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Guided cell movement is essential for development and

integrity of animals and crucially involved in cellular immune

responses. Leukocytes are professional migratory cells that

can navigate through most types of tissues and sense a wide

range of directional cues. The responses of these cells to

attractants have been mainly explored in tissue culture

settings. How leukocytes make directional decisions in situ,

within the challenging environment of a tissue maze, is less

understood. Here we review recent advances in how

leukocytes sense chemical cues in complex tissue settings and

make links with paradigms of directed migration in

development and Dictyostelium discoideum amoebae.
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Introduction
Many types of cells are guided by attractive or repulsive

environmental cues. Unicellular organisms migrate to find

resources or avoid predators. In multi-cellular organisms,

directed cell migration underlies development, regenera-

tion and immune control. The migratory capacity of leu-

kocytes is particularly admirable as these cells do not have

an organ of residence but routinely patrol the organism for

signs of infection or damage. To do so they crawl along and

traverse blood vessels and navigate through almost all types

of tissues. All this is achieved with remarkable efficiency,

adaptability and precision that would be fortuitous without

powerful mechanisms to interpret external guidance cues.

Here we discuss recent in situ evidence of leukocyte

responses to chemoattractants in relation to paradigms

from chemotaxis of Dictyostelium discoideum amoebae or

developmental migration processes.
www.sciencedirect.com 
In situ evidence for interstitial gradients
Much has been learned about how leukocytes exit the

blood stream to enter target tissues, a process highly

regulated by chemokines as reviewed elsewhere [1–4].

Once in the target tissue, leukocytes are further guided by

chemokines and other attractants. For a while this was

assumed to occur through ‘chemotaxis’, the directed

migration along concentration gradients of diffusing

attractants. However, the concept of gradient-driven in-

terstitial migration was challenged when new methodol-

ogy for deep tissue imaging revealed a surprisingly high

degree of random leukocyte motility in situ [5,6]. While

this argued for substantial ‘‘non-tactic’’ contributions like

anomalous diffusion [5,7], regulation of motility levels

[7,8] and contact guidance via tissue geometry [5] several

new studies have now provided solid evidence for the

existence of functional gradients in vivo. Gradients of

H2O2 were shown to recruit zebrafish neutrophils to sites

of wounding [9,10]. Interstitial chemokine gradients in

lymph nodes were associated with directed migration of

B cells [11] and chemokine gradients whose guidance

function depends on binding to extracellular heparan

sulfate (HS) proteoglycans were shown to attract zebrafish

neutrophils to sites of bacterial infection [12��]. Similar

‘haptotactic’ chemokine gradients were shown to direc-

tionally guide dendritic cells to lymphatic vessels in mouse

skin tissue [13��]. Finally, Ulvmar et al. demonstrated that

functional chemokine gradients in mouse lymph nodes can

be established through ligand sequestration by atypical

chemokine receptors [14��], a mechanism previously dem-

onstrated in developmental migration of primordial germ

cells [15��] and the lateral line primordium in zebrafish

[16��,17]. Thus, in some physiological settings gradients

are instructive for leukocyte migration and mechanisms

such as extracellular matrix binding or sequestration by

scavenger receptors were shown to establish and maintain

these gradients.

Principles of spatiotemporal information
processing
Several models of eukaryotic chemotaxis have been pro-

posed on the basis of in vitro studies with neutrophils and

D. discoideum amoebae. A general premise is that eukary-

otic chemotaxis is different from prokaryotic chemotaxis.

Most bacteria use a fast swimming mode of locomotion

and employ flagella, which in gradients change rotation

pattern such that decreasing concentrations trigger direc-

tional changes while increasing concentrations favor per-

sistence [18]. This temporal sensing strategy allows

interpretation of differences in attractant concentration
Current Opinion in Cell Biology 2015, 36:93–102
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94 Cell adhesion and migration
that are not discernible along the small detection surface

of bacteria. Animal cells are big and comparably slow and

their locomotion is mediated by the cytoskeleton. A key

element in this process is the acquisition of cytoskeletal

polarity with protrusive extensions at the leading edge

and a retracting zone at the rear [19]. The orientation of

this front-back polarity towards a gradient has been

proposed to result from spatial information processing,

whereby differential signal input across the cell generates

internally amplified gradients of messenger cascades,
Figure 1
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which then direct polarity (Figure 1a). Even when their

cytoskeleton is disrupted, cells can form internal gradi-

ents, demonstrating that spatial signaling is at least par-

tially independent of the locomotive response [20,21].

