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ABSTRACT  

Neuroinflammation is increasingly recognized as a key factor in the pathogenesis of 

neurodegenerative conditions. However, it remains unclear whether it has a protective or damaging 

role. Studies of Alzheimer’s disease and Parkinson’s disease have provided much of the evidence for 

inflammatory pathology in neurodegeneration. Here we review the evidence for inflammation in 

dementia with Lewy bodies and Parkinson’s disease dementia.  

Neuroinflammation has been confirmed in vivo using PET imaging, with microglial activation seen in 

Parkinson’s disease dementia and recently in dementia with Lewy bodies. In Parkinson’s disease and 

Parkinson’s disease dementia, microglial activation suggests a chronic inflammatory process, 

although there is also evidence of its association with cognitive ability and neuronal function.   

Alpha-synuclein in various conformations has also been linked to activation of microglia, with a broad 

range of components of the innate and adaptive immune systems associated with this interaction.  

Evidence of neuroinflammation in Lewy body dementia is further supported by pathological and 

biomarker studies.  Genetic and epidemiological studies support a role for inflammation in Parkinson’s 

disease, but have yet to provide the same for Lewy body dementia.  

This review highlights the need to identify whether the nature and extent of microglial activation in 

Lewy body dementia can be linked to structural change, progression of domain specific cognitive 

symptoms and peripheral inflammation as a marker of central microglial pathology. Answers to these 

questions will enable the evaluation of immunotherapies as potential therapeutic options for 

prevention or treatment of dementia with Lewy bodies and Parkinson’s disease dementia. 
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INTRODUCTION 

Lewy body dementias (LBDs) include the closely related conditions of dementia with Lewy bodies 

(DLB) and Parkinson’s disease dementia (PDD). The clinical syndrome of DLB forms at least 4.2% of 

all dementia patients and is second only to Alzheimer's disease (AD) as a cause of degenerative 

dementia in older people[1]. Dementia also develops in over 80% of those with Parkinson’s disease 

(PD)[2], a disorder where Lewy bodies play a prominent role, with PDD forming 3.6% of all dementia 

cases[3]. Autopsy studies of dementia cases have estimated the combined prevalence rate of LBDs 

to be even higher, at around 20%[4,5]. 

The etiology of LBDs is unclear, but a role for chronic neuroinflammation has been proposed, 

analogous to the emerging evidence for inflammation in the etiology of AD. The evidence to date for 

AD includes neuropathological studies with evidence of brain inflammation, Positron Emission 

Tomography (PET) imaging displaying microglial activation in vivo, genetic studies implicating 

polymorphisms in genes involved in the inflammatory response as risk factors, epidemiological 

studies indicating a protective effect of non-steroidal anti-inflammatory drugs (NSAIDs) and mouse 

models of AD in which NSAIDs reduced neuroinflammation and protein deposition[6–9].  

In light of the gathering evidence for neuroinflammation in AD, we asked whether neuroinflammation 

is also involved in the etiology of LBDs. We review the literature for evidence of neuroinflammation in 

Parkinson’s disease dementia and dementia with Lewy bodies, across multiple methodologies. 

 

LITERATURE SEARCH STRATEGY  

References were identified using searches of PubMed with key words. The following combinations 

were used in a search of titles and abstracts in June 2015 (the number of articles yielded is noted in 

brackets): 

1. ‘Lewy’ and (‘inflammation’ OR ‘neuroinflammation’) (98 articles)  

2. (‘Parkinson's disease dementia’ OR ‘PDD’ OR ‘DLB’ OR (‘Dementia AND Parkinson*’)) AND 

(‘neuroinflammation’ OR ‘inflammation’) (283 articles)  

3. ‘synuclein’ AND ‘microglia’ (185 articles) 
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4. ‘synuclein’ AND (‘inflammation’ OR ‘neuroinflammation’) (210 articles) 

The abstracts of these articles were screened and full texts of those potentially relevant articles to the 

review were obtained. In order to ensure that all relevant references were sourced, references were in 

turn reviewed for other relevant articles, supplemented by articles known to the authors.  

 

MICROGLIAL FUNCTION  

Neuroinflammation describes the response to injury within the central nervous system (CNS) leading 

to the activation of microglia and astrocytes, release of cytokines and chemokines, invasion of 

circulating immune cells and complement activation. Microglia are the resident macrophages of the 

CNS, originating from progenitors in the embryonic yolk sac[10]. They provide the innate immune 

response to invading pathogens and also initiate the adaptive response through antigen 

presentation[11].  

Microglia are resting or “inactivated” under physiological conditions with characteristic ramified 

morphology and distributed within brain regions, such that rami are close but not touching, implying 

each cell has its own distinctive territory. But even in this inactive state, they have been shown using 

two-photon microscopy to be continuously monitoring the extracellular spaces with their processes 

and protrusions in adult mice[12]. Activation leads to morphological change to a more rounded 

amoeboid shape, with targeted movement of processes towards sites of injury or stimuli to initiate 

phagocytosis[12] and leads to production of chemokines, that amplify the response by recruiting other 

microglia, plus cytokines, free radicals and proteases which destroy infectious organisms and infected 

neurons. 

Microglia appear to have an important part both in MPTP disease progression and idiopathic PD[13], 

suggesting a central role for these glia in nigro-striatal degeneration, irrespective of etiology. Microglia 

may be especially susceptible to mechanisms of aging. Their maintenance is proposed to be 

dependent on self-renewal rather than replenishment by peripheral blood precursors[14,15], which 

could be highly significant in age dependent neurodegenerative conditions such as LBD. Systemic 

infections or disease, which rise in number with age, could also lead to priming of microglia, such that 

their response is exaggerated and damaging to nearby neurons leading to cognitive decline[16]. It has 
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also been proposed that an initial stimulus that triggers microglial activation could persist in 

neurodegenerative disorders leading to repeated cyclical chronic neuroinflammation causing neuronal 

dysfunction and cell death[17,18]. The specificity of these changes to Lewy body dementias is 

unclear. 

 

IMAGING EVIDENCE OF NEUROINFLAMMATION AND NEURONAL DYSFUNCTION  

Imaging studies have shown an association between neuroinflammation in vivo and cognitive 

dysfunction. Microglial activation as a marker of neuroinflammation has been identified in PD and 

PDD[19] (see Table 1) using [
11

C]-RPK11195 (RPK11195), a PET ligand that binds to a translocator 

protein found on microglia in their activated state. Extensive microglial activation has similarly been 

identified in another α-synucleinopathy: multiple systems atrophy[20], as well as other degenerative 

conditions, including AD[21,22]. 

