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Abstract: Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized
by their ability to establish lifelong latent infection in neurons. As for all herpesviruses,
alphaherpesvirus virions contain a protein-rich layer called “tegument” that links the
DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins
mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell
environment immediately after entry, transport of virus capsids to the nucleus during infection,
and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion
assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been
implicated in the formation of the tegument layer or in secondary envelopment. Tegument is
assembled via a dense network of interactions between tegument proteins, with the redundancy of
these interactions making it challenging to determine the precise function of any specific tegument
protein. However, recent studies have made great headway in defining the interactions between
tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and
secondary envelopment. We summarize these recent advances and review what remains to be
learned about the molecular interactions required to assemble mature alphaherpesvirus virions
following the release of capsids from infected cell nuclei.
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1. Introduction

The herpesviruses are classified into three subfamilies, the alpha-, beta- and
gammaherpesviruses, all of which share a common virion morphology and a group of approximately
40 conserved genes that play key roles during virus replication [1]. Molecular phylogenetic analysis
suggests that the Herpesviridae subfamilies diverged from a common ancestor around 400 million
years ago and evolution over this time has given rise to at least 135 species [2,3]. The herpesviruses
occupy a diverse range of biological niches, both in terms of host cell type and length of reproductive
cycle. Three alphaherpesviruses are capable of infecting humans: herpes simplex virus (HSV)-1
and HSV-2, which usually cause only mild orofacial or genital lesions, respectively, but can cause
more severe disease in neonates or the immunocompromised, and varicella-zoster virus (VZV), the
etiological agent of chickenpox and shingles [1]. Pseudorabies virus (PrV), a swine virus that can
infect other mammals including monkeys, but not higher primates or man [4], has been extensively
studied as a model alphaherpesvirus.

Alphaherpesviruses are commonly defined by their ability to establish a latent infection
in neurons. Primary alphaherpesvirus infection occurs in epithelial cells and is frequently
asymptomatic. A lifelong infection is established when virions spread to adjacent sensory neurons,
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resulting in retrograde transport of capsids to the cell body during viral entry (Figure 1). HSV-1
infects mucosal epithelial cells and latency is established in the maxillary branch of the trigeminal
ganglion, part of the peripheral nervous system [5]. During latency the viral genome is maintained
in the cell nucleus; periodic reactivation of the lytic cycle leads to the assembly of new viral particles
and their anterograde transport along axons to epithelial cells for symptomatic and asymptomatic
shedding [6]. Anterograde trafficking and trans-neuronal spread to the central nervous system (CNS)
occurs occasionally and is associated with severe disease [7].
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Figure 1. Neuronal trafficking during entry and egress. Alphaherpesviruses establish latent infection 

in the nuclei of peripheral ganglia following retrograde transport of capsids along microtubules. 

Reactivation results in the production of new virions that undergo anterograde trafficking back to 

peripheral tissues. The assembly state of viral particles prior to anterograde axonal transport is 

disputed and two models have been proposed: the “married model” predicts that virions are 

assembled in the cell body and trafficked within vesicles; the “separate model” predicts that capsids 

and secondary-envelopment membranes are trafficked separately with final virion assembly 

occurring at or near the sites of egress. Minus-end directed transport to the cell body along 

microtubules is driven by dynein while kinesins drive plus-end directed transport to the cell 

periphery. The movement of viral particles along axons during entry and egress is bidirectional and 

saltatory suggesting that both dynein and kinesin motor proteins may be involved. How the net 

direction of transport during entry and egress is determined is currently unknown. 

Herpesvirus virions are organised into four morphologically distinct structures: An 

electron-dense core that contains the linear double-stranded DNA genome; an icosahedral capsid 

approximately 125 nm in diameter with T = 16 symmetry and a single unique (portal) vertex through 

which DNA enters and leaves the capsid; a proteinaceous layer termed tegument that links the 

capsid to the viral envelope; and an outer envelope consisting of host-cell derived lipids, viral 

envelope proteins and membrane proteins from the host cell [8–11]. According to the most 

widely-accepted model, maturation and egress of herpes virions can be described in four stages: (1) 

capsid assembly and genome packaging in the nucleus; (2) primary envelopment and 
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2) [12–14]. Viral maturation occurs concomitantly with transport through the cytoplasm, as 

DNA-loaded capsids (so-called “C-capsids”) undergo tegumentation and secondary envelopment en 

route to the plasma membrane. The focus of this review will be on the latter cytoplasmic stages of 

maturation, tegumentation and secondary envelopment; for reviews of nuclear egress see [12,13,15]. 

Figure 1. Neuronal trafficking during entry and egress. Alphaherpesviruses establish latent infection
in the nuclei of peripheral ganglia following retrograde transport of capsids along microtubules.
Reactivation results in the production of new virions that undergo anterograde trafficking back
to peripheral tissues. The assembly state of viral particles prior to anterograde axonal transport
is disputed and two models have been proposed: the “married model” predicts that virions are
assembled in the cell body and trafficked within vesicles; the “separate model” predicts that
capsids and secondary-envelopment membranes are trafficked separately with final virion assembly
occurring at or near the sites of egress. Minus-end directed transport to the cell body along
microtubules is driven by dynein while kinesins drive plus-end directed transport to the cell
periphery. The movement of viral particles along axons during entry and egress is bidirectional and
saltatory suggesting that both dynein and kinesin motor proteins may be involved. How the net
direction of transport during entry and egress is determined is currently unknown.

Herpesvirus virions are organised into four morphologically distinct structures: An
electron-dense core that contains the linear double-stranded DNA genome; an icosahedral capsid
approximately 125 nm in diameter with T = 16 symmetry and a single unique (portal) vertex through
which DNA enters and leaves the capsid; a proteinaceous layer termed tegument that links the capsid
to the viral envelope; and an outer envelope consisting of host-cell derived lipids, viral envelope
proteins and membrane proteins from the host cell [8–11]. According to the most widely-accepted
model, maturation and egress of herpes virions can be described in four stages: (1) capsid assembly
and genome packaging in the nucleus; (2) primary envelopment and de-envelopment at the nuclear
envelope; (3) tegumentation and secondary envelopment in the cytoplasm; and (4) exocytosis at the
plasma membrane or cell-to-cell spread at cell junctions (Figure 2) [12–14]. Viral maturation occurs
concomitantly with transport through the cytoplasm, as DNA-loaded capsids (so-called “C-capsids”)
undergo tegumentation and secondary envelopment en route to the plasma membrane. The focus
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of this review will be on the latter cytoplasmic stages of maturation, tegumentation and secondary
envelopment; for reviews of nuclear egress see [12,13,15].
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Figure 2. Maturation and egress of herpesviruses. Replication of the viral genome and encapsidation 

occurs in the nucleus. Once assembled, capsids interact with the inner nuclear membrane and bud 

into the perinuclear space where they form primary enveloped particles. The primary envelope is 

then lost upon fusion with the outer nuclear membrane and unenveloped capsids are released into 

the cytoplasm. Cytoplasmic capsids acquire tegument proteins and their membrane by budding into 

specialised vesicles, probably derived from endosomes or the trans-Golgi network (TGN), that are 

studded with viral glycoproteins and outer tegument proteins. The secondary envelopment step also 

provides a transport vesicle that later fuses with the plasma membrane (PM) to release enveloped 

virions from the cell. 

2. Tegument Form and Function: An Overview 

2.1. Tegument Is a Dense Protein Network 

Herpesvirus tegument is a self-supporting structure comprising thousands of 

densely-packaged protein molecules. Proteomic analysis of extracellular HSV-1 virions by mass 

spectrometry identified 23 virally-encoded tegument proteins and a number of host-cell enzymes, 

chaperones and structural proteins, some of which are likely to be incorporated into the tegument 

layer [16]. HSV-1 encoded tegument proteins range in size and abundance, with the smallest 

predicted to be approximately 10.5 kDa (pUL11) and the largest greater than 330 kDa 

(pUL36/VP1-2). The most abundant tegument proteins are pUL47/VP13-14, pUL48/VP16, and 

pUL49/VP22, which are present at 600–1300 copies per virion [17]. Among the host cell proteins 

identified in extracellular virions are proteins involved in trafficking and exocytosis, in particular 

members of the Annexin and Rab GTPase families [16]. A myriad of protein:protein interactions 

bind tegument proteins together so tightly that the structural integrity of this layer is largely 

maintained even following removal of the membrane envelope from HSV “L-particles”, 

non-infectious capsid-less particles that are produced during alphaherpesvirus infection [18,19]. 

