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The development of treatments involving combinations of drugs is a
promising approach towards combating complex or multifactorial
disorders. However, the large number of compound combinations that can
be generated, even from small compound collections, means that
exhaustive experimental testing is infeasible. The ability to predict the
behaviour of compound combinations in biological systems, whittling
down the number of combinations to be tested, is therefore crucial. Here,
we review the current state-of-the-art in the field of compound
combination modelling, with the aim to support the development of
approaches that, as we hope, will finally lead to an integration of chemical
with systems-level biological information for predicting the effect of
chemical mixtures.

Introduction and background

In the 1989 movie directed by Tim Burton, Batman describes the Joker’s strategy to bring doom to
Gotham's people: “Each product only contains one component. The poison only works when
they’re mixed. Hair spray won’t do it alone. But... hair spray and perfume and lipstick will be
toxic”. The possibility that compounds modulate each other’s effect(s) is a well known and
frequent phenomenon, be it a desired positive effect in the case of drug combinations or an
undesirable toxic effect, as in the case of Joker’s devious plot. Compound combinations have been
a popular approach in interfering with erroneous and undesirable activity in biological systems,
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be it drug combination therapy for treating complex network-
driven diseases such as cancer [1,2] or antifungals and antibiotic
combinations targeting infectious diseases [3,4].

This popularity can be attributed to multiple factors, which
include overcoming drug resistance [5,6] and multitargeted thera-
pies for perturbing multiple nodes of pathway(s) of interest for
better efficacy [7]. Synergistic drug combinations aside, there is
also a crucial need to study compound combinations towards
understanding the toxic effects of chemical mixtures, either in a
drug-drug combination, for example carbamazepine toxicity in
combination with several drugs and inhibitors [8,9], or a drug-
natural-product combination, for example the well-studied im-
pact of grapefruit juice on the bioavailability of certain drugs
[10,11]. Combination therapy has also been extensively studied
in traditional Indian [12] and Chinese medicine [13], as has the
impact of these traditional medicines when administered in com-
bination with Western medicine [14,15].

Compound combination behaviour can be broadly classified as
synergistic, antagonistic or additive. Synergy, in this context, is
the result of combining two or more chemical compounds to
produce an effect that is greater than additive effects (where
additive effects are computed from the individual effects based
on specific mathematical models) [16]. The use of compound
combinations can be either beneficial to the biological system
these are intended towards, as in the case of combination therapy
[1], or produce an intended harmful effect, as found for antifungals
[17], or an unintended harmful effect, such as for synergistic
toxicity [18]. By contrast, antagonism is the phenomenon when
a compound combination produces an overall effect that is less
than the additive effects of the individual compounds.

Despite the significance of compound combinations in thera-
peutic and toxicity studies, the ability mechanistically to explain
and model compound combinations in a systematic fashion is
currently limited. Published reviews discuss the urgent need for
multitarget therapeutics and systematic approaches to identify
communication hubs between pathways that can be targeted by
drugs [6,19]. However, the approach taken to map and understand
the systems level view of the organism or disease comprehensively
is expensive, time consuming and not necessarily feasible. Al-
though there have been several reports that elucidate the mecha-
nism of action (MOA) of a compound combination [20-22], most
reports focus on observational studies of a limited number of
combination effects in specific organisms and diseases. Table 1
provides a list of studies that have followed gene-expression-,
pathway-annotations/network- and modelling-based approaches
towards assessing compound combinations across different dis-
ease areas, as well as generalised studies. A similar table listing
complementary studies can be accessed in a recent publication by
Ryall and Tan [23]. The dynamics of networks of pathways can be
investigated through the use of mathematical network models,
and the outcome of potential target inhibition within the model
can be compared to assay readouts to allow MOA hypothesis
generation of a combination [24,25]. These models could make
use of large-scale datasets of compound combination responses.
Even though limited in terms of availability, opportunities to
train and test predictive models can be provided. Table 2 provides
a list of publicly available combination data resources or datasets.
This information, along with available large-scale chemical and

biological resources in the public domain (Table 3), could be used
to construct an integrated pipeline to assess compound combina-
tion behaviour. Combining the chemical and biological finger-
prints mentioned above, along with gene expression profiles in
disease cell lines, wherever available, could add further weight to
such analysis. However, there are still certain aspects of data
missing that are crucial to assessing combinations. For example,
many datasets only consider single doses, and thus could prevent
appropriate quantification of synergistic (or antagonistic) behav-
iour using classical methods. In addition, if the dosage is not
therapeutically relevant, it might not be suitable for translational
development.

Following such an integrated approach, as described in this
section, Fig. 1 suggests a modelling pipeline towards predicting
the synergistic and/or antagonistic behaviour of compound com-
binations. The aim of this pipeline is to integrate and explain the
observations from combination assays. For a suggested compound
combination, the model will be able to search bioactivity space
and integrate available chemical and biological information that
includes network and pathway annotations, gene expression pro-
files and chemical fingerprint similarities. This could help identify
patterns that contribute towards synergy predictions for the com-
pound pair, as well as develop a MOA hypothesis for the combi-
nation. These predictions could then be further validated by in
vitro and/or in vivo experiments. This review explores the chal-
lenges, limitations and, more importantly, the value and perspec-
tives of predictive modelling of compound combination effects in
therapeutic development and toxicological studies.

Applications and impact of drug combinations

The applications of studying and analysing the synergistic, addi-
tive or antagonistic behaviour of compound combinations can be
manifold. These range from therapeutic applications, such as drug
combinations, to counter selectivity and resistance, to assessing
safety of household chemical combinations through toxicity stud-
ies. Drug-target selectivity has long been a high priority, yet not
always achievable, part of the drug discovery pipeline [26]. How-
ever, many kinase inhibitors and central nervous system (CNS)-
active drugs exhibit promiscuity that is often crucial to achieve
better efficacy [27,28]. In a study by Lehar et al., the authors
performed large-scale simulations of bacterial metabolism and
~94,000 multidose experiments across multiple diseases to show
that synergistic drug combinations display higher specificity to
certain cellular contexts than single agent activities [29]. Further-
more, results validated in a rat model showed that the anti-
inflammatory drug prednisolone and the antidepressant nortrip-
tyline display therapeutic synergy, but not toxicity. Selectivity in
this case was achieved through the differential expression of the
proteins targeted by these drugs in stimulated peripheral blood
mononuclear cells (PBMCs). This evidence could have broad
implications in identifying and studying therapeutically relevant
selectivity for drug combinations.

Combination therapeutics have also been utilised as an ap-
proach to overcome drug resistance of pathogens [21]. This strate-
gy has been popular in antimalarial and antituberculosis drug
discovery and usually involves the first drug acting on mutants
resistant to the second drug when administered together [30,31].
Drug combinations are a standard-of-care in many cancers, by
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TABLE 1

Published studies assessing or predicting compound combinations: separated into gene-expression-based, pathways/networks-based
and mathematical approaches

Study

Context

Technique

Limitations

Gene expression and cell-line-sensitivity-based approaches for compound combination modelling

Prediction of drug combination
chemosensitivity in human
bladder cancer [70]

Predicting cooperative drug effects
through the quantitative cellular
profiling of response to individual
drugs [67]

An integrated approach to
anticancer drug sensitivity
prediction [112]

An enhanced Petri-net model to
predict synergistic effects of
pairwise drug combinations from
gene microarray data [69]

Utilisation of translational
bioinformatics to identify novel
biomarkers of bortezomib
resistance in multiple myeloma
[113]

Prediction of growth response of
human bladder cancer cell lines to
chemotherapeutic agents using
expression profiles

Predicting combinations based on
differential expression profiles from a
B-cell lymphoma cell line in response
to single drugs

Sensitivity prediction of targeted
drugs using cell line sensitivity and
target inhibition profiles illustrated on
erlotinib and AZD0530

Mechanism of synergy of compound
combinations from individual
compound treatment transcriptional
responses

In silico prediction of novel drug
combinations to bortezomib-resistant
multiple myeloma

A predictive model utilising
misclassification-penalised posterior
(MiPP), for single and combination
drug sensitivity

Integrated expression profiles and
human protein interaction network
approach. Ranked combination
predictions using probabilistic c-index
Integrated sensitivity prediction (ISP),
Integrated regression modelling (IRM)
and constrained tumour proliferation
model (CTPM)

EPN model built on expression
profiles across different doses of
single compounds, subsequently
suggesting mechanism of synergy for
pairs

Correlation of drug signatures to
experimentally derived gene
expression profiles for bortezomib

Comprehensive expression profiles
required for extrapolation, model
less successful in predicting synergy
of cytotoxic effects of combinations
Single agent expression profiles
required, along with confidence in
network annotations

Comprehensive pipeline that
requires functional and genomic
data of drugs of interest, which is
often not available

Model validated on only one case of
combinations predicted, requires
knowledge of downstream targets
and signalling pathways to be
efficient

Requires drug-induced differential
expression signatures. No explicit
combination modelling was done
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Pathways/network-based approaches for compound combination modelling

DrugComboRanker: drug
combination discovery based on
target network analysis [114]

Systems-pharmacology dissection
of a drug synergy in imatinib-
resistant chronic myeloid
leukaemia (CML) [115]

Chemical combination effects
predict connectivity in biological
systems [24]