An association between microglial activation in the midbrain and dopaminergic loss in the dorsal 

putamen has been found in the early stages of PD (less than 2.5 years), both contralateral to the 

clinically affected side, with levels of activation correlating with severity of motor impairment measured 

by the Unified Parkinson’s Disease Rating Scale (UPDRS)[23]. In the later stages of disease (disease 

duration range 0.5 - 21 years), there is extensive microglial activation, with the basal ganglia, cortex 

and pons all showing significantly increased levels. The substantia nigra was however spared. Follow-

up scans in eight of these subjects (after 18-28 months) showed no significant change in microglial 

activation from baseline despite a clear deterioration in disability as measured using the UPDRS. 

Cognition was however not assessed longitudinally[24]. The authors also noted a clear overlap in the 

areas of microglial activation and the regions proposed by Braak et al.[25] in their study of PD 

pathology. In PDD subjects, there is increased cortical microglial activation compared to control 

subjects, however levels of activation were also increased in comparison to PD cases – in the left 

parietal lobe[26].  

In DLB, increased microglial activation in the substantia nigra and putamen, plus several cortical 

regions was found in a pilot imaging study of six cases of less than one year’s duration[27]. That 

microglial activation occurs in more widespread regions in early DLB, where there is greater cognitive 
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dysfunction compared to early PD, strengthens the link between microglial activation and cognitive 

decline.  

A relationship between microglial activation and cognitive function was indeed found in PDD, where 

cortical activation levels inversely correlated with MMSE in temporo-parietal, occipital, and frontal 

cortical regions[19,26]. Fan et al.[19] demonstrated a significant negative correlation between whole 

brain levels of microglial activation and glucose metabolism. Within the temporo-parietal cortex there 

was voxel by voxel significant inverse correlation between levels of microglial activation and glucose 

metabolism in the immediate vicinity suggesting local damage, but the areas of correlation were 

small. The authors however suggest distant microglial activation could be linked to cell dysfunction in 

the medial temporal lobe through pre-existing neuronal pathways. Neither study of PDD assessed 

whether areas of increased activation (such as in the hippocampus) were linked to dysfunction in 

specific cognitive domains (such as memory), which may have provided a stronger link between 

inflammation and cognitive dysfunction. 

Small clusters of positive correlations were also found between RPK11195 binding and amyloid load 

(as determined by [
11

C] Pittsburgh compound B (PIB), a marker of fibrillary amyloid load) in PDD 

subjects, but only in the parietal lobe and anterior cingulate, as opposed to AD subjects in whom there 

was a stronger correlation between amyloid load and microglial activation. There was however little 

amyloid deposition found in PDD cases overall[19]. Proteins other than amyloid, such as α-synuclein 

or tau, could be triggering microglial activation in PDD, however currently there are no α-synuclein 

PET ligands available to demonstrate this and tau ligands have only very recently become available.  

Overall small scale studies with in vivo imaging have suggested that in PD, PDD and in a small 

preliminary report of DLB, there is early microglial activation. But, this does not appear to increase 

over time. Significantly microglial activation also correlates inversely with cognitive function and to an 

extent protein deposition, suggesting microglia may have a crucial role in the pathogenesis of these 

conditions.  

ALPHA SYNUCLEIN AND NEUROINFLAMMATION 

The evidence for extensive microglial activation in LBDs, in an immunologically privileged site such as 

the brain, is highly significant. Immune responses are tightly controlled and yet there is widespread 
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glial cell activation, present chronically during the disease. The initiation of the innate response occurs 

through pattern-recognition receptors (PRRs) expressed on CNS cells (for example the toll-like 

receptor (TLR)) through activation by pathogen associated molecular patterns or danger associated 

molecular patterns. However α-synuclein is the main component of Lewy bodies[28] which 

characterize LBDs, and the driving force behind the disease process, hence the interaction between 

this protein and microglia appears to be critical. Alpha-synuclein inclusions in neurons and glia are 

associated with DLB and PDD, as well as PD and multiple system atrophy. In DLB and PDD, the 

inclusions are neuronal and in the form of Lewy bodies[28]. Lewy neurites are also common in these 

disorders, consisting of coarse dystrophic neurites immunoreactive for α-synuclein within affected 

neurons.  With 140 amino acids, α-synuclein’s possible intracellular forms include monomeric[29,30] 

or relatively stable folded tetramer[31,32].  

Alpha-synuclein, has been shown repeatedly to activate microglia and induce dopamine cell loss[33–

35], including monomeric wild-type and mutant forms as well as extracellular oligomeric 

conformations. Indeed, neuron-glia cultures depleted of microglia have been shown to be resistant to 

α-synuclein induced dopaminergic neurotoxicity[33]. More recently the focus has moved on to 

possible mechanisms. Models of PD have been used to study this relationship rather than models of 

DLB, with overexpression of α-synuclein in the substantia nigra using viral vectors, the most common.  

A survey of the literature shows several possible mechanisms for this interaction (see Table 2).  

A number of immunomodulatory proteins and compounds are implicated in α-synuclein microglial 

recognition, chemotaxis, activation and response. TLRs 1[36], 2[36,37] and 4[38] are PRRs key to the 

innate response machinery and have been reported as having a role in recognition of α-synuclein by 

microglia. Microglia exposed to higher-ordered oligomers (but not monomers) of α-synuclein changed 

to an amoeboid, phagocytic morphology with increased secretion of Tumor Necrosis Factor α (TNF-α) 

that was reduced by inhibition of the TLR 1/2 complex [36]. A separate study found only β-sheet rich 

oligomeric conformations of α-synuclein could activate microglia via TLR 2, but both aggregated and 

non-aggregated forms could activate microglia through TLR 4. Furthermore pro-inflammatory 

cytokine/chemokine release was completely eliminated in TLR 2 knockout mouse microglia exposed 

to α-synuclein, but remained unaffected in TLR 4 knockout mouse microglia[39], suggesting TLR 2 

recognition of oligomeric α-synuclein leads to inflammation.  
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Another molecule which could feature in the initiation of microglia activation is Fractalkine, a 

membrane bound chemokine which acts on the CX3CR1 receptor on microglia to suppress 

production of inflammatory molecules. A soluble secreted form of Fractalkine had a protective function 

in an animal model of α-synuclein overexpression, suggesting loss of this membrane bound 

chemokine could lead to neuronal loss through microglia mediated cell damage[40].  

Αlpha-synuclein, in extracellular aggregated form, has been shown to be a chemoattractant through 

CD11b receptors on microglia[41]. Also, the β1-integrin subunit, which forms transmembrane 

adhesion molecules has been reported as being required for the morphological changes and 

migration of microglia seen in the presence of extracellular α-synuclein[42].  

Once microglia are activated, Interleukin-1 (IL-1) appears to be a key cytokine in promoting an 

inflammatory response. IL-1α and β knockout mice did not show loss of dopamine neurons or 

behavioral deficits seen in wild-type mice in a mouse model of PD, utilizing lipopolysaccharide(LPS) 

injections into the substantia nigra.  LPS injections have been shown to produce microglial activation, 

cytokine release and subsequent dopaminergic cell loss in the substantia nigra[43]. TNF-α knockout 

mice however showed similar results to wild-type mice[44], indeed TNF-α  may have role in promoting 

α-synuclein accumulation[45]. Galectin-3 has also been shown to be important for the inflammatory 

effect of α-synuclein. Its inhibition significantly reduced cytokine release by microglia in response to 

aggregated α-synuclein[46].  

