An approach more closely tied to the calculation of 

the MANOVA test statistics known as LDA is more favourable. The use of LDA as a follow-up tool 

for MANOVA models is well documented (Huberty and Olejnik, 2006; Klecka, 1980; Rencher and 

Christensen, 2012), and can either take the form of dLDA or predictive LDA (Hastie et al., 2009; 

Rencher and Christensen, 2012). Here we focus on dLDA as a tool for indicating the relative 

importance of each dependent variable to group separation. 

The dLDA approach is a reversal of the MANOVA model, seeking those linear combinations 

of dependent variables that best separate the specified groups. Formally, the dLDA model is given as  

%�� =  &�'��� + &
'��
 + ⋯ + &�'��� = (���� (10) 

where ���  is the column vector of responses for subject ) �) = 1 …���, from group * (* = 1 …  �), 

measured on �  dependent variables (+ = 1 … �) . As with the traditional MANOVA model it is 

assumed that each ��� is drawn from a multivariate normal distribution with a group-dependent mean 

vector and a common covariance matrix. The weights in vector ( represent a discriminant function and 

are calculated so that the transform of the multivariate response in ���  to the scalar %�� , the 

discriminant score, maximises the standardised group difference on %��. For example, for two groups ( 

is estimated to maximise �%,� − %,
 �/-�, where %,� denotes a mean for group i and -� denotes the pooled 

standard deviation. The absolute values of the weights in ( are therefore of interest as they indicate the 

contribution of each dependent variable to maximising the difference between the groups. For 

multimodal neuroimaging data, this allows a quantification of the degree to which each modality is 

able to contribute to group separation at a particular voxel. See Appendix B for more details. 

 

3. Approaches to inference and multiple comparison correction 

In basic voxel-by-voxel neuroimaging analyses a key point of contention is the multiple comparison 

problem engendered by testing across a large number of voxels. Application of the multivariate GLM 

to neuroimaging data is no exception. In addition, there may be some concern that the test statistics are 

only approximately F distributed, and therefore only provide approximate p-values. In the MRM 
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software we make use of permutation testing as a method of improving this approximation (Finch and 

Davenport, 2009), and as a method of providing a family-wise error (FWE) analogue to standard 

Gaussian random field (GRF) theory approaches to multiple testing in neuroimaging (Worsley et al., 

1996). Although GRF results exist for some multivariate test statistics (Cao and Worsley, 1999; 

Carbonell et al., 2011; Taylor and Worsley, 2008), the permutation approach provides much greater 

flexibility. Adopting a permutation approach allows us to relax the distributional assumptions about 

the outcome data as well as use non-standard statistics, irrespective of their tractability under the null. 

Though we currently restrict this to cluster size and cluster mass (Bullmore et al., 1999), the 

framework provides flexibility to use many other statistics in the future, so long as they meet the 

condition of pivotality (Winkler et al., 2014). Here cluster size is simply the number of voxels within a 

cluster, defined using some cluster-forming threshold and a cluster counting scheme. Cluster mass, on 

the other hand, allows one to make use of the voxel-level information in the image by summing the 

test-statistics within a cluster, an approach that appears more sensitive (Bullmore et al., 1999). Using 

the multivariate framework also allows for a relatively easy solution to the problem of permutations 

under dependence, foregoing the specification of exchangeable blocks of data as necessitated by 

univariate approaches (Winkler et al., 2014). See Appendix C for details on the implementation in 

MRM.  

 

4. Software 

The MRM software is a MATLAB-based toolbox designed for the specification of mass multivariate 

group models of neuroimaging data using the summary statistic approach. Figure 1 shows the main 

window used for specifying a repeated-measurement model. Contrasts, following Eq. 6, are user 

specified in terms of the weights in matrices A and C for the general linear hypothesis test ���� = �. 

There is also an auto-generation procedure for creating standard MANOVA and repeated-measures 

contrasts of main effects and interactions for arbitrary designs up to a 4-way interaction. Any number 

of continuous covariates measured at the between-subjects level are easily added to the design matrix, 

with automatic mean-centring conducted by default. This mean-centring can be switched off at the 

user’s discretion. For the dLDA follow-up all covariates are removed from the design prior to 
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estimation. A number of options for inference are available including thresholding at both the voxel 

and cluster level, as well as using permutation methods to generate p-values that can be corrected 

using an FDR procedure, or used to provide a FWE correction. For permutation inference, the use of 

the randomise algorithm (detailed in Appendix C) allows permutation in the presence of nuisance 

covariates by orthogonalising the data with respect to the nuisance partition of the model.  It is also 

possible to provide a mask in order to restrict inference to pre-defined regions of interest. 

After model estimation, the MRM Post-estimation tools are available to explore results. These 

facilities are shown in Figure 2 and include interactive assessment of thresholded maps, plots of linear 

combinations of the model parameters, and model assumption checking. The checking of parametric 

assumptions is rarely conducted in neuroimaging data analysis, an issue discussed by a number of 

authors (Poline and Brett, 2012; Zhang et al., 2006). In MRM the ability to check assumptions in 

voxels of interest is readily provided through a number of standard residual plots and inferential tests. 

Although it is not practical to check every voxel, it should be encouraged to at least check that the 

model assumptions appear reasonable at peak voxels of interest. Examples of these plots are given 

later. 

 

4.1. Computational speed 

Previous publications discussing multivariate approaches in neuroimaging have commented that the 

approach can be slow (Chen et al., 2014). As such, there may be concern that the switch from the 

univariate GLM to the multivariate GLM involves a considerable additional computational burden. 

Generally speaking, MRM model estimation is fast, making full use of the compiled MATLAB 

routines for large matrix operations. Using MATLAB R2013a on a 2.3GHz quad-core i7 MacBook 

Pro with 16GB of RAM, estimation of 5 dependent variables from 4 groups (a total of 53 subjects and 

265 images with dimensions 53 ×  63 ×  52) takes approximately 17 seconds. This is inclusive of the 

estimation and writing of images of the parameter estimates and covariance structure to disk. As such, 

the only real computational burden is when permutation methods are invoked for inference.  

As detailed in Appendix C, the permutation approach in MRM is based on the randomise 

algorithm published in Winkler et al. (2014). For contrasts that simplify to univariate comparisons this 
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method is fast, generally completing 5,000 permutations in around 10 minutes. For multivariate 

contrasts, this approach is much slower, compounded by the fact that each voxel no longer represents a 

scalar but an instance of an SSCP matrix. Although some optimisation of the calculations is possible, 

the speed of the permutations remains influenced by the number of non-empty voxels in an image and 

the particular multivariate tests statistic chosen. Figure 3 demonstrates speed differences for each of 

5,000 permutations between a univariate contrast and a multivariate contrast using the different test 

statistics, performed using the hardware detailed above. Generally, Wilks’ lambda is the fastest 

statistic to compute, around 6x slower than the univariate contrast, with Roy’s largest root the slowest 

at nearly 10x slower than the univariate contrast. Pillai’s trace, as the most robust of the four test 

statistics, is around 8x slower than the univariate approach. Unsurprisingly, given their similarity in 

Eq. 9, Pillai’s trace and the Hotelling-Lawley trace are near identical for speed. Further work on 

integrating GPU computing in neuroimaging software may be able to render processing time for such 

tests negligible (Eklund et al., 2012).  