2.2. Tegument Asymmetrically Links the Capsid to the Viral Envelope 
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Figure 2. Maturation and egress of herpesviruses. Replication of the viral genome and encapsidation
occurs in the nucleus. Once assembled, capsids interact with the inner nuclear membrane and bud
into the perinuclear space where they form primary enveloped particles. The primary envelope is
then lost upon fusion with the outer nuclear membrane and unenveloped capsids are released into
the cytoplasm. Cytoplasmic capsids acquire tegument proteins and their membrane by budding into
specialised vesicles, probably derived from endosomes or the trans-Golgi network (TGN), that are
studded with viral glycoproteins and outer tegument proteins. The secondary envelopment step also
provides a transport vesicle that later fuses with the plasma membrane (PM) to release enveloped
virions from the cell.

2. Tegument Form and Function: An Overview

2.1. Tegument Is a Dense Protein Network

Herpesvirus tegument is a self-supporting structure comprising thousands of densely-packaged
protein molecules. Proteomic analysis of extracellular HSV-1 virions by mass spectrometry identified
23 virally-encoded tegument proteins and a number of host-cell enzymes, chaperones and structural
proteins, some of which are likely to be incorporated into the tegument layer [16]. HSV-1 encoded
tegument proteins range in size and abundance, with the smallest predicted to be approximately 10.5
kDa (pUL11) and the largest greater than 330 kDa (pUL36/VP1-2). The most abundant tegument
proteins are pUL47/VP13-14, pUL48/VP16, and pUL49/VP22, which are present at 600–1300 copies
per virion [17]. Among the host cell proteins identified in extracellular virions are proteins involved
in trafficking and exocytosis, in particular members of the Annexin and Rab GTPase families [16]. A
myriad of protein:protein interactions bind tegument proteins together so tightly that the structural
integrity of this layer is largely maintained even following removal of the membrane envelope from
HSV “L-particles”, non-infectious capsid-less particles that are produced during alphaherpesvirus
infection [18,19].
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2.2. Tegument Asymmetrically Links the Capsid to the Viral Envelope

Tegument proteins are generally designated as belonging to either “inner” or “outer” tegument
depending on their preferential association with either the capsid or viral membranes during
entry and egress, and based on their fractionation behaviour after virion lysis with non-ionic
detergents [13,20,21]. More recently the localization of specific tegument proteins within the
tegument layer of individual virions has begun to be uncovered using super-resolution microscopy
techniques [22]. While the outer HSV-1 tegument appears to be amorphous, the inner layer has partial
icosahedral order due to its close association with capsids [23–25].

Cryo-electron tomography shows the HSV-1 capsid to be asymmetrically placed inside the viral
envelope, with the tegument layer ranging in thickness from approximately 5 nm at the “proximal”
pole to around 35 nm at the “distal” pole [23]. HSV-1 particle asymmetry has also been observed by
super-resolution microscopy [22] and single-particle fluorescence imaging techniques have shown
an asymmetric arrangement of surface glycoproteins and selected tegument proteins around the
capsid of PrV virions [26]. This asymmetry is reflected in the distribution of glycoproteins on the
outer membrane, with dense clusters of glycoproteins located at the thicker distal pole and relatively
few glycoproteins at the proximal pole [23]. Partitioning of glycoproteins in this manner may be
consistent with a lack of tegument-based anchorage at the proximal pole and/or the clustering of
glycoproteins into lipid rafts. One hypothesis suggests that virion asymmetry may be established
during secondary envelopment, with budding initiated at the tegument- and glycoprotein-rich distal
pole [23,27]. During cell entry the proximal pole appears to preferentially form the fusion pore with
the plasma membrane [27]. Taken together these results suggest that the two poles of the asymmetric
HSV-1 virion are functionally distinct: the glycoprotein-rich distal pole mediates assembly while
membrane fusion occurs predominantly at the glycoprotein-poor proximal pole [27]. It was proposed
that reduced steric hindrance of entry-associated glycoproteins at the less-crowded proximal pole
may give rise to an increased frequency of fusion at this pole [27], but this hypothesis has yet to be
tested directly.

The icosahedral capsids of herpesviruses have a single unique vertex, termed the portal vertex,
that allows DNA packaging during virion assembly and is formed by a dodecameric ring of pUL6
(HSV and PrV) or ORF54 (VZV) [9,28]. A tegument-spanning feature that projects from the portal
vertex into the vicinity of the viral envelope and glycoprotein tails has recently been reported for
HSV-1 [29]. Designated as the portal vertex associated tegument (PVAT), this feature appears to
maintain a constant distance between the portal vertex and the viral membrane, meaning that
for virions with a large diameter (i.e., those packaging a large amount of tegument) the portal
vertex typically corresponds with the proximal pole. It is unclear whether the orientation of
the capsid portal vertex with respect to the membrane helps establish virion asymmetry during
secondary envelopment.

2.3. Tegument Proteins Modulate the Host Cell Immediately Following Infection

Aside from contributing to the structural integrity of virions, tegument proteins can perform a
host of functions within the cell immediately after entry and prior to the de novo synthesis of viral
proteins. For example, transcriptional activation of immediate-early genes follows the formation
of a transcription complex between the host cell factors HCF-1 and Oct-1 and the HSV-1 tegument
protein pUL48/VP16 or its VZV homologue ORF10 [30–34]. In HSV-1 and PrV a second tegument
protein, pUL41/vhs, suppresses protein expression by degrading host mRNA during the early stages
of infection and viral mRNA later in infection [35–38]. Interestingly, the VZV homologue of pUL41
(ORF17) is not packaged into virions and doesn’t mediate host gene shutoff [39,40].

Infected cell protein 0 (ICP0) is an immediate-early protein that modulates the host’s innate
and intrinsic responses to infection (reviewed in [41,42]). The RING domain of ICP0 possesses E3
ubiquitin ligase activity and ICP0 targets several cellular and viral proteins for proteasome-mediated
degradation. For example, ICP0 directs the degradation of DNA-PKcs [43], part of the cellular DNA
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damage response that acts as a cellular sensor of DNA virus infection and potentiates interferon
production [44]. ICP0 also disrupts nuclear domain 10 (ND10), also known as nuclear bodies or
promyelocytic leukemia protein (PML) bodies, and in doing so disrupts their ability to restrict viral
gene expression [41]. ORF61 of VZV is a functional homologue of ICP0 and is able to complement a
HSV-1 ICP0 deletion mutant in tissue culture [45]. Similarly, growth defects of the PrV EP0 deletion
mutant can be complemented by cells expressing the VZV or HSV-1 ICP0 homologues [46]. ICP0
is incorporated into tegument via its interaction with pUL49 [47], although the exact contribution
of de novo synthesised versus tegument-delivered ICP0 protein in newly infected cells remains to be
elucidated [41].

2.4. Tegument helps Deliver viral Genomes to the Nuclei of Infected Cells

In addition to modulating the immune system of newly infected cells, tegument proteins direct
microtubule-mediated retrograde transport of capsids to the nucleus (reviewed in [48]) and nuclear
entry of the viral DNA genome. During entry, HSV-1 and PrV capsids undergo bidirectional
and saltatory movement along microtubules with the net retrograde motility directed towards the
nucleus [49–54]. Bidirectional transport along microtubules suggests that both dynein and kinesin
motor proteins may be recruited to incoming capsids [51,55]. Furthermore, dynein and its cofactor
dynactin, kinesin-1 and kinesin-2 co-purify with partially tegumented HSV-1 capsids extracted from
extracellular virions following incubation with cytosolic extracts [20]. The most likely candidates for
recruiting motor proteins are pUL36/VP1-2 and pUL37, since they remain bound to capsids during
transit and are able to recruit motor proteins in vitro [20,54,56–62]. A role for pUL36 in retrograde
trafficking is supported by the observation that the deletion of the C-terminal 167 residues of HSV-1
pUL36 abolishes directed transport towards the nucleus [62]. Recently, an interaction between pUL36
and the dynein/dynactin motor complex (involved in retrograde transport) has been shown to
promote the transport of PrV capsids during entry [63]. While pUL37 has been shown to enhance
retrograde trafficking in PrV it is not essential for capsid transport during entry [64].