Leucine-rich repeat kinase 2 (LRRK2) is a protein expressed on microglia when they are in their 

inflammatory state and has been shown to have a significant role in α-synuclein mediated microglial 

activation and subsequent cell loss, with LRRK2 knockout mice being protected from α-synuclein 

overexpression[47]. Another protein involved is NRF2, which is a transcription factor for a number of 

cell protection proteins and appears to have a protective role in the interaction[48].  

Several studies suggest the adaptive immune response is engaged by microglia following their 

activation. Knockout mice without Fc gamma receptors (FcγR), which are found on microglia and 

involved in facilitating phagocytosis through binding of IgG, showed reduced pro-inflammatory 

signaling in the presence of aggregated α-synuclein. Suggesting the latter could be triggering 

inflammation and antibody mediated cell damage through FcγR[49]. In addition, a knockout of all four 
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murine MHC II complex genes prevented α-synuclein induced dopaminergic cell loss in a mouse 

model, strongly suggesting that CD4 T lymphocytes are critical to α-synuclein cell damage. Microglia, 

as the only resident cells expressing MHC class II in the CNS, would be candidates for their 

recruitment, although infiltrating antigen presenting cells such as macrophages may also be 

involved[50]. Furthermore, mice with microglia deficient in Prostaglandin E2, which is thought to have 

a role in lymphocyte proliferation, have increased resistance to MPTP mediated pathology[51].   

 

PATHOLOGICAL EVIDENCE OF INFLAMMATION 

Pathological studies further support a role for inflammation. Large numbers of HLA-DR-positive 

microglia, indicating reactive states, have been reported in the substantia nigra of PD and PDD cases 

together with Lewy bodies in association with a reduction in dopaminergic cells. In the PDD cases 

HLA-DR positive microglia were also found in the hippocampus, though this was associated with 

neuritic plaques and tangles suggestive of AD pathology[52]. Involvement of the transenterohinal, 

cingulate and temporal cortices in PD has also been identified. Activated microglia in these regions 

also expressed MHC Class II molecules, HLA-DP, DQ and DR[53]. The presence of CD4 (as well as 

CD8) T lymphocytes within the substantia nigra of PD cases at post-mortem has subsequently been 

confirmed[54]. In addition, concentrations of interleukin-1β, interleukin-6 and transforming growth 

factor-α are higher in the striatal regions of post-mortem PD brains compared to controls[55]. 

Complement proteins are also found with Lewy bodies within this region in PD[56].  

In DLB, both complement proteins and microglial interaction are associated with Lewy body 

containing degenerated neurons on autopsy, suggesting microglial involvement[57]. An increase in 

activated microglia has also been reported in DLB cases, positively correlating with the number of 

Lewy bodies also seen regionally[58]. However this was not as high as in those cases with 

concomitant senile plaques and a second study has shown a lack of significant microglial activation in 

the absence of tau neuritic plaques in DLB[59]. The link between microglial activation and 

pathological protein deposition in both PDD and DLB is therefore not fully established.  

 

EVIDENCE FROM GENETIC STUDIES 
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Genetic studies have identified polymorphisms in genes coding IL-1β, TNF-α and Triggering Receptor 

Expressed on Myeloid cells 2 (TREM2)  as risk factors for PD. Up to a doubling of risk has been 

reported amongst carriers of a genotype of IL-1β that is associated with increased gene 

expression[60,61].  Those carrying the homozygous variant genotype TNF-α-308, a variant which is 

thought to be a stronger transcriptional activator, experience doubled risk[60]. Overall the results from 

these two small studies are consistent with a gene dosing effect for these two powerful cytokines. A 

rare variant of the microglial receptor TREM2, that leads to loss of function, was found to be another 

risk factor for PD in a study of 1493 cases compared to 1957 controls[62].  

Genome wide association studies (GWAS) provide further evidence for inflammatory pathology in PD. 

Polymorphisms in HLA regions that code segments of the MHC class II molecule present increased 

risk. A strong association was found within noncoding intron 1 of HLA-DRA (in a study of 2000 cases 

and 1986 controls) by Hamza and colleagues[63], with subsequent large-scale meta-analyses of 

single nucleotide polymorphisms(SNP) confirming associations amid the HLA-DR locus, with both 

HLA-DRB5[64] and HLA-DQB1[65] identified. Wissemann and colleagues[66] found loci that 

predisposed to, as well as protected from, PD within the same 2000 PD and 1986 control GWAS 

dataset initially analyzed by Hamza et al. [63], and replicated these in a further 843 cases and 856 

controls. The strongest association was again intron 1 of the HLA-DRA region, which regulates gene 

expression and linked to increased risk. This suggests HLA expression levels may play a key role in 

determining risk for PD. Indeed subjects homozygous for the G allele in this SNP, were found to have 

significantly increased MHC class II expression, compared to subjects who did not have a single G 

allele. In addition, exposure to a common insecticide, pyrethroid, when combined with possession of 

the GG allele, significantly increased PD risk[67], suggesting a combination of environmental triggers 

and inflammatory processes may play a part in PD pathology. 

Notwithstanding the accumulated genetic evidence in the context of PD, the equivalent associations 

in DLB have not been established, although methods of investigation may need to be broadened, as 

studies have been limited so far[68]. Polymorphisms in genes associated with inflammation are also 

yet to be identified as risk factors for PDD specifically. 

 

EVIDENCE FROM BLOOD BIOMARKERS 
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Elevated peripheral inflammatory markers both before and after the onset of PD, suggest 

inflammation is concurrent with the disease. Increased plasma interleukin-6 (IL-6), measured on 

average 4.3 years before diagnosis, is associated with increased risk of developing PD, with higher 

levels associated with higher risk[69]. After disease onset, levels of IL-6[70,71], IL-1β[71]  and TNF-

α[70] are elevated compared to controls in PD, as is RANTES (regulated on activation, normal T cell 

expressed and secreted), a chemokine which attracts T-cells. RANTES levels also correlated with 

motor symptom severity[72]. A change in peripheral blood lymphocyte subsets further suggests a role 

for the adaptive immune system. A decrease in the overall level of T-helper CD4 cells but a rise in the 

subset of activated T-helper cells is reported in PD cases compared to controls[73].  

In PDD, high sensitivity CRP is increased compared to controls, but a significant elevation was not 

found in PDD compared to PD[74]. Peripheral markers suggestive of inflammation are yet to be found 

in DLB. Therefore the blood biomarkers evidence for inflammation in LBDs is inconclusive. 