 

5. Comparisons with existing univariate approaches for repeated measurements 

To demonstrate the utility of the repeated-measures aspect of the multivariate GLM we conducted a 

number of comparisons between the approach implemented in MRM and univariate approaches to 

dependent neuroimaging data implemented in other popular MATLAB toolboxes. The software 

packages chosen for comparison included SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), GLM FLEX 

(http://mrtools.mgh.harvard.edu/index.php/GLM_Flex), and the recently released Sandwich Estimator 

(SwE v1.2.2; Guillaume et al., 2014; http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-

research/nichols/software/swe). In our experience, these are the most popular MATLAB packages that 

researchers use when faced with repeated-measures models of neuroimaging data. We did not conduct 

comparisons with iterative maximum-likelihood methods as applying such approaches to 

neuroimaging data has many disadvantages, as discussed by other authors (Chen et al., 2014; 

Guillaume et al., 2014), including computational burden and uncertainties with respect to the 

covariance structure that can be sensibly imposed at each voxel. We also did not make comparisons 

using FSL FEAT given the restrictive necessity of assuming sphericity in order for exact F-tests. 
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Excluding FSL FEAT also allowed us to only compare solutions written in MATLAB using SPM 

functions, allowing for sensible comparisons in terms of speed as well as direct scrutiny and 

comparison of the MATLAB code, an approach that would be unnecessarily complicated by inclusion 

of compiled programmes written in languages such as C/C++. 

Both GLM FLEX and SwE use SPM as their base, but expand upon the default mass 

univariate functions in a number of ways. GLM FLEX allows for the implementation of traditional 

repeated-measures ANOVA models by allowing the specification of different error terms for each 

contrast. These error terms are user-specified and are built using the MATLAB scripting interface. In 

these models derivation of the correct error term is left up to the user, and can be achieved using the 

expected mean squares of the model (Casella, 2008; Kutner et al., 2005). Importantly for the current 

comparisons, GLM FLEX uses the SPM non-sphericity modelling procedure2 to estimate a covariance 

structure using restricted maximum likelihood (ReML) on a pooled selection of voxels from an initial 

model fit. This estimated structure is then used to pre-whiten the data in attempt to render the error 

covariance structure closer to its assumed form (Glaser and Friston, 2007; Poldrack et al., 2011). As 

mentioned earlier, a key problem with this approach is the assumption that the estimated covariance 

structure is the same for every voxel in the image. SwE, by comparison, allows for a unique 

covariance structure to be estimated for every voxel. Similar to the approach in MRM, SwE uses the 

model residuals at each voxel to estimate a unique covariance structure. This structure is then used to 

construct ‘robust’ standard errors of the estimated model parameters using a formulation referred to as 

‘sandwich’ estimation due to the form that the estimation equation takes (Guillaume et al., 2014). 

Some of the differences between these packages are given in Table 1. 

 

5.1. Data, preprocessing, and subject-level models 

The data used for comparison between the software packages was taken from an investigation into the 

influence of a history of major depressive disorder (MDD) on affective processing in older and 

younger adults (McFarquhar, 2015). Twenty-nine younger adults (aged 30-50) and 29 older adults 

                                                        
2 This is in fact only true of the older GLM FLEX 2. The latest incarnation of GLM FLEX (known as GLM FLEX FAST) does 
not use the non-sphericity correction, and thus suffers from the same issues as FSL FEAT. Here we only focus on the older 
GLM FLEX 2. 
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(aged 60-85) were recruited primarily from the Greater Manchester area. All participants completed an 

initial screening questionnaire followed by a face-to-face clinical interview to assess inclusion and 

exclusion criteria. The final groups comprised 12 remitted MDD (rMDD) older adults, 12 rMDD 

younger adults, 14 older adult controls, and 15 younger adult controls. All participants provided 

informed consent and the study was given a favourable opinion by the local research ethics committee 

(REC ref. 11/NW/0009). 

During the scanning session participants performed an Affective Go/No-go (AGN) task 

(Elliott et al., 2004, 2002, 2000). In brief, words selected from two categories (e.g. ‘positive’ and 

‘negative’) were presented rapidly on a screen in a random order. Participants were instructed to only 

respond by pressing a button when a word was shown belonging to one category (the ‘target’ 

category), but not the other (the ‘distractor’ category). Across the task, five variants of the 

combination of ‘target’ and ‘distractor’ categories were used. This task is therefore a within-subject 

design due to all participants engaging in all five conditions. There were also two between-subject 

factors in the investigation consisting of age (older and younger) and diagnostic history (control and 

rMDD). See Appendix D for details of the scanning parameters. 

Prior to group analysis the data were preprocessed in SPM12 by realigning the images to the 

first volume, coregistering the structural image to the mean functional image, segmenting the 

structural image into its constituent tissue classes, applying the estimated transformations to MNI 

space derived from the segmentation to the functional scans, and finally smoothing the functional 

scans using a Gaussian kernel with FWHM of 9 ×  9 ×  9mm. As an additional step we made use of 

the artefact detection tool (ART; http://www.nitrc.org/projects/artifact_detect/) to identify high motion 

volumes using a volume-to-volume shift of >1.5mm and a volume-to-volume change in mean signal 

intensity >3 standard deviations. Any scans with >20% volumes identified by ART as outliers were 

excluded. Subject-level models were fit in SPM12 using the HRF + derivatives basis set with the 

addition of the per-subject regressors produced by ART to ‘censor’ high-motion volumes (Power et 

al., 2012; Siegel et al., 2014). Specifically, we modelled the five conditions of the task leaving the rest 

periods as an implicit baseline. As such there were five parameters, one per condition, that were taken 

to the group level from each participant. 
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5.2. Group-level modelling approach 

To allow for maximum comparability between the software packages a number of restrictions were 

placed on the initial modelling procedure (see below for comparisons with these restrictions lifted). 

Firstly, we assumed that the covariance structure of the data was homogenous across the groups. This 

involved setting the group variance options to ‘equal’ in SPM and GLM FLEX, and defining only a 

single covariance matrix group in SwE. This is presently the only option in MRM. Secondly, we 

restricted thresholding to an uncorrected p < 0.01 in an effort to best visualise the differences between 

the packages, foregoing any p-value correction in an effort to rule out any differences due to 

implementation of correction techniques across the software. 