Pathway-based screening strategy
for multitarget inhibitors of
diverse proteins in metabolic
pathways [116]

Target inhibition networks:
predicting selective combinations
of druggable targets to block
cancer survival pathways [34]

Computational analyses of
synergism in small molecular
network motifs [25]

Prioritised synergistic drug
combinations using disease and drug
genomic profiles, evaluated on lung
adenocarcinoma and oestrogen
receptor (ER)-positive breast cancer
Elucidate mechanism-of-action of
kinase inhibitor combinations in Bcr-
Abl T315| gatekeeper mutation

Cellular responses to combinations
reveal target connectivity

Pathway-based screening to identify
multitarget inhibitors to modulate
shikimate pathway in Helicobacter
pylori

Functional systems pharmacology
approach to predict combinations in
breast and pancreatic cancer cell lines

Feedback loops governing the
synthesis of CREB1 and CREB2
transcription factors

Drug functional network
communities using a Bayesian
approach

Integrated phosphoproteomics,
transcriptomics and chemical
proteomics techniques

Models for combination effect
morphology (highest single agent,
Loewe additivity, Bliss boosting and
potentiation)

Virtual screening and docking to
identify binding site moieties, enzyme
inhibition assays as validation

Target inhibition model (TIMMA) to
predict drug efficacy, validation using
single and combination siRNA screens

Ordinary Differential Equation (ODE)
models based upon Michaelis—
Menten kinetics

Dependent on accuracy of
functional network annotations, tool
available on request

Complete dose matrices required,
expensive to generate. Models cover
only a subset of observed responses

Restricted to proteins in the same
pathway, and requires protein
structures for determination of
which exhibit conserved binding
sites

Requires drug sensitivity readouts
for specific cell lines of interest

Requires knowledge of underlying
network connectivity and
implication in signalling pathways

Mathematical approaches primarily utilising chemical information for compound combination modelling

Systems toxicology: from basic
research to risk assessment [117]

Chemical mixture toxicology: from
descriptive to mechanistic, and
going on to in silico toxicology
[118]

A model-based approach for
assessing in vivo combination
therapy interactions [119]

The integration of classical toxicology
with multiple levels of biological
network information

Improving on conventional
toxicological approaches to
modelling the toxic response to
mixtures

Approach for evaluating the efficacy
of combination antitumor agent

Perspective of the systems toxicology
field

Reaction network modelling,
analysing metabolism networks with
computational models

Tumour growth/drug effect model
fitted to single agent data, then used
to quantify the deviation from
additive of the combination

Classifying subadditivity could be
difficult
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TABLE 1 (Continued)

Study

Context

Technique

Limitations

Two-stage model-free tests of
synergy in drug combinations
[120]

Biogeographical analysis of
chemical co-occurrence data
to identify priorities for
mixtures research [121]

Characterisation of mixtures
part 1: prediction of infinite

activity coefficients using neural
network-based QSPR
models [122]

Existing and developing approaches
for QSAR analysis of mixtures [99]

QSPR approach to predict
non-additive properties of
mixtures [123]

A technique to detect synergy in two-
drug combination

Chemical risk assessment must
consider joint behaviour of
compounds, but usually only binary
combinations are considered
Prediction of infinite dilution activity
coefficients using DECHEMA
Chemistry Data Series

Review of mixture descriptors and
their usage in various QSAR tasks
Prediction of vapour-liquid
equilibrium data using a dataset of
167 mixtures of combinations of 67
liquid compounds

No underlying assumption about the
models for dose-response curves are
made

The paper showed that pesticides
usually have strong co-occurrence
geographically, which should guide
risk assessment

Usage of neural network models to
overcome limitations of linear models

Review of multiple QSAR modelling
techniques and descriptors

Usage of a consensus of nonlinear
predictors (Support Vector Machine,
Associative Neural Network, Random
Forest)

Requires an estimate of the potency
ratio. Low performance for poor
estimates

The approach might not be
appropriate for low-order
combinations

Physical properties modelled,
unclear how well the method would
extrapolate to biological systems

No novel techniques suggested
Physical properties modelled,

unclear how well the method would
extrapolate to biological systems

TABLE 2

A list of combination data sources available in the public domain

Data source Combination data Publication
Drug Combination Database 1363 drug combinations [124]
NCATS DLBCL Dataset 459 compounds in combination with ibrutinib in DLBCL [20]
Antifungal Synergistic 210 combinations, 1225 drug-target interactions [125]
Drug Combination Database

Therapeutic Targets Database 97 drug combinations [126]
TWOSIDES 59,220 combinations, 1301 adverse events [127]
NCATS Malaria Dataset 206 compounds, 14,810 combinations in Plasmodium falciparum [50]
Antifungal drug combinations 34 drugs, 200 combinations in Saccharomyces cerevisiae [44]
Antibiotic combinations 21 drugs, 210 combinations in Escherichia coli [128]
DREAM Drug Sensitivity Challenge 14 drugs, 91 combinations on the DLBCL cell line LY-3 [68]

European Chemicals Agency

Repository of chemicals manufactured and imported in Europe.
Consists of a significant number of mixtures

http://echa.europa.eu/
http://www.echemportal.org/

TABLE 3

Large-scale chemical and biological data resources that could be utilised for compound combination modelling

Bioactivity resources

ChEMBL: a large-scale bioactivity database for drug discovery [102]
DrugBank: a knowledgebase for drugs, drug action and drug targets [129]
WOMBAT: World of Molecular Bioactivity [130]
Network and pathway resources

SignaLink: a signalling pathway resource with multilayered regulatory networks [80]
STRING: a database of known and predicted protein—protein interactions [103]
STITCH: known and predicted protein-chemical interactions resource [131]
Gene expression resources

Gene Expression Omnibus: archive for functional genomics datasets [132]
Connectivity Map: a collection of genome-wide transcriptional expression data [73]

LINCS: perturbational profiles across multiple cell and perturbation types

http://www.lincsproject.org/
http://www.lincscloud.org/

Toxicity/off-target effects resources
SIDER2: side-effect resource

OFFSIDES: resource of data-driven predicted drug effects and interactions

ToxCast™: a toxicity forecaster resource

[133]
[127]
[134]
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An integrated approach for analysing compound combinations using chemical and biological fingerprints. For compound combinations, the model will be able to
search the bioactivity space along with integrating network and pathway annotations, gene expression profiles and chemical fingerprint similarities. This will lead to
synergy predictions and developing a mechanism of action hypothesis for the combination that could be further validated by in vitro and/or in vivo experiments.

combining drugs that act on pathways essential for the survival of
the cancer cell but not the normal cell [32-34]. Recent publications
on tumour heterogeneity and clonal evolution in cancer further
support such practice [35,36]. Genetic diversification as the tu-
mour evolves pointed to distinct and multiple mutations across
the same tumour specimen. Identifying and administering drugs
that could bypass the resistance mechanism of all such identified
mutations could not be realistic, because patient tolerability to the
large number of drug combinations would have to be very high.
However, such studies provide an opportunity to identify onco-
genic pathways that contribute most towards the tumour progres-
sion. This could help prescribe a carefully selected drug cocktail at
tolerable doses, which would be a significant step towards tackling
tumour heterogeneity.

Compound combinations are also a popular approach for anti-
bacterial and antifungal therapy [4,37,38]. Hill et al. evolved
experimental populations of Candida albicans and Saccharomyces
cerevisiae with a combination of heat shock protein Hsp90 inhi-
bitors and widely used antifungals: the azoles [38]. This helped the
authors identify mutations that evolved as a consequence of the
combinations, understand resistance mechanisms as well as sug-
gest strategies that could bypass the resistance. Apart from bypass-
ing drug resistance, the aim is also to achieve greater efficacy

utilising lower-dose combinations compared with higher-dose
monotherapies. Numerous studies that show the greater efficacy
displayed by compound combinations compared with monother-
apy have been published [3,6,39]. This could potentially result in
lower risk of side-effects and, hence, better quality of life [40-42].

Tolerability is of prime concern to the medical and scientific
communities. A recent review discusses the advantages of fixed-
dose combination therapies relative to monotherapy in the con-
text of type-2 diabetes treatment [43]. These include greater effi-
cacy, reduced risk of adverse reactions and lower overall costs.
There are several contributors to determine whether drug combi-
nations do indeed reduce the risk of adverse reactions; one of
which is if a pathway targeted by a drug also contains off-targets
that would cause an adverse reaction.