 

EVIDENCE FROM CEREBROSPINAL FLUID BIOMARKERS 

Attempts to identify a reliable cerebrospinal fluid (CSF) biomarker for PD or PDD have so far been 

inconsistent. The main candidates include total α-synuclein, Aβ42, and β-Glucocerebrosidase[75]. 

Inflammatory cytokines TNF-α[76], IL-6[77,78] and IL-1β[71,77]  have also been investigated with 

raised levels seen in the CSF of PD cases compared to controls. IL-1β levels in the CSF were 

associated with raised α-synuclein oligomers also in the CSF, suggesting a direct link with protein 

deposition[71]. 

In a study of 22 cases of PD, IL-6 was found to associate inversely with disease severity as assessed 

by the UPDRS[78]. In a larger study of 62 cases, IL-6 was elevated in cases of PD with cognitive 

impairment compared to those without, the levels being negatively correlated to cognitive function. 

TNF-α and Interferon γ levels were however reduced in those with cognitive impairment in PD 

compared to control subjects[79]. A rise in the fractalkine:Aβ42 ratio in CSF is also associated with 

motor severity of PD (again measured by UPDRS) but not with disease duration[80]. An increase in 

this ratio could suggest increased inflammatory signaling and microglial activation. An increase in 
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Leucine rich α2-glycoprotein (LRG), thought to be a marker of inflammation, is reported in the CSF 

and post-mortem tissue of PDD and DLB cases, compared to controls[81]. 

The focus in DLB has been on the variations of Aβ peptides and tau as well as α-synuclein; a 

combination of biomarkers may be the best route to increase specificity and sensitivity[82,83].  The 

inflammatory marker Procalcitonin has been found to be significantly raised in dementia subjects 

within the CSF, compared to controls, with the highest median level found in DLB cases[84].  

 

EVIDENCE FROM EPIDEMIOLOGICAL STUDIES  

There is limited support for neuroinflammation in PD from epidemiology studies. A meta-analysis of 

the association of NSAIDs and the risk of developing PD, showed a 15% reduction in incidence 

among users of non-aspirin NSAIDS, with analysis of ibuprofen alone showing a stronger protective 

effect. This effect was more pronounced among regular users[85]. Whether PDD incidence was lower 

in those who developed PD despite taking NSAIDS was not considered.  

A further meta-analysis showed conflicting results with no overall protective effect, however there 

were methodological differences including the inclusion of aspirin and studies where NSAID exposure 

was entirely within a 1 year of the diagnosis of PD. Nevertheless a slight protective effect for 

ibuprofen in lowering the risk of PD was still confirmed[86]. The evidence from these studies is 

however difficult to interpret because of variations in the drugs investigated, the duration of the drug 

treatment and the timing of administration in relation to disease onset.  

Whether NSAIDs could reduce the risk of developing DLB or protect those with PD from developing 

dementia, has not yet been established. 

 

A ROLE FOR THE ADAPTIVE IMMUNE SYSTEM 

Despite the evidence of microglial activation and an interaction between α-synuclein and microglia, 

the precise mechanism and whether it is always detrimental to neurons remains unclear. A paucity of 

the relationship between Lewy bodies and antigen presenting activated microglia in post mortem 
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studies was reported by Imamura et al.[53], indeed there was only a 20% association. This would 

suggest that Lewy bodies alone are not sufficient in themselves to trigger antigen presentation by 

microglia. In addition, increasing neuronal loss in the substantia nigra with lengthening disease 

duration was not associated with an increase in microglial activation, implying a steady rather than 

escalating inflammatory response[87].  

Orr and colleagues[87] also demonstrated that substantia nigra neurons were immunopositive for IgG 

in PD, whereas control cases’ substantia nigra neurons as well as the visual cortex of PD cases 

showed negative immunoreactivity. Neuronal IgG labelling related to the degree of neuronal loss and 

microglial activation, with the authors suggesting humoral immune system involvement in the 

selective destruction of substantia nigra neurons.  

Given that the MHC class II complex has also been shown to be key in dopamine neuronal cell loss in 

mouse models[50], it may be that an adaptive immune response is the final path to neuronal loss, 

following a switch in microglia function from protective to deleterious. Consistent with this theory is the 

genetic risk associated with HLA class II gene variation previously described, as well as the alteration 

in peripheral lymphocyte subsets found in PD cases[73], and the evidence that B and T lymphocyte 

infiltration of the substantia nigra is found at post mortem[54] and in a mouse model of α-synuclein 

overexpression[35].  

It is possible initial protein clearance by microglia could be switched to a more harmful toxic function 

involving recruitment of the adaptive response ultimately leading to neuronal degeneration. For 

example due to peripheral inflammation or increased vulnerability of microglia through ageing. The 

timing of treatment initiation would be key in such circumstances.  

 

 

CONCLUSION AND FUTURE DIRECTIONS 

Evidence for the role of neuroinflammation in LBDs continues to accumulate, building on the evidence 

of neuroinflammation in AD and PD. Imaging studies lead the way in supporting neuroinflammation as 

a key part of the pathogen process in LBDs, supported by pathological and biomarker evidence, 
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though mostly in PDD. Future studies are required to further establish the presence of inflammation in 

DLB including imaging, genetic and biomarker studies. 

Involvement of microglia in LBDs is signified by the presence of activation years before neuronal 

death as revealed by in vivo imaging, as well as after cell loss in pathology specimens. Microglial 

involvement is also supported by evidence of the activation of microglia by α-synuclein. Levels of 

activation however appear to remain relatively stable, which could indicate initiation and propagation 

of the disease process by microglia or alternatively a protective function that is eventually overcome. 

In order to understand how inflammation affects disease progression in Lewy body dementia, studies 

need to try and link the nature and extent of microglial activation with important indicators of disease 

severity such as structural brain changes, protein deposition and the onset and progression of key 

cognitive and non-cognitive symptoms through longitudinal studies in established disease and in 

those at risk. 
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Table 1: Evidence of in vivo microglial activation in PD, PDD and DLB from RPK11195 PET imaging studies 

STUDY PARTICIPANT 
NUMBERS 
(controls) 

PARTICIPANT 
AGE (years) 

PARTICIPANT 
MMSE 

DISEASE 
DURATION (years) 

REGIONS WITH INCREASED MICROGLIAL ACTIVATION COMPARED TO 
CONTROLS  

Ouchi et al. 
2005 
[23] 

10 PD (10 
controls) 
 

Range: 43-72;  
Mean: 59.6 

Range: 26-30; 
Mean: 28.3 
 

Range: 0.4-2.5;  
Mean: 1.4 

Midbrain contralateral to the clinically affected side 

Iannaccone 
et al. 2013 
[27] 

6 PD (11 
controls) 

Range: 60-74 ; 
Mean: 70.2 

Range: 27-30; 
Mean: 29  

Range: 0.6-1; 
Mean: 0.8 

Putamen,  substantia nigra 

Gerhard at 
al. 2006 [24] 