Using these restrictions, we estimated a classical repeated-measures ANOVA model using 

the SPM Flexible Factorial module for the within-subject main effects and interaction tests, and a 

second between-subject ANOVA model averaging over the repeated-measurements for the between-

subject main effects and interaction tests. Although previous authors have suggested that SPM 

incorrectly estimates between-subject effects in repeated-measures models (Chen et al., 2014; 

McLaren et al., 2011) this is only true when no concern is given to the error term for the tests. This is 

an issue that has a long history in the analysis of split-plot designs (Casella, 2008; Christensen, 2011), 

where the issue of error strata has been thoroughly discussed for those situations when a random-

effect (e.g. subject in a repeated-measures design) is included in the GLM (Nelder, 1977). Here we 

include the comparisons with SPM in part to show that it is possible to fit these models correctly in 

SPM. How easy this is to do, however, is a different question given that multiple models are often 

needed, and that in the Flexible Factorial module contrasts need specifying as estimable functions in 

an overparameterised linear model framework3 (Green et al., 1999). In GLM FLEX, SwE, and MRM 

only a single model was needed to correctly estimate all comparisons of interest. In GLM FLEX, 

features such as accommodating missing voxel-level data across subjects and outlier detection were 

switched off in order to facilitate comparisons. In terms of the extra options available in SwE, we 

                                                        
3 It is also possible to fit these partitioned error-term ANOVA models in SPM using more basic group-level models by applying 
the Kronecker product rules outlined in Penny & Henson (2007). 
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specified the small sample adjustment as type ‘C2’, as this is the recommended option in the software 

for the most accurate bias correction. The calculation of the degrees of freedom was set to use the 

‘approximate II’ approach as, similar to the small sample adjustment, this is recommended by the 

authors of the toolbox as the most accurate approach when there is no missing data. In MRM, Wilks’ 

lambda was used as the test statistic. Because the comparisons in this example were exact, this choice 

made no difference to the results. Figure 4 shows the model setup from all four software packages. 

Here we display the full factorial design in SPM for maximal comparability with the other design. It 

should be noted, however, that not all the presented columns are strictly necessary to form the tests of 

interest, and that tests of any pure between-subject effects in this model would not be suitable as the 

error term derived from the model residuals would be incorrect. 

 

5.3. Results 

Figure 5a shows the results across the four software packages for the main effect of age contrast. Of 

note is the fact that SPM and MRM are identical. This is as expected given that the multivariate GLM 

simplifies to univariate form under between-subject comparisons. Although identical in principle, the 

results from GLM FLEX differ from both SPM and MRM. This appears to be a result of differing 

implementations of the SPM non-sphericity correction and the subsequent whitening that is applied to 

the design. As demonstrated in Appendix E, this has direct consequences for the parameter estimates 

from the model, leading to the discrepancy in the calculated test statistics. Because the SPM between-

subject comparisons are performed using a model where the repeated-measures have been averaged, 

and because we assume covariance homogeneity in this example, no whitening will have been applied. 

This leads to identical results in SPM and MRM. This is not true in GLM FLEX, as the between-

subject comparisons are performed within the same model as the within-subject comparisons. This 

means any whitening applied due to the repeated-measures has the potential to also impact the 

between-subject comparisons. SwE, on the other hand, appears the more conservative of the 

approaches. That being said, results are so similar across the software packages that this would be of 

little practical significance. 
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The contrast for the main effect of the repeated-measurement conditions is shown in 

Figure 5b. Here a number of differences between the methods become apparent. Firstly, although 

largely similar, there are again differences between the thresholded maps provided by SPM and GLM 

FLEX. In this example, GLM FLEX appears to be generally estimating larger F-values than SPM, 

leading to the discrepancy in the number of voxels that survive thresholding. As an example, the result 

from 0 20 47 is given as F4,196 = 41.35 in SPM and F4,196 = 45.84 in GLM FLEX. Again, this appears to 

be a consequence of differing implementations of the SPM non-sphericity correction, and is explored 

in more detail in Appendix E. The results from MRM and SwE, on the other hand, appear largely 

comparable, with SwE slightly more sensitive. Of particular interest is comparing SPM/GLM FLEX to 

MRM/SwE given that the former methods choose to pool the covariance estimate whereas the latter 

estimate a unique covariance matrix per-voxel. There are a number of regions in these maps where, 

despite subtle differences in their estimates, SPM and GLM FLEX have generally provided a larger 

test statistic value compared with MRM and SwE. Because these differences are consistent with the 

different methods of covariance estimation this may suggest that the pooled approach is artificially 

inflating the test statistic at certain voxels. This point is further explored in Figure 6 where an example 

voxel is compared in terms of the estimated covariance structure across the different software 

packages.  

As a final comparison, the age x condition interaction is shown in Figure 5c. A similar 

result to the main effect of condition is evident here. Again, subtle differences in the calculated 

statistics are present in SPM and GLM FLEX, however, the discrepancy between the pooled 

covariance approaches and the unique covariance approaches is again clear in the SPM/GLM FLEX 

and MRM/SwE divide. Both SPM and GLM FLEX appear more sensitive, though whether this is due 

to differences in power (because of differences in the number of parameters each method must 

estimate) or differences in the estimated covariance structure is unclear. Again, MRM and SwE largely 

agree, with SwE the slightly more conservative of the two. 

 

5.4. Unrestricted model comparisons 
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To further compare these approaches, we estimated the models in each of the software packages using 

fewer restrictions. For SPM 12 and GLM Flex this involved setting the group variances to unequal. 

For SwE this involved requesting a unique covariance matrix to be estimated for each group. As 

previous authors have demonstrated, assuming covariance homogeneity when the reality is 

heterogeneity can lead to either conservative or liberal inference (Guillaume et al., 2014). It is 

therefore important for researchers to realise the potential limitations of making this assumption in the 

multivariate GLM. Figure 7 shows the comparisons between the models estimated earlier and those 

estimated with fewer assumptions. Voxels in pink indicate overlaps between the previous model and 

the unrestricted model. Voxels in orange indicate those found in the restricted model only, with voxels 

in green indicating those found in the unrestricted model only. Looking across these results it is clear 

that although the number of voxels surviving thresholding do differ between the restricted and 

unrestricted models, these are generally fringe cases on the edges of clusters that appear irrespective of 

the covariance assumptions. In addition, it is also clear that assuming covariance heterogeneity 

generally leads to more conservative inference, and whilst this is preferable to overly liberal inference 

it will lead to a reduction in power if homogeneity can be assumed. This appears particularly true of 

