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An overview of the state-of-the-art in predictive modelling of compound combination
activity and the value and significance of systems informatics in

identifying combinations for therapeutic purposes.
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The development of treatments involving combinations of drugs is a

promising approach towards combating complex or multifactorial

disorders. However, the large number of compound combinations that can

be generated, even from small compound collections, means that

exhaustive experimental testing is infeasible. The ability to predict the

behaviour of compound combinations in biological systems, whittling

down the number of combinations to be tested, is therefore crucial. Here,

we review the current state-of-the-art in the field of compound

combination modelling, with the aim to support the development of

approaches that, as we hope, will finally lead to an integration of chemical

with systems-level biological information for predicting the effect of

chemical mixtures.

Introduction and background
In the 1989 movie directed by Tim Burton, Batman describes the Joker’s strategy to bring doom to

Gotham’s people: ‘‘Each product only contains one component. The poison only works when

they’re mixed. Hair spray won’t do it alone. But. . . hair spray and perfume and lipstick will be

toxic’’. The possibility that compounds modulate each other’s effect(s) is a well known and

frequent phenomenon, be it a desired positive effect in the case of drug combinations or an

undesirable toxic effect, as in the case of Joker’s devious plot. Compound combinations have been

a popular approach in interfering with erroneous and undesirable activity in biological systems,
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be it drug combination therapy for treating complex network-

driven diseases such as cancer [1,2] or antifungals and antibiotic

combinations targeting infectious diseases [3,4].

This popularity can be attributed to multiple factors, which

include overcoming drug resistance [5,6] and multitargeted thera-

pies for perturbing multiple nodes of pathway(s) of interest for

better efficacy [7]. Synergistic drug combinations aside, there is

also a crucial need to study compound combinations towards

understanding the toxic effects of chemical mixtures, either in a

drug–drug combination, for example carbamazepine toxicity in

combination with several drugs and inhibitors [8,9], or a drug–

natural-product combination, for example the well-studied im-

pact of grapefruit juice on the bioavailability of certain drugs

[10,11]. Combination therapy has also been extensively studied

in traditional Indian [12] and Chinese medicine [13], as has the

impact of these traditional medicines when administered in com-

bination with Western medicine [14,15].

Compound combination behaviour can be broadly classified as

synergistic, antagonistic or additive. Synergy, in this context, is

the result of combining two or more chemical compounds to

produce an effect that is greater than additive effects (where

additive effects are computed from the individual effects based

on specific mathematical models) [16]. The use of compound

combinations can be either beneficial to the biological system

these are intended towards, as in the case of combination therapy

[1], or produce an intended harmful effect, as found for antifungals

[17], or an unintended harmful effect, such as for synergistic

toxicity [18]. By contrast, antagonism is the phenomenon when

a compound combination produces an overall effect that is less

than the additive effects of the individual compounds.

Despite the significance of compound combinations in thera-

peutic and toxicity studies, the ability mechanistically to explain

and model compound combinations in a systematic fashion is

currently limited. Published reviews discuss the urgent need for

multitarget therapeutics and systematic approaches to identify

communication hubs between pathways that can be targeted by

drugs [6,19]. However, the approach taken to map and understand

the systems level view of the organism or disease comprehensively

is expensive, time consuming and not necessarily feasible. Al-

though there have been several reports that elucidate the mecha-

nism of action (MOA) of a compound combination [20–22], most

reports focus on observational studies of a limited number of

combination effects in specific organisms and diseases. Table 1

provides a list of studies that have followed gene-expression-,

pathway-annotations/network- and modelling-based approaches

towards assessing compound combinations across different dis-

ease areas, as well as generalised studies. A similar table listing

complementary studies can be accessed in a recent publication by

Ryall and Tan [23]. The dynamics of networks of pathways can be

investigated through the use of mathematical network models,

and the outcome of potential target inhibition within the model

can be compared to assay readouts to allow MOA hypothesis

generation of a combination [24,25]. These models could make

use of large-scale datasets of compound combination responses.

Even though limited in terms of availability, opportunities to

train and test predictive models can be provided. Table 2 provides

a list of publicly available combination data resources or datasets.

This information, along with available large-scale chemical and
226 www.drugdiscoverytoday.com
biological resources in the public domain (Table 3), could be used

to construct an integrated pipeline to assess compound combina-

tion behaviour. Combining the chemical and biological finger-

prints mentioned above, along with gene expression profiles in

disease cell lines, wherever available, could add further weight to

such analysis. However, there are still certain aspects of data

missing that are crucial to assessing combinations. For example,

many datasets only consider single doses, and thus could prevent

appropriate quantification of synergistic (or antagonistic) behav-

iour using classical methods. In addition, if the dosage is not

therapeutically relevant, it might not be suitable for translational

development.

Following such an integrated approach, as described in this

section, Fig. 1 suggests a modelling pipeline towards predicting

the synergistic and/or antagonistic behaviour of compound com-

binations. The aim of this pipeline is to integrate and explain the

observations from combination assays. For a suggested compound

combination, the model will be able to search bioactivity space

and integrate available chemical and biological information that

includes network and pathway annotations, gene expression pro-

files and chemical fingerprint similarities. This could help identify

patterns that contribute towards synergy predictions for the com-

pound pair, as well as develop a MOA hypothesis for the combi-

nation. These predictions could then be further validated by in

vitro and/or in vivo experiments. This review explores the chal-

lenges, limitations and, more importantly, the value and perspec-

tives of predictive modelling of compound combination effects in

therapeutic development and toxicological studies.

Applications and impact of drug combinations
The applications of studying and analysing the synergistic, addi-

tive or antagonistic behaviour of compound combinations can be

manifold. These range from therapeutic applications, such as drug

combinations, to counter selectivity and resistance, to assessing

safety of household chemical combinations through toxicity stud-

ies. Drug–target selectivity has long been a high priority, yet not

always achievable, part of the drug discovery pipeline [26]. How-

ever, many kinase inhibitors and central nervous system (CNS)-

active drugs exhibit promiscuity that is often crucial to achieve

better efficacy [27,28]. In a study by Lehár et al., the authors

performed large-scale simulations of bacterial metabolism and

�94,000 multidose experiments across multiple diseases to show

that synergistic drug combinations display higher specificity to

certain cellular contexts than single agent activities [29]. Further-

more, results validated in a rat model showed that the anti-

inflammatory drug prednisolone and the antidepressant nortrip-

tyline display therapeutic synergy, but not toxicity. Selectivity in

this case was achieved through the differential expression of the

proteins targeted by these drugs in stimulated peripheral blood

mononuclear cells (PBMCs). This evidence could have broad

implications in identifying and studying therapeutically relevant

selectivity for drug combinations.