The amplification of a shallow external gradient into an

explicit polarity axis was explained by a local excitation

and global inhibition (LEGI) process [22], whereby a

local signal triggers actin-polymerisation at the cell front

and a global inhibitor, which may be of biochemical [22]

or mechanical [23] nature, prevents this from occurring at
 SOLUTIONS IN GRADIENTS
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the rear. A more evolved version of this model (LEGI-

Biased Excitable Network or LEGI-BEN) incorporates

an internal stochasticity in this process to account for

observed biased-random walk behaviours of cells

[24��,25,26]. Here, actin polymerisation behaves as an

excitable network on which a LEGI mechanism acts to

transiently reduce the excitation threshold [24��,25,26]

(Figure 1b).

Establishment of a polarity axis often arises independent-

ly of external gradients, e.g. in response to uniform

attractant, as a result of mechanical confinement or spon-

taneously (possibly by stochastic amplification of internal

fluctuations) [27]. In such cases any additional attractant

gradient acting ‘‘on top’’ needs to redirect the orientation

of the polarity axis, meaning that polarity and directional

sensing are not necessarily outcomes of the same process.

In pre-polarised cells the sensitivity to attractant is usu-

ally asymmetric, with the leading edge being more re-

sponsive. This was shown in classical micropipette

experiments, where placing attractant at the uropod

was more likely to trigger a U-turn than reversal of

polarity [22,28]. Differential sensitivity was also apparent

in optogenetic experiments in zebrafish, where photoac-

tivation of Rac more readily steered neutrophils when

applied along the leading edge of already polarised cells

[29��]. Polarised sensitivity can be developmentally de-

termined; for example Dictyostelium amoebae are more

resistant to changing direction and prone to perform

U-turns at late developmental stages [30]. Interestingly,

using a cocktail of inhibitors to block actin dynamics but

preserve cytoskeletal structures, it was shown that

polarised sensitivity depends on cytoskeletal architecture

but not on cytoskeletal dynamics [31��]. Thus the cyto-

skeleton appears to primarily provide structural support

for polarised responses to stimuli, rather than contribute

through intracellular transport, force generation or cell

deformation [31��].

As a conceptual framework for guidance of pre-polarised

cells a ‘local coupling’ model was proposed which suggests

that spatial sensing across the leading edge, rather than the

entire cell, can drive biased protrusion extensions leading

to small turns and incremental redirection of polarity

(Figure 1b) [32��]. Here, self-polarisation randomises cell

orientation but local coupling of the internal and externally

triggered signal networks at the leading edge leads to small

turns towards the stimulus. This model dissociated global

cell polarity from local protrusion dynamics and proposed

that information processing happens at the leading edge

(Figure 1b). This is a subtle distinction from models that

propose global coupling/integration between a cytoskeletal

oscillatory network (CON) and a signal transduction excit-

able network (STEN) at the level of the whole cell

[24��,26] (Figure 1b). The CON-STED models take into

account a signal-induced long-range inhibitor (i.e. a LEGI

process) as a means of integrating signal inputs across the
www.sciencedirect.com 
cell, i.e. for every signalling event at the front of the cell

there is a corresponding event at the opposite end of the

cell.

Signal interpretation can be even less deterministic in

weak gradients. According to statistical analyses of protru-

sion dynamics in D. discoideum, spatial resolution of the

gradient before protrusion extension is not an absolute

requirement. Instead, direction may be determined by

autonomous protrusions that are generated by splitting

of existing pseudopods and are selectively stabilised when

encountering increasing ligand concentrations (Figure 1b)

[33–35]. This is consistent with the idea of ‘pseudo-spa-

tial’/’pseudo-temporal’ sensing, discussed in the 1980s

[36], whereby randomly extending protrusions spatially

compete along the leading edge and every single protru-

sion integrates signal intensity over time. The protrusion

experiencing the steepest temporal increase dominates

and then reorients the cell. This so-called ‘pseudopod-

centered’ model, much like the ‘local coupling’ model and

unlike LEGI-based models, places directional decision-

making at the level of protrusions/leading edge while

polarity merely responds secondarily to the instructions

of the dominant protrusion/part of the leading edge

(Figure 1b). A question evoked by this conceptual scheme

is how local feedbacks at the level of protrusions are

ultimately transformed into global effects on cell polarity.