The rational discovery of novel drug combinations can be
expedited by predictions of combination effects based on data
generated from these experimental studies. Such predictive mod-
els could utilise combination data across disease areas, which
could be another key step towards efficacious multitargeted ther-
apies. This will not only provide an opportunity to exploit the
unexplored and available bioactivity space but could also help
identify novel and unexpected synergistic drug combinations
[19,39].
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Identifying synergistic compound combinations

Recent developments in high-throughput approaches to combi-
nation screening have enabled scientists to explore large collec-
tions of compound combinations experimentally. However, even
with sophisticated automation systems, the number of combina-
tions screened is a small fraction of the possible number of
combinations. Strategies for experimentally determining the pos-
sible effect of drug combinations can range from screening several
compounds at a time from a large database to exhaustive pairwise
screening [44-46] such that an effective combination can be
found. There have been several reports of large-scale combination
screening campaigns. Borisy et al. [47] provided the earliest report
of a systematic, large-scale screen of ~120,000 compound combi-
nations using a proprietary platform. More recently, Mathews
Griner et al. [20] have described the National Centre for Advancing
Translational Sciences (NCATS) high-throughput platform for
combination screening which screened thousands to tens of thou-
sands of combinations in a checkerboard format (i.e. all combina-
tions of two drugs at n doses each). Subsets of the data generated by
this platform are publicly available (https://tripod.nih.gov/
matrix-client/). Although such high-throughput platforms are
crucial for running large numbers of combination experiments
in a reasonable timeframe, they are expensive, especially if one
considers replicate data and high-resolution checkerboard pat-
terns (i.e. ten or more doses per drug resulting in 100 or more
individual dose combinations). As a result, there are two roles for
computational approaches in this area. Firstly, when faced with a
large collection of combination responses, we wish to have
computational methods that can characterise the combinations
quantitatively, thus enabling ranking and filtering. Secondly, we
desire to identify useful drug combinations prospectively, ini-
tially focusing on pairs of drugs but also higher-order combina-
tions.

Approaches to the characterisation of combination
responses

When characterising combination responses we propose and em-
ploy a two-step process. First, given the large number of combina-
tions tested in a high-throughput setting, we must employ quality
control (QC) metrics to ensure that only robust combination
responses are considered for downstream analysis. Dispense errors,
batch effects and edge effects can introduce noise and artefacts on
screening plates, which result in noisy or incomplete responses
[48]. In a high-throughput setting each plate includes positive and
negative controls, and these can be used to derive plate-level QC
metrics. Examples of such metrics include the Z, signal:back-
ground ratio and coefficient of variation [49]. Such metrics can
indicate that all combinations on a plate are to be rejected.
However, there are cases where the plate controls perform well
but a few combinations on the plate are affected by a screening
artefact (such as a localised well dispense error or problems at high
concentrations). As a result, it is useful to employ combination-
level QC metrics. Currently, there are no published guidelines for
such metrics. The NCATS platform has implemented a heuristic
QC score [50] that is useful for identifying poor-quality combina-
tion responses. This score takes into account the quality of the
single agent dose responses, the absence of randomness in the dose
combination sub matrix (as measured by spatial autocorrelation)
and thresholds for no activity and variance of combination re-
sponse (Fig. 2). Whereas the method employs several empirically
selected thresholds, its use allows one to filter out severely com-
promised combination responses rapidly.

Having performed screening QC on the set of combination
responses, the next step is to characterise the combination effect
as potentially synergistic or antagonistic. There is rich literature on
the topic of such quantification starting with Loewe, Bliss and
Berenbaum [51-53]. Underlying all these models is the assumption
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Examples of noisy (left) and well-defined (right) response surfaces that are characterised by the QCScore heuristic [50]. This score is useful for identifying and
filtering poor-quality combination responses. The colour of each cell represents the assay response at that dose combination where black is no cell death through
to red being full cell death.
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FIGURE 3

Synergy can be visualised using an isobologram, which displays the dose (in
ICs0 units) of drugs A and B required to achieve a specified effect level. The
red dashed line indicates additivity, the line below the diagonal is indicative
of a synergistic combination and that above the diagonal is an antagonistic
combination.

that the combination effect of two drugs is purely additive — with
the actual definition of additivity being model-dependent. Syner-
gy (or antagonism) is then characterised as a deviation from
additivity.

The Loewe additivity model is mathematically characterised by
the isobole equation. It can be interpreted as modelling synergy as
a departure from dilution effects [53]. Assume for instance that
specific doses of drugs A and B produce a given effect (e.g. 50%
inhibition). According to the isobole equation, if drugs A and B are
additive then there exist several combinations of drugs A and B at
reduced doses that should produce the same effect. For instance,
half the dose of A combined with half the dose of B or one-third of
the dose of A combined with two-thirds of the dose of B should
produce the same effect as A or B alone. Synergy with respect to
this model can be visualised using an isobologram (Fig. 3), which
displays the dose (in ICso units) of drug A and B required to achieve
a specified effect level. The red dashed line indicates additivity, the
line below the diagonal is indicative of a synergistic combination
and the line above the diagonal is that of an antagonistic combi-
nation. Berenbaum [51] and Chou [54] have defined the combi-
nation index (CI) as a way to quantify synergy based on the Loewe
model. The CI corresponds to the sum of the ratio of the amount of
drug A used in combination to the amount of drug A required as a
single agent for a specific effect (usually 50%) plus the correspond-
ing ratio for drug B for the same effect. A CI <1 indicates synergy
and CI >1 indicates antagonism. This model has been used by
Chou (the Chou-Talalay method) [54] to define several metrics and
graphical representations such as the median effect curves. It is
important to note that the Loewe model is not really applicable
when the two compounds do not produce a dose-response with
the same maximum effect or even when the shapes of the dose—
response curves differ [55].

The Bliss model defines synergy as a departure from indepen-
dent compound effects [52]. Importantly, the model states that the
drugs act in an independent fashion and that there are no effects

because of drug-drug interactions (DDIs). Thus, according to Bliss
independence the fractional response of the combination is the
sum of the fractional responses of the individual drugs minus their
product (Equation 1). Although simple in nature, the model is
not considered to be robust in many situations, because it
often characterises combinations of a compound with itself as
synergistic.

PEApg = Ep + Ep — EAEg (1)

where PE,  is the predicted combined effect of compounds A and
B, E4 is the known effect of compound A and Eg is the known effect
of compound B.

Finally, the Gaddum non-interaction reference (or highest sin-
gle agent) model simply defines additivity as the larger of the two
single-agent responses. Although a very simplistic model it is
applicable when the targets of the two compounds have no
functional relation, so that compounds elicit their effects entirely
independently of one another. See [56] for a detailed discussion of
these and other models.

In general, given a combination screen, one selects a model and
for each tested dose-combination the model is used to predict a
combination response. If the observed response is less than or
greater than the predicted response one makes a call of synergistic
or antagonistic, respectively. For checkerboard style screens, the
differences from the model can be visualised in a heatmap, or
otherwise summarised by a scalar value [44]. However, with mul-
tiple models available, it is not always clear a priori which model
should be used to quantify a particular experiment. In some cases,
authors simply report the results from multiple models; whereas
Lehér et al. [24] employ multiple models and use a x* test to select
the best-fitting model. The definition of a generalisable, robust
model of additivity is therefore still an open problem; however the
latter approach appears to tackle the problem in the most reason-
able manner.

Evaluating and analysing combination data

Methods to predict combination effects can easily identify hun-
dreds of drug combinations that are predicted to be efficacious or
synergistic. Table 4 provides a list of well-known, publicly avail-
able software (free as well as commercial) for analysing combina-
tion data. After appropriate in silico validation techniques one
would, ideally, perform experimental validation of the compound
combination model that has been generated. There are a multitude
of techniques to evaluate combination effects. Some of these
approaches can be performed in high throughput, such as check-
erboard approaches described by Mathews Griner et al. [20] and
Borisy et al. [47], whereas other methods such as fixed-dose ratio
[54] methods are generally more time consuming (but can be
accelerated using robotic automation systems or miniaturisation
technologies) [57,58].

Several in silico studies have performed validation of retrospec-
tive or prospective predictions. A matrix imputation approach was
employed to predict synergistic target pairs that were then per-
turbed using small molecules [59]. A key feature of this approach is
that it estimated the propensity of two targets to exhibit synergism
and, in combination with the imputation framework, selected a
subset of the entire collection of targets that, when screened, will
identify a significant fraction of synergistic pairs. Importantly, the
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TABLE 4

A list of commercial and freely available software to analyse combination datasets

Combination software URL Licensing
Chalice http://cwr.horizondiscovery.com/ Commercial
Genedata Screener® https://www.genedata.com/products/screener/combinations/ Commercial
SynergyFinder™ http://www.ntrc.nl/services/synergyfindertm/ Commercial
CalcuSyn http://www.biosoft.com/w/calcusyn.htm Commercial
CompuSyn http://www.combosyn.com/ Free
Combenefit http://www.cruk.cam.ac.uk/research-groups/jodrell-group/combenefit Free

formulation of this approach is sufficiently general so that one can
replace targets with compounds. The results of the algorithm were
validated using published data as well as on a set of five in vitro
glioblastoma cell lines.

By contrast to purely computational approaches, the combina-
tion of an evolutionary algorithm (EA) and iterative testing was
used to identify combinations of anti-inflammatory molecules
[60]. In this work, the top-ranked computational predictions
(made by the EA) were experimentally tested and those results
were then fed back into the EA. As a result, the authors were able to
find combinations with significantly improved anti-inflammatory
activities after testing just 550 combinations (out of a possible
nine-billion combinations).

Metabolic network analysis of gene targets in Leishmania major
has been employed to identify combinations of FDA-approved
drugs [61]. This approach also identified synthetic lethal targets
and validated four combinations against these target pairs in an in
vitro model of L. major. Another network-based approach [34] used
drug inhibition and target binding data to identify relevant targets
for combination therapy. The computational results were validat-
ed using siRNA knockdown of single targets and target pairs. An
approach that quantified crosstalk in target networks of drug pairs
[62] was then used experimentally to verify the synergistic effects
of curcumin when combined with multiple drugs, including cap-
saicin and celecoxib, in a rat model of myocardial ischaemia.