18 PD (11 
controls) 

Range:  50-69; 
Mean: 59.2 

Not specifically 
stated, screening 
tests normal in PD 
group 

Range: 0.5-21; 
Mean: 8.6 

Striatum, pallidum, thalamus, cortex (precentral gyrus, frontal lobe, 
anterior cingulate gyrus, posterior cingulate gyrus) and pons  

Edison et al. 
2013 [26] 

8 PD  (10 
controls) 

Range: 58-75; 
Mean: 68.2 

Range: 27-30; 
Mean: 28.8 

Mean: 9.2 Cortex (temporal, parietal, and occipital regions) 

Fan et al. 
2014 [19] 

11 PDD (8 
controls) 

Range: 55-75; 
Mean: 68.4 

Mean: 22.1 Not stated Anterior cingulate gyrus, posterior cingulate gyrus, frontal lobe, temporal 
lobe, parietal lobe, occipital lobe, medial temporal lobe, amygdala and 
hippocampus  

Edison et al. 
2013 [26] 

11 PDD (10 
controls) 

Range: 56-80; 
Mean: 69.3 

Range: 16-26;  
Mean: 21.8 

PD duration mean: 
10.6; Dementia  
duration mean: 3.5 

Striatum, cortex (frontal, temporal, parietal, anterior and posterior 
cingulate gyrus, and occipital cortical regions) 
 

Iannaccone 
et al. 2013 
[27] 

6 DLB (11 
controls) 

Range: 62-82 ; 
Mean: 72 

Range: 19-30; 
Mean: 24 

Range: 0.7-1; 
Mean: 0.8 

Caudate, putamen, thalamus, substantia nigra, cortex (frontal lateral,  
parietal lateral, temporal lateral, temporal pole, precuneus, occipital 
medial, occipital lateral, anterior cingulate, posterior cingulate) and 
cerebellum  
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Table 2: Potential mechanisms of interaction between α-synuclein and microglia 

INTERACTION/ RECEPTOR PROPOSED MECHANISM OF MICROGLIAL INTERACTION 
WITH α-SYNUCLEIN 

PD MODEL REFERENCES 

TLR 1&2 complex Oligomeric α-synuclein induces a pro-inflammatory 
microglial phenotype through TLR 1/2 complex: microglia 
exposed to oligomers of α-synuclein changed to an 
amoeboid, phagocytic shape, with increased secretion of 
TNF-α and interleukin-1b. TNF-α secretion was reduced by 
the addition of a TLR-1/2 complex inhibitor or by a MyD88 
inhibitor.  

Primary microglia cultures derived from mouse 
cortices were exposed to high-order oligomeric 
forms of purified human wild-type α-synuclein 
 

[36] 

Fractalkine receptor (FKN), 
an immune regulatory 
protein 

Secreted form of FKN is neuro-protective: Soluble secreted 
form of FKN prevents reduction in tyrosine hydroxylase cell 
staining compared to controls and membrane bound FKN 
models when exposed to overexpression of α-synuclein, 
despite increased MHCII expression on microglia 

Overexpression of human α-synuclein via viral 
vector combined with a variety of viral constructs 
of FKN 

[40] 

CD11b receptor Alpha-synuclein binds to CD11b on microglia 
to direct microglial migration: neuronal α-synuclein 
overexpression led to microglial migration toward neurons, 
which was reduced by antibodies to the CD11b receptor  
and diminished in CD11b knockout mice 

Overexpression of human α-synuclein via viral 
vector in rat primary neuron-enriched cultures 

[41] 

Galectin-3 (carbohydrate-
binding protein and 
inflammatory mediator) 

Galectin 3 mediates microglial cytokine release: Release of 
Interleukin-2 and Interleukin-12 after exposure to 
monomeric and aggregated forms of recombinant α-
synuclein reduced by genetic down regulation or 
pharmacological inhibition of galectin-3 

Microglia from wild-type and galectin-3 knockout 
mice 

[46] 

Leucine-rich repeat kinase 2 
(LRRK2) 

LRRK2 required for microglial activation and dopaminergic 
degeneration: Rats lacking LRRK2 demonstrated a 
significant reduction in microglial activation compared to 
wild type mice rats, when exposed to lipopolysaccharide 
(LPS) and were protected from dopaminergic 
neurodegeneration from α-synuclein overexpression. 

Rats exposed to intracranial LPS injection or 
overexpression of human α-synuclein via viral 
vector 

[47] 

β1-integrin Migration of microglia to disease affected regions is via 
β1-integrin: β1-integrin inhibition reduced microglial 
morphological changes and motility (as shown by reduced 
wound healing)  

Rat primary microglia exposed to α-synuclein 
conditioned medium (αSCM) 

[42] 
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Interleukin-1 (IL-1) IL-1 is required for microglial activation: behavioral 
deficiencies that occurred in wild-type mice, following LPS 
administration did not occur in IL-1 knockout mice. Tyrosine 
Hydroxylase gene expression was similarly preserved in in 
IL-1 knockout but not wild-type mice.  

Mouse model using intracranial LPS injection into 
wild-type and  IL-1 (α and β) knockout mice 

[44] 

MHCII Complex MHCII complex mediates microglial activation and 
dopaminergic cell loss: overexpression of synuclein leads to 
induction of MHCII expression on microglia and genetic 
knockout of MHCII prevents microglial activation, IgG 
deposition and dopaminergic cell loss in vivo 

Mouse model using overexpression of human α-
synuclein via viral vector in wild-type and MHCII 
knockout mice 

[50] 

TLR 4  TLR 4 mediates microglial phagocytic activity and cytokine 
release in the presence of α-synuclein: Microglial 
phagocytic activity was significantly reduced in TLR4 
knockout microglia mice after treatment with different 
forms of α-synuclein; knockout mice also showed 
significantly reduced TNF- α production following treatment 
with α-synuclein. 

Mouse primary microglia from wild type and TLR4 
knockout mice challenged with cloned human α-
synuclein from spinal cord cDNA 

[38] 

TLR 2 TLR 2 mediates microglial activation by oligomeric α-
synuclein: TLR2 knockout mice exhibited significantly 
lowered microglial activation compared with wild type mice 
when exposed to α-synuclein overexpression; 
cytokine/chemokine gene induction following exposure to 
αSCM, was prevented by antagonizing TLR2 and by 
depletion of the TLR2 gene; and TLR2 was only activated by 
oligomeric alpha synuclein not the dimer or monomer 
forms. 
 

Mouse model using overexpression of human α-
synuclein via viral vector in wild-type and TLR 2 
knockout mice; oligomeric human α-synuclein 
proteins released from dSY5Y cells 

[37] 

Fc gamma receptors (FcγR)  FcγR mediates α-synuclein intracellular localization to 
autophagosomes and NF-κB pro-inflammatory signaling: 
microglia internalized α-synuclein in a dense aggregated 
form in wild-type mice but a diffuse manner in FcγR 
knockout mice; FcγR knockout mice treated with α-
synuclein also failed to trigger the enhancement of nuclear 
NF-κB p65 seen when wild-type mice are exposed to α-
synuclein. 