Combination therapeutics have also been utilised as an ap-

proach to overcome drug resistance of pathogens [21]. This strate-

gy has been popular in antimalarial and antituberculosis drug

discovery and usually involves the first drug acting on mutants

resistant to the second drug when administered together [30,31].

Drug combinations are a standard-of-care in many cancers, by
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TABLE 1

Published studies assessing or predicting compound combinations: separated into gene-expression-based, pathways/networks-based
and mathematical approaches

Study Context Technique Limitations

Gene expression and cell-line-sensitivity-based approaches for compound combination modelling
Prediction of drug combination

chemosensitivity in human

bladder cancer [70]

Prediction of growth response of

human bladder cancer cell lines to

chemotherapeutic agents using

expression profiles

A predictive model utilising

misclassification-penalised posterior

(MiPP), for single and combination

drug sensitivity

Comprehensive expression profiles

required for extrapolation, model

less successful in predicting synergy

of cytotoxic effects of combinations
Predicting cooperative drug effects

through the quantitative cellular

profiling of response to individual

drugs [67]

Predicting combinations based on

differential expression profiles from a

b-cell lymphoma cell line in response

to single drugs

Integrated expression profiles and

human protein interaction network

approach. Ranked combination

predictions using probabilistic c-index

Single agent expression profiles

required, along with confidence in

network annotations

An integrated approach to

anticancer drug sensitivity

prediction [112]

Sensitivity prediction of targeted

drugs using cell line sensitivity and

target inhibition profiles illustrated on
erlotinib and AZD0530

Integrated sensitivity prediction (ISP),

Integrated regression modelling (IRM)

and constrained tumour proliferation
model (CTPM)

Comprehensive pipeline that

requires functional and genomic

data of drugs of interest, which is
often not available

An enhanced Petri-net model to

predict synergistic effects of

pairwise drug combinations from
gene microarray data [69]

Mechanism of synergy of compound

combinations from individual

compound treatment transcriptional
responses

EPN model built on expression

profiles across different doses of

single compounds, subsequently
suggesting mechanism of synergy for

pairs

Model validated on only one case of

combinations predicted, requires

knowledge of downstream targets
and signalling pathways to be

efficient

Utilisation of translational

bioinformatics to identify novel
biomarkers of bortezomib

resistance in multiple myeloma

[113]

In silico prediction of novel drug

combinations to bortezomib-resistant
multiple myeloma

Correlation of drug signatures to

experimentally derived gene
expression profiles for bortezomib

Requires drug-induced differential

expression signatures. No explicit
combination modelling was done

Pathways/network-based approaches for compound combination modelling
DrugComboRanker: drug

combination discovery based on

target network analysis [114]

Prioritised synergistic drug

combinations using disease and drug

genomic profiles, evaluated on lung

adenocarcinoma and oestrogen
receptor (ER)-positive breast cancer

Drug functional network

communities using a Bayesian

approach

Dependent on accuracy of

functional network annotations, tool

available on request

Systems-pharmacology dissection

of a drug synergy in imatinib-
resistant chronic myeloid

leukaemia (CML) [115]

Elucidate mechanism-of-action of

kinase inhibitor combinations in Bcr-
Abl T315I gatekeeper mutation

Integrated phosphoproteomics,

transcriptomics and chemical
proteomics techniques

–

Chemical combination effects

predict connectivity in biological
systems [24]

Cellular responses to combinations

reveal target connectivity

Models for combination effect

morphology (highest single agent,
Loewe additivity, Bliss boosting and

potentiation)

Complete dose matrices required,

expensive to generate. Models cover
only a subset of observed responses

Pathway-based screening strategy

for multitarget inhibitors of
diverse proteins in metabolic

pathways [116]

Pathway-based screening to identify

multitarget inhibitors to modulate
shikimate pathway in Helicobacter

pylori

Virtual screening and docking to

identify binding site moieties, enzyme
inhibition assays as validation

Restricted to proteins in the same

pathway, and requires protein
structures for determination of

which exhibit conserved binding

sites

Target inhibition networks:
predicting selective combinations

of druggable targets to block

cancer survival pathways [34]

Functional systems pharmacology
approach to predict combinations in

breast and pancreatic cancer cell lines

Target inhibition model (TIMMA) to
predict drug efficacy, validation using

single and combination siRNA screens

Requires drug sensitivity readouts
for specific cell lines of interest

Computational analyses of

synergism in small molecular

network motifs [25]

Feedback loops governing the

synthesis of CREB1 and CREB2

transcription factors

Ordinary Differential Equation (ODE)

models based upon Michaelis–

Menten kinetics

Requires knowledge of underlying

network connectivity and

implication in signalling pathways

Mathematical approaches primarily utilising chemical information for compound combination modelling
Systems toxicology: from basic

research to risk assessment [117]

The integration of classical toxicology

with multiple levels of biological

network information

Perspective of the systems toxicology

field

–

Chemical mixture toxicology: from
descriptive to mechanistic, and

going on to in silico toxicology

[118]

Improving on conventional
toxicological approaches to

modelling the toxic response to

mixtures

Reaction network modelling,
analysing metabolism networks with

computational models

–

A model-based approach for
assessing in vivo combination

therapy interactions [119]

Approach for evaluating the efficacy
of combination antitumor agent

Tumour growth/drug effect model
fitted to single agent data, then used

to quantify the deviation from

additive of the combination

Classifying subadditivity could be
difficult
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TABLE 1 (Continued )

Study Context Technique Limitations

Two-stage model-free tests of

synergy in drug combinations
[120]