Miller et al. [63] employed a drug combination screen along
with phosphoproteomics measurements to develop a computa-
tional model of the signalling network that explained the observed
synergy (epistasis) between insulin-like growth factor 1 receptor
(IGF1R) and cyclin-dependent kinase (CDK)4. The model was then
used to predict that combined inhibition of these targets would
reduce activity in the Akt pathway, which was subsequently
experimentally confirmed. This is also an example where network
models could help explain unexpected synergistic observations, as
well as identify new perturbation points in a network that could be
targeted by a combination of inhibitors.

Finally, high-content approaches have also been used to iden-
tify candidate drug combinations. An example is the construction
of multivariate profiles of compound activity in triple-negative
breast cancer (TNBC) cell lines using high-content imaging [64].
These profiles were then used to compute profile similarity scores
between small molecules, which were subsequently used to predict
five candidate combinations in multiple TNBC cell lines. Of these,
vinblastine and ispinesib showed synergism in three TNBC cell
lines but not in normal fibroblasts. A mouse model confirmed
their antitumour activity, with the finding that the combination
reduced tumour growth significantly when compared with
monotherapy.

Utilising gene expression and pathway annotations in
predictive models

Microarrays are an accessible, cost effective and fast way of
measuring cellular responses and gene expression profiles [65],
which facilitates research with the aim to understand regulatory
networks on the basic level, as well as when applied in a drug
discovery context [66]. In recent years, this approach has been
utilised to predict synergistic effects of drug combinations on
cancer cell lines, given gene expression profiles of individual drug
treatments. In the following case studies we point out a functional
enrichment analysis method and an enhanced Petri-net (EPN)
model for assessing synergistic effects of compound combina-
tions. The former study utilises cellular profiling of 14 individual
drug responses for predicting synergy or antagonism of drug
combinations [67]. In this study, differentially expressed genes
after treatment of each of the 14 drugs on human B-cell lympho-
ma (DLBCL) cell line (LY3) from the NCI-DREAM Drug Sensitivity
Prediction Challenge [68] represented the drug signature. It was
hypothesised that correlated drug signatures should predict syn-
ergistic effects, whereas anticorrelation of those signatures indi-
cates antagonism. The rank-ordered list of predicted synergistic
drug combinations was compared to a gold standard experimen-
tal (in vitro) ranking of compound combinations provided in the
challenge, and a measure of concordance (concordance index)
was used to score the validity of prediction. In an effort to improve
the method, functional enrichment analysis was applied on the
overlapping gene signature of each paired drug mapped to protein
interaction network to checkinteraction of the proteins produced
by those genes. The network approach improved the performance
of the modelsignificantly. In the second case study, an EPN model
was designed to explain mechanism of synergy of compound
combinations from individual compound treatment transcrip-
tional responses [69]. The EPN was applied on gefitinib and
docetaxel and was capable of explaining mechanism of observed
synergistic effects to a good extent. For this purpose, the effect of
each drug on gene expression was depicted in the EPN with tokens
and transitions in different colours, which illustrated the mecha-
nism of synergy. Also, gene expression data of treatment of
different doses of each of the two compounds (in a total of 16
different concentrations) was provided to the model. The model
successfully predicted the effective dose, and predicted genes
involved in the mechanism of synergy using each concentration.
However, as a major limitation the model has been validated on
only one particular drug combination studied here. Also, the
authors acknowledge that, for the EPN model to work efficiently,
knowledge of the targets and downstream signalling pathway
annotations are necessary. Irrespective of the fact that this study
utilises large-scale resources populated with network biology
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annotations, these annotations are not always available in certain
cases.

Gene expression data have also been beneficial in designing
models for predicting chemosensitivity of three widely used drugs
as a single agent or in combination [70]. Cisplatin, paclitaxel and
gemcitabine were tested on 40 human urothelial cancer cell lines
in vitro and cell lines were labelled resistant, sensitive or interme-
diate for each of the drugs. Differentially expressed genes were
derived after application of each drug on each cell line. Among
them, genes that were able to differentiate between resistant and
sensitive cell lines were identified for each of the three drugs. The
accuracy of sensitivity prediction was estimated between 93% and
96% for each of the drugs across cell lines. The probability of
sensitivity of drug combination was estimated by multiplying
probabilities calculated for each individual drug, and the accuracy
of synergistic drug combination predictions was hence assumed to
be around 80%. Even though the probability of sensitivity of drug
combinations was predicted robustly, the model is less successful
in predicting the synergy of cytotoxic effects of combinations.
Moreover, extrapolation of the method to other cell lines or drug
combinations requires generation of extensive in vitro drug re-
sponse data for each combination. In a similar study, kinases that
drive tyrosine kinase inhibitor (TKI) resistance in non-small-cell
lung cancer (NSCLC) cell lines were identified by integrating data
from genetic screens and RNAseq analysis [71]. This analysis led to
the identification of the chronic myelogenous leukaemia (CML)
drug bosutinib as an efficient inhibitor that could induce apoptosis
in TKI-resistant cell lines. Further analysis led to the identification
and validation of the synergistic effects of the combination of
bosutinib and gefitinib in gefitinib-resistant NSCLC cell lines and
suggests a good opportunity for drug repurposing. These studies
suggest that gene expression data of individual compound treat-
ments have potential for predicting synergism and sensitivity of
compound combinations. An algorithm called TIMMA provides
an integrated workflow that employs chemical bioactivity and cell
line sensitivity data, towards predicting synergy for drug combi-
nations and the proteins that these drugs could target [34,72].
However, predicting synergism and sensitivity of drug combina-
tions on a large scale still remains a challenge. Large-scale data-
bases of gene expression data on individual compound treatments
are publicly available such as the Connectivity Map [73] (1309
compounds) and LINCS (20,413 compounds) (http://www.
lincscloud.org/). This could also be an interesting opportunity
to benefit from individual compound treatment databases for
predicting synergism and sensitivity of compound combinations
on a much larger scale.

Genetic and RNA interactions to guide the design of
compound combinations

The effect of a single compound on a biological system can be
thought of as an amalgamation of its effects on different (protein)
targets. The effect of a combination is therefore a complex func-
tion of the protein interactions of each individual compound. In a
localised example, it was shown that the protein dynamics of a
system can be described simply by the linear superposition of the
perturbations of the individual compounds [74]; this result is
intriguing yet the phenomenon of synergy and antagonism sug-
gests that any combination effects are unlikely to be linear in

general. However, chemical perturbation is by no means the sole
process by which a biological system can be modulated. Genetic
perturbations in the form of gene knockout often have similar
effects to the application of targeted drugs (although the behav-
iour of drugs is much more complex owing to dose and binding-
site elements) and have been used as a useful biological probe in
classical genetics. Yet, because gene interaction networks can be
used to predict the effect of a combination of knockouts on the
resulting phenotype, for example epistasis, they could also provide
insight into synergy, and have been used as a context for exploring
drug combinations [75]. Chemical-gene interactions (from single
compound screening against a library of mutants) have been
carried out in S. cerevisiae, and lead to several MOA discoveries
[76]. These could potentially be exploited through the replace-
ment of the genetic deletion with a targeted compound [37].

The development of RNAI yields another biological perturba-
tion technique, because knockdown of a gene also often has a
similar effect to a drug targeting the product of the same gene
(although variation in time and dosage elements can confound
this picture). Double or even higher-order knockdown experi-
ments, known as combinatorial RNAi (coRNAi) [77], are an RNAi
equivalent to compound combinations. These have been investi-
gated to the third order by Sahin et al. [78] with no unintended
silencing or cytotoxicity supporting the viability of the technique.
coRNAI treatments might be deployed directly (they are currently
being investigated as a treatment for hepatitis C) [79], but can
prove even more powerful by providing an added insight into the
effect of compound combinations, by matching their underlying
biological perturbations; it is possible a combination of the two
approaches could prove even more potent [75].

To summarise, whereas there are important differences, mRNA
knockdown and gene knockout are related biological perturbation
methods to chemical-protein interaction. According to this no-
tion of potential equivalence, it might be possible to consider a
broader ‘biological combination’, allowing data from these differ-
ent biological facets to be integrated into a single, more descriptive
model. Data integration of this nature has proved fruitful in other
data-driven fields such as network biology, for example the inte-
gration of gene regulatory and protein-protein interaction net-
works [80], and thus might also be conducive to progress in
modelling the effect of compound combinations.