SwE, where the reduction in surviving voxels when covariance heterogeneity is assumed is 

consistently the greatest. Again, SPM and GLM FLEX appear to differ due to their implementations of 

the non-sphericity correction, with the SPM/GLM FLEX and MRM/SwE split still apparent. This 

would suggest that the biggest differentiator between these methods is not their ability to 

accommodate a different covariance structure per-group, rather it is their use of unique vs pooled 

structures across an image. As such both MRM and SwE are the preferred approaches, with SwE 

providing more flexibility in allowing the covariance structure to differ between groups, but seemingly 

losing some sensitivity, particularly in the between-subject comparisons. It is also worth noting that 

the multivariate approach is capable of incorporating covariance heterogeneity using approximate 

degrees of freedom corrections such as the Welch-James and Brown-Forsythe approaches (Keselman 

and Lix, 1997; Lix et al., 2003; Vallejo et al., 2001). These are, generally speaking, more complex to 

implement than the standard multivariate test statistics, and given that they are not widely used they 

will require further investigation before applying to imaging data. Presently, assumptions of 
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covariance homogeneity can be checked in MRM at peaks of interest, allowing researchers to caution 

interpretation if this assumption appears violated. 

 

5.5. Assumption checking 

One advantage of the MRM software is the ability to check model assumptions at peak voxels of 

interest. These checks include both standard inferential tests of the model assumptions, as well as a 

wealth of plotting devices that allow the researcher to assess the plausibility of the model at voxels of 

their choosing. Though assumptions of multivariate normality can be relaxed when using non-

parametric permutation methods, the plausibility of this assumption can still be checked using 

quantile-quantile plots of the model residuals. Here we follow the recommendations of Christensen 

(2001) and provide plots of the residuals for each dependent variable separately, as well as a single 

linear combination (the sum). For covariance homogeneity we provide both Box’s M test (Box, 1950, 

1949), and, again following from Christensen (2001), plots of dependent variable pairs for each cell of 

the design. For the moment researchers are encouraged to exercise caution and use Pillai’s trace as the 

test statistic in cases where this assumption appears violated. For between-subject comparisons we 

similarly provide Levene’s test for homogeneity of variance (Levene, 1960)(Levene, 1960), as well as 

plots of the fitted values against residuals. Examples of some of these plots and tests are given in 

Figure 8 for a peak voxel from the main effect of condition contrast. Results from these checks imply 

that the assumption of covariance homogeneity appears reasonable at this voxel. There is some 

suggestion of violations of normality in the tails of the distribution, and as such we may wish to use 

permutation approaches to calculate p-values for the hypothesis tests. It is also worth noting that such 

tests can easily be applied to univariate group-level neuroimaging data in MRM by setting the number 

of within-subject factors to 0 (or the number of dependent variables to 1), allowing MRM to be used 

as a more generic group-level modelling tool. 

 

5.6. Comparison of approaches to FWE correction 

Though the utility of the multivariate framework for dependent data has been demonstrated, it may be 

of some concern that the methods used for FWE correction in this framework do not make use of the 
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standard neuroimaging approach provided by GRF. As a final comparison we investigated the 

difference between the GRF FWE correction and the FWE correction resulting from permutation tests. 

We also included comparison with the non-parametric bootstrap option provided in SwE. We 

compared the main effect of task from the SPM model using GRF FWE correction, from the MRM 

model using permutation-based FWE after 5,000 permutations, and the SwE model using bootstrap-

based FWE after 5,000 bootstraps. As both permutation and bootstrap approaches depend on the 

number of model re-fits to dictate the precision of p-value estimation this allowed both non-parametric 

approaches to calculate values in the range 1 ≤ + ≤ 0.0002. Figure 9 shows the comparison between 

the results as well as the permutation and bootstrap distributions of the maximum F in the image. 

Table 2 shows comparisons between the p-values for the seven smallest peaks reported by SPM. 

Generally, results are similar across the approaches, with the GRF method providing larger p-values in 

all cases. Both the permutation and bootstrapping approaches lead to very similar estimated null-

distributions and subsequent 5% thresholds. In this example the MRM permutation approach is 

slightly more liberal than the bootstrapping approach. These results may therefore suggest that the 

GRF approach to voxel-level statistics is overly conservative, consistent with results presented 

previously by Nichols & Hayasaka (2003) and more recently by Eklund, Nichols, & Knutsson (2015).  

 

6. Comparisons between the multivariate test statistics 

As indicated earlier, when using the multivariate GLM there is a choice of four potential test statistics. 

Such a choice provides greater complexity to the use of the multivariate GLM in neuroimaging when 

using contrasts that produce non-exact F values. Though these tests have been compared numerous 

times in the statistical literature (Ito, 1962; Lee, 1971; Mikhail, 1965; Olson, 1974; Pillai and 

Jayachandran, 1967) we sought to briefly investigate their behaviour when applied to real 

neuroimaging data. To do this we used the C matrix from the main effect of condition contrast detailed 

earlier with � = ��. We compared both the approximate p-values associated with the different test 

statistics as well as the p-values derived from 5,000 permutations. Figure 10a shows the results for the 

classical p-value approximations, with the test statistics displayed from most conservative to least 

conservative. Here the nature of Roy’s largest root as an upper-bound on the F-value is clear. Pillai’s 
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trace, Wilks’ lambda, and the Hotelling-Lawley trace are all similar, with the Hotelling-Lawley trace 

the most liberal, and Pillai’s trace the most conservative. These results agree with previous 

recommendations suggesting Pillai’s trace is the safest test to use as it provides the best control over 

Type I errors. These results also suggest that the F approximation to Roy’s largest root should 

generally be avoided unless there is good reason to only consider the upper-bound. In Figure 10b we 

present the same comparisons thresholded using p-values derived from permutation testing. Because 

we only ran 5,000 re-shuffles the largest possible value in the map is − log�� 1 5000⁄ = 3.70 . What 

is noticeable is that for Roy’s largest root the pattern of results is much more in keeping with the 

activation maps found for the other test statistics. The permutation approach therefore appears to 

converge the behaviour of the test statistics as under permutation the p-values of Roy’s largest root no 

longer represent an upper-bound, rather they more closely reflect the true F. In addition, it is 

interesting to note that in this example Wilks’ lambda appears the most consistent between the 

approximate and permutation-based p-values. This suggests that, although not necessarily 

generalisable to every dataset and contrast, when using permutation approaches the differences 

between the test statistics may be less of a concern and the choice can be driven more by the 

computational considerations discussed earlier.  