After trafficking to the nucleus capsids dock and release their DNA genome at nuclear pore
complexes (NPCs). Efficient binding of purified capsids to NPCs in an in vitro assay was shown
to be impaired following the removal of inner and outer tegument proteins by trypsinization [65].
Antibodies targeted against pUL36—but not pUL37, pUL19/VP5 or pUL18/VP23—are able to
attenuate capsid attachment at NPCs, suggesting that pUL36 is involved during docking [66]. HSV-1
pUL36 is required for the release of viral DNA from capsids into the nucleus, as demonstrated by a
temperature-sensitive HSV-1 virus (tsB7) carrying four point mutations in UL36: at a non-permissive
temperature capsids accumulated at nuclear pores but failed to release their DNA [67,68]. Further,
a study using artificially-induced syncytia formation showed that nascent viral particles produced
by a UL36 HSV-1 deletion virus were unable to infect other nuclei within a syncytium [69]. In
contrast, deletion of UL37 didn’t prohibit infection of other nuclei [69]. The capsid protein pUL25
interacts with pUL36, the capsid portal vertex protein pUL6 and the nuclear pore complex protein
CAN/Nup214 [70]. The interaction between pUL25 and CAN/Nup214 is also thought to stimulate
the release of viral DNA from capsids through nuclear pores into the nucleus of newly-infected
cells [70].

2.5. Tegumentation and Secondary Envelopment Occurs During Virion Maturation

Herpesvirus virions comprise a complex web of protein:protein interactions between capsid,
tegument and membrane-associated viral proteins including surface glycoproteins [71–74]. The
assembly of tegument on capsids occurs predominantly in the cytoplasm following nuclear egress.
Partial nuclear localization of tegument proteins pUL36/VP1-2, pUL37, pUL41/vhs, pUL47/VP13-14
pUL48/VP16, pUL49/VP22 has been reported in some studies, but not corroborated in others,
and it is unclear whether these proteins associate with capsids within the nucleus [13,62,75–81].
HSV-1 ICP0 and ICP4 have been detected on purified nuclear C-capsids [82], although this finding
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is contradicted by other studies [20,47,83]. During virion maturation the inner tegument layer
can be observed accumulating on cytoplasmic capsids [84]; outer tegument proteins are targeted
to secondary envelopment sites, containing trans-Golgi network (TGN) or endosomal markers,
by post-translational lipid modifications or by interacting with the cytoplasmic tails of viral
glycoproteins [85–87].

During secondary envelopment capsids bud into specialized vesicles containing the
glycoproteins that will decorate the surface of mature virions. This process simultaneously provides
the viral envelope and also packages the virus into vesicles that later fuse at the plasma membrane.
Tegument proteins contribute to this process by forming a network of interactions that bridge
the capsid and viral membrane by interacting directly with capsid proteins, with other soluble
tegument proteins, and with the cytoplasmic tails of viral glycoproteins or membrane-associated
tegument proteins. HSV-1 L-particles, which contain most tegument proteins and all glycoproteins
but lack capsids, follow similar assembly and egress pathways to infectious HSV-1 particles,
providing evidence that tegument and glycoproteins together are sufficient to drive secondary
envelopment [88–90].

3. Conserved Protein:Protein Interactions Mediate Tegument Assembly

Several tegument proteins have been implicated in HSV-1 and PrV secondary envelopment,
largely due to the effect of deleting genes encoding these proteins on virus maturation. As shown
in Table 1, seven of these genes (UL7, UL11, UL16, UL21, UL36, UL37 and UL51) are conserved
in all three herpesvirus subfamilies, while four are unique to the alphaherpesviruses (UL46, UL47,
UL48, UL49) [71]. The complex network of protein:protein interactions mediated by its components
gives tegument a redundancy that makes characterizing the precise function(s) of any individual
protein difficult. In cell culture this redundancy enables the virus to adapt to the deletion of some
“non-essential” tegument proteins by increasing the incorporation of other tegument proteins, or
of cellular proteins such as actin, into the virion [91–93]. While the deletion of many non-essential
tegument proteins can often be tolerated there is usually a mild replication defect; a study of PrV
shows that the severity of such growth defects in cell culture typically correlates with a proportional
increase in mean survival times of infected mice [94]. Despite the challenges, recent studies have
begun to elucidate the distinct contributions to secondary envelopment and virus egress made by the
tegument proteins conserved across alphaherpesviruses and to map the protein:protein interactions
that underpin these functions (illustrated in Figure 3 and summarised in Table 2).

Table 1. Herpesvirus tegument genes and their homologues. HSV, herpes simplex virus;
VZV, varicella-zoster virus; PrV, pseudorabies virus; HCMV, human cytomegalovirus; EBV,
Epstein-Barr virus; KSHV, Kaposi’s sarcoma-associated herpesvirus. Virus subfamily [Alpha-, Beta- or
Gamma-herpesvirinae] and alternative protein names (in parentheses) are shown.

HSV-1/-2 [Alpha] Mass of HSV
Protein, kDa VZV [Alpha] PrV [Alpha] HCMV

[Beta]
EBV

[Gamma]
KSHV

[Gamma]

Tegument proteins involved in tegumentation and secondary envelopment
UL7 33 ORF53 UL7 UL103 BBRF2 ORF42
UL11 10 ORF49 UL11 UL99 BBLF1 ORF38
UL16 40 ORF44 UL16 UL94 BGLF2 ORF33
UL21 58 ORF38 UL21 UL87 BcRF1 ORF24

UL36 (VP1-2) 336 ORF22 (p22) UL36 UL48 BPLF1 ORF64
UL37 121 ORF21 UL37 UL47 BOLF1 ORF63
UL51 25 ORF7 UL51 UL71 BSRF1 ORF55

UL46 (VP11-12) 78 ORF12 UL46 - - -
UL47 (VP13-14) 74 ORF11 UL47 - - -

UL48 (VP16) 54 ORF10 UL48 - - -
UL49 (VP22) 32 ORF9 UL49 - - -
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Table 1. Cont.

HSV-1/-2 [Alpha] Mass of HSV
Protein, kDa VZV [Alpha] PrV [Alpha] HCMV

[Beta]
EBV

[Gamma]
KSHV

[Gamma]

Other tegument proteins
UL13 (VP18.8) 57 ORF47 UL13 (VP18.8) UL97 BGLF4 ORF36

UL14 24 ORF46 UL14 UL95 BGLF3 ORF34
UL23 (thymidine

kinase) 41 ORF36 TK - BXLF2 ORF21

UL41 (vhs) 55 ORF17 UL41 - - -
UL50 (dUTPase) 39 ORF8 UL50 - - -

UL55 20 ORF3 - - - -
US2 32 - - - - -
US3 53 ORF66 US3 - - -

US10 34 ORF64/69 - - - -
US11 18 - - - - -

RL1 (ICP34.5) 26 - - - - -
RL2 (ICP0) 78 ORF61 EP0 (ICP0) - - -

RS1 (ICP4) 133 ORF62/71
(IE62) IE180 (ICP4) - - -
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Figure 3. Conserved alphaherpesvirus tegument proteins (blue) link the capsid (yellow) to the 

glycoproteins and envelope proteins (green) embedded in the virion lipid bilayer envelope (grey). 

Tegument assembles via a dense network of protein:protein interactions: solid lines indicate 

interactions demonstrated in HSV and dashed lines show interactions demonstrated for PrV. Some 

tegument proteins associate directly with the envelope via post-translational modifications 

conferring lipophilic palmitoyl (red) or myristoyl (purple) groups. The proteins that comprise the 

portal vertex associated tegument (PVAT) are currently undefined. 

Table 2. Herpesvirus tegument protein interactions that mediate secondary envelopment. 

Protein Other Names Interaction Partners Function References 

pUL7 - pUL51 [HSV-1] 
Putative role in cell-to-cell spread and 

secondary envelopment. 
[95] 

pUL11 - 

pUL16 [HSV-1] 

Role in secondary envelopment, also 

enhances interaction of pUL16 with gE. A 

tripartite complex of pUL11, pUL16 and 

pUL21 is proposed to play a role in cell 

fusion during syncytia formation, possibly 

through the interaction with gE. 

[96–98] 

gE [HSV-1] 

Cell-to-cell spread and cell fusion during 

syncytia formation. Glycoprotein E 

accumulates at the plasma membrane in the 

presence of pUL11, pUL16 and pUL21, in a 

cell-type dependent manner. Possible role in 

secondary envelopment. 