Combinations as an investigative tool

Although the main interest in compound combinations is as a
prospective avenue for therapeutics, there is also strong potential
in research as an investigative probe of biological network struc-
ture. The concept is similar to synthetic genetic array analysis [81],
which employed combinations of double genetic knockouts to
locate genes that interact nonadditively with regard to phenotype.
This observed phenomenon, termed synthetic lethality [82],
shares certain parallels with chemical synergy. Mapping these
interactions led to the production of gene-interaction networks
[83] as a useful representation of biological space [84]. Taking
advantage of the relatedness of inhibition of a gene product,
and the knockout of the gene itself, the methodology was adapted
by replacing one knockout with a panel of drugs with known
protein targets, known as combination chemical genetics [75], to
test for ‘synergy’ in knockout-compound pairs. The techniques
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have been used to derive MOA hypotheses in yeast: for example,
the antianginal drug molsidomine was found to target lanosterol
synthase [85]. The use of chemical perturbation is (idealistically)
preferable to genetic perturbation; whereas library design is diffi-
cult because of ADMET, selectivity and many other problems, in
that in many cases chemical perturbation studies are faster, sim-
pler and easier, allow for the perturbation of essential genes and,
finally, a dose-response curve can be obtained, which describes the
response of the biological system during gradual modulation of a
target — a crucial distinction to most genetic approaches. The
natural progression was then the replacement of the second
knockout with another drug panel, essentially now a pairwise
screen of drug-drug combinations. A synergistic drug—drug surface
not only encodes a genetic interaction but a study found the
surface itself provided deeper insights into the relationship [86].
In fact, it was found that it was possible to classify the local
network topology of the drug targets according to the relative
shape of the response curve [24], paving the way for more-detailed
interaction networks.

Modelling drug-drug interactions

Up to 30% of adverse drug reactions are caused by DDIs. The ability
to model DDIs could play a significant part in understanding the
behaviour of compound combinations, as well as contributing to
the identification of novel synergistic chemical pairs. When ad-
ministered together, DDIs can result in a reduction in efficacy
(antagonism), an increase in toxicity of either or both drugs
(synergistic toxicity) or a previously unobserved effect that is
unrelated to either drug taken by itself (coalistic) [87]. Patients
who take multiple drugs are often afflicted with multiple comor-
bidities, and it is difficult to determine whether adverse events are
the result of side-effects from a single drug, interactions between
two or more drugs or exacerbations of the patient’s underlying
disease(s) [88]. DDIs could have a direct impact on the bioavail-
ability of drugs, as well as their ADMET and drug metabolism and
pharmacokinetic (DMPK) properties. Hence, understanding the
PK and pharmacodynamics (PD) of a drug is crucial to assessing its
(potential) DDIs [88]. This is mechanistically often explained by
the fact that drugs share metabolic pathways, as has recently been
discussed for the case of co-administering antituberculosis and
antimalarial drugs, as is frequently the case in the developing
world [89].

The approaches taken to model DDIs have been presented in
multiple recent studies. One such approach considers the struc-
tural similarity between query drugs and those involved in estab-
lished DDIs to infer the possibility of adverse drug reactions
(ADRs), and requires access to databases of known DDIs with
similarity profiles that include 2D and/or 3D chemical structures,
together with known interactions, targets and side-effects [87].
Similarly, text mining has also been utilised for prediction of DDIs
[90,91], and a recent review summarises these approaches [92].
Network-based approaches for predicting DDIs analyse the com-
mon targets and pathways involved with drug action, and corre-
late these with ADRs [93,94]. Notable examples of this include the
annotation and analysis of 45,180 DDIs of 1352 drugs [93], and
networks of Protein-Protein Interactions (PPIs) constructed for
1249 FDA-approved drugs that included 4776 associations to
1289 targets [94]. The main drawback of network-based

approaches is an excessive number of assumptions that are made,
which can ultimately decrease predictive capabilities. A compari-
son of dynamic and static models for the prediction of DDIs via
inhibition mechanisms has shown similar performance between
both approaches [95]. The aforementioned studies provide a set of
well-annotated datasets for predictive combination models to
train on, alongside extensive pathway and ADR annotations.

Traditional QSAR approaches are based on two key assump-
tions: (i) activity (property) is a function of structure; and (ii)
similar structures will have similar properties. These approaches
are attractive because after building a model it could be used for
prediction of results of DDIs for millions of new combinations
created by almost any drugs. QSAR modelling of DDIs using
SiRMS [96] and GUSAR [97,98] approaches was performed. To
enable this approach, a combination of two drugs participating
in DDIs was formally represented as a binary chemical mixture.
Predictive models based upon ~25,000 DDIs caused by more
than 200 drugs were developed for inhibition of 1A2, 2C9,
2D6 and 3A4 - four major cytochrome P450 (CYP) isoforms.
Because the validation of QSAR models for DDIs is more compli-
cated than in traditional QSAR analysis, developed models were
validated using a ‘compounds out’ strategy specially developed
for rigorous validation of QSAR models of mixtures [99]. Predic-
tions for more than half of the one million new DDIs were made
using developed models.

Despite the plethora of different existing approaches for model-
ling DDIs, the prediction of new drug interactions, especially for
complex medication regimens, remains an extremely challenging
task that would still benefit from the development of new model-
ling approaches. Such models would require high-quality data to
be trained upon, which cover multiple aspects of the known
interactions between drugs. These datasets would benefit from
the inclusion of target proteins for each compound, pathways that
these targets are involved in, known resulting side-effects, bio-
availability of the compounds and dosage levels. Additional infor-
mation, such as the health, lifestyle and medication status of the
individual from which this information is derived could prove in
the future as modelling approaches become more refined. Al-
though many tasks remain to be solved, once and where func-
tioning, DDI modelling will be invaluable in guiding drug choice
for combination therapy and hopefully result in fewer adverse
effects.

Towards an improved understanding of compound
combination effects: data integration, modelling and
biological interpretability

A key bottleneck in identifying and understanding the molecular
effects of compound mixtures on a systems level is the integration
of biological and chemical information. The strengths, weaknesses
and the challenges of integrating data from disparate sources have
been discussed [100]. Compound activity is detectable on multiple
levels in the living system — phenotypically on the gene expression
patterns and on the target interaction level as well [101]. Mean-
ingfully combining diverse information requires an understand-
ing of the specific context in which individual datasets have been
devised. This diversity could also involve specific procedures fol-
lowed, experimental platforms, disease area focus and to some
extent the cultural differences at the source of this information as
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well. This variation becomes even more crucial and challenging to
tackle in the case of compound combinations.

In the context of this review, the data that need to be integrated
for a comprehensive systems-level analysis to identify compound
combinations efficiently include chemical bioactivity data [102],
targets and pathway annotations [80], gene expression data [73]
and protein interactions [103]. Along with these, annotations
regarding negative and positive feedback loops in pathways would
be significant in optimising the predictive model. Unfortunately,
these annotations are not always available as a part of network
biology resources and have to be extracted from publications. The
challenge is not only to identify specific data sources that can be
integrated but also to have a common identifier(s) that can con-
nect these datasets. Although this can be reasonably achieved with
a good level of accuracy and confidence for anecdotal cases, data
integration on a global scale, towards obtaining a generalised
systems level understanding, deals with a much higher level of
complexity. For example, a limited number of select pathways
involved in a certain disease type, along with chemical bioactivity
data tested against protein targets specific to the involved path-
ways could be obtained [104], but very rarely is information
available on a larger scale. Cross-referencing at this level can be
tedious, and in some cases meaningless. To predict compound
combinations efficiently, comprehensive and quantitative data
are key but often unavailable. At the same time, integrated rela-
tional databases are valuable in efficiently making biological and
chemical predictions towards answering specific questions, for
example generating MOA hypothesis for an observed phenotypic
effect as a result of compound activity or identifying perturbation
points along a given network(s) for identifying efficient drug
combinations [16] and subsequent experimental validation. For
this purpose, robust algorithms that consider and address the
limitations of the integrated dataset are needed. Hence, careful
consideration of the datasets and sources to be integrated is
required, working towards answering the scientific questions of
interest while enabling hypotheses and knowledge-driven analy-
ses.

Challenges in the identification of useful compound
combinations

Drug combinations provide many advantages in the treatment of
diseases with complex aetiology, usually involving multiple tar-
gets and pathways. Even though drug combinations in some cases
do lead to increased specificity [29], concerns regarding the side-
effects of drug combinations still remain. Although this concern
has been reported [105], and observed in the case of teratogens
[106], several studies have not found evidence of such synergistic
toxicities and indicate that the benefits of combinations outweigh
the potential side-effects [107-109]. A notable concern when
considering combination therapies in vivo is the role of PD, PK
and interactions thereof in leading to unintended side-effects and/
or lack of efficacy [110].

Although the reduction of drug-level-related side-effects is a key
driver in the move to combination therapies, another limitation,
in some cases, is that combination effects are dependent on the
biological environment. In particular, synergies observed in vitro

might not lead to effective combinations in vivo [50]. As an
illustration, Brandl et al. [64] reported that synergism between
vinblastine and kinesin spindle protein KSP/EgS inhibitors is
observed in TNBC cells but not in normal fibroblasts. Even in
the same biological setting, different routes of administration
might or might not lead to synergistic effects. For example, Koles-
nikov et al. [111] report that effects of topical combinations of
analgesics mimic the effects of same combinations when admin-
istered systemically. By contrast, Banner and Press [107] report
that oral administration of phosphodiesterase (PDE)3 and PDE4
inhibitors does not lead to synergistic effects, whereas an inhaled
combination does. Thus, combinations offer many advantages but
at the same time care must be taken to understand the systemic
effects of drug combinations, as characterised by the PD and PK of
the individual drugs and their effects on each other.

Concluding remarks

Compound combination studies integrating biological and chem-
ical knowledge provide an opportunity for tackling key therapeu-
tic and toxicity issues. Most prominently, these issues involve
efficacy, drug resistance, side-effects and dosage tolerability in
patients. These are problems that have always dogged the field
of drug discovery but for which an efficient solution is yet to be
achieved. Combination analyses studying chemical properties and
bioactivity data do support and enhance the discovery of drugs
that display better selectivity and possibility of overcoming drug
resistance. However, the more we understand about this field the
more numerous are the potential issues that surface. These include
the possibility of undesired drug interactions, side-effects, biologi-
cal selectivity where the combination works only in specific mi-
croenvironment and the differences in efficacy as a consequence of
drug administration routes.