A technique to detect synergy in two-

drug combination

No underlying assumption about the

models for dose–response curves are
made

Requires an estimate of the potency

ratio. Low performance for poor
estimates

Biogeographical analysis of

chemical co-occurrence data
to identify priorities for

mixtures research [121]

Chemical risk assessment must

consider joint behaviour of
compounds, but usually only binary

combinations are considered

The paper showed that pesticides

usually have strong co-occurrence
geographically, which should guide

risk assessment

The approach might not be

appropriate for low-order
combinations

Characterisation of mixtures

part 1: prediction of infinite
activity coefficients using neural

network-based QSPR

models [122]

Prediction of infinite dilution activity

coefficients using DECHEMA
Chemistry Data Series

Usage of neural network models to

overcome limitations of linear models

Physical properties modelled,

unclear how well the method would
extrapolate to biological systems

Existing and developing approaches
for QSAR analysis of mixtures [99]

Review of mixture descriptors and
their usage in various QSAR tasks

Review of multiple QSAR modelling
techniques and descriptors

No novel techniques suggested

QSPR approach to predict

non-additive properties of
mixtures [123]

Prediction of vapour–liquid

equilibrium data using a dataset of
167 mixtures of combinations of 67

liquid compounds

Usage of a consensus of nonlinear

predictors (Support Vector Machine,
Associative Neural Network, Random

Forest)

Physical properties modelled,

unclear how well the method would
extrapolate to biological systems

TABLE 2

A list of combination data sources available in the public domain

Data source Combination data Publication

Drug Combination Database 1363 drug combinations [124]

NCATS DLBCL Dataset 459 compounds in combination with ibrutinib in DLBCL [20]

Antifungal Synergistic
Drug Combination Database

210 combinations, 1225 drug–target interactions [125]

Therapeutic Targets Database 97 drug combinations [126]

TWOSIDES 59,220 combinations, 1301 adverse events [127]

NCATS Malaria Dataset 206 compounds, 14,810 combinations in Plasmodium falciparum [50]

Antifungal drug combinations 34 drugs, 200 combinations in Saccharomyces cerevisiae [44]

Antibiotic combinations 21 drugs, 210 combinations in Escherichia coli [128]

DREAM Drug Sensitivity Challenge 14 drugs, 91 combinations on the DLBCL cell line LY-3 [68]

European Chemicals Agency Repository of chemicals manufactured and imported in Europe.

Consists of a significant number of mixtures

http://echa.europa.eu/

http://www.echemportal.org/

TABLE 3

Large-scale chemical and biological data resources that could be utilised for compound combination modelling

Bioactivity resources

ChEMBL: a large-scale bioactivity database for drug discovery [102]

DrugBank: a knowledgebase for drugs, drug action and drug targets [129]
WOMBAT: World of Molecular Bioactivity [130]

Network and pathway resources

SignaLink: a signalling pathway resource with multilayered regulatory networks [80]

STRING: a database of known and predicted protein–protein interactions [103]
STITCH: known and predicted protein–chemical interactions resource [131]

Gene expression resources

Gene Expression Omnibus: archive for functional genomics datasets [132]

Connectivity Map: a collection of genome-wide transcriptional expression data [73]
LINCS: perturbational profiles across multiple cell and perturbation types http://www.lincsproject.org/

http://www.lincscloud.org/

Toxicity/off-target effects resources

SIDER2: side-effect resource [133]

OFFSIDES: resource of data-driven predicted drug effects and interactions [127]
ToxCastTM: a toxicity forecaster resource [134]

228 www.drugdiscoverytoday.com
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FIGURE 1

An integrated approach for analysing compound combinations using chemical and biological fingerprints. For compound combinations, the model will be able to

search the bioactivity space along with integrating network and pathway annotations, gene expression profiles and chemical fingerprint similarities. This will lead to
synergy predictions and developing a mechanism of action hypothesis for the combination that could be further validated by in vitro and/or in vivo experiments.
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combining drugs that act on pathways essential for the survival of

the cancer cell but not the normal cell [32–34]. Recent publications

on tumour heterogeneity and clonal evolution in cancer further

support such practice [35,36]. Genetic diversification as the tu-

mour evolves pointed to distinct and multiple mutations across

the same tumour specimen. Identifying and administering drugs

that could bypass the resistance mechanism of all such identified

mutations could not be realistic, because patient tolerability to the

large number of drug combinations would have to be very high.

However, such studies provide an opportunity to identify onco-

genic pathways that contribute most towards the tumour progres-

sion. This could help prescribe a carefully selected drug cocktail at

tolerable doses, which would be a significant step towards tackling

tumour heterogeneity.

Compound combinations are also a popular approach for anti-

bacterial and antifungal therapy [4,37,38]. Hill et al. evolved

experimental populations of Candida albicans and Saccharomyces

cerevisiae with a combination of heat shock protein Hsp90 inhi-

bitors and widely used antifungals: the azoles [38]. This helped the

authors identify mutations that evolved as a consequence of the

combinations, understand resistance mechanisms as well as sug-

gest strategies that could bypass the resistance. Apart from bypass-

ing drug resistance, the aim is also to achieve greater efficacy
utilising lower-dose combinations compared with higher-dose

monotherapies. Numerous studies that show the greater efficacy

displayed by compound combinations compared with monother-

apy have been published [3,6,39]. This could potentially result in

lower risk of side-effects and, hence, better quality of life [40–42].

Tolerability is of prime concern to the medical and scientific

communities. A recent review discusses the advantages of fixed-

dose combination therapies relative to monotherapy in the con-

text of type-2 diabetes treatment [43]. These include greater effi-

cacy, reduced risk of adverse reactions and lower overall costs.

There are several contributors to determine whether drug combi-

nations do indeed reduce the risk of adverse reactions; one of

which is if a pathway targeted by a drug also contains off-targets

that would cause an adverse reaction.