 

7. Multimodal integration 

Although much detail has now been given about the repeated-measures aspect of the multivariate 

GLM we have yet to demonstrate its utility in the integration of multimodal and multi-sequence 

imaging data. To do so we present a combined voxel-based morphometry (VBM) and functional MR 

analysis using the younger adults of the sample described earlier. Specifically, we sought to compare 

those with a history of depression to those with no history of depression under the condition of 

viewing negative images. The task performed by the participants was based on a memory paradigm 

reported in Whalley et al. (2009), but was altered to include negative images alongside the originally 

reported positive and neutral. Seventy-two images were selected from the International Affective 

Picture System (IAPS; Lang et al., 2008) comprising 24 positive, 24 negative, and 24 neutral. Stimuli 

were presented in blocks of 6 images from one valence category. A period of rest was provided for 15 
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seconds after each cycle of positive, negative, and neutral blocks. During the task 145 volumes were 

collected, with all other scanning parameters identical to those described in Appendix D. 

 

7.1. Image preprocessing 

For the functional scans, preprocessing was conducted in an identical fashion to the procedure 

described earlier. Again, subject-level models were estimated in SPM 12 using the HRF + derivatives 

basis set with the addition of the per-subject regressors produced by ART. Here we modelled the three 

picture conditions of the task again using the rest conditions as an implicit baseline. Unlike the 

demonstration earlier, only the parameter estimates associated with the negative image condition were 

taken to the group modelling stage. For the structural scans the SPM DARTEL tools (Ashburner, 

2007) were used to produce normalised grey matter images using the segmented tissue images from 

the preprocessing. 

One particular issue in using the MANOVA approach for modelling multimodal data is 

that different modalities often provide images of different resolution. For example, a typical structural 

MRI image may have around 10 times as many voxels as a typical task-based fMRI image. In order 

for a voxel-by-voxel analysis to work it is necessary to rescale one of the modalities to match the 

other. Our own limited investigation of this issue suggests that results are relatively invariant to 

whether one up-samples the functional to the dimensions of the structural, or down-samples the 

structural to the dimensions of the functional. Where the benefit of resampling the higher resolution 

image becomes clear is with the increase in computational speed and decrease in computational 

burden for model estimation and inference by permutation, as well as a reduction in the number of 

hypothesis tests that must be corrected for at the voxel-level. That being said, the choice of approach 

will likely depend on the modality of most interest, and the investigator’s opinion on the trade-off 

between increased computational speed and the loss of information engendered by interpolating a 

higher-resolution image to smaller dimensions. 

Another issue, typical to VBM investigations, is the necessity of a correction for head size 

to allow for sensible between-subject comparisons. In SPM it is possible to provide values to perform 

proportional scaling of the images before the model is estimated. As there is no such facility in MRM, 
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the proportional scaling was performed manually on the normalised grey matter images before they 

were entered into the model. Specifically, the value at each voxel of the normalised grey matter 

images was divided by the participant’s total intracranial volume (estimated using the Easy_volume  

tool http://www.sbirc.ed.ac.uk/cyril; as described in Pernet et al., 2009) to produce proportionally 

scaled versions of the DARTEL results. For the multivariate GLM this strategy is preferable to 

entering these values as covariates given that any covariate will influence all the model parameters, 

irrespective of the modality. This could be seen as a disadvantage of the multivariate approach to 

multimodal integration, particularly in those cases where co-varying for a nuisance variable in one 

modality is seen as preferable to rescaling the raw data. Other covariates that may be relevant for both 

modalities can be entered into the model directly, though for simplicity of presentation we do not 

include any here. Only after the proportional scaling were the grey matter images resampled to the 

same dimensions as the images of parameter estimates from the functional models. In addition, it is 

worth mentioned that at present the permutation approach implemented in MRM does not account for 

non-stationarity when using cluster-level inference. As approaches to permutation that accommodate 

non-uniform smoothness of the images have been proposed by Hayasaka et al. (2004) this could be 

implemented in the future to allow researchers to appropriately use cluster-level statistics for analyses 

of data such as structural MR images. 

 As a final step we produced a mask to restrict the analysis to only regions of grey matter. 

This was done by averaging the scaled and resampled grey matter images and then producing a binary 

image including voxels with an intensity > 0.2. Such an approach is in keeping with the 

recommendations given by Ashburner (2010). 

 

7.2. Model estimation and results 

The group-level model used for these data consisted only of the grouping variable for controls or 

remitted depression. The model was therefore equivalent to a multivariate form of a simple two-

sample t-test. As this design was specified as a MANOVA model the structural and functional data 

were treated as non-commensurate. As such, the C matrix of the general linear hypothesis test of the 

main effect of Diagnosis was specified as �
. Results of this contrast, thresholded at an uncorrected p < 
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0.001, revealed a cluster of 48 voxels in the left lingual gyrus (peak at -15 -73 -7 with F(2,25) = 19.26). 

Following up this result using dLDA at the peak voxel revealed a single discriminant function with 

absolute values of the standardised weights given as 0.826 for the structural modality and 0.850 for the 

functional modality. This result is particularly interesting because it suggests that at this peak voxel a 

near equal balance of the modalities provides maximal separation of the groups. Using the partial F-

test methodology described in Appendix B gives significant results for both the structural and 

functional modalities (both p < 0.001), suggesting that each modality is contributing to group 

separation.  

Of further interest here is that conducting the univariate equivalents of this analysis on each 

modality separately revealed smaller test statistics at this peak, as shown in Figure 11. Here a clear 

advantage of the multivariate approach is seen as the individual results from the univariate analyses 

have been strengthened by virtue of the fact that equivalent results are seen across modalities. The 

results of the dLDA at this voxel enhance this interpretation given that nearly equal weight is given for 

each modality. Although thresholded liberally for our demonstration, these findings suggest that the 

multivariate approach has the scope for providing true integration of functional and structural 

information in a single model, allowing researchers to investigate those regions where the information 

across modalities can be effectively pooled to maximally discriminate between groups of interest. 

 

8. Limitations of the multivariate GLM for neuroimaging 

Although there are clearly many advantages to the multivariate GLM for group-level analyses of 

neuroimaging data there remain a number of drawbacks. Perhaps most problematic are times when the 

power of the multivariate approach is limited compared with univariate methods due to the number of 

parameters it must use (Davis, 2002). Indeed, it is possible that for some models a more parsimonious 

number of parameters could be estimated when using an alternative univariate framework, allowing 

certain questions to be more easily addressed using an alternative modelling scheme. This is 

particularly true of the p-block approach to pharmacological challenge MRI (phMRI; e.g. McKie et 

al., 2011) where the number of time bins is more severely limited in the multivariate framework 

compared to the univariate.  Similarly, there are also limitations in the number of subjects necessary 
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for an analysis compared with the number of repeated-measurements or modalities (Chen et al., 2014). 