In the area of combination therapies, a deeper understanding of
the underlying biological impact is required, such as that on gene
expression and regulatory pathways. This can be achieved by
integrating chemical bioactivity data from different realms of
the biological system, viz. gene expression, gene—protein interac-
tion networks and pathway annotations, among others. This
approach can also assist in generating biologically meaningful
MOA hypotheses for combinations of chemicals, and will help
provide a comprehensive and solid foundation on which future
chemical combination analyses could be performed. Such studies
could have a significant impact on our understanding and appli-
cations of compound combinations. These include not only com-
bination therapeutics but also pesticides, household chemicals
and cosmetics that could otherwise have a potential health and
environmental impact.

Acknowledgements

K.B., Y.K.M. and A.B. thank the European Research Council
(ERC Starting Grant 2013 to AB) for funding. D.J.M. thanks
Unilever and R.L. thanks the EPSRC for funding. E.M. thanks the
financial support from NIH (GM 096967), EPA (RD 83499901)
and UNC (2014 Junior Faculty Development Award). M.C. was
supported by the Turkish Academy of Sciences GEBIP
Programme.

www.drugdiscoverytoday.com 235

=
=
>
w
[~
=
o
=
>
w
x
«
3
]
>
]
o




X
(]
<3
D
=
wv
A
m
=<
3
1
m
=
m
=
m
=

REVIEWS

Drug Discovery Today *Volume 21, Number 2 ¢ February 2016

References

1 Li, F. et al. (2014) Molecular-targeted agents combination therapy for cancer:
developments and potentials. Int. . Cancer 134, 1257-1269
2 LoRusso, P.M. et al. (2012) Accelerating cancer therapy development: the
importance of combination strategies and collaboration Summary of an Institute
of Medicine Workshop. Clin. Cancer Res. 18, 6101-6109
3 Tamma, P.D. et al. (2012) Combination therapy for treatment of infections with
gram-negative bacteria. Clin. Microbiol. Rev. 25, 450-470
4 Li, K. et al. (2014) Multitarget drug discovery for tuberculosis and other infectious
diseases. J. Med. Chem. 57, 3126-3129
5 Worthington, R.J. and Melander, C. (2013) Combination approaches to combat
multidrug-resistant bacteria. Trends Biotechnol. 31, 177-184
6 Zimmermann, G.R. ef al. (2007) Multi-target therapeutics: when the whole is
greater than the sum of the parts. Drug Discov. Today 12, 34-42
7 Dawson, J.C. and Carragher, N.O. (2014) Quantitative phenotypic and pathway
profiling guides rational drug combination strategies. Front. Pharmacol. 5, 1-7
8 Bates, D.E. and Herman, R.J. (2006) Carbamazepine toxicity induced by lopinavir/
ritonavir and nelfinavir. Ann. Pharmacother. 40, 1190-1195
9 Sisodiya, S.M. et al. (2002) Carbamazepine toxicity during combination therapy
with levetiracetam: a pharmacodynamic interaction. Epilepsy Res. 48, 217-219
10 Bailey, D.G. et al. (1998) Grapefruit juice-drug interactions. Br. J. Clin. Pharmacol.
46, 101-110
11 Glaeser, H. et al. (2007) Intestinal drug transporter expression and the impact of
grapefruit juice in humans. Clin. Pharmacol. Ther. 81, 362-370
12 Prakash, B. et al. (2010) Herbo-mineral ayurvedic treatment in a high risk acute
promyelocytic leukemia patient with second relapse: 12 years follow up. J.
Ayurveda Integr. Med. 1, 215-218
13 Lam, W. et al. (2010) The four-herb Chinese medicine PHY906 reduces
chemotherapy-induced gastrointestinal toxicity. Sci. Transl. Med. 2, 45-59
14 1zzo, A.A. and Ernst, E. (2009) Interactions between herbal medicines and
prescribed drugs: an updated systematic review. Drugs 69, 1777-1798
15 Shi, S. and Klotz, U. (2012) Drug interactions with herbal medicines. Clin.
Pharmacokinet. 51, 77-104
16 Jia, J. et al. (2009) Mechanisms of drug combinations: interaction and network
perspectives. Nat. Rev. Drug Discov. 8, 111-128
17 Segal, B.H. and Steinbach, W.]. (2007) Combination antifungals: an update. Expert
Rev. Anti. Infect. Ther. 5, 883-892
18 Yilancioglu, K. et al. (2014) Target-independent prediction of drug synergies using
only drug lipophilicity. J. Chem. Inf. Model. 54, 2286-2293
19 Keith, C. et al. (2005) Multicomponent therapeutics for networked systems. Nat.
Rev. Drug Discov. 4, 1-8
20 Mathews Griner, L.A. et al. (2014) High-throughput combinatorial screening
identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse
large B-cell lymphoma cells. Proc. Natl. Acad. Sci. U. S. A. 111, 2349-2354
21 White, A.R. et al. (2004) Augmentin (amoxicillin/clavulanate) in the treatment of
community-acquired respiratory tract infection: a review of the continuing
development of an innovative antimicrobial agent. J. Antimicrob. Chemother. 53
(Suppl. 1), i3-i20
22 Steed, MLE. et al. (2012) Evaluation of the novel combination of high-dose
daptomycin plus trimethoprim-sulfamethoxazole against daptomycin-
nonsusceptible methicillin-resistant Staphylococcus aureus using an in vitro
pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations.
Antimicrob. Agents Chemother. 56, 5709-5714
23 Ryall, K.A. and Tan, A.C. (2015) Systems biology approaches for advancing the
discovery of effective drug combinations. J. Cheminform. 7, 1-15
24 Lehar, J. et al. (2007) Chemical combination effects predict connectivity in
biological systems. Mol. Syst. Biol. 3, 80
25 Zhang, Y. et al. (2014) Computational analyses of synergism in small molecular
network motifs. PLoS Comput. Biol. 10, 1003524
26 Huggins, D.J. et al. (2012) Rational approaches to improving selectivity in drug
design. J. Med. Chem. 55, 1424-1444
27 Harrison, C. (2012) Kinase inhibitors: analysing kinase inhibitor selectivity. Nat.
Rev. Drug Discov. 11, 21
28 Alavijeh, M.S. et al. (2005) Drug metabolism and pharmacokinetics, the blood-
brain barrier, and central nervous system drug discovery. NeuroRx 2, 554-571
29 Lehar, J. et al. (2009) Synergistic drug combinations tend to improve
therapeutically relevant selectivity. Nat. Biotechnol. 27, 659-666
30 Nosten, F. and White, N.J. (2007) Artemisinin-based combination treatment of
falciparum malaria. Am. J. Trop. Med. Hyg. 77, 181-192
31 Ramon-Garcia, S. et al. (2011) Synergistic drug combinations for tuberculosis
therapy identified by a novel high-throughput screen. Antimicrob. Agents
Chemother. 55, 3861-3869

32 Ferrari, E. et al. (2010) A lethal combination for cancer cells: synthetic lethality
screenings for drug discovery. Eur. J. Cancer 46, 2889-2895

33 Yuan, S. et al. (2013) Effective elimination of cancer stem cells by a novel drug
combination strategy. Stem Cells 31, 23-34

34 Tang, J. et al. (2013) Target inhibition networks: predicting selective combinations
of druggable targets to block cancer survival pathways. PLoS Comput. Biol. 9,
€1003226

35 Gerlinger, M. et al. (2012) Intratumor heterogeneity and branched evolution
revealed by multiregion sequencing. N. Engl. J. Med. 366, 883-892

36 Greaves, M. and Maley, C.C. (2012) Clonal evolution in cancer. Nature 481, 306—
313

37 Jansen, G. et al. (2009) Chemogenomic profiling predicts antifungal synergies.
Mol. Syst. Biol. 5, 338

38 Hill, J.A. et al. (2013) Genetic and genomic architecture of the evolution of
resistance to antifungal drug combinations. PLoS Genet. 9, e1003390

39 Ejim, L. etal. (2011) Combinations of antibiotics and nonantibiotic drugs enhance
antimicrobial efficacy. Nat. Chem. Biol. 7, 348-350

40 Basch, E. et al. (2013) Abiraterone acetate plus prednisone versus prednisone alone
in chemotherapy-naive men with metastatic castration-resistant prostate cancer:
patient-reported outcome results of a randomised phase 3 trial. Lancet Oncol. 14,
1193-1199

41 Gradman, A.H. et al. (2010) Combination therapy in hypertension. J. Am. Soc.
Hypertens. 4, 90-98

42 Patel, S.M. and Saravolatz, L.D. (2006) Monotherapy versus combination therapy.
Med. Clin. North Am. 90, 1183-1195

43 Bell, D.S.H. (2013) Combine and conquer: advantages and disadvantages of fixed-
dose combination therapy. Diabetes Obes. Metab. 15, 291-300