One possibility is that local protrusions and global polarity

represent distinct networks acting at different scales,

whereby outputs from protrusion networks provide an

average, global feedback to the polarity network. Multiple

small protrusions would cause weak feedbacks in opposing

directions and thus be ineffective. On the contrary, when a

protrusion dominates sufficiently over others, the global

feedback would be strong enough to perturb the polarity

network and redirect the cell. The idea of global feedback

from protrusions to polarity is supported by in vivo evi-

dence in zebrafish neutrophils [29��]. Here, PI3 kinase was

found to be essential for both protrusions and polarity. In

wild type cells, local photoactivation of the small GTPase

Rac at parts of the leading edge could fully redirect the cell.

By contrast, in PI3K-inhibited cells photoactivation of Rac

could rescue protrusion defects but not global polarity

defects, suggesting that protrusions and polarity are not

manifestations of one and the same signaling network and

that full redirection of the cell requires feedback from

protrusions to polarity.

In line with the concept of global feedback and despite

the prevailing dogma of spatial sensing, eukaryotic cells

show signs of temporal memory. This was described in

early experiments where Dictyostelium amoebae [37]

and neutrophils [38] responded to temporal rises in uni-

form attractant with directionally persistent motility,

while temporal decreases led to directional changes.

Moreover, early trajectory analyses of Dictyostelium in

spatial gradients showed two behavioural responses: first,
Current Opinion in Cell Biology 2015, 36:93–102
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correcting cell path by steering in the direction of the

source and second, moving faster up-gradient than

down-gradient [36] (Figure 1b and c). The latter response

(often referred to as orthotaxis [6,12��,39]) was proposed

to arise from global temporal feedbacks on cell speed, as

cells move through the gradient. Recently, using micro-

fluidic setups to mimic travelling waves of attractant,

Dictyostelium amoebae were shown to maintain directional

movement when re-stimulated within a limiting period of

6 min and this cellular memory was proposed to underlie

self-organised aggregation behaviours in response to pul-

satile attractant [40].

Taken together, there is general agreement that polarity

and directional sensing are different processes, whereby

polarity and protrusions are manifestations of an internal

motility network that can be redirected by external gra-

dients. There are some differences across chemotaxis

models as to first, whether this happens through a cou-

pling/integration of internal and external networks (see

‘LEGI-BEN/CON-STED’ and ‘local coupling’ model) or

through local/global feedback loops (see ‘pseudopod-

centered’ model), second, whether the directional sens-

ing unit is the entire cell (LEGI-BEN/CON-STED), the

leading edge (‘local coupling’ model) or the individual

protrusions (‘pseudopod-centered’ model). In light of

these discrepancies, the conceptual categorisation of bac-

terial and eukaryotic chemotaxis into ‘temporal’ versus
‘spatial’ strategies appears more ambiguous than original-

ly proposed.

Leukocyte behaviour in interstitial gradients in
situ
In situ evidence for sub-cellular information processing in

leukocyte interstitial navigation is scarce, but some

insights have been deduced from cell trajectory analyses.

Initial studies revealed kinetic effects of attractants in

tissue (Figure 2). For example chemokines increase ran-

dom T cell motility within lymph nodes, thereby promot-

ing the detection of rare antigen presenting cells [8].

Similarly, chemokines were found to enhance T cell

speed, facilitating detection of rare Toxoplasma gondii
parasites during infection [7]. Analysis of leukocytes

migrating in interstitial gradients [12��,13��] revealed

patterns analogous to Dictyostelium. Two types of direc-

tional biases were detected. The first was a bias in average

orientation (Figure 2) as reported for dendritic cells

migrating along gradients of Ccl21 in the skin [13��].
Such effects at the level of a cell population may either

reflect active turning or prolonged directional persistence.

The second was a bias on directional speed, favouring fast

movement up-gradient (Figures 1c and 2). While this

component was again detectable in dendritic cells mi-

grating along Ccl21 gradients [13��] it was even the

predominant effect observed in zebrafish neutrophils

moving along Cxcl8 gradients [12��]. Here, orientation

of movement per se was not affected [12��]. Thus, cells
Current Opinion in Cell Biology 2015, 36:93–102 
can apparently chemotax merely by adjusting directional

speed without necessarily redirecting polarity. This gradi-

ent response could explain earlier reports of chemokine-

dependent ‘jumps’ of T cells towards antigen-presenting

cells [41] and directional acceleration of positively selected

thymocytes towards the chemoattractive thymic medulla

[42]. Teleologically, adjustment of directional speed

through global feedback, seems like a useful strategy in

at least two situations: first, when the gradient is too

noisy/discontinuous to be spatially resolved across the

leading edge or the entire cell (i.e. the external spatial

asymmetry is not strong enough to redirect polarity) and

second, when movement is physically constrained to

one-dimensional tunnels/tracks, such as tissue interstices

or scaffolds [5], and cells have limited geometrical free-

dom to turn (Figure 1c). It will be important to know what

the determinants of directional speed at the sub-cellular

level are and how these are influenced by gradients. Actin

flow is an interesting candidate; it is perhaps the most

universal determinant of cell speed in confined environ-

ments [19,43], it has directionality, may be influenced by

attractants through effects on actin-polymerisation and

can provide a secondary positive feedback on cell polarity

and persistence [44].