The current assumptions of covariance homogeneity may also prove problematic for instances of 

multiple groups, particularly when the data are severely unbalanced and the robustness of the 

multivariate test statistics can no longer be guaranteed. Here permutation approaches may help, but are 

certainly not guaranteed solutions when faced with arbitrary violations of the parametric assumptions 

(Finch and Davenport, 2009). The integration of time-varying covariates into the model is also not 

possible. In addition, the fact that for multimodal models any continuous covariate may influence 

estimates for both modalities can also be seen as a disadvantage, reducing the flexibility of this 

approach to deal with factors specific to one modality but not the other. Finally, it is not possible to 

incorporate subjects who have missing data on any of the modalities or repeated-measurements. 

Although generally not problematic when modelling conditions of a task, missing data may be an issue 

for longitudinal designs with significant subject attrition. This is one advantage of the SwE approach 

over MRM as within-subject missing data can be more readily accommodated using the sandwich 

estimator framework. For well-powered investigations with no missing repeats and no critical time-

varying covariates, we believe that the multivariate approach is one of the most straightforward 

method of analysing the data given that it a simple extension of the existing univariate GLM. Indeed, 

given that the approach is not restricted to only repeated measurements, and easily simplifies to 

univariate GLM analyses identical to those already in use in neuroimaging, we argue that the 

multivariate GLM is the most generic and conceptually straightforward approach to dealing with 

dependent neuroimaging data.  

 

9. Summary 

In this paper we have provided an exposition of the use of the multivariate GLM in neuroimaging 

applications specifically as a method for analysing both repeated-measurement and multimodal 

imaging data at the group-level. We have explored methods of making inference in these forms of 

models, and have show comparable results to other approaches to dependent imaging data. 

Furthermore, the use of this approach combined with dLDA for multimodal investigations opens up a 

wealth of possibilities for integrating different imaging tools to better understand distinctions between 
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groups of interest. We believe the multivariate approach is ideal for application to neuroimaging data 

due to its computational speed, straightforward hypothesis-testing framework, and minimal 

assumptions. The MRM software is free to download from The University of Manchester’s Click2Go 

service at http://www.click2go.umip.com/i/software/mrm.html.  
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Appendix A. The choice of multivariate test statistics 

As detailed in the text, there are four potential tests statistics that can be used with the multivariate 

GLM. The natural question of which of the four test statistics should be chosen is somewhat 

problematic as the answer largely depends upon the data itself. Because of this it is not uncommon for 

most statistical software to provide all four. For example, when the population eigenvalues are 

roughly equal Pillai’s trace is the most powerful test, whereas when they are unequal the Hotelling-

Lawley trace is the most powerful test (Davis, 2002). These values are never known in practice, as 

they are population parameters, making decisions between the tests difficult. Luckily in many 

circumstances the F-approximation to these tests are exact and will therefore be identical irrespective 

of the test chosen. Although the conditions under which exact tests are produced differ between the 

four statistics (see Rencher and Christensen, 2012 for details of each), all the tests will be exact when 

rank�SSCP�� =  1. This can be tested for within MRM. When the tests are not exact, decisions can be 

made based on the power and the robustness of the test. For example, Davis (2002) recommends 

Wilks’ lambda on the basis that its power remains relatively consistent across simulation studies. 

Pillai’s trace, however, is often quoted as the most robust of the four tests (Olson, 1974) and as such is 

often recommended when parametric assumptions are not sufficiently met (Tabachnick and Fidell, 

2007). Of all the test statistics, Roy’s largest root is the most liberal (as it is based solely on !∗) and as 

such carries with it the greatest risk of a type I error (it is an upper bound on the F-value; Rencher and 

Christensen, 2012). Despite this, some authors support the utility of this test statistic, arguing for its 

characterisation of the ‘optimal’ linear combination of the dependent variables (Harris, 2013, pp. 231–

233). Indeed, for those cases where the largest eigenvalue dwarfs all others it can be argued that our 

interest should only be on this single dimension, and Roy’s largest root would be the most 

appropriate. For further discussion on the differences between these test statistics see Anderson 

(1984), Davis (2002), and Rencher & Christensen (2012). 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 29

Appendix B. dLDA details 

As described in the main text, the dLDA model is given by 

%�� =  &�'��� + &
'��
 + ⋯ + &�'��� = (���� (B.1) 

Values for ( can be found using the eigenvectors, and associated eigenvalues, of ����	������� 

(Klecka, 1980; Rencher and Christensen, 2012). Because ����	������� is generally not symmetric, 

the calculation of eigenvalues and eigenvectors is performed using the Cholesky factorisation of 

����	 (see Rencher and Christensen, 2012, p. 290). Though not necessarily an issue for the standard 

multivariate statistics (as all but Roy’s largest root have a form that does not depend on direct 

calculation of the eigenvalues), for dLDA it is therefore a requirement that ����	  is positive-definite. 

In this scheme, ����� reflects the MANOVA null hypothesis of no group differences. The use of 

����	�������  is a generalisation of �%,� − %,
 �/-�  to accommodate more than two groups. This 

generalisation provides a useful indication of the connection between the MANOVA and dLDA 

approach as in the MANOVA approach it is the q eigenvalues �!�, … , !
  of ����	�������  that 

form the test statistics, whereas in dLDA it is the associated q eigenvectors �/�, … , /
  that provide 

information on group separation. The number of non-zero eigenvalues, and therefore the number of 

discriminant functions, is 0 = rank�������. Although there may be multiple functions, it is generally 

the case that one or two are enough to explain the majority of variance. This can be formalised by 

examining the percentage  (!�/ ∑ !�)  ×  100



���  for eigenvalue s. 

In terms of the discriminant functions themselves, it is typical to scale the eigenvectors by 

√3 − � to form unstandardised discriminant functions. Although possible to use the raw /� vectors 

the values of %�� given by these weights are not immediately interpretable. Scaling each vector by 

√3 − � allows %�� to be interpreted as the distance, in standard deviation units, of each case from the 

grand centroid of the groups (Klecka, 1980). The weights of discriminant function s are therefore 

given by ( = /�√3 − � with constant (� = − ∑ &�'4��
��� , where &� is the pth element of ( and '4� is 

the mean of dependent variable p. Although these weights provide more interpretable %�� values, they 

still relate to dependent variables on their original scale. For dependent variables that are not 
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commensurate it is generally more useful to interpret the values of the discriminant function when the 

weights relate to standardised variables. To achieve this, standardised discriminant functions are 

calculated. Defining 5 = diag�6����	��, 6����	

, … ,6����	��  we use (∗ = /��5 to scale the 

individual elements of /�. The standardised weights given in (∗ are therefore those associated with the 

following function 

%�� =  &�∗ '��� − '4��-� + ⋯ + &�∗ '��� − '4��-� + ⋯ + &�∗ '��� − '4��-�  
(B.2) 

where '4��  is the mean of group i associated with dependent variable p, and -�  is the standard 

deviation for dependent variable p. It should be clear that these are simply the weights associated with 

dependent variables that have been z-transformed. 