Primary microglial cultures from wild-type and 
FcγR knockout mice, treated with human α-
synuclein 
 

[49] 

NRF2 (NF-E2-related factor NRF2 protects against α-synuclein mediated microglial Mouse model using overexpression of human α- [48] 
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2), a transcription factor activation and dopaminergic cell loss: NRF2 knockout mice 
showed increased microglial activation and greater nigral 
dopaminergic neuronal loss than wild-type mice when 
exposed to α-synuclein overexpression; NRF2 knockout 
neurons were characterized by thick dendrites loaded with 
α-synuclein, similar in appearance to Lewy neurites and this 
was associated with reduced levels of the beta subunit 
(PSMB7) of the catalytic core 20S proteasome compared to 
wild-type mice 

synuclein via viral vector in wild-type and NRF2 
knockout mice 

Prostaglandin E2 receptor 
subtype 2 (PGE2) 

PGE2 is key to regulation of aggregated α-synuclein levels: 
microglia isolated from PGE2 knockout mice exhibited 
enhanced clearance of aggregated α-synuclein and showed 
increased resistance to MPTP with less aggregated α-
synuclein in the substantia nigra and striatum. 

Aggregated  α-synuclein from human DLB cases 
incubated with wild-type and PGE2 knockout mice 
microglia 

[51] 

 

 

 



P a g e  | 19 

 

ACKNOWLEDGEMENTS  

This research was supported by the National Institute for Health Research (NIHR) Cambridge 

Dementia Biomedical Research Unit based at the Cambridge Biomedical Campus. James Rowe is 

supported by the Wellcome Trust. 

 

DOCUMENTATION OF AUTHOR ROLES 

Ajenthan Surendranathan – Writing of manuscript  

James Rowe – Review and critique  

John O’Brien – Review and critique 

 

FINANCIAL DISCLOSURE/CONFLICT OF INTERESTS: National Institute for Health Research 

(NIHR) Cambridge Dementia Biomedical Research Unit based at the Cambridge Biomedical Campus 

has supported the writing of the paper, but did not have a role in the decision to submit for publication 

or the design of the review. Conflicts of interest: none. 

 

FULL FINANCIAL DISCLOSURES OF ALL AUTHORS FOR THE PAST YEAR:  

John O’Brien has acted as a consultant for GE Healthcare, Lilly and TauRx and received grant 

funding from NIHR, ARUK, the Alzheimer’s Society and MRC. 

James Rowe holds research grants funded by the Medical Research Council, The Wellcome Trust, 

The McDonnell foundation, the Evelyn Trust, the PSP Association, Alzheimer’s Research UK, and 

AZMedimmune.  

 

SUBSCRIPTION OR OPEN ACCESS: Subscription 

  



P a g e  | 20 

 

REFERENCES 

 

[1] Vann Jones S a, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a 
systematic review of population and clinical studies. Psychol Med 2014;44:673–83. 
doi:10.1017/S0033291713000494. 

[2] Hely M a, Reid WGJ, Adena M a, Halliday GM, Morris JGL. The Sydney multicenter study of 
Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 2008;23:837–44. 
doi:10.1002/mds.21956. 

[3] Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in 
Parkinson’s disease. Mov Disord 2005;20:1255–63. doi:10.1002/mds.20527. 

[4] Lennox G, Lowe J, Landon M, Byrne EJ, Mayer RJ, Godwin-Austen RB. Diffuse Lewy body 
disease: correlative neuropathology using anti-ubiquitin immunocytochemistry. J Neurol 
Neurosurg Psychiatry 1989;52:1236–47. 

[5] Perry RH, Irving D, Blessed G, Perry EK, Fairbairn AF. Clinically and neuropathologically 
distinct form of dementia in the elderly. Lancet 1989;1:166. 

[6] McGeer, Patrick L., McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer 
disease: implications for therapy. Acta Neuropathol 2013;126:479–97. doi:DOI 
10.1007/s00401-013-1177-7. 

[7] Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s disease; A source of 
heterogeneity and target for personalized therapy. Neuroscience 2014. 
doi:10.1016/j.neuroscience.2014.09.061. 

[8] Lee Y-J, Han SB, Nam S-Y, Oh K-W, Hong JT. Inflammation and Alzheimer’s disease. Arch 
Pharm Res 2010;33:1539–56. doi:10.1007/s12272-010-1006-7. 

[9] Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías G a, Maccioni RB. 
Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the 
search of novel therapeutic approaches. Front Cell Neurosci 2014;8:112. 
doi:10.3389/fncel.2014.00112. 

[10] Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell 
Neurosci 2013;7:45. doi:10.3389/fncel.2013.00045. 

[11] Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 
2014;32:367–402. doi:10.1146/annurev-immunol-032713-120240. 

[12] Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic 
surveillants of brain parenchyma in vivo. Science 2005;308:1314–8. 
doi:10.1126/science.1110647. 

[13] Gao H, Liu B, Zhang W, Hong J. Critical role of microglial NADPH oxidase-derived free 
radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 2003;17:1954–6. 
doi:10.1096/fj.03-0109fje. 

[14] Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to 
neuropsychiatric disease. Nat Rev Neurosci 2014;15:300–12. doi:10.1038/nrn3722. 



P a g e  | 21 

 

[15] Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM V. Infiltrating monocytes trigger EAE 
progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011;14:1142–
9. doi:10.1038/nn.2887. 

[16] Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 
2014;10:217–24. doi:10.1038/nrneurol.2014.38. 

[17] Gao H-M, Hong J-S. Why neurodegenerative diseases are progressive: uncontrolled 
inflammation drives disease progression. Trends Immunol 2008;29:357–65. 
doi:10.1016/j.it.2008.05.002. 

[18] Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal 
death and implications for therapeutic intervention. Neurobiol Dis 2010;37:510–8. 
doi:10.1016/j.nbd.2009.11.004. 

[19] Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, et al. Influence of 
microglial activation on neuronal function in Alzheimer’s and Parkinson's disease dementia. 
Alzheimers Dement 2014:1–14. doi:10.1016/j.jalz.2014.06.016. 

[20] Gerhard A, Banati RB, Goerres GB, Cagnin A, Myers R, Gunn RN, et al. [11C](R)-PK11195 
PET imaging of microglial activation in multiple system atrophy. Neurology 2003;61:686–9. 

[21] Edison P, Archer H a, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, 
and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. 
Neurobiol Dis 2008;32:412–9. doi:10.1016/j.nbd.2008.08.001. 

[22] Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo 
measurement of activated microglia in dementia. Lancet 2001;358:461–7. doi:10.1016/S0140-
6736(01)05625-2. 