Leukocytes can also slow down at target sources of

attractant, providing an additional means of cell position-

ing (Figures 1d and 2). This effect was described for

zebrafish neutrophils upon arriving at sources of Cxcl8 at

sites of infection or wounds [12��,45] and for mouse T

cells coming into contact with antigen presenting [46] or

virus-infected cells [47]. Local deceleration was shown

not to be gradient-dependent per se, as inhibition of

chemokine-HS interaction, which led to loss of stable

gradient formation and directionality, still preserved a

certain degree of deceleration and accumulation at the

source [12��]. Thus, chemokine-triggered ‘breaks’ on

leukocyte movement can be seen as the last resort,

whereby cells that fail to read the gradient and randomly

find the source can still locally accumulate (Figures 1d

and 2).

Strategies to enhance information sampling,
resolution and sensitivity of detection
For an ideal response to gradients cells should first,

maximise their spatiotemporal sampling-range, second,

optimise the resolution of signal and third, precisely

adjust their sensitivity to the ambient levels of attractant.

Generation of random exploratory protrusions, as de-

scribed in D. discoideum, can be seen as a form of infor-

mation sampling (Figure 3a). Such active protrusions are

evident in leukocytes in vivo; they range from long

filopodia in macrophages, to extensive veils in dendritic

cells or the smaller lamellipodia of neutrophils and lym-

phocytes. Another way how cells increase their ‘field of

view’ is the use of temporal memory that was shown to

underlie perception of travelling waves of attractant in
www.sciencedirect.com
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Figure 2
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Leukocyte trajectory modulations by chemoattractants observed in vivo. Rectangles represent migration fields and arrows represent steps of

movements (trajectory units). The state of the vectors is represented in the absence (left panel) versus in the presence of the cue (right panels,

pink source in the centre). Before addition of the cue the distribution vectors is isotropic in terms of orientation and speed. (a) A bias in vector

orientation is found when cells at a given time and distance from the source are more likely to move towards (red vectors) than away from the

source. (b) Kinetic effects are found when average vector size is larger regardless of orientation relative to the source. This effect does not lead to

local accumulation but favours exploration and dispersal. (c) A bias on directional speed is evident when vector size positively correlates with

orientation towards the source, i.e. addition of the cue leads to larger vectors towards the source (red) and smaller vectors in the opposite

direction. (d) Down-regulation of motility at the source is reflected by a decrease of average vector size at the target zone independently of

orientation.
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Figure 3
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D. discoideum. In a spatial gradient, this extends the

exploration window beyond the scanning range of protru-

sions.

Studies of primordial germ cell migration in zebrafish

have revealed examples of how cells may increase signal

resolution  and adapt their sensitivity in situ. Primordial

germ cells are directed by gradients of Cxcl12 to the

developing gonad, by biased formation of blebs at the

front of the cell [48] and polarised distribution of internal

pH [49]. High-resolution imaging revealed extensive

filopodia along the cell front that internalised Cxcl12

[50��]. Perturbation of filopodia formation compromised

orientation in the gradient, indicating their sensory func-

tion. Here, in analogy to the scanning of a digital image,

sensory filopodia increase the field of view, while they

might also enhance the resolution of the image (i.e. the

detection of small differences in attractant concentra-

tion) by increasing local receptor density (Figure 3b).