The rational discovery of novel drug combinations can be

expedited by predictions of combination effects based on data

generated from these experimental studies. Such predictive mod-

els could utilise combination data across disease areas, which

could be another key step towards efficacious multitargeted ther-

apies. This will not only provide an opportunity to exploit the

unexplored and available bioactivity space but could also help

identify novel and unexpected synergistic drug combinations

[19,39].
www.drugdiscoverytoday.com 229
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Identifying synergistic compound combinations
Recent developments in high-throughput approaches to combi-

nation screening have enabled scientists to explore large collec-

tions of compound combinations experimentally. However, even

with sophisticated automation systems, the number of combina-

tions screened is a small fraction of the possible number of

combinations. Strategies for experimentally determining the pos-

sible effect of drug combinations can range from screening several

compounds at a time from a large database to exhaustive pairwise

screening [44–46] such that an effective combination can be

found. There have been several reports of large-scale combination

screening campaigns. Borisy et al. [47] provided the earliest report

of a systematic, large-scale screen of �120,000 compound combi-

nations using a proprietary platform. More recently, Mathews

Griner et al. [20] have described the National Centre for Advancing

Translational Sciences (NCATS) high-throughput platform for

combination screening which screened thousands to tens of thou-

sands of combinations in a checkerboard format (i.e. all combina-

tions of two drugs at n doses each). Subsets of the data generated by

this platform are publicly available (https://tripod.nih.gov/

matrix-client/). Although such high-throughput platforms are

crucial for running large numbers of combination experiments

in a reasonable timeframe, they are expensive, especially if one

considers replicate data and high-resolution checkerboard pat-

terns (i.e. ten or more doses per drug resulting in 100 or more

individual dose combinations). As a result, there are two roles for

computational approaches in this area. Firstly, when faced with a

large collection of combination responses, we wish to have

computational methods that can characterise the combinations

quantitatively, thus enabling ranking and filtering. Secondly, we

desire to identify useful drug combinations prospectively, ini-

tially focusing on pairs of drugs but also higher-order combina-

tions.
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FIGURE 2

Examples of noisy (left) and well-defined (right) response surfaces that are charac

filtering poor-quality combination responses. The colour of each cell represents the 

to red being full cell death.
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Approaches to the characterisation of combination
responses
When characterising combination responses we propose and em-

ploy a two-step process. First, given the large number of combina-

tions tested in a high-throughput setting, we must employ quality

control (QC) metrics to ensure that only robust combination

responses are considered for downstream analysis. Dispense errors,

batch effects and edge effects can introduce noise and artefacts on

screening plates, which result in noisy or incomplete responses

[48]. In a high-throughput setting each plate includes positive and

negative controls, and these can be used to derive plate-level QC

metrics. Examples of such metrics include the Z0, signal:back-

ground ratio and coefficient of variation [49]. Such metrics can

indicate that all combinations on a plate are to be rejected.

However, there are cases where the plate controls perform well

but a few combinations on the plate are affected by a screening

artefact (such as a localised well dispense error or problems at high

concentrations). As a result, it is useful to employ combination-

level QC metrics. Currently, there are no published guidelines for

such metrics. The NCATS platform has implemented a heuristic

QC score [50] that is useful for identifying poor-quality combina-

tion responses. This score takes into account the quality of the

single agent dose responses, the absence of randomness in the dose

combination sub matrix (as measured by spatial autocorrelation)

and thresholds for no activity and variance of combination re-

sponse (Fig. 2). Whereas the method employs several empirically

selected thresholds, its use allows one to filter out severely com-

promised combination responses rapidly.

Having performed screening QC on the set of combination

responses, the next step is to characterise the combination effect

as potentially synergistic or antagonistic. There is rich literature on

the topic of such quantification starting with Loewe, Bliss and

Berenbaum [51–53]. Underlying all these models is the assumption
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terised by the QCScore heuristic [50]. This score is useful for identifying and

assay response at that dose combination where black is no cell death through

https://tripod.nih.gov/matrix-client/
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FIGURE 3

Synergy can be visualised using an isobologram, which displays the dose (in

IC50 units) of drugs A and B required to achieve a specified effect level. The

red dashed line indicates additivity, the line below the diagonal is indicative
of a synergistic combination and that above the diagonal is an antagonistic

combination.
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that the combination effect of two drugs is purely additive – with

the actual definition of additivity being model-dependent. Syner-

gy (or antagonism) is then characterised as a deviation from

additivity.

The Loewe additivity model is mathematically characterised by

the isobole equation. It can be interpreted as modelling synergy as

a departure from dilution effects [53]. Assume for instance that

specific doses of drugs A and B produce a given effect (e.g. 50%

inhibition). According to the isobole equation, if drugs A and B are

additive then there exist several combinations of drugs A and B at

reduced doses that should produce the same effect. For instance,

half the dose of A combined with half the dose of B or one-third of

the dose of A combined with two-thirds of the dose of B should

produce the same effect as A or B alone. Synergy with respect to

this model can be visualised using an isobologram (Fig. 3), which

displays the dose (in IC50 units) of drug A and B required to achieve

a specified effect level. The red dashed line indicates additivity, the

line below the diagonal is indicative of a synergistic combination

and the line above the diagonal is that of an antagonistic combi-

nation. Berenbaum [51] and Chou [54] have defined the combi-

nation index (CI) as a way to quantify synergy based on the Loewe

model. The CI corresponds to the sum of the ratio of the amount of

drug A used in combination to the amount of drug A required as a

single agent for a specific effect (usually 50%) plus the correspond-

ing ratio for drug B for the same effect. A CI <1 indicates synergy

and CI >1 indicates antagonism. This model has been used by

Chou (the Chou-Talalay method) [54] to define several metrics and

graphical representations such as the median effect curves. It is

important to note that the Loewe model is not really applicable

when the two compounds do not produce a dose–response with

the same maximum effect or even when the shapes of the dose–

response curves differ [55].

The Bliss model defines synergy as a departure from indepen-

dent compound effects [52]. Importantly, the model states that the

drugs act in an independent fashion and that there are no effects
because of drug–drug interactions (DDIs). Thus, according to Bliss

independence the fractional response of the combination is the

sum of the fractional responses of the individual drugs minus their

product (Equation 1). Although simple in nature, the model is

not considered to be robust in many situations, because it

often characterises combinations of a compound with itself as

synergistic.