[23] Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial 
activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 2005;57:168–
75. doi:10.1002/ana.20338. 

[24] Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of 
microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol 
Dis 2006;21:404–12. doi:10.1016/j.nbd.2005.08.002. 

[25] Braak H, Tredici K Del, Rüb U, de Vos R a. ., Jansen Steur EN., Braak E. Staging of brain 
pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197–211. 
doi:10.1016/S0197-4580(02)00065-9. 

[26] Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and 
glucose metabolism in Parkinson’s disease with and without dementia. 
Neuropsychopharmacology 2013;38:938–49. doi:10.1038/npp.2012.255. 

[27] Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi a, Olivieri S, et al. In vivo 
microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s 
disease. Parkinsonism Relat Disord 2013;19:47–52. doi:10.1016/j.parkreldis.2012.07.002. 

[28] Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in 
Lewy bodies. Nature 1997;388:839–40. 

[29] Fauvet B, Mbefo MK, Fares M-B, Desobry C, Michael S, Ardah MT, et al. α-Synuclein in 
central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists 
predominantly as disordered monomer. J Biol Chem 2012;287:15345–64. 
doi:10.1074/jbc.M111.318949. 



P a g e  | 22 

 

[30] Lashuel H a, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure 
and toxicity to therapeutic target. Nat Rev Neurosci 2013;14:38–48. doi:10.1038/nrn3406. 

[31] Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LTT, Liao J, et al. A soluble α-
synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 2011;108:17797–802. 
doi:10.1073/pnas.1113260108. 

[32] Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded 
tetramer that resists aggregation. Nature 2011;477:107–10. doi:10.1038/nature10324. 

[33] Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, et al. Aggregated alpha-synuclein 
activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 
2005;19:533–42. doi:10.1096/fj.04-2751com. 

[34] Zhang W, Dallas S, Zhang D, Guo J-P, Pang H, Wilson B, et al. Microglial PHOX and Mac-1 
are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T 
mutant alpha-synuclein. Glia 2007;55:1178–88. doi:10.1002/glia.20532. 

[35] Theodore S, Cao S, Mclean PJ, Standaert DG. Targeted Overexpression of Human > -
Synuclein Triggers Microglial Activation and an Adaptive Immune Response in a Mouse Model 
of Parkinson Disease. J Neuropathol Exp Neurol 2008;67:1149–58. 

[36] Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-
dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative 
disorders. Sci Signal 2015;8:ra45. doi:10.1126/scisignal.2005965. 

[37] Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers 
Res Ther 2014;6:73. doi:10.1186/s13195-014-0073-2. 

[38] Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, et al. Toll-like 
receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 
2013;61:349–60. doi:10.1002/glia.22437. 

[39] Kim C, Ho D-H, Suk J-E, You S, Michael S, Kang J, et al. Neuron-released oligomeric α-
synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 
2013;4:1562. doi:10.1038/ncomms2534. 

[40] Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, et al. Fractalkine Over 
Expression Suppresses α -Synuclein-mediated Neurodegeneration. Mol Ther 2015;23:17–23. 
doi:10.1038/mt.2014.175. 

[41] Wang S, Chu C-H, Stewart T, Ginghina C, Wang Y, Nie H, et al. α-Synuclein, a 
chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc 
Natl Acad Sci U S A 2015. doi:10.1073/pnas.1417883112. 

[42] Kim C, Cho E-D, Kim H-K, You S, Lee H-J, Hwang D, et al. Β1-Integrin-Dependent Migration 
of Microglia in Response To Neuron-Released Α-Synuclein. Exp Mol Med 2014;46:e91. 
doi:10.1038/emm.2014.6. 

[43] Sharma N, Nehru B. Characterization of the lipopolysaccharide induced model of Parkinson’s 
disease: Role of oxidative stress and neuroinflammation. Neurochem Int 2015;87:92–105. 
doi:10.1016/j.neuint.2015.06.004. 

[44] Tanaka S, Ishii A, Ohtaki H, Shioda S, Yoshida T, Numazawa S. Activation of microglia 
induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J 
Neuroinflammation 2013;10:143. doi:10.1186/1742-2094-10-143. 



P a g e  | 23 

 

[45] Wang M-X, Cheng X-Y, Jin M, Cao Y-L, Yang Y-P, Wang J-D, et al. TNF compromises 
lysosome acidification and reduces α-synuclein degradation via autophagy in dopaminergic 
cells. Exp Neurol 2015;271:112–21. doi:10.1016/j.expneurol.2015.05.008. 

[46] Boza-Serrano A, Reyes JF, Rey NL, Leffler H, Bousset L, Nilsson U, et al. The role of 
Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathol Commun 
2014;2:156. doi:10.1186/s40478-014-0156-0. 

[47] Daher JPL, Volpicelli-Daley L a, Blackburn JP, Moehle MS, West AB. Abrogation of α-
synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad 
Sci U S A 2014;111:9289–94. doi:10.1073/pnas.1403215111. 

[48] Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rábano A, Kirik D, et al. α-Synuclein 
expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death 
and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 2012;21:3173–92. 
doi:10.1093/hmg/dds143. 

[49] Cao S, Standaert DG, Harms AS. The gamma chain subunit of Fc receptors is required for 
alpha-synuclein-induced pro-inflammatory signaling in microglia. J Neuroinflammation 
2012;9:259. doi:10.1186/1742-2094-9-259. 

[50] Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, et al. MHCII is required for α-
synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic 
neurodegeneration. J Neurosci 2013;33:9592–600. doi:10.1523/JNEUROSCI.5610-12.2013. 

[51] Jin J, Shie F-S, Liu J, Wang Y, Davis J, Schantz AM, et al. Prostaglandin E2 receptor subtype 
2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated 
alpha-synuclein. J Neuroinflammation 2007;4:2. doi:10.1186/1742-2094-4-2. 

[52] McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in 
the substantia nigra of Parkinson’s and Alzheimer's disease brains. Neurology 1988;38:1285–
91. 

[53] Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of 
major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s 
disease brains. Acta Neuropathol 2003;106:518–26. doi:10.1007/s00401-003-0766-2. 

[54] Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of 
CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of 
Parkinson disease. J Clin Invest 2009;119:182–92. doi:10.1172/JCI36470. 

[55] Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, et al. Interleukin-1 beta, 
interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the 
brain from parkinsonian patients. Neurosci Lett 1994;180:147–50. 

[56] Loeffler D a, Camp DM, Conant SB. Complement activation in the Parkinson’s disease 
substantia nigra: an immunocytochemical study. J Neuroinflammation 2006;3:29. 
doi:10.1186/1742-2094-3-29. 

[57] Togo T, Iseki E, Marui W, Akiyama H, Uéda K, Kosaka K. Glial involvement in the 
degeneration process of Lewy body-bearing neurons and the degradation process of Lewy 
bodies in brains of dementia with Lewy bodies. J Neurol Sci 2001;184:71–5. 
doi:10.1016/S0022-510X(00)00498-6. 