 Although the aim of dLDA is largely descriptive, it may be desirable to perform hypothesis 

tests on the functions. Note that in order to do so, multivariate normality must be assumed. This was 

not necessary for the calculation of the discriminant functions themselves, only the assumption that 

the covariance matrices were constant over groups. To perform tests on the individual discriminant 

functions Wilks’ lambda can be used on a subset of the eigenvalues. For m discriminant functions a 

sequential elimination procedure can be used, where for each mth step the test statistic is 

Λ� =  $ 1

1 + !�



���

 
(B.3) 

The F-approximation given in Rencher & Christensen (2012, p. 296) allows for designation of an 

approximate p-value which, if significant, allows one to conclude that at least function m is 

significant. With regards to interpreting the contribution of each dependent variable to group 

separation, one can move beyond examining the absolute values of the coefficients (though this is 

usually the most informative method) to calculating partial F-tests for each of the p dependent 

variables. Here, again, we make use of Wilks’ lambda for testing a single dependent variable after 

adjusting for all other dependent variables. This is done by calculating a partial Wilks’ lambda, which 

for the rth column of Y is given by 
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Λ(	�|	�, … ,	���,	���, … ,	�) =  
Λ�

Λ���

 
(B.4) 

Where Λ� is the test statistic from the model containing all p dependent variables, and  Λ��� is the test 

statistic from the model where the rth dependent variable has been removed. This can be interpreted as 

the contribution of the rth variable to group separation above and beyond the contribution of the 

remaining p-1 variables. Again, using the F-approximation given by Rencher & Christensen (2012, p. 

300) allows designation of an approximate p-value.  Of note is the fact that the partial F-tests given 

here do not relate to a single discriminant function, rather they are a general index of the contribution 

of the rth dependent variable to group separation across dimensions. For models with a single 

function, or for those where the first function accounts for most of the variance, these tests can largely 

be interpreted as the singular contribution of the rth dependent variable. 
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Appendix C. Permutation details 

The permutation approach implemented in the MRM software is based on the randomise algorithm 

published in Winkler et al. (2014), and on the multivariate approach detailed in Zeng et al. (2011). 

This approach allows for permutations in the presence of nuisance covariates. Firstly, we simplify the 

contrast ���� =  �  by re-expressing the test as ��∗ = �  in the model �∗ = ��∗ + �∗ , where 

�∗ = ���, �∗ = ���, and �∗ = ��� (Zeng et al., 2011). Although this may appear to simplify the 

model to univariate form the number of columns in �∗ will be dependent on the rank of �. This is 

easiest to see when � = �� as the model will not change. Once the model has been re-expressed we use 

the model partition scheme from Ridgway (Ridgway, 2009; described in Winkler et al., 2014) to allow 

for permutation in the presence of nuisance covariates. Here we partition the model as �∗ = 57 +

89 +  �∗  where 5 = ��� , 8 = � − ���(��)′ , and superscript + denotes the Moore-Penrose 

pseudoinverse (Lay, 2012). Orthogonalising the effects of interest with respect to the nuisance 

partition is achieved by replacing Z with the first m columns of the left-hand matrix from the singular 

value decomposition (SVD) of Z (denoted 8�), where : = rank��� −  rank(�). Orthogonalisation of 

M is then achieved using 5∗ =  ;�5 where ;� = � − 8�8��, the residual forming matrix due to the 

nuisance partition 8�. The hypothesis of interest, as originally coded in A, can now be tested by simply 

assessing whether 7 = �. This can also be expressed in terms of testing the first q rows of parameters 

in the combined model �∗ = �5∗ 8��< +  �∗, where 0 = rank(�).  

In terms of the steps involved, for each voxel we 

1. Calculate the reduced model �∗ = ��∗ + �∗ 

2. Partition the model into �∗ = 5∗7 + 8�9 +  �∗ as indicated above 

3. Estimate the reference test statistic using the estimated parameters <� =  =�>?�  and residuals 

��∗ = (� − ==�)>?�  from the combined model, where = =  �5∗ 8�� , and >?� = ;��∗ , the 

residuals due to nuisance effects alone 

4. Randomly generate a permutation matrix P encoding row shuffles and sign-flips 

5. Estimate the test statistic using the parameters <�� =  =��>?� and residuals >?� =  �� − ==���>?� 
of the permuted model 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 33

6. Repeat steps 4-5 a sufficient number of times to build up an approximate null distribution of the 

test statistic of interest 

Using the sequence above we can calculate uncorrected p-values by counting the number of 

times at each voxel the permuted test statistic for that voxel exceeds the reference test statistic for that 

voxel. Dividing this by the number of permutations provides an estimated p-value for each voxel. 

These values could either be left uncorrected, or we can calculate q-values to provide standard FDR 

correction (Storey, 2002). For FWE correction we simply count the number of times at each voxel the 

largest permutated test statistic in the image exceeds the reference test statistic for that voxel. Here we 

are building a distribution of the largest test statistic in an image, and the correction therefore equates 

to finding the probability under the null of a test statistic as large, or larger, than the reference 

anywhere in the image. Similarly, for cluster-based inference, on every reshuffle we threshold the 

image using a parametric p-value to form clusters, and save the size of the largest cluster. The 

corrected p-values for the clusters in the original image are then calculated based on the number of 

times across reshuffles the maximum cluster exceeded their size. 

An important concept in permutation-based inference is exchangeability. Formally, 

exchangeability refers to the assumption that, for a particular set of variables, their joint probability 

distribution does not alter under rearrangement. For univariate approaches to dependent data 

exchangeability can prove problematic, requiring the specification of exchangeable blocks of data that 

can be shuffled as a whole. For the multivariate GLM this issue is less problematic as we can simply 

shuffle the rows of the outcome matrix Y, or more generally E, but not the columns. This scheme is 

then identical to permutation of exchangeable blocks, given by the rows of � or E, with sign-flipping 

performed as a whole within each block (Winkler et al., 2014). This can easily be seen by considering 

that for an � ×  � permutation matrix P the multivariate permutations of the residuals E given by 

�∗ = �� and the within-block permutations of the equivalent univariate residuals > = Vec(�) given 

by >∗ = �� ⨂ ���@ produce identical shuffles. Here the latter is simply the univariate expression of the 

former so that >∗ = Vec(�∗). We therefore assume exchangeable, independent, and symmetric errors 

for each row of data in Y. The assumption of symmetric errors can be relaxed by switching off sign-
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flipping. Although suitable for MANOVA contrasts, certain repeated-measures contrasts will no 

longer be permuted correctly given that any contrast that compares the estimated parameters for the 

columns of Y will not change under row swapping when sign-flipping is not performed. This is 

similar in spirit to the restrictions imposed on a one-sample t-test under univariate permutations. 
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Appendix D. Scanning parameters 

In this appendix we briefly detail the scanning parameters used when collecting the example datasets. 