PEA;B ¼ EA þ EB � EAEB (1)

where PEA,B is the predicted combined effect of compounds A and

B, EA is the known effect of compound A and EB is the known effect

of compound B.

Finally, the Gaddum non-interaction reference (or highest sin-

gle agent) model simply defines additivity as the larger of the two

single-agent responses. Although a very simplistic model it is

applicable when the targets of the two compounds have no

functional relation, so that compounds elicit their effects entirely

independently of one another. See [56] for a detailed discussion of

these and other models.

In general, given a combination screen, one selects a model and

for each tested dose-combination the model is used to predict a

combination response. If the observed response is less than or

greater than the predicted response one makes a call of synergistic

or antagonistic, respectively. For checkerboard style screens, the

differences from the model can be visualised in a heatmap, or

otherwise summarised by a scalar value [44]. However, with mul-

tiple models available, it is not always clear a priori which model

should be used to quantify a particular experiment. In some cases,

authors simply report the results from multiple models; whereas

Lehár et al. [24] employ multiple models and use a x2 test to select

the best-fitting model. The definition of a generalisable, robust

model of additivity is therefore still an open problem; however the

latter approach appears to tackle the problem in the most reason-

able manner.

Evaluating and analysing combination data
Methods to predict combination effects can easily identify hun-

dreds of drug combinations that are predicted to be efficacious or

synergistic. Table 4 provides a list of well-known, publicly avail-

able software (free as well as commercial) for analysing combina-

tion data. After appropriate in silico validation techniques one

would, ideally, perform experimental validation of the compound

combination model that has been generated. There are a multitude

of techniques to evaluate combination effects. Some of these

approaches can be performed in high throughput, such as check-

erboard approaches described by Mathews Griner et al. [20] and

Borisy et al. [47], whereas other methods such as fixed-dose ratio

[54] methods are generally more time consuming (but can be

accelerated using robotic automation systems or miniaturisation

technologies) [57,58].

Several in silico studies have performed validation of retrospec-

tive or prospective predictions. A matrix imputation approach was

employed to predict synergistic target pairs that were then per-

turbed using small molecules [59]. A key feature of this approach is

that it estimated the propensity of two targets to exhibit synergism

and, in combination with the imputation framework, selected a

subset of the entire collection of targets that, when screened, will

identify a significant fraction of synergistic pairs. Importantly, the
www.drugdiscoverytoday.com 231



REVIEWS Drug Discovery Today �Volume 21, Number 2 � February 2016

TABLE 4

A list of commercial and freely available software to analyse combination datasets

Combination software URL Licensing

Chalice http://cwr.horizondiscovery.com/ Commercial

Genedata ScreenerW https://www.genedata.com/products/screener/combinations/ Commercial

SynergyFinderTM http://www.ntrc.nl/services/synergyfindertm/ Commercial

CalcuSyn http://www.biosoft.com/w/calcusyn.htm Commercial
CompuSyn http://www.combosyn.com/ Free

Combenefit http://www.cruk.cam.ac.uk/research-groups/jodrell-group/combenefit Free
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formulation of this approach is sufficiently general so that one can

replace targets with compounds. The results of the algorithm were

validated using published data as well as on a set of five in vitro

glioblastoma cell lines.

By contrast to purely computational approaches, the combina-

tion of an evolutionary algorithm (EA) and iterative testing was

used to identify combinations of anti-inflammatory molecules

[60]. In this work, the top-ranked computational predictions

(made by the EA) were experimentally tested and those results

were then fed back into the EA. As a result, the authors were able to

find combinations with significantly improved anti-inflammatory

activities after testing just 550 combinations (out of a possible

nine-billion combinations).

Metabolic network analysis of gene targets in Leishmania major

has been employed to identify combinations of FDA-approved

drugs [61]. This approach also identified synthetic lethal targets

and validated four combinations against these target pairs in an in

vitro model of L. major. Another network-based approach [34] used

drug inhibition and target binding data to identify relevant targets

for combination therapy. The computational results were validat-

ed using siRNA knockdown of single targets and target pairs. An

approach that quantified crosstalk in target networks of drug pairs

[62] was then used experimentally to verify the synergistic effects

of curcumin when combined with multiple drugs, including cap-

saicin and celecoxib, in a rat model of myocardial ischaemia.

Miller et al. [63] employed a drug combination screen along

with phosphoproteomics measurements to develop a computa-

tional model of the signalling network that explained the observed

synergy (epistasis) between insulin-like growth factor 1 receptor

(IGF1R) and cyclin-dependent kinase (CDK)4. The model was then

used to predict that combined inhibition of these targets would

reduce activity in the Akt pathway, which was subsequently

experimentally confirmed. This is also an example where network

models could help explain unexpected synergistic observations, as

well as identify new perturbation points in a network that could be

targeted by a combination of inhibitors.

Finally, high-content approaches have also been used to iden-

tify candidate drug combinations. An example is the construction

of multivariate profiles of compound activity in triple-negative

breast cancer (TNBC) cell lines using high-content imaging [64].

These profiles were then used to compute profile similarity scores

between small molecules, which were subsequently used to predict

five candidate combinations in multiple TNBC cell lines. Of these,

vinblastine and ispinesib showed synergism in three TNBC cell

lines but not in normal fibroblasts. A mouse model confirmed

their antitumour activity, with the finding that the combination

reduced tumour growth significantly when compared with

monotherapy.
232 www.drugdiscoverytoday.com
Utilising gene expression and pathway annotations in
predictive models
Microarrays are an accessible, cost effective and fast way of

measuring cellular responses and gene expression profiles [65],

which facilitates research with the aim to understand regulatory

networks on the basic level, as well as when applied in a drug

discovery context [66]. In recent years, this approach has been

utilised to predict synergistic effects of drug combinations on

cancer cell lines, given gene expression profiles of individual drug

treatments. In the following case studies we point out a functional

enrichment analysis method and an enhanced Petri-net (EPN)