[99–101] 

pUL16 - 

pUL11 (See pUL11)  

pUL21 [HSV-1 and PrV] 

pUL21 enhances the interaction between 

pUL16 and pUL11 in triple-transfected cells. 

Putative role in cell-to-cell spread, syncitia 

formation and secondary envelopment when 

[98,101,102] 

Figure 3. Conserved alphaherpesvirus tegument proteins (blue) link the capsid (yellow) to the
glycoproteins and envelope proteins (green) embedded in the virion lipid bilayer envelope (grey).
Tegument assembles via a dense network of protein:protein interactions: solid lines indicate
interactions demonstrated in HSV and dashed lines show interactions demonstrated for PrV. Some
tegument proteins associate directly with the envelope via post-translational modifications conferring
lipophilic palmitoyl (red) or myristoyl (purple) groups. The proteins that comprise the portal vertex
associated tegument (PVAT) are currently undefined.
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Table 2. Herpesvirus tegument protein interactions that mediate secondary envelopment.

Protein Other
Names Interaction Partners Function References

pUL7 - pUL51 [HSV-1] Putative role in cell-to-cell spread and
secondary envelopment. [95]

pUL11

- pUL16 [HSV-1]

Role in secondary envelopment, also
enhances interaction of pUL16 with gE.
A tripartite complex of pUL11, pUL16

and pUL21 is proposed to play a role in
cell fusion during syncytia formation,
possibly through the interaction with

gE.

[96–98]

gE [HSV-1]

Cell-to-cell spread and cell fusion
during syncytia formation.

Glycoprotein E accumulates at the
plasma membrane in the presence of

pUL11, pUL16 and pUL21, in a
cell-type dependent manner. Possible

role in secondary envelopment.

[99–101]

pUL16

-

pUL11 (See pUL11)

pUL21 [HSV-1 and
PrV]

pUL21 enhances the interaction
between pUL16 and pUL11 in

triple-transfected cells. Putative role in
cell-to-cell spread, syncitia formation
and secondary envelopment when in

complex with pUL11 and gE.

[98,101,102]

gE [HSV-1]

Putative roles in cell-to-cell spread, cell
fusion and secondary envelopment.
The interaction is enhanced in the

presence of pUL11 in transfected cells.

[101,103]

pUL49 [HSV-1] Putative role in secondary
envelopment. [104]

pUL21 - pUL16 (See pUL16)

pUL36 VP1-2

pUL19/VP5 [HSV-1]
Links the capsid and tegument,
essential for tegumentation and

secondary envelopment.
[24,25,105]

pUL25 [HSV-1 and
PrV]

Links the capsid and tegument. May be
required for stabilisation of the CVSC
of nuclear and cytoplasmic capsids.

Enhances dynein-mediated transport
during PrV entry.

[62,63,70,106,
107]

pUL37 [HSV-1 and
PrV]

Provides a scaffold for tegumentation
and secondary envelopment.

Implicated in enhancing
microtubule-based transport during

entry and egress.

[74,75,108,109]

pUL48 [HSV-1]
Contributes to virus assembly. Both

proteins are essential in HSV-1 but this
is not an essential interaction.

[74,110,111]

pUL37 ICP32

pUL36 (See pUL36)

pUL35/VP26 [HSV-1] Minor role in recruiting pUL37 to
capsids. [72,112]

gK [HSV-1]

Putative role in secondary envelopment
by linking capsid associated pUL37

with the membrane associated complex
gK-pUL20.

[113]

pUL20 [HSV-1]

Putative role in secondary envelopment
by linking capsid associated pUL37

with the membrane associated complex
gK-pUL20.

[113]
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Table 2. Cont.

Protein Other
Names Interaction Partners Function References

pUL46 VP11-12

pUL48 [HSV-1 and
HSV-2]

May regulate pUL48-dependent
transcription of immediate-early genes. [74,114]

ICP0 [HSV-1]

E3 ligase activity of ICP0 mediates the
partial degradation of pUL46 during

infection, which may potentiate a shift
from immediate-early (α) to early (β)

and late (γ) viral gene expression.

[115]

Many identified in
yeast two-hybrid

screens
Unknown. [72,74,116]

pUL47 VP13-14

pUL48 [HSV-1] Regulation of pUL48-dependent
transcription of immediate-early genes. [110,117]

pUL17 [HSV-1] May provide a link between the capsid
and tegument. [118]

Many identified by
yeast two-hybrid

screen
Unknown. [116]

pUL48 VP16/ICP25

pUL36 (See pUL36)

pUL41/vhs [HSV-1]
pUL48 inhibits pUL41 during late stage
of infection to spare viral mRNAs from

degradation by pUL41.
[110,119–122]

pUL46 (See pUL46)
pUL47 (see pUL47)

pUL49 [HSV-1] Contributes to tegument assembly. [110,123]

gH [HSV-1] May contribute to secondary
envelopment. [124–126]

gD [HSV-1] Unknown. [126]
gB [HSV-1] Unknown. [126]

pUL49 VP22

pUL16 (See pUL16)
pUL48 (See pUL48)

ICP0 [HSV-1] Packaging of ICP0 into virions. [47,127]
gE [HSV-1 and PrV] Contributes to secondary envelopment. [99,128–130]
gM [HSV-1 and PrV] Contributes to secondary envelopment. [129,130]

pUL51 - pUL7 (See pUL7)

3.1. pUL36/VP1-2 Interacts with Capsid Protein pUL19/VP5 and Capsid Vertex-Specific Component
Proteins pUL17 and pUL25

The pUL36 protein acts as a foundation stone for tegument assembly by providing a pivotal link
between the capsid and tegument structures. The absence of pUL36 from HSV-1 and PrV blocks
egress by preventing tegumentation and secondary envelopment, resulting in the accumulation
of naked capsids in the cytoplasm [62,131,132]. The major capsid protein of HSV-1 and PrV is
pUL19/VP5, which forms pentamers (termed pentons) at the vertices of the icosahedral capsid
and hexamers (termed hexons) on the icosahedral faces [10,133–135]. Six copies of pUL35/VP26
bind pUL19/VP5 to form a cap that sits over the hexons, and between each penton and hexon are
triplexes formed by the proteins pUL38/VP19C and pUL18/VP23 [10,134]. Cryo-electron microscopy
(cryo-EM) analysis of C-capsids from mature virions shows pUL36 interacting with the major capsid
protein pUL19/VP5 at capsid vertices where it binds between two penton protrusions to form a cap
over the penton vertex (Figure 4) [24,25,105]. While addition of pUL36 to capsids had previously
been considered to occur in the cytoplasm shortly after nuclear egress, there are now numerous
reports of capsid-associated pUL36 being present in the nucleus [75,136,137]. While pUL36 is not
essential for nuclear egress of HSV-1 or PrV, a recent study suggested that a nuclear-specific isoform
comprising the C-terminal region of pUL36 is recruited to PrV capsids in the nucleus and enhances
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their nuclear egress [138]. Since the nuclear-specific isoform of pUL36 lacks regions required for
virion assembly, it follows that full-length pUL36 can replace the C-terminal fragment at a later stage
during maturation [138]. Failure to detect the nuclear localization of pUL36 in some studies but not
others may in some cases be explained by the use of antibodies targeting N-terminal epitopes not
present in the nuclear-localized C-terminal pUL36 fragment [138].

In addition to binding pUL19/VP5, pUL36 also appears to form part of the capsid vertex-specific
component (CVSC, Figure 4). The CVSC is a complex containing the proteins pUL17 and pUL25 that
forms over penton-proximal pUL18-pUL38 (VP23-VP19C) triplexes [139–141] (Figure 4). Assembly
of the CVSC is proposed to promote nuclear egress of DNA-filled C-capsids [140–142], although
its presence is not exclusive to C-capsids [135,141]. Cryo-EM studies of HSV-1 and PrV capsids
have previously positioned pUL17 in the CVSC density closest to the penton vertex and pUL25 in
the penton-distal density [135,141,143,144]. However, attempts to fit the crystal structure of a large
fragment of HSV-1 pUL25 (47% identity with PrV pUL25) into the CVSC density of PrV C-capsids
were unsuccessful and it was proposed that either the folds of HSV-1 and PrV pUL25 are different, or
that the conformation adopted by pUL25 differs when in virions versus in the crystalline state [135].
Recently, a high-resolution cryo-EM reconstruction of virions showed Karposi’s sarcoma-associated
herpesvirus (KSHV), a gammaherpesvirus, to contain a region of tegument near the penton vertices
that obeyed icosahedral symmetry, analogous to the CVSC of alphaherpesviruses [145]. However,
analysis of this reconstruction in the light of available tertiary and secondary structural data
suggested a significantly different arrangement of the pUL17 and pUL25 homologues compared with
previous alphaherpesvirus cryo-EM analyses. Specifically, the authors concluded that ORF19, the
pUL25 homologue, forms the globular cap over the penton vertex while the penton-distal density is
comprised of ORF32, the pUL17 homologue, plus additional density from an unidentified protein.
Further, they showed that a similar arrangement of pUL25 and pUL17 would allow a good fit of a
dimer of pUL25 into the previously published PrV cryo-EM maps [135,145]. The authors suggest
that the elongated nature of the N-terminal segment of ORF19, homologous to a region of pUL25 not
present in the crystal structure, would have confounded the interpretation of prior alphaherpesvirus
cryo-EM reconstructions performed in the presence of labelled pUL25 [135,141,143] and may have led
to incorrect assignment of the pUL25- and pUL17-containing CVSC density [145].