Filopodia were also found to improve the accuracy of

guidance in zebrafish neural crest cells [51]. It will be

interesting to see whether filopodia observed in leuko-

cytes [52] have a contribution in gradient sensing. With

regards to adaptation, receptor internalisation was found

to play a key role in gradient interpretation by primordial

germ cells (Figure 3f) [53��]. When Cxcl12 receptor

internalisation was blocked through C-terminal trunca-

tion, cells were found to often overshoot the target. This

suggests that receptor internalisation can fine-tune and

actively restrict excess motility in proximity to the

source, by shortening the ‘run’ phases and allowing more

frequent trajectory corrections. This has interesting par-

allels with the deceleration effects of chemokines on

leukocyte migration, discussed above. Along these lines,

the genetic loss of one of the G protein coupled receptor

regulatory RGS proteins, which are responsible for ap-

propriate chemokine receptor signal adaptation, led to

defective localisation of mouse neutrophils at sites of

infection [54]. The dynamics of chemoattractant recep-

tors in leukocytes remain to be assessed in situ, although

in vitro evidence has suggested roles for receptor inter-

nalisation, oligomerisation and redistribution in gradi-

ents [55–57]. Theoretical modelling has also suggested

that uneven receptor positioning along the cell surface,

whether pre-patterned or induced by chemoattractants,

may affect gradient resolution  capacity and compensate

for any undesirable biases due to the assymmetrical

shape of the cell [58].
(Figure 3 Legend) Strategies to improve or self-generate interpretation of c
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increase the units of detection (receptor-bearing membrane), improving the

averaging information across a cell collective. Forces in random directions a

locomotion. (d) Self-driven directional perception. —In the lateral line primor

of ligand by scavenger receptors at the rear of the collective. Melanoma ce

outward gradients and cell dispersal. (e) Signal relay and amplification throu
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Higher order information management during
collective and self-organised cell behaviours
Information management can be strikingly different

when cells are migrating collectively. An interesting

paradigm was described during chemotaxis of clusters

of malignant B cells [59�] and neural crest cells [60]. In

both scenarios chemotaxis along chemokine gradients

was more accurate when cells migrated in clusters com-

pared to individually migrating cells. Theoretical model-

ling suggests this property can emerge by cancelling out

noise across the cell collective [59�]. While all cells within

the migrating collective seem to sense the attractant,

forces generated in random directions are averaged out

because of cell cohesiveness and contact inhibition of

locomotion, thus minimally affecting the meandering

index (Figure 3c) [59�,60]. Moreover, in contrast to single

malignant cells, which are susceptible to receptor endo-

cytosis-driven chemorepulsion/desensitisation in vitro,

clusters maintain sensitivity to chemokine at high con-

centration through cluster rotation and leader cell turn-

over [59�] (Figure 3f).

Another emerging paradigm is the autonomous genera-

tion of gradients by migrating cells (Figure 3d). During

lateral line primordium migration in zebrafish, directed

migration occurs across a stretch of uniform attractant

[16��,17]. Here, the directional perception is generated by

the primordium itself through asymmetric modification of

the attractant field, by chemokine sequestration at the

rear of the collective. It is unclear whether such a mecha-

nism may also occur in leukocyte migration, but worth

considering as atypical chemokine receptors have been

reported to have cell-autonomous effects in these cells

[61]. Interestingly, autonomous gradient generation at the

single cell level was recently described during melanoma

cell dispersal [62��]. Here individual melanoma cells act

as sinks of their own attractant by breaking down lysopho-

sphatidic acid (LPA), an attractant locally present in

malignant tissue, thereby generating outward gradients

of LPA and promoting cell spreading (Figure 3d).

Neutrophil swarming is yet another example of collective

migration that has been observed in inflammatory situa-

tions in mouse and zebrafish tissue [63,64��,65], and bears

striking similarities with the aggregation of D. discoideum
amoebae. In vitro studies with human neutrophils [66��]
and mouse genetic experiments [64��] have determined

this response to be highly dependent on neutrophil
hemoattractants in single cells or collectives. (a) Extension of

olecules are shown in red. (b) In primordial germ cells, filopodia

 resolution of the gradient. (c) Increasing signal to noise ratio by

re cancelled out through cohesiveness and contact inhibition of

dium gradient perception is generated through polarised sequestration

lls catabolise attractant along a uniform field of ligand, leading to

gh autocrine and paracrine effects. (f) Management of sensitivity in

at the source via receptor internalisation, allowing precise arrival.

 available receptors at the surface of the collective.
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production of their own attractant, leukotriene B4

(LTB4). Here paracrine LTB4 signalling is thought to

extend neutrophil recruitment range, while autocrine

LTB4 signalling may further enhance directionality

(Figure 3e) [66��].

Concluding remarks
Guidance of cells is demanding and cannot afford to fail.

The spectrum of strategies to read gradients or navigate

independently of gradients can be seen as evidence of

robustness as well as adaptation to specific physiological

contexts. For example gradient interpretation in some

situations may be geared towards accuracy whereas in

others it may be optimised for better exploration

(Figure 1). We are only beginning to understand intersti-

tial guidance in its real complexity and dimensions.

Recent advances in imaging technologies, breakthroughs

in gene targeting, the implementation of optogenetics to

spatiotemporally manipulate cell signalling [67,68] and

accessible model organisms provide an ideal ground for

further in situ interrogations of cell guidance and new

answers to old questions.
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