model for assessing synergistic effects of compound combina-

tions. The former study utilises cellular profiling of 14 individual

drug responses for predicting synergy or antagonism of drug

combinations [67]. In this study, differentially expressed genes

after treatment of each of the 14 drugs on human b-cell lympho-

ma (DLBCL) cell line (LY3) from the NCI-DREAM Drug Sensitivity

Prediction Challenge [68] represented the drug signature. It was

hypothesised that correlated drug signatures should predict syn-

ergistic effects, whereas anticorrelation of those signatures indi-

cates antagonism. The rank-ordered list of predicted synergistic

drug combinations was compared to a gold standard experimen-

tal (in vitro) ranking of compound combinations provided in the

challenge, and a measure of concordance (concordance index)

was used to score the validity of prediction. In an effort to improve

the method, functional enrichment analysis was applied on the

overlapping gene signature of each paired drug mapped to protein

interaction network to check interaction of the proteins produced

by those genes. The network approach improved the performance

of the model significantly. In the second case study, an EPN model

was designed to explain mechanism of synergy of compound

combinations from individual compound treatment transcrip-

tional responses [69]. The EPN was applied on gefitinib and

docetaxel and was capable of explaining mechanism of observed

synergistic effects to a good extent. For this purpose, the effect of

each drug on gene expression was depicted in the EPN with tokens

and transitions in different colours, which illustrated the mecha-

nism of synergy. Also, gene expression data of treatment of

different doses of each of the two compounds (in a total of 16

different concentrations) was provided to the model. The model

successfully predicted the effective dose, and predicted genes

involved in the mechanism of synergy using each concentration.

However, as a major limitation the model has been validated on

only one particular drug combination studied here. Also, the

authors acknowledge that, for the EPN model to work efficiently,

knowledge of the targets and downstream signalling pathway

annotations are necessary. Irrespective of the fact that this study

utilises large-scale resources populated with network biology

http://cwr.horizondiscovery.com/
https://www.genedata.com/products/screener/combinations/
http://www.ntrc.nl/services/synergyfindertm/
http://www.biosoft.com/w/calcusyn.htm
http://www.combosyn.com/
http://www.cruk.cam.ac.uk/research-groups/jodrell-group/combenefit


Drug Discovery Today � Volume 21, Number 2 � February 2016 REVIEWS

R
ev
ie
w
s
�
K
E
Y
N
O
T
E
R
E
V
IE
W

annotations, these annotations are not always available in certain

cases.

Gene expression data have also been beneficial in designing

models for predicting chemosensitivity of three widely used drugs

as a single agent or in combination [70]. Cisplatin, paclitaxel and

gemcitabine were tested on 40 human urothelial cancer cell lines

in vitro and cell lines were labelled resistant, sensitive or interme-

diate for each of the drugs. Differentially expressed genes were

derived after application of each drug on each cell line. Among

them, genes that were able to differentiate between resistant and

sensitive cell lines were identified for each of the three drugs. The

accuracy of sensitivity prediction was estimated between 93% and

96% for each of the drugs across cell lines. The probability of

sensitivity of drug combination was estimated by multiplying

probabilities calculated for each individual drug, and the accuracy

of synergistic drug combination predictions was hence assumed to

be around 80%. Even though the probability of sensitivity of drug

combinations was predicted robustly, the model is less successful

in predicting the synergy of cytotoxic effects of combinations.

Moreover, extrapolation of the method to other cell lines or drug

combinations requires generation of extensive in vitro drug re-

sponse data for each combination. In a similar study, kinases that

drive tyrosine kinase inhibitor (TKI) resistance in non-small-cell

lung cancer (NSCLC) cell lines were identified by integrating data

from genetic screens and RNAseq analysis [71]. This analysis led to

the identification of the chronic myelogenous leukaemia (CML)

drug bosutinib as an efficient inhibitor that could induce apoptosis

in TKI-resistant cell lines. Further analysis led to the identification

and validation of the synergistic effects of the combination of

bosutinib and gefitinib in gefitinib-resistant NSCLC cell lines and

suggests a good opportunity for drug repurposing. These studies

suggest that gene expression data of individual compound treat-

ments have potential for predicting synergism and sensitivity of

compound combinations. An algorithm called TIMMA provides

an integrated workflow that employs chemical bioactivity and cell

line sensitivity data, towards predicting synergy for drug combi-

nations and the proteins that these drugs could target [34,72].

However, predicting synergism and sensitivity of drug combina-

tions on a large scale still remains a challenge. Large-scale data-

bases of gene expression data on individual compound treatments

are publicly available such as the Connectivity Map [73] (1309

compounds) and LINCS (20,413 compounds) (http://www.

lincscloud.org/). This could also be an interesting opportunity

to benefit from individual compound treatment databases for

predicting synergism and sensitivity of compound combinations

on a much larger scale.

Genetic and RNA interactions to guide the design of
compound combinations
The effect of a single compound on a biological system can be

thought of as an amalgamation of its effects on different (protein)

targets. The effect of a combination is therefore a complex func-

tion of the protein interactions of each individual compound. In a

localised example, it was shown that the protein dynamics of a

system can be described simply by the linear superposition of the

perturbations of the individual compounds [74]; this result is

intriguing yet the phenomenon of synergy and antagonism sug-

gests that any combination effects are unlikely to be linear in
general. However, chemical perturbation is by no means the sole

process by which a biological system can be modulated. Genetic

perturbations in the form of gene knockout often have similar

effects to the application of targeted drugs (although the behav-

iour of drugs is much more complex owing to dose and binding-

site elements) and have been used as a useful biological probe in

classical genetics. Yet, because gene interaction networks can be

used to predict the effect of a combination of knockouts on the

resulting phenotype, for example epistasis, they could also provide

insight into synergy, and have been used as a context for exploring

drug combinations [75]. Chemical–gene interactions (from single

compound screening against a library of mutants) have been

carried out in S. cerevisiae, and lead to several MOA discoveries

[76]. These could potentially be exploited through the replace-

ment of the genetic deletion with a targeted compound [37].