Association of pUL36 with capsids in PrV infected cells is dependent on the expression of
pUL25 [106], and homologues of both pUL36 and pUL25 from PrV and HSV-1 co-immunoprecipitate
when transiently expressed together in cells [70,106]. In HSV-1, a C-terminal region within pUL36
(residues 2430–2893) is sufficient for recruitment to cytoplasmic capsids during assembly [62]. A
recent study of capsids formed by HSV-1 strains lacking UL36 showed that extensive CVSC structures
are formed only in the presence of pUL36 [107]. Furthermore, the pUL36 dependence of CVSCs was
apparent for C-capsids purified both from the nuclear and cytoplasmic fractions of HSV-1 infected
cells [107]. This is consistent with pUL36 (or a C-terminal portion thereof) binding C-capsids in the
nucleus, but being replaced with full-length cytoplasmic pUL36 upon C-capsid nuclear exit, and with
pUL36 forming part of the CVSC (Figure 4), occupying a position similar to that of the “unidentified”
density observed in the KSHV cryo-EM reconstruction [107,145]. We anticipate that higher resolution
structural characterization will provide final confirmation of the composition and arrangement of
nuclear and cytoplasmic alphaherpesvirus CVSCs and the contribution of pUL36 to these structures.
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Figure 4. Protein pUL36 extends from capsid vertices and interacts with the capsid vertex-specific
component (CVSC). (Top inset) The extended N-terminal region of pUL36 interacts with pUL37 and
pUL48. For clarity pUL36 and pUL37 are not drawn to scale. (Bottom inset) Recent studies of HSV,
PrV and KSHV [107,135,145] suggest that CVSC component pUL25 lies over the penton vertex, pUL17
lies above the penton proximal pUL18-pUL38 triplex, a C-terminal region of pUL36 contributes to the
CVSC density, and that pUL36 is essential for CVSC formation.

3.2. The pUL36-pUL37 Complex Acts as a Scaffold for Tegumentation and Secondary Envelopment

Protein pUL36 is the largest tegument protein and the N-terminal regions of pUL36 from HSV-1
and PrV interact with the second-largest conserved tegument protein, pUL37 [108]. Protein pUL37 is
essential for HSV-1 replication and its deletion severely attenuates replication of PrV [132,146,147].
The pUL37-null phenotype in HSV-1 can be partially rescued by transfecting infected cells with
a C-terminal fragment of pUL37 encompassing residues 568–1123 [148]. Recruitment of pUL37 to
HSV-1 capsids is dependent on pUL36 [148], and this interaction is conserved between homologues
in human cytomegalovirus and KSHV, belonging to the beta- and gammaherpesvirus subfamilies,
respectively [149–151]. Capsid-bound pUL36 is proposed to extend from capsid vertices and, together
with pUL37, to form the filamentous structures that have been observed by cryo-EM of capsids
lacking tegument proteins except pUL36 and pUL37 [22,24]. In support of this, a recent crystal
structure of a central portion of pUL36 (residues 1600–1733) shows this region to possess an elongated
alpha-helical conformation and sedimentation velocity analysis of a fragment encompassing residues
760–1733 is consistent with an elongated structure [152]. A dimer of the pUL36-pUL37 homologues
from human cytomegalovirus (pUL48-pUL47) also appears to form a filamentous structure [153].
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Unlike most other tegument proteins, pUL36 and pUL37 are incorporated into virions with a
fixed stoichiometry and overexpression of pUL37 in infected cells did not increase its incorporation
into virions [105,154,155]. The stoichiometry of pUL37 is also maintained in L-particles, suggesting
that it is determined by something intrinsic to the tegument structure or viral membrane in the
absence of capsids [154]. Interestingly, pUL36 and GFP-tagged pUL37 from HSV-1 have been shown
to co-localize with Golgi markers at a juxtanuclear compartment independently of capsids [156].
Precisely how these proteins are recruited to these membranes is unknown, but recruitment of pUL37
depended on pUL36 expression [156]. Direct or indirect interactions with outer tegument proteins,
for example pUL36 with pUL48 in HSV-1 [74,111], or with glycoprotein tails may be involved.
Recently, immunoprecipitation experiments from infected cells have shown HSV-1 pUL37 to interact
with gK and its membrane-associated binding partner pUL20 [113]. The gK-pUL20 complex has
been implicated in secondary envelopment and the release of virions from infected cells [157–159].
HSV-1 and PrV lacking pUL20, and HSV-1 lacking gK, accumulate enveloped and non-enveloped
capsids in the cytoplasm [160–165]. It has been proposed that the interaction between pUL37 and the
gK-pUL20 complex may contribute to secondary envelopment by linking the pUL36-pUL37 complex
with the viral envelope [113]. An interaction between HSV-1 pUL37 and the capsid hexon-cap protein
pUL35/VP26 has been detected by yeast two-hybrid screen and may have a minor role in recruiting
pUL37 to capsids [72,112].

The exposure of pUL36 and pUL37 on the surface of capsids may facilitate motor
protein recruitment for microtubule-based transport of capsids to secondary envelopment sites
(reviewed [7,48]). In PrV and HSV-1, both pUL36 and pUL37 have been implicated in
microtubule-based transport during egress [57,61,166,167]. Since pUL36 and pUL37 are also linked
to retrograde capsid transport during entry there must be an additional factor or condition that
determines the overall direction of capsid transport. It is currently unknown how the directional
transport of capsids is regulated in cells, but it is likely that a component of the virus particle
modulates the switching between dynein and kinesin directed transport [51]. To this end,
post-translational modification of pUL36 or the recruitment of other viral tegument proteins to
the motor complex have been predicted to play a role [7]. A crystal structure of the N-terminal
half of pUL37 from PrV has recently been determined, showing this region to be organized into
three domains. One of these domains shares structural similarity with the CATCHR family of
multi-subunit tethering complexes [168], complexes that modulate host-cell vesicle trafficking by
tethering membranes destined for fusion [169], and the authors postulate that pUL37 may mimic
this function and tether PrV capsids to membranes during secondary envelopment.

3.3. pUL46, pUL47, pUL48 and pUL49: Central Organizers of Tegument

The pUL46, pUL47, pUL48 and pUL49 proteins act as central organizers of tegument by
forming interactions with inner and outer tegument proteins and viral glycoproteins. These are
the most abundant tegument proteins in the mature virion and are thought to be unique to the
alphaherpesvirus subfamily [16,17,71], although a recent crystal structure of a C-terminal domain
of pUL49/VP22 showed unexpected structural homology with ORF52 from murid herpesvirus 4, a
gammaherpesvirus [170]. Of the four proteins only pUL48 is considered to be essential for HSV-1
replication in tissue culture [117,127,171–174]. In PrV, deletions of each of these four proteins
individually can be tolerated [93,175–177]. Furthermore, simultaneous deletion of UL46, UL47,
UL48 and UL49 in PrV does not block virion assembly in tissue culture but virus replication is
strongly attenuated [178]. Tolerance to deletion of these proteins, as with many other tegument
proteins, possibly arises from the redundancy in protein:protein interactions that form the tegument
and through compensatory increases in the incorporation of other tegument proteins. For example,
deletion of UL47 or UL49 in PrV leads to a specific increase in the packaging of lower molecular
weight isoforms of pUL48 [93], and packaging of HSV-1 pUL46 is enhanced in the absence of
pUL47 [173].
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Secondary envelopment of HSV-1 capsids is abolished in the absence of pUL48 and is strongly
suppressed but not abolished in PrV lacking UL48 [171,172,176]. The pUL48 protein of HSV-1 has
been shown to interact with the essential inner tegument protein pUL36 [74,110,111], outer tegument
proteins pUL41, pUL46 and pUL49 [74,114,119,123], and the cytoplasmic tail of gH in vitro [124–126].
A cross-linking experiment also highlighted glycoproteins gB and gD as potential pUL48 binding
partners [126]. The requirement for pUL48 in HSV-1 secondary envelopment may be attributed to
its ability to form numerous interactions that bridge the capsid and virus envelope. In PrV the
deletion of UL48 results in the production of large quantities of L-particles that contain pUL46,
pUL47 and pUL49, but not pUL36 and pUL37, suggesting that pUL48 could provide a key link
between inner and outer tegument [176]. However, while pUL48 interacts with pUL36 and could
thus link membranes and capsids, packaging of pUL48 into HSV-1 virions is not decreased when this
interaction is abolished [74,110,111].