[58] Mackenzie IR. Activated microglia in dementia with Lewy bodies. Neurology 2000;55:132–4. 



P a g e  | 24 

 

[59] Shepherd CE, Thiel E, McCann H, Harding AJ, Halliday GM. Cortical inflammation in 
Alzheimer disease but not dementia with Lewy bodies. Arch Neurol 2000;57:817–22. 

[60] Wahner AD, Sinsheimer JS, Bronstein JM, Ritz B. Inflammatory cytokine gene polymorphisms 
and increased risk of Parkinson disease. Arch Neurol 2007;64:836–40. 

[61] McGeer PL, Yasojima K, McGeer EG. Association of interleukin-1β polymorphisms with 
idiopathic Parkinson’s disease. Neurosci Lett 2002;326:67–9. doi:10.1016/S0304-
3940(02)00300-2. 

[62] Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, et al. TREM2 in 
neurodegeneration: evidence for association of the p.R47H variant with frontotemporal 
dementia and Parkinson’s disease. Mol Neurodegener 2013;8:19. doi:10.1186/1750-1326-8-
19. 

[63] Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, et al. Common 
genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. 
Nat Genet 2010;42:781–5. doi:10.1038/ng.642. 

[64] Nalls M a, Plagnol V, Hernandez DG, Sharma M, Sheerin U-M, Saad M, et al. Imputation of 
sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of 
genome-wide association studies. Lancet 2011;377:641–9. doi:10.1016/S0140-
6736(10)62345-8. 

[65] Nalls M a, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-
analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. 
Nat Genet 2014;46:989–93. doi:10.1038/ng.3043. 

[66] Wissemann WT, Hill-Burns EM, Zabetian CP, Factor S a, Patsopoulos N, Hoglund B, et al. 
Association of Parkinson disease with structural and regulatory variants in the HLA region. Am 
J Hum Genet 2013;93:984–93. doi:10.1016/j.ajhg.2013.10.009. 

[67] Kannarkat GT, Cook D a, Lee J-K, Chang J, Chung J, Sandy E, et al. Common genetic variant 
association with altered HLA expression, synergy with pyrethroid exposure, and risk for 
Parkinson’s disease: an observational and case–control study. Npj Park Dis 2015;1:15002. 
doi:10.1038/npjparkd.2015.2. 

[68] Meeus B, Theuns J, Van Broeckhoven C. The genetics of dementia with Lewy bodies: what 
are we missing? Arch Neurol 2012;69:1113–8. doi:10.1001/archneurol.2011.3678. 

[69] Chen H, O’Reilly EJ, Schwarzschild M a, Ascherio A. Peripheral inflammatory biomarkers and 
risk of Parkinson’s disease. Am J Epidemiol 2008;167:90–5. doi:10.1093/aje/kwm260. 

[70] Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW. Association of 
circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 
1999;100:34–41. 

[71] Hu Y, Yu S, Zuo L, Cao C, Wang F, Chen Z-J, et al. Parkinson disease with REM sleep 
behavior disorder: Features, α-synuclein, and inflammation. Neurology 2015;84:888–94. 
doi:10.1212/WNL.0000000000001308. 

[72] Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos a, Zoga M, et al. Circulating 
interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol Scand 
2007;116:374–9. doi:10.1111/j.1600-0404.2007.00894.x. 

[73] Bas J, Calopa M, Mestre M, Mollevı DG, Ambrosio S, Buendia E. Lymphocyte populations in 
Parkinson ’ s disease and in rat models of parkinsonism. J Neuroimmunol 2001;113:146–52. 



P a g e  | 25 

 

[74] Song I-U, Kim Y-D, Cho H-J, Chung S-W. Is Neuroinflammation Involved in the Development 
of Dementia in Patients with Parkinson’s Disease? Intern Med 2013;52:1787–92. 
doi:10.2169/internalmedicine.52.0474. 

[75] Parnetti L, Castrioto A, Chiasserini D, Persichetti E, Tambasco N, El-Agnaf O, et al. 
Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 2013;9:131–40. 
doi:10.1038/nrneurol.2013.10. 

[76] Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-
alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian 
patients. Neurosci Lett 1994;165:208–10. 

[77] Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1β and 
interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson's 
disease patients. Neurosci Lett 1995;202:17–20. doi:10.1016/0304-3940(95)12192-7. 

[78] Müller T, Blum-Degen D, Przuntek H, Kuhn W. Interleukin-6 levels in cerebrospinal fluid 
inversely correlate to severity of Parkinson’s disease. Acta Neurol Scand 1998;98:142–4. 

[79] Yu S-Y, Zuo L-J, Wang F, Chen Z-J, Hu Y, Wang Y-J, et al. Potential biomarkers relating 
pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive 
impairment: a cross-sectional study. BMC Neurol 2014;14:113. doi:10.1186/1471-2377-14-
113. 

[80] Shi M, Bradner J, Hancock AM, Chung K a, Quinn JF, Peskind ER, et al. Cerebrospinal fluid 
biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 2011;69:570–80. 
doi:10.1002/ana.22311. 

[81] Miyajima M, Nakajima M, Motoi Y, Moriya M, Sugano H, Ogino I, et al. Leucine-rich α2-
glycoprotein is a novel biomarker of neurodegenerative disease in human cerebrospinal fluid 
and causes neurodegeneration in mouse cerebral cortex. PLoS One 2013;8:e74453. 
doi:10.1371/journal.pone.0074453. 

[82] Mollenhauer B, Trenkwalder C. Neurochemical biomarkers in the differential diagnosis of 
movement disorders. Mov Disord 2009;24:1411–26. doi:10.1002/mds.22510. 

[83] Schade S, Mollenhauer B. Biomarkers in biological fluids for dementia with Lewy bodies. 
Alzheimers Res Ther 2014;6:72. doi:10.1186/s13195-014-0072-3. 

[84] Ernst A, Morgenthaler NG, Buerger K, Dodel R, Noelker C, Sommer N, et al. Procalcitonin is 
elevated in the cerebrospinal fluid of patients with dementia and acute neuroinflammation. J 
Neuroimmunol 2007;189:169–74. doi:10.1016/j.jneuroim.2007.07.009. 

[85] Gagne, Joshua J; Power M. Anti-inflammatory drugs and risk of Parkinson disease. Neurology 
2010;74:995–1002. 

[86] Samii A, Etminan M, Wiens MO, Jafari S. NSAID use and the risk of Parkinson’s disease: 
systematic review and meta-analysis of observational studies. Drugs Aging 2009;26:769–79. 

[87] Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the 
pathogenesis of Parkinson’s disease. Brain 2005;128:2665–74. doi:10.1093/brain/awh625.  

 

 

  



P a g e  | 26 

 

 

 

 