The development of RNAi yields another biological perturba-

tion technique, because knockdown of a gene also often has a

similar effect to a drug targeting the product of the same gene

(although variation in time and dosage elements can confound

this picture). Double or even higher-order knockdown experi-

ments, known as combinatorial RNAi (coRNAi) [77], are an RNAi

equivalent to compound combinations. These have been investi-

gated to the third order by Sahin et al. [78] with no unintended

silencing or cytotoxicity supporting the viability of the technique.

coRNAi treatments might be deployed directly (they are currently

being investigated as a treatment for hepatitis C) [79], but can

prove even more powerful by providing an added insight into the

effect of compound combinations, by matching their underlying

biological perturbations; it is possible a combination of the two

approaches could prove even more potent [75].

To summarise, whereas there are important differences, mRNA

knockdown and gene knockout are related biological perturbation

methods to chemical–protein interaction. According to this no-

tion of potential equivalence, it might be possible to consider a

broader ‘biological combination’, allowing data from these differ-

ent biological facets to be integrated into a single, more descriptive

model. Data integration of this nature has proved fruitful in other

data-driven fields such as network biology, for example the inte-

gration of gene regulatory and protein–protein interaction net-

works [80], and thus might also be conducive to progress in

modelling the effect of compound combinations.

Combinations as an investigative tool
Although the main interest in compound combinations is as a

prospective avenue for therapeutics, there is also strong potential

in research as an investigative probe of biological network struc-

ture. The concept is similar to synthetic genetic array analysis [81],

which employed combinations of double genetic knockouts to

locate genes that interact nonadditively with regard to phenotype.

This observed phenomenon, termed synthetic lethality [82],

shares certain parallels with chemical synergy. Mapping these

interactions led to the production of gene-interaction networks

[83] as a useful representation of biological space [84]. Taking

advantage of the relatedness of inhibition of a gene product,

and the knockout of the gene itself, the methodology was adapted

by replacing one knockout with a panel of drugs with known

protein targets, known as combination chemical genetics [75], to

test for ‘synergy’ in knockout–compound pairs. The techniques
www.drugdiscoverytoday.com 233
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have been used to derive MOA hypotheses in yeast: for example,

the antianginal drug molsidomine was found to target lanosterol

synthase [85]. The use of chemical perturbation is (idealistically)

preferable to genetic perturbation; whereas library design is diffi-

cult because of ADMET, selectivity and many other problems, in

that in many cases chemical perturbation studies are faster, sim-

pler and easier, allow for the perturbation of essential genes and,

finally, a dose–response curve can be obtained, which describes the

response of the biological system during gradual modulation of a

target – a crucial distinction to most genetic approaches. The

natural progression was then the replacement of the second

knockout with another drug panel, essentially now a pairwise

screen of drug–drug combinations. A synergistic drug–drug surface

not only encodes a genetic interaction but a study found the

surface itself provided deeper insights into the relationship [86].

In fact, it was found that it was possible to classify the local

network topology of the drug targets according to the relative

shape of the response curve [24], paving the way for more-detailed

interaction networks.

Modelling drug–drug interactions
Up to 30% of adverse drug reactions are caused by DDIs. The ability

to model DDIs could play a significant part in understanding the

behaviour of compound combinations, as well as contributing to

the identification of novel synergistic chemical pairs. When ad-

ministered together, DDIs can result in a reduction in efficacy

(antagonism), an increase in toxicity of either or both drugs

(synergistic toxicity) or a previously unobserved effect that is

unrelated to either drug taken by itself (coalistic) [87]. Patients

who take multiple drugs are often afflicted with multiple comor-

bidities, and it is difficult to determine whether adverse events are

the result of side-effects from a single drug, interactions between

two or more drugs or exacerbations of the patient’s underlying

disease(s) [88]. DDIs could have a direct impact on the bioavail-

ability of drugs, as well as their ADMET and drug metabolism and

pharmacokinetic (DMPK) properties. Hence, understanding the

PK and pharmacodynamics (PD) of a drug is crucial to assessing its

(potential) DDIs [88]. This is mechanistically often explained by

the fact that drugs share metabolic pathways, as has recently been

discussed for the case of co-administering antituberculosis and

antimalarial drugs, as is frequently the case in the developing

world [89].

The approaches taken to model DDIs have been presented in

multiple recent studies. One such approach considers the struc-

tural similarity between query drugs and those involved in estab-

lished DDIs to infer the possibility of adverse drug reactions

(ADRs), and requires access to databases of known DDIs with

similarity profiles that include 2D and/or 3D chemical structures,

together with known interactions, targets and side-effects [87].

Similarly, text mining has also been utilised for prediction of DDIs

[90,91], and a recent review summarises these approaches [92].

Network-based approaches for predicting DDIs analyse the com-

mon targets and pathways involved with drug action, and corre-

late these with ADRs [93,94]. Notable examples of this include the

annotation and analysis of 45,180 DDIs of 1352 drugs [93], and

networks of Protein–Protein Interactions (PPIs) constructed for

1249 FDA-approved drugs that included 4776 associations to

1289 targets [94]. The main drawback of network-based
234 www.drugdiscoverytoday.com
approaches is an excessive number of assumptions that are made,

which can ultimately decrease predictive capabilities. A compari-

son of dynamic and static models for the prediction of DDIs via

inhibition mechanisms has shown similar performance between

both approaches [95]. The aforementioned studies provide a set of

well-annotated datasets for predictive combination models to

train on, alongside extensive pathway and ADR annotations.

Traditional QSAR approaches are based on two key assump-

tions: (i) activity (property) is a function of structure; and (ii)

similar structures will have similar properties. These approaches

are attractive because after building a model it could be used for

prediction of results of DDIs for millions of new combinations

created by almost any drugs. QSAR modelling of DDIs using

SiRMS [96] and GUSAR [97,98] approaches was performed. To

enable this approach, a combination of two drugs participating

in DDIs was formally represented as a binary chemical mixture.

Predictive models based upon �25,000 DDIs caused by more

than 200 drugs were developed for inhibition of 1A2, 2C9,

2D6 and 3A4 – four major cytochrome P450 (CYP) isoforms.

Because the validation of QSAR models for DDIs is more compli-

cated than in traditional QSAR analysis, developed models were

validated using a ‘compounds out’ strategy specially developed

for rigorous validation of QSAR models of mixtures [99]. Predic-

tions for more than half of the one million new DDIs were made

using developed models.