The pUL49 protein has also been proposed to contribute to secondary envelopment through
the formation of a tegument-glycoprotein complex comprising pUL49, gE-gI, gM and ICP0, whereby
the C terminus of pUL49 bridges the cytoplasmic tails of gE and gM and the N terminus recruits
ICP0 [129]. In HSV-1 infected cells, pUL49 is recruited to TGN membranes though interactions with
gE and gM [128,129]; packaging of pUL49 into virions is unaffected by deletion of either glycoprotein
individually but a double deletion virus fails to incorporate pUL49 [129]. Glycoprotein I (gI) is
recruited to the complex through an interaction with gE; mutants lacking pUL49 incorporate less
gE-gI and ICP0 is also absent [127,179]. pUL49 of PrV has also been shown to interact with gE
and gM by yeast two-hybrid screen [130]. Triple mutant viruses lacking gE-gI and gD (HSV-1)
or gM (PrV) accumulate unenveloped cytoplasmic capsids, suggesting that these proteins play
important but redundant roles in secondary envelopment [180,181]. Additionally, a tripartite complex
comprising pUL49-pUL48-pUL41 has been proposed, which may promote secondary envelopment
through the pUL49-gE-gI complex (reviewed [12]). However, despite the central role of pUL49 in
these complexes the deletion of UL49 in both HSV-1 and PrV does not have a significant effect
on virus assembly and a PrV UL49 deletion virus does not exhibit an obvious defect in secondary
envelopment [93,127,174]. Interestingly, HSV-1 pUL49 has also been shown recently to co-localize
with the N-terminal domain (residues 1–155) of pUL16 in the absence of other viral proteins, and
pUL49 is very poorly incorporated into pUL16-null virions [104]. However, the contribution this
interaction makes to HSV virion maturation is currently unclear. It is also worth noting that deletion
of UL49 from HSV-1 causes mutation of UL41 when viruses are propagated in non-complementing
cells, presumably due to pUL49 being important for controlling the activity of pUL41/vhs [182–184].
Caution may therefore be needed when interpreting the impact of pUL49 removal as, depending on
how the UL49 deletion viruses have been propagated, some of the observed phenotypes may actually
arise from changes in pUL41/vhs activity.

Little is currently known about the precise contributions of pUL46 and pUL47 to virus
assembly. A PrV UL47 deletion mutant accumulates aggregates of partially-tegumented capsids in
the cytoplasm and exhibits a 10-fold reduction in viral titer, but no assembly defect was apparent
for the UL46 deletion mutant in this study [175]. Mean survival times of mice infected with a PrV
UL46 deletion virus were similar to those of the wild-type virus, while survival times increased for
mice infected with UL47-, UL11- or UL48-deleted PrV viruses [185]. Yeast two-hybrid interaction
screens have identified several capsid (pUL19/VP5, pUL18/VP23, pUL38/VP19C, pUL25), tegument
(pUL21, pUL37, pUL48, pUS3, pUS10) and membrane (pUL45, gK, gM) proteins as potential binding
partners for pUL46 [72,74,116], suggesting that this protein is able to bridge the capsid to the outer
membrane. Interactions between pUL46 and pUL21, pUS3, pUS10 and gM were also identified
by mass spectrometry following immunoaffinity purification from cells infected with a HSV-1
GFP-pUL46 virus, as were interactions with ICP0 and a number of host-cell protein kinases [115].
In HSV-2 infected cells pUL46 has been shown to co-localize and co-purify with pUL48 [114] and
this interaction has also been confirmed for HSV-1 by in vitro GST pull-down experiments [74].
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Similarly, pUL47 forms numerous interactions with other tegument proteins (pUL14, pUL21, pUL48,
pUL49, pUS11) in yeast two-hybrid interaction screens [116]. Immunoprecipitation of pUL47 with
pUL48 from HSV infected cells has been reported [110], and the absence of pUL47 during infection
diminished pUL48-mediated reporter gene transcription [117]. The capsid protein pUL17 has also
been shown to co-immunoprecipitate and co-localize with pUL47 from HSV-1 infected cells and may
provide an additional link between the capsid and tegument [118]. Despite the many pUL46 and
pUL47 interaction partners identified by yeast two-hybrid or proteomic studies only a few have been
validated by in vitro or cell-based experiments. Further investigation is therefore required to ascertain
the precise contributions of pUL46 and pUL47 to virus assembly.

3.4. pUL11, pUL16 and pUL21 form a Tripartite Complex

In addition to the glycoproteins embedded within the envelope, HSV-1 virions contain several
membrane-associated tegument proteins [186]. One such protein, HSV-1 pUL11, associates with
Golgi membranes in infected cells via myristoyl and palmitoyl anchors, the latter modification
determining membrane specificity [187–189]. Partitioning of HSV-2 pUL11 into lipid rafts has been
shown to require both acyl modifications [190]. HSV-1 pUL11 membrane association may also be
facilitated though an interaction of this protein with the cytoplasmic tail of gE, which has been
demonstrated in vitro [99–101]. Virion packaging of pUL11 is substantially reduced upon deletion
of the gE cytoplasmic tail, and a reciprocal defect in gE packaging is also observed upon deletion
of UL11 [100]. Although UL11 is not essential for viral replication, deletion of this gene or its
homologues from HSV-1, PrV or human cytomegalovirus leads to defective secondary envelopment
and an accumulation of cytoplasmic capsids to varying degrees [191–196]. Interestingly, HSV-1
pUL11 expressed without acyl modifications partially recovered the growth defects of a UL11
deletion virus, demonstrating that some pUL11 function is maintained when the protein is not
membrane-bound [197].

The tegument protein pUL16 has been shown to interact with pUL11 [96–98] and gE [101,103]
in HSV-1 and with pUL21 in both HSV-1 and PrV [98,101,102]. Both pUL16 and pUL21 are
simultaneously pulled-down by GST-pUL11 from lysates of cells infected with wild-type HSV-1,
while GST-pUL11 fails to pull-down pUL21 from lysates infected with a UL16 deletion virus [98].
It is also likely that GST-pUL11 of PrV is able to pull-down pUL16 and pUL21 homologues from
PrV-infected lysates [98]. Furthermore, packaging of pUL11 and pUL21 is severely reduced in a virus
lacking UL16 and the amount of pUL16 incorporated into virions is drastically reduced in the absence
of either pUL11 or pUL21 [104,198]. Together these findings provide support for the formation of a
tripartite complex with pUL16 at the centre linking pUL11 and pUL21.

GST pull-downs experiments have demonstrated a direct interaction between HSV-1 pUL16 and
gE in vitro [103]. However, transfection experiments showed that co-localization between pUL16
and co-transfected gE or pUL11 in the absence of virus infection is poor [101,103]. Truncation
experiments revealed that the C terminus of pUL16 negatively regulates its interaction with gE
and pUL11: removing the C-terminal region (residues 156–373) enhanced the ability of pUL16 to
co-localize with pUL11 or gE in co-transfection experiments [103,199]. Co-transfection of pUL16,
pUL11 and pUL21 together leads to the efficient co-localization of pUL16 with pUL11, suggesting
that pUL21 can relieve the repression of pUL11 binding that is conferred by the pUL16 C-terminal
region [101]. Further co-transfection studies show the interaction between pUL16 and gE to be
substantially enhanced in the presence of pUL11 but less so in the presence of pUL21 [101]. Therefore,
it has been proposed that pUL11-pUL16-pUL21 complex is able to interact with membranes by
assembling on the cytoplasmic tail of gE via pUL11 and via pUL16, with direct binding of pUL11
to gE promoting the gE-pUL16 interaction [101] (Figure 5). An alternative hypothesis is that pUL16
acts as a virus-encoded chaperone, promoting the correct folding of pUL11, pUL49 and gE rather than
forming molecular interactions to bridge them directly [104,199].