44 Cokol, M. et al. (2011) Systematic exploration of synergistic drug pairs. Mol. Syst.
Biol. 7, 544

45 Feala, ].D. et al. (2010) Systems approaches and algorithms for discovery of
combinatorial therapies. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 181-193

46 Nikolaeva, L. and Galabov, A.S. (1999) In vitro inhibitory effects of dual
combinations of picornavirus replication inhibitors. Acta Virol. 43, 303-311

47 Borisy, A.A. et al. (2003) Systematic discovery of multicomponent therapeutics.
Proc. Natl. Acad. Sci. U. S. A. 100, 7977-7982

48 Dragiev, P. et al. (2011) Systematic error detection in experimental high-
throughput screening. BMC Bioinformatics 12, 25

49 Sittampalam, G.S. et al. eds (2004) Assay Guidance Manual, Eli Lilly Co. Natl. Cent.
Adv. Transl. Sci.

50 Mott, B.T. et al. (2015) High-throughput matrix screening identifies synergistic
and antagonistic antimalarial drug combinations. Sci. Rep. 5, 11389http://
dx.doi.org/10.1038/srep13891

51 Berenbaum, M.C. (1989) What is synergy? Pharmacol. Rev. 41, 93-141

52 Bliss, C.I. (1939) The toxicity of poisons applied jointly-1. Ann. Appl. Biol. 26, 585-
615

53 Loewe, S. (1953) The problem of synergism and antagonism of combined drugs.
Arzneimittelforschung 3, 285-290

54 Chou, T. (2006) Theoretical basis, experimental design, and computerized
simulation of synergism and antagonism in drug combination studies. Pharmacol.
Rev. 58, 621-681

55 Geary, N. (2013) Understanding synergy. Am. . Physiol. Endocrinol. Metab. 304,
E237-E253

56 Greco, W.R. et al. (1995) The search for synergy: a critical review from a response
surface perspective. Pharmacol. Rev. 47, 331-385

57 Du, G.-S. et al. (2013) Cell-based drug combination screening with a microfluidic
droplet array system. Anal. Chem. 85, 6740-6747

58 An, D. et al. (2014) Microfluidic system based high throughput drug screening
system for curcumin/TRAIL combinational chemotherapy in human prostate
cancer PC3 cells. Biomol. Ther. (Seoul) 22, 355-362

59 Gerlee, P. et al. (2013) Searching for synergies: matrix algebraic approaches for
efficient pair screening. PLoS ONE 8, 68598

60 Small, B.G. et al. (2011) Efficient discovery of anti-inflammatory small-molecule
combinations using evolutionary computing. Nat. Chem. Biol. 7, 902-908

61 Chavali, A.K. et al. (2012) Metabolic network analysis predicts efficacy of FDA-
approved drugs targeting the causative agent of a neglected tropical disease. BMC
Syst. Biol. 6, 27

62 Wan, X. et al. (2014) Visualization of network target crosstalk optimizes drug
synergism in myocardial ischemia. PLoS ONE 9, e88137

63 Miller, M.L. et al. (2013) Drug synergy screen and network modeling in
dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug
targets. Sci. Signal. 6, ra85

236 www.drugdiscoverytoday.com


http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0670
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0670
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0675
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0675
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0675
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0680
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0680
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0685
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0685
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0690
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0690
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0695
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0695
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0700
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0700
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0705
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0705
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0710
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0710
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0715
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0715
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0720
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0720
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0725
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0725
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0725
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0730
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0730
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0735
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0735
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0740
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0740
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0745
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0745
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0750
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0750
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0755
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0755
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0760
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0760
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0765
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0765
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0765
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0770
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0770
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0770
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0770
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0775
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0775
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0775
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0775
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0775
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0780
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0780
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0785
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0785
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0790
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0790
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0795
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0795
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0800
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0800
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0805
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0805
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0810
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0810
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0815
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0815
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0820
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0820
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0820
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0825
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0825
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0830
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0830
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0835
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0835
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0835
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0840
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0840
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0845
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0845
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0850
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0850
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0855
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0855
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0860
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0860
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0865
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0865
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0865
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0865
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0870
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0870
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0875
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0875
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0880
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0880
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0885
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0885
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0890
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0890
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0895
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0895
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0900
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0900
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0905
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0905
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0910
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0910
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0910
http://dx.doi.org/10.1038/srep13891
http://dx.doi.org/10.1038/srep13891
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0915
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0920
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0920
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0925
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0925
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0930
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0930
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0930
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0935
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0935
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0940
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0940
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0945
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0945
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0950
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0950
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0950
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0955
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0955
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1340
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1340
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0965
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0965
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0965
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0970
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0970
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0975
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0975
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0975

Drug Discovery Today * Volume 21, Number 2+ February 2016

REVIEWS

64 Brandl, M.B. et al. (2014) Computational analysis of image-based drug profiling
predicts synergistic drug combinations: applications in triple-negative breast
cancer. Mol. Oncol. 8, 1548-1560

65 Murphy, D. (2002) Gene expression studies using microarrays: principles,
problems, and prospects. Adv. Physiol. Educ. 26, 256-270

66 Verbist, B. et al. (2015) Using transcriptomics to guide lead optimization in drug
discovery projects: lessons learned from the QSTAR project. Drug Discov. Today 20,
505-513

67 Zhao, J. et al. (2014) Predicting cooperative drug effects through the quantitative
cellular profiling of response to individual drugs. CPT pharmacometrics Syst.
Pharmacol. 3, e102

68 Costello, J.C. et al. (2014) A community effort to assess and improve drug
sensitivity prediction algorithms. Nat. Biotechnol. 32, 1-103

69 Jin, G. et al. (2011) An enhanced Petri-net model to predict synergistic effects
of pairwise drug combinations from gene microarray data. Bioinformatics 27,
i310-i316

70 Havaleshko, D.M. et al. (2007) Prediction of drug combination chemosensitivity in
human bladder cancer. Mol. Cancer Ther. 6, 578-586

71 Kim, J. et al. (2014) Bioinformatics-driven discovery of rational combination for
overcoming EGFR-mutant lung cancer resistance to EGFR therapy. Bioinformatics
30, 2393-2398

72 He, L. etal. (2015) TIMMA-R: an R package for predicting synergistic multi-targeted
drug combinations in cancer cell lines or patient-derived samples. Bioinformatics
31, 1866-1868

73 Lamb, J. et al. (2006) The Connectivity Map: using gene-expression signatures to
connect small molecules, genes, and disease. Science 313, 1929-1935

74 Dixon, S.J. and Stockwell, B.R. (2010) Drug discovery: engineering drug
combinations. Nat. Chem. Biol. 6, 318-319

75 Lehar, J. et al. (2008) Combination chemical genetics. Nat. Chem. Biol. 4, 674-681

76 Giaever, G. et al. (2004) Chemogenomic profiling: identifying the functional
interactions of small molecules in yeast. Proc. Natl. Acad. Sci. U. S. A. 101, 793-798

77 Grimm, D. and Kay, M.A. (2007) Combinatorial RNAi: a winning strategy for the
race against evolving targets? Mol. Ther. 15, 878-888

78 Sahin, O. et al. (2007) Combinatorial RNAi for quantitative protein network
analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 6579-6584

79 Grimm, D. (2012) All for one, one for all: new combinatorial RNAi therapies
combat hepatitis C virus evolution. Mol. Ther. 20, 1661-1663

80 Fazekas, D. et al. (2013) SignaLink 2 - a signaling pathway resource with multi-
layered regulatory networks. BMC Syst. Biol. 7, 7

81 Tong, A.H. et al. (2001) Systematic genetic analysis with ordered arrays of yeast
deletion mutants. Science 294, 2364-2368

82 Tucker, C.L. and Fields, S. (2003) Lethal combinations. Nat. Genet. 35, 204-205

83 Tong, A.H.Y. etal. (2004) Global mapping of the yeast genetic interaction network.
Science 303, 808-813

84 Parsons, A.B. et al. (2004) Integration of chemical-genetic and genetic interaction
data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22,
62-69

85 Lum, P.Y. et al. (2004) Discovering modes of action for therapeutic compounds
using a genome-wide screen of yeast heterozygotes. Cell 116, 121-137

86 Yeh, P. and Kishony, R. (2007) Networks from drug-drug surfaces. Mol. Syst. Biol.
3,85

87 Vilar, S. et al. (2014) Similarity-based modeling in large-scale prediction of drug—
drug interactions. Nat. Protoc. 9, 2147-2163

88 Cascorbi, I. (2012) Drug interactions — principles, examples and clinical
consequences. Dtsch. Arztebl. Int. 109, 546-555

89 Sousa, M. et al. (2008) Pharmacokinetics and pharmacodynamics of drug
interactions involving rifampicin, rifabutin and antimalarial drugs. J. Antimicrob.
Chemother. 62, 872-878

90 Percha, B. et al. (2012) Discovery and explanation of drug-drug interactions via
text mining. Pac. Symp. Biocomput. 29, 410-421

91 Tari, L. et al. (2010) Discovering drug—-drug interactions: a text-mining and
reasoning approach based on properties of drug metabolism. Bioinformatics 26,
i547-1553

92 Percha, B. and Altman, R.B. (2013) Informatics confronts drug—drug interactions.
Trends Pharmacol. Sci. 34, 178-184

93 Takarabe, M. et al. (2011) Network-based analysis and characterization of adverse
drug-drug interactions. J. Chem. Inf. Model. 51, 2977-2985