All scans were collected using a Philips Achieva 3T at the Salford Royal NHS Foundation Trust. Data 

were acquired using a T2*-weighted EPI sequence with a TR of 2500ms and a TE of 30ms (matrix 

size 80 ×  80, FOV 240mm, flip angle 90°). Each volume consisted of 45 contiguous axial slices 

with voxel size of 3 ×  3 ×  3mm. 290 volumes were collected in total. A T1-weighted structural 

image was also acquired (128 coronal slices, voxel size 1 ×  1 ×  1mm, matrix size 256 × 164, FOV 

256mm, flip angle 8°). 
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Appendix E. Discrepancies between SPM 12 and GLM FLEX 

As indicated in the text, a number of discrepancies between the test statistics given by SPM 12 and the 

test statistics given by GLM FLEX have been noted, despite the fact that both software packages 

implement the same repeated-measures ANOVA models. Of particular interest was the discrepancy 

between FSPM = 41.35 and FGLM = 45.84, seen at 0 20 47 in the main effect of the repeated 

measurement conditions. In this appendix we outline the factors that appear to be influencing this 

difference. Largely, we believe that this not due to differences in numeric precision, rather it is due to 

the way the SPM non-sphericity correction is used in the different packages. Given that in the non-

sphericity correction procedure the final parameters are estimated using the pre-whitened data and 

design, A�� = (B�[B�]′)�(B�)′B� , the form that the whitening matrix W takes will directly 

influences the values of the estimates. Because, for the current example, we assumed covariance 

homogeneity we can express B = �� C7, where n is the number of subjects. In the current example, 

the SPM estimate of K was 

7��� =

D
EF

1.0053 0.1379
1.0058

−0.1217
−0.0228
1.0707

−0.0211
−0.0686
−0.0015
1.0755

0.0741
−0.0020
0.0170

−0.0548
0.9954 G

HI 

whereas the K estimated by GLM FLEX is given by 

7��� =

D
EF

0.9538 0.1079
0.9713

−0.0999
−0.0113
1.0661

0.0011
−0.0692
0.0376
1.1001

0.0314
−0.0101
0.0113

−0.0613
1.0369 G

HI 

In terms of the subsequent influence on the parameter estimates in this voxel, the estimated values of 

interest (the factors and their interactions) only differed between SPM and GLM FLEX around the 

eighth decimal of the estimate. Differences were, however, seen in the estimates for each subject 

parameter, with a maximum discrepancy of around 0.0421. Because the residuals depend on W, as 

>? =  B� −  B�A��  , the estimate of the within-subject variance will also change by virtue of the 

differences in W and the differences in A��. In this voxel the within-subject variance estimated by 

SPM was J
K
��� = 0.0821, and in GLM FLEX was J
K

��� = 0.0837. 
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 In terms of the discrepancies in the F-test, we first review the standard formula for a univariate 

F-test within the pre-whitening framework 

� =  
(����)�(�[(��)���]��)��(����)

� ��	
 

Already we can see how differences in the estimation of W will enter into this calculation. The 

numerator of this statistic given by SPM is 13.5753, and by GLM FLEX is 15.3504. Dividing these 

values by the estimated model variances, scaled by L = rank(M), provides the different test statistics 

highlighted earlier (when calculated at double precision). From this we can see that the discrepancies 

between the SPM and GLM FLEX approaches are largely due to their respective implementations of 

the SPM non-sphericity correction, and the subsequent pre-whitening.  

From our investigations, the difference in implementation between GLM FLEX and SPM 

centres on which voxels are selected to enter the pooled covariance estimation. This is evidenced by 

the fact that in the current example GLM FLEX pools 45,128 voxels, whereas SPM pools only 2,623. 

This is due to GLM FLEX using �� as the contrast for selecting voxels to pool4, where k is the number 

of columns in X. When SPM is forced to use this contrast by setting SPM.xVi.Fcontrast = 

eye(size(SPM.xX.X,2))’  the same number of voxels as GLM FLEX are used in the estimation 

procedure, the degrees of freedom for the initial F-test agrees with GLM FLEX, and W is nearly 

identical across the software. Though ��  may seem like a reasonable contrast to use, in the 

overparameterised framework it is not an estimable function of the model (Searle, 1987). It is therefore 

debatable how sensible a test this is for selecting voxels to use in the pooled covariance estimation. By 

comparison, the ‘effects of interest’ contrast generated by SPM is an estimable function of the model 

and would therefore seem the better choice. These results also highlight one of the major problems 

with the pooling approach as the number of voxels entering the estimation directly influences the 

estimated whitening matrix and thus the estimated parameters of the model. In the current example, 

this difference lead to 781 more voxels surviving thresholding in GLM FLEX compared with SPM. 

                                                        
4 GLM FLEX actually calculates the sum of squared predicted values from the model, which is the equivalent of 
using an identity matrix as a contrast 
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Tables for manuscript: Multivariate and Repeated Measures (MRM): A new toolbox for 
dependent and multimodal group-level neuroimaging data – McFarquhar, McKie, Emseley, 

Suckling, Elliott, Williams 
 
 
 
 

Table 1. Comparison between a number of the features pertinent to repeated-measures models available in 
the four software packages 

Software GUI 

Voxel-level Cluster-level 
Unique voxel 
covariance 

Unequal group 
covariance FWE 

correction 
FDR 

correction 
Cluster 

size 
Cluster 
mass 

SPM 12 � �1 �4 � � � � 

GLM FLEX � �1 � � � � � 

MRM � �2 � � � � � 

SwE � �3 � � � � � 
1Using Gaussian random field theory 
2Using permutation testing 
3Using a non-parametric bootstrap 
4Setting topoFDR = 0 in spm_defaults.m 

 
 
 
 
 

Table 2. P-value comparisons between the different FWE methods for the seven smallest maxima reported 
by SPM 

Peak location (mm) 
p-GRF p-PERM p-BOOT 

x y z 

-45 -37 17 0.002 < 0.001 0.001 
42 -16 35 0.008 0.003 0.004 
0 -25 -1 0.019 0.006 0.007 
21 59 5 0.026 0.008 0.011 
-33 -1 -37 0.035 0.010 0.015 
-21 35 38 0.035 0.010 0.015 
51 11 2 0.047 0.011 0.020 

p-GRF = FWE-corrected p-values from the SPM GRF approach 
p-PERM = FWE-corrected p-values from the MRM permutation approach (5,000 reshuffles) 
p-BOOT = FWE-corrected p-values from the SwE non-parametric bootstrap approach (5,000 bootstrap resamples) 

 
 