5097



Viruses 2015, 7, 5084–5114

Viruses 2015, 7, page–page 

14 

binding of pUL11 to gE promoting the gE-pUL16 interaction [101] (Figure 5). An alternative 

hypothesis is that pUL16 acts as a virus-encoded chaperone, promoting the correct folding of pUL11, 

pUL49 and gE rather than forming molecular interactions to bridge them directly [104,199]. 

 

Figure 5. Proteins pUL11, pUL16 and pUL21 may form a tripartite complex that binds gE. The  

C-terminal domain of pUL16 inhibits its ability to co-localise with pUL11 and gE, co-localization of 

pUL16 with pUL11 is enhanced in the presence of pUL21, and the presence of pUL11 promotes  

co-localization of pUL16 and gE [101]. An alternative model is that pUL16 acts as a molecular 

chaperone, promoting the correct folding of pUL11, pUL21 and/or gE. 

In HSV-1 infected cells pUL16 has been shown to associate with capsids in the cytoplasm 

independently of pUL36 and pUL37 [198,200]. PrV pUL21 is also reportedly capsid associated [201]. 

These observations led to the proposal of a simple hypothesis whereby the interaction between 

membrane-associated pUL11 and capsid-associated pUL16 (and pUL21) could provide a physical 

link between the capsid and tegument to promote secondary envelopment [12]. If this were the case 

we might expect a similar phenotype for the deletion of UL16 as is observed upon deletion of UL11. 

However, these viruses are phenotypically distinct: the HSV-1 UL16 deletion virus forms clusters of 

membrane-associated capsids in the cytoplasm and has an increased propensity to form 

multi-capsid virions [104], whereas deletion of UL11 from HSV-1 or PrV causes the cytoplasmic 

accumulation of non-enveloped capsids in association with electron-dense tegument-derived 

material [191,192,196,202]. Further experiments are thus required determine how these proteins 

promote correct virion assembly and probe whether pUL16 forms a stable bridge between pUL11 

and pUL21 or acts as a virally-encoded chaperone. 

3.5. pUL51-pUL7 Complex May Promote Secondary Envelopment 

Another membrane-associated tegument protein implicated in secondary envelopment is 

pUL51. HSV-1 and PrV UL51 mutant viruses exhibit a reduction in viral titer compared to wild type 

and accumulate non-enveloped capsids in the cytoplasm [203,204]. HSV-1 pUL51 localizes at the 

Golgi in transfected cells through an N-terminal palmitoyl modification [205]. The localization 

differs in infected cells, with pUL51 clustering at a juxtanuclear assembly compartment and at the 

perinuclear compartment [205]. Recently HSV-1 pUL51 has been reported to interact with a second 

tegument protein, pUL7, which also localizes to a juxtanuclear compartment during infection [95,206]. In 

infected and transfected cells pUL7, pUL51 and gE partially co-localize on cytoplasmic membranes 

and this co-localization is lost in the absence of pUL51, suggesting that membrane localization of 

pUL7 is specifically mediated by the pUL51 protein [95]. Efficient packaging of pUL7 into virions 
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of pUL16 with pUL11 is enhanced in the presence of pUL21, and the presence of pUL11 promotes
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chaperone, promoting the correct folding of pUL11, pUL21 and/or gE.

In HSV-1 infected cells pUL16 has been shown to associate with capsids in the cytoplasm
independently of pUL36 and pUL37 [198,200]. PrV pUL21 is also reportedly capsid associated [201].
These observations led to the proposal of a simple hypothesis whereby the interaction between
membrane-associated pUL11 and capsid-associated pUL16 (and pUL21) could provide a physical
link between the capsid and tegument to promote secondary envelopment [12]. If this were
the case we might expect a similar phenotype for the deletion of UL16 as is observed upon
deletion of UL11. However, these viruses are phenotypically distinct: the HSV-1 UL16 deletion
virus forms clusters of membrane-associated capsids in the cytoplasm and has an increased
propensity to form multi-capsid virions [104], whereas deletion of UL11 from HSV-1 or PrV
causes the cytoplasmic accumulation of non-enveloped capsids in association with electron-dense
tegument-derived material [191,192,196,202]. Further experiments are thus required determine how
these proteins promote correct virion assembly and probe whether pUL16 forms a stable bridge
between pUL11 and pUL21 or acts as a virally-encoded chaperone.

3.5. pUL51-pUL7 Complex May Promote Secondary Envelopment

Another membrane-associated tegument protein implicated in secondary envelopment is
pUL51. HSV-1 and PrV UL51 mutant viruses exhibit a reduction in viral titer compared to wild
type and accumulate non-enveloped capsids in the cytoplasm [203,204]. HSV-1 pUL51 localizes at
the Golgi in transfected cells through an N-terminal palmitoyl modification [205]. The localization
differs in infected cells, with pUL51 clustering at a juxtanuclear assembly compartment and at the
perinuclear compartment [205]. Recently HSV-1 pUL51 has been reported to interact with a second
tegument protein, pUL7, which also localizes to a juxtanuclear compartment during infection [95,206].
In infected and transfected cells pUL7, pUL51 and gE partially co-localize on cytoplasmic membranes
and this co-localization is lost in the absence of pUL51, suggesting that membrane localization of
pUL7 is specifically mediated by the pUL51 protein [95]. Efficient packaging of pUL7 into virions
was also shown to be dependent on pUL51 [95]. Furthermore, the phenotype for UL7-null PrV is
similar to that described for the pUL51-deficient PrV and HSV-1 viruses [206,207]. The HSV-1 UL7
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deletion virus is also defective for cellular egress, but it is unknown whether this is due to impaired
secondary envelopment [208]. Taken together these findings suggest that pUL7 and pUL51 function
as a complex during viral maturation that promotes secondary envelopment, although how they act
in concert to achieve this is currently unclear.

4. Secondary Envelopment and Viral Egress

4.1. Secondary Envelopment Occurs at Post-Golgi Membranes

There is little doubt that alphaherpesviruses acquire their final lipid envelope from post-Golgi
membrane compartments, although the precise identity of the cytoplasmic compartment(s) where
secondary envelopment occurs has been the topic of much recent debate. Many studies have
provided evidence for the TGN being the site of HSV-1, PrV and VZV secondary envelopment,
primarily through analysis of cellular markers of the TGN and treatments that disrupt TGN
function [84,209,210]. More recently, evidence for endosomal membranes being the sites of HSV-1
secondary envelopment has been published, where endocytic tracers were localized to sites of
secondary envelopment and the early endosome regulator Rab5 was shown to be important for
HSV-1 envelopment [86]. Classically the TGN is considered as a major sorting organelle within the
secretory pathway that directs newly synthesized proteins, after appropriate processing and transit
through the Golgi, to various cellular destinations including endosomes, lysosomes and the plasma
membrane [211,212]. However, the TGN also receives proteins from the endocytic pathway, including
proteins internalized from the plasma membrane, and so this organelle can also be considered part
of the endosomal system [213,214]. Membrane traffic within the secretory and endocytic pathways
comprises of a network of highly dynamic and interconnected compartments that rapidly transport
proteins between each other using vesicle carriers and/or direct fusion, and so the content of different
compartments can mix in various locations. Cellular membrane proteins that are used as markers
of the TGN and other post-Golgi compartments predominantly localize to these compartments at
steady state, by definition, but often do so in a highly dynamic fashion involving traffic to and from
endosomal compartments and the plasma membrane in normal cells. Therefore, data demonstrating
the localization of TGN markers and endocytic tracers to HSV-1 secondary envelopment sites are not
necessarily contradictory given the intimate association of the TGN with the endocytic pathway. One
of the problems faced when attempting to define membrane compartment identity in infected cells
is that HSV-1 is known to dramatically re-organize the cytoskeleton and the secretory and endocytic
pathways [215,216]. Therefore, assessing the origin of secondary envelopment membranes, which
are likely to be quite heterogeneous, is not straightforward. These issues may be clarified in the
future by examining the dynamics of HSV-1 envelope protein transport in parallel with cellular
“compartment-marker” membrane proteins in infected cells, and by probing the specific involvement
of different endocytic and exocytic vesicle transport pathways in HSV-1 secondary envelopment.