Despite the plethora of different existing approaches for model-

ling DDIs, the prediction of new drug interactions, especially for

complex medication regimens, remains an extremely challenging

task that would still benefit from the development of new model-

ling approaches. Such models would require high-quality data to

be trained upon, which cover multiple aspects of the known

interactions between drugs. These datasets would benefit from

the inclusion of target proteins for each compound, pathways that

these targets are involved in, known resulting side-effects, bio-

availability of the compounds and dosage levels. Additional infor-

mation, such as the health, lifestyle and medication status of the

individual from which this information is derived could prove in

the future as modelling approaches become more refined. Al-

though many tasks remain to be solved, once and where func-

tioning, DDI modelling will be invaluable in guiding drug choice

for combination therapy and hopefully result in fewer adverse

effects.

Towards an improved understanding of compound
combination effects: data integration, modelling and
biological interpretability
A key bottleneck in identifying and understanding the molecular

effects of compound mixtures on a systems level is the integration

of biological and chemical information. The strengths, weaknesses

and the challenges of integrating data from disparate sources have

been discussed [100]. Compound activity is detectable on multiple

levels in the living system – phenotypically on the gene expression

patterns and on the target interaction level as well [101]. Mean-

ingfully combining diverse information requires an understand-

ing of the specific context in which individual datasets have been

devised. This diversity could also involve specific procedures fol-

lowed, experimental platforms, disease area focus and to some

extent the cultural differences at the source of this information as
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well. This variation becomes even more crucial and challenging to

tackle in the case of compound combinations.

In the context of this review, the data that need to be integrated

for a comprehensive systems-level analysis to identify compound

combinations efficiently include chemical bioactivity data [102],

targets and pathway annotations [80], gene expression data [73]

and protein interactions [103]. Along with these, annotations

regarding negative and positive feedback loops in pathways would

be significant in optimising the predictive model. Unfortunately,

these annotations are not always available as a part of network

biology resources and have to be extracted from publications. The

challenge is not only to identify specific data sources that can be

integrated but also to have a common identifier(s) that can con-

nect these datasets. Although this can be reasonably achieved with

a good level of accuracy and confidence for anecdotal cases, data

integration on a global scale, towards obtaining a generalised

systems level understanding, deals with a much higher level of

complexity. For example, a limited number of select pathways

involved in a certain disease type, along with chemical bioactivity

data tested against protein targets specific to the involved path-

ways could be obtained [104], but very rarely is information

available on a larger scale. Cross-referencing at this level can be

tedious, and in some cases meaningless. To predict compound

combinations efficiently, comprehensive and quantitative data

are key but often unavailable. At the same time, integrated rela-

tional databases are valuable in efficiently making biological and

chemical predictions towards answering specific questions, for

example generating MOA hypothesis for an observed phenotypic

effect as a result of compound activity or identifying perturbation

points along a given network(s) for identifying efficient drug

combinations [16] and subsequent experimental validation. For

this purpose, robust algorithms that consider and address the

limitations of the integrated dataset are needed. Hence, careful

consideration of the datasets and sources to be integrated is

required, working towards answering the scientific questions of

interest while enabling hypotheses and knowledge-driven analy-

ses.

Challenges in the identification of useful compound
combinations
Drug combinations provide many advantages in the treatment of

diseases with complex aetiology, usually involving multiple tar-

gets and pathways. Even though drug combinations in some cases

do lead to increased specificity [29], concerns regarding the side-

effects of drug combinations still remain. Although this concern

has been reported [105], and observed in the case of teratogens

[106], several studies have not found evidence of such synergistic

toxicities and indicate that the benefits of combinations outweigh

the potential side-effects [107–109]. A notable concern when

considering combination therapies in vivo is the role of PD, PK

and interactions thereof in leading to unintended side-effects and/

or lack of efficacy [110].

Although the reduction of drug-level-related side-effects is a key

driver in the move to combination therapies, another limitation,

in some cases, is that combination effects are dependent on the

biological environment. In particular, synergies observed in vitro
might not lead to effective combinations in vivo [50]. As an

illustration, Brandl et al. [64] reported that synergism between

vinblastine and kinesin spindle protein KSP/Eg5 inhibitors is

observed in TNBC cells but not in normal fibroblasts. Even in

the same biological setting, different routes of administration

might or might not lead to synergistic effects. For example, Koles-

nikov et al. [111] report that effects of topical combinations of

analgesics mimic the effects of same combinations when admin-

istered systemically. By contrast, Banner and Press [107] report

that oral administration of phosphodiesterase (PDE)3 and PDE4

inhibitors does not lead to synergistic effects, whereas an inhaled

combination does. Thus, combinations offer many advantages but

at the same time care must be taken to understand the systemic

effects of drug combinations, as characterised by the PD and PK of

the individual drugs and their effects on each other.

Concluding remarks
Compound combination studies integrating biological and chem-

ical knowledge provide an opportunity for tackling key therapeu-

tic and toxicity issues. Most prominently, these issues involve

efficacy, drug resistance, side-effects and dosage tolerability in

patients. These are problems that have always dogged the field

of drug discovery but for which an efficient solution is yet to be

achieved. Combination analyses studying chemical properties and

bioactivity data do support and enhance the discovery of drugs

that display better selectivity and possibility of overcoming drug

resistance. However, the more we understand about this field the

more numerous are the potential issues that surface. These include

the possibility of undesired drug interactions, side-effects, biologi-

cal selectivity where the combination works only in specific mi-

croenvironment and the differences in efficacy as a consequence of

drug administration routes.

In the area of combination therapies, a deeper understanding of

the underlying biological impact is required, such as that on gene

expression and regulatory pathways. This can be achieved by

integrating chemical bioactivity data from different realms of

the biological system, viz. gene expression, gene–protein interac-

tion networks and pathway annotations, among others. This

approach can also assist in generating biologically meaningful

MOA hypotheses for combinations of chemicals, and will help

provide a comprehensive and solid foundation on which future

chemical combination analyses could be performed. Such studies

could have a significant impact on our understanding and appli-

cations of compound combinations. These include not only com-

bination therapeutics but also pesticides, household chemicals

and cosmetics that could otherwise have a potential health and

environmental impact.
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