94 Huang, J. et al. (2013) Systematic prediction of pharmacodynamic drug-drug
interactions through protein-protein-interaction network. PLoS Comput. Biol. 9,
€1002998

95 Guest, E.J. et al. (2011) Assessment of algorithms for predicting drug-drug
interactions via inhibition mechanisms: comparison of dynamic and static
models. Br. J. Clin. Pharmacol. 71, 72-87

96 Kuz'min, V.E. et al. (2008) Hierarchical QSAR technology based on the Simplex
representation of molecular structure. J. Comput. Aided Mol. Des. 22, 403-421
97 Kokurkina, G.V. et al. (2011) Synthesis, antifungal activity and QSAR study of 2-
arylhydroxynitroindoles. Eur. J. Med. Chem. 46, 4374-4382
98 Zakharov, A.V. et al. (2012) Quantitative prediction of antitarget interaction
profiles for chemical compounds. Chem. Res. Toxicol. 25, 2378-2385
99 Muratov, E.N. et al. (2012) Existing and developing approaches for QSAR analysis
of mixtures. Mol. Inform. 31, 202-221
100 Searls, D.B. (2005) Data integration: challenges for drug discovery. Nat. Rev. Drug
Discov. 4, 45-58
101 Young, D.W. et al. (2008) Integrating high-content screening and ligand-target
prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59-68
102 Gaulton, A. et al. (2012) ChEMBL: a large-scale bioactivity database for drug
discovery. Nucleic Acids Res. 40, 1100-1107
103 Franceschini, A. et al. (2013) STRING v9.1: protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res. 41, 808-815
104 Lehmann, B.D. and Pietenpol, J.A. (2014) Identification and use of biomarkers
in treatment strategies for triple-negative breast cancer subtypes. J. Pathol. 232,
142-150
105 Farr, M. and Bacon, P. (1995) How and when should combination therapy be used?
The role of an anchor drug. Br. . Rheumatol. 34, 100-103
106 Miller, M.W. and Church, C.C. (2013) Arrhenius thermodynamics and birth
defects: chemical teratogen synergy Untested, testable, and projected relevance.
Birth Defects Res. C. Embryo Today 99, 50-60
107 Banner, K.H. and Press, N.J. (2009) Dual PDE3/4 inhibitors as therapeutic agents
for chronic obstructive pulmonary disease. Br. J. Pharmacol. 157, 892-906
108 Haagsma, C. et al. (1995) Combining sulphasalazine and methotrexate in
rheumatoid arthritis: early clinical impressions. Rheumatology 34, 104-108
109 Mottonen, T. ef al. (1999) Comparison of combination therapy with single-drug
therapy in early rheumatoid arthritis: a randomised trial FIN-RACo trial group.
Lancet 353, 1568-1573
110 Guthrie, R. (2011) Review and management of side effects associated with
antiplatelet therapy for prevention of recurrent cerebrovascular events. Adv. Ther.
28, 473-482
111 Kolesnikov, Y.A. et al. (2010) Topical methadone and meperidine analgesic
synergy in the mouse. Eur. J. Pharmacol. 638, 61-64
112 Berlow, N. et al. (2014) An integrated approach to anti-cancer drug sensitivity
prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 11, 995-1008
113 Fall, D J. et al. (2014) Utilization of translational bioinformatics to identify novel
biomarkers of bortezomib resistance in multiple myeloma. J. Cancer 5, 720-727
114 Huang, L. et al. (2014) DrugComboRanker: drug combination discovery based on
target network analysis. Bioinformatics 30, i228-i236
115 Winter, G.E. ef al. (2012) Systems-pharmacology dissection of a drug synergy in
imatinib-resistant CML. Nat. Chem. Biol. 8, 905-912
116 Hsu, K.-C. et al. (2013) Pathway-based screening strategy for multitarget inhibitors
of diverse proteins in metabolic pathways. PLoS Comput. Biol. 9, e1003127
117 Sturla, S.J. et al. (2014) Systems toxicology: from basic research to risk assessment.
Chem. Res. Toxicol. 27, 314-329
118 Yang, R.S.H. et al. (2004) Chemical mixture toxicology: from descriptive to
mechanistic, and going on to in silico toxicology. Environ. Toxicol. Pharmacol. 18,
65-81
119 Lopez, A.M. et al. (1999) A model-based approach for assessing in vivo combination
therapy interactions. Proc. Natl. Acad. Sci. U. S. A. 96, 13023-13028
120 Kelly, C. etal. (2012) Two-stage model-free tests of synergy in drug combinations. J.
Biopharm. Stat. 22, 54-71
121 Tornero-Velez, R. et al. (2012) Biogeographical analysis of chemical co-occurrence
data to identify priorities for mixtures research. Risk Anal. 32, 224-236
122 Ajmani, S. et al. (2008) Characterization of mixtures. Part 1: Prediction of infinite-
dilution activity coefficients using neural network-based QSPR models. QSAR
Comb. Sci. 27, 1346-1361
123 Oprisiu, I. et al. (2012) QSPR approach to predict nonadditive properties of
mixtures Application to bubble point temperatures of binary mixtures of liquids.
Mol. Inform. 31, 491-502
124 Liu, Y. et al. (2009) DCDB: drug combination database. Bioinformatics 26,
587-588
125 Chen, X. et al. (2014) ASDCD: Antifungal Synergistic Drug Combination Database.
PLoS ONE 9, 86499
126 Zhu, F. et al. (2009) Update of TTD: Therapeutic Target Database. Nucleic Acids Res.
38, 787-791
127 Tatonetti, N.P. et al. (2012) Data-driven prediction of drug effects and interactions.
Sci. Transl. Med 4, 125ra31
128 Yeh, P. etal. (2006) Functional classification of drugs by properties of their pairwise
interactions. Nat. Genet. 38, 489-494

www.drugdiscoverytoday.com 237

=
u
>
[rT]
o
=
o
4
>
1]
X
@
2
2
>
]
o



http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0980
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0980
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0980
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0985
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0985
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0990
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0990
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0990
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0995
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0995
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref0995
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1000
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1000
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1005
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1005
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1005
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1345
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1345
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1015
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1015
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1015
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1020
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1020
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1020
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1025
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1025
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1030
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1030
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1035
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1040
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1040
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1045
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1045
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1050
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1050
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1055
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1055
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1350
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1350
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1065
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1065
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1070
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1075
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1075
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1080
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1080
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1080
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1085
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1085
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1090
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1090
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1095
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1095
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1100
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1100
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1105
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1105
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1105
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1355
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1355
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1115
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1115
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1115
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1120
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1120
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1125
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1125
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1130
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1130
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1130
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1135
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1135
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1135
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1140
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1140
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1145
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1145
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1150
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1150
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1155
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1155
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1360
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1360
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1165
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1165
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1170
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1170
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1175
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1175
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1180
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1180
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1180
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1185
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1185
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1190
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1190
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1190
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1195
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1195
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1200
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1200
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1205
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1205
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1205
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1210
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1210
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1210
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1215
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1215
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1220
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1220
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1225
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1225
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1230
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1230
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1235
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1235
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1240
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1240
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1245
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1245
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1250
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1250
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1250
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1255
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1255
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1260
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1260
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1265
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1265
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1270
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1270
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1270
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1275
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1275
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1275
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1280
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1280
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1285
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1285
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1290
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1290
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1295
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1295
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1300
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1300

X
(]
<.
o
=
wv
A
m
=<
3
1
m
=
m
=
m
=

REVIEWS

Drug Discovery Today *Volume 21, Number 2 ¢ February 2016

129 Law, V.etal. (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic
Acids Res. 42, D1091-D1097

130 Olah, M. et al. (2005) WOMBAT: World of Molecular Bioactivity. Chemoinform
Drug Discov http://dx.doi.org/10.1002/3527603743.ch9

131 Kuhn, M. et al. (2014) STITCH 4: integration of protein-chemical interactions with
user data. Nucleic Acids Res. 42, 401-407

132 Barrett, T. et al. (2013) NCBI GEO: archive for functional genomics data
sets — update. Nucleic Acids Res. 41, 991-995

133 Kuhn, M. et al. (2010) A side effect resource to capture phenotypic effects of drugs.
Mol. Syst. Biol. 6, 1-6

134 Dix, D.J. et al. (2007) The toxcast program for prioritizing toxicity testing of
environmental chemicals. Toxicol. Sci. 95, 5-12

238 www.drugdiscoverytoday.com


http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1305
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1305
http://dx.doi.org/10.1002/3527603743.ch9
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1315
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1315
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1320
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1320
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1325
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1325
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1330
http://refhub.elsevier.com/S1359-6446(15)00343-8/sbref1330

	Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and pers...
	Introduction and background
	Applications and impact of drug combinations
	Identifying synergistic compound combinations
	Approaches to the characterisation of combination responses
	Evaluating and analysing combination data
	Utilising gene expression and pathway annotations in predictive models
	Genetic and RNA interactions to guide the design of compound combinations
	Combinations as an investigative tool
	Modelling drug–drug interactions
	Towards an improved understanding of compound combination effects: data integration, modelling and biological interpretabi...
	Challenges in the identification of useful compound combinations
	Concluding remarks
	Acknowledgements
	References