4.2. Trafficking of Glycoproteins to Sites of Secondary Envelopment

Whatever the precise origin of the membranes that make up the secondary envelopment
compartments, all the viral membrane proteins destined to become part of the mature virion must
be trafficked to these sites. Given the varying expression kinetics of the 16 different virally encoded
membrane proteins that are thought to be in the mature virion (gB, gC, gD, gE, gG, gH, gI, gJ, gK, gM,
gN, pUL20, pUL43, pUL45, pUL56 and pUS9), it seems likely that many of these membrane proteins
will be trafficked to secondary envelopment compartments either independently, or in subcomplexes,
rather than as a fully-formed cluster of all 16 different membrane proteins in the correct stoichiometry.
Many of these viral envelope proteins contain consensus sequences within their cytoplasmic domains
that would be predicted to mediate their subcellular localization via interactions with cellular protein
sorting machinery. This has most clearly been demonstrated for viral membrane proteins such as
gB and gE, which contain tyrosine-based motifs that are known to interact with clathrin adaptors
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and are important for the endocytosis and intracellular localization of these glycoproteins [217–220].
However, several viral membrane proteins do not contain any predicted trafficking motifs and thus
rely on other viral proteins for their correct localization and incorporation into virions. For example,
in HSV-1 it appears that localization of the gE-gI heterodimer to the TGN relies on trafficking
motifs within the cytoplasmic domain of gE [221], and the ER-exit and TGN localization of gK
and pUL20 has been shown to be interdependent [165]. It has also been shown that the essential
HSV-1 entry proteins gD and gH-gL rely on the trafficking activity of gM and/or gK-pUL20 to
mediate their endocytosis and localization to sites of secondary envelopment [163,222,223]. While the
molecular details of how many of the viral envelope proteins are localized to secondary envelopment
compartments are unclear, it seems likely that a combination of different endocytic and/or other
vesicle transport pathways bring these membrane proteins together in the same location. Presumably,
the still poorly-defined network of protein:protein interactions linking envelope proteins with each
other and the underlying tegument will then provide sufficient structure and stability to allow the
budding/wrapping process to occur, normally around a capsid to form virions, but also occurring in
the absence of capsids in the case of L-particles.

4.3. The End of Secondary Envelopment: Membrane Scission Mediated by the Host-Cell ESCRT Pathway

The final stage in herpesvirus virion assembly can be considered as the membrane scission event
that separates the newly formed virus from the surrounding host-cell membrane, giving rise to a
fully formed virion contained within the lumen of a large transport vesicle. Topologically, this is
the same process that is required for the final stages of budding for any enveloped virus, whether
such a virus buds directly through the plasma membrane (such as HIV) or into the lumen of a
cytoplasmic organelle (such as herpesviruses). Many enveloped viruses have been shown to utilize
the membrane scission activity of the cellular endosomal sorting complex required for transport
(ESCRT) machinery for this crucial step in their assembly [224]. Herpesviruses appear to be no
exception: ESCRT function is important for the assembly of members of all three subfamilies of
herpesvirures as has been demonstrated for HSV-1 and PrV (alphaherpesviruses) [225–228], human
cytomegalovirus (betaherpesvirus) [229] and Epstein-Barr virus (gammaherpesvirus) [230], although
in the case of Epstein-Barr virus the main defect observed in the absence of ESCRT function was
in nuclear egress. The ESCRT machinery is a set of multiprotein complexes that are normally
involved in the formation of intraluminal vesicles by an inward budding process into the lumen
of multivesicular bodies, as well as membrane scission during the abscission event that separates
cells at the end of cytokinesis [231,232]. It is important to note that a requirement for the activity of
the ESCRT machinery during herpesvirus secondary envelopment does not help define the source of
membrane for cytoplasmic assembly compartments. The ESCRT machinery is relatively mobile and
can be recruited to multiple cellular membranes under different conditions, and so the involvement
of the ESCRT machinery in itself does not allow any firm conclusions to be drawn on sites of HSV-1
envelopment. Currently it is unclear how herpesviruses recruit and regulate the ESCRT machinery at
sites of their assembly. By analogy with other viruses that are known to recruit ESCRT complexes via
their matrix proteins (see Table S1 in [224]), tegument protein(s) appear the most likely candidates to
directly or indirectly interact with ESCRT proteins. Indeed HSV-1 pUL36 has recently been shown
to interact with TSG101, a component of the ESCRT-I complex, although the importance of this
interaction for secondary envelopment was not investigated in this study [233]. However, given the
complexity of the tegument, as well as the redundant nature of protein:protein interactions within the
tegument, recruitment of the ESCRT machinery to sites of secondary envelopment seems likely to be
mediated by multiple viral proteins.

4.4. Trafficking of Assembled Virions to the Plasma Membrane

Currently there is little understanding of how mature herpesvirus virions are released from
cells following secondary envelopment. Undoubtedly these viruses utilise proteins involved in
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the host cell secretory pathway to facilitate egress at the plasma membrane. In particular, Rab3A,
Rab6A, Rab8a, Rab11a, GAP-43, kinesin-1 and SNAP-25 have been shown to traffic with viral
tegument and glycoproteins to egress sites for HSV-1 and PrV [234,235]. Amyloid precursor protein,
an integral membrane protein, co-purifies with intracellular HSV-1 viral particles and has been
shown to enhance trafficking of particles with GFP-labelled pUL35/VP26 during egress, possibly
by recruiting kinesin-1 [236]. The cellular membrane traffic mediators protein kinase D, which
regulates the exit of secretory cargo from the TGN, and myosin Va, which transports vesicles through
the cortical actin network, have also been shown to play a role in the egress of HSV-1 [237,238].
Furthermore, knockdown of Rab6A, Rab10, Rab13 and Annexin1 in a genome-wide siRNA screen
was detrimental to HSV-1 replication to varying degrees [239]. Interestingly, knockdown of Rab6A,
which is involved in Golgi to plasma membrane transport, inhibits capsid envelopment, further
supporting the hypothesis that glycoprotein trafficking to the plasma membrane is a prerequisite
for viral maturation [86,240]. Viral glycoproteins and membrane-associated tegument proteins are
candidates for recruiting host-cell proteins involved in the secretory pathway since they may be
present on the surface of viral transport vesicles. However, as yet there is no understanding of
the level of partitioning of viral proteins between the viral envelope and the surrounding transport
vesicle membrane.

5. Perspectives and Open Questions

As detailed above, recent advances in the field of alphaherpesvirus assembly have illuminated
many conserved interactions between proteins that mediate tegument assembly and secondary
envelopment. However, despite having mapped interactions between tegument proteins, a functional
understanding of how these proteins act together to promote virion assembly remains elusive. The
role that host-cell binding partners of tegument proteins play in the process of virion assembly also
remain enigmatic. Some outstanding questions of particular interest are as follows:

‚ What is the precise molecular composition of the CVSC and how does it promote nuclear egress
of DNA-loaded capsids?

‚ What is the protein composition of the PVAT and when does it associate with capsids?
‚ Are tegument sub-complexes like pUL7-pUL51 and pUL11-pUL16-pUL21 pre-formed in

infected cells or do these proteins associate only when tegument is condensing on capsids?
‚ Do some tegument proteins have non-structural roles in tegument assembly, as hypothesised

for the putative virus-encoded protein chaperone pUL16?
‚ How are the viral glycoproteins transported to and organised within the secondary

envelopment compartments?
‚ What is the source/identity of the cellular membrane used for secondary envelopment and are

viral/cellular proteins actively partitioned into virions or virion transport vesicles?
‚ What are the molecular links between tegument and the cellular ESCRT machinery that

promote secondary envelopment?
‚ How is tegument asymmetry generated and what is the role of PVAT in defining

such asymmetry?
‚ How many tegument proteins act to modulate the host-cell environment immediately

following virus infection, before the initiation of viral protein expression?

A molecular understanding of the interactions that mediate alphaherpesvirus assembly should
prove insightful for the study of all herpesviruses, illuminating conserved, essential molecular
interactions that may be targeted in the design of novel therapeutics and expanding our knowledge
of host cell post-Golgi membrane trafficking pathways.
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