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ABSTRACT | Modern high-speed networks have evolved from

relatively static networks to highly adaptive networks facilitat-

ing dynamic reconfiguration. This evolution has influenced all

levels of network design and management, introducing in-

creased programmability and configuration flexibility. This

influence has extended from the lowest level of physical hard-

ware interfaces to the highest level of network management by

software. A key representative of this evolution is the emer-

gence of software-defined networking (SDN). In this paper, we

review the current state of the art in reconfigurable network

systems, covering hardware reconfiguration, SDN, and the in-

terplay between them. We take a top–down approach, starting

with a tutorial on software-defined networks. We then continue

to discuss programming languages as the linking element be-

tween different levels of software and hardware in the

network. We review electronic switching systems, highlighting

programmability and reconfiguration aspects, and describe

the trends in reconfigurable network elements. Finally, we

describe the state of the art in the integration of photonic

transceiver and switching elements with electronic technolo-

gies, and consider the implications for SDN and reconfigurable

network systems.

KEYWORDS | Field-programmable gate array (FPGA); reconfi-

gurable devices; software-defined networks; switching fabrics

I . INTRODUCTION

The Internet provides the infrastructure upon which our

modern world is built. Computer networks underpin mod-

ern commerce and industry as well as enable the social

networks that are at the heart of modern life. They are
characterized by a continuous evolution, with tensions

between the practical and the desirable. As a flourishing

and fertile networking environment, the Internet has re-

quired innovative design and management practices to

evolve. Into this environment, software-defined networks

have come to describe a paradigm for exploring innovation

in network design and operation. While software-defined

networking (SDN) seems to have appeared suddenly, it is
actually part of a long history of trying to make computer

networks more programmable and to capitalize on the

reconfigurability of the underlying systems.

It is our contention for this paper that SDN and its

predecessors are distinctive from reconfigurable networks

yet serve to drive the evolution of reconfigurable network

systems. We maintain that the approach of the SDN pa-

radigm will dominate the entire breadth of network system
reconfigurability: from the configuration of devices at set-

up to the reconfiguration and update of those devices over

their lifetime. The SDN paradigm can offer well-defined
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interfaces to devices. While such SDN interfaces may offer
a subset of the devices’ capabilities, they permit a flexible

reconfiguration of network systems independently of the

details of the device implementation. As network systems

become more complex both in routine operation and in

their configurations, SDN provides an evolvable pathway

between devices.

To understand the symbiotic relationship between

SDN and reconfigurable network systems, this paper takes
a top–down approach. We begin with a short tutorial on

software-defined networking. A discussion of the inter-

faces between different elements of a software-defined

network follows, and Section III surveys programming

languages used across these interfaces. We consider how

SDN affected the evolution of programming languages

over time, and extend the discussion to proprietary envi-

ronments. Section IV provides a hardware perspective to
reconfiguration in current electronic switching devices.

This section describes header processing (as the main

operation affected by SDN), and extends to additional

networking functions as a place for future innovation in

SDN. The technologies for reconfigurable network systems

are introduced in Section V, and we predict the impact of

these technologies upon such systems. Finally, Section VI

considers the integration of photonic transceiver and
switching elements with electronic technologies in future

systems and discusses the implications for SDN and recon-

figurable network systems. We appreciate that this paper

targets a wide audience, and therefore suggest that SDN

experts skip the remainder of this section along with

Sections II and III.

A. Foundations of SDN
SDN is a network paradigm. As SDN is an assembly of

ideas drawn from a range of innovation efforts, it has sev-

eral slightly different definitions (e.g., [1]–[4]). Key to all

these definitions are the strong isolation between different

planes in the network (primarily between the control and

data plane, as we explain next), central management, and a

high level of programmability. The isolation between con-

trol plane and data plane is not unique to SDN; the ac-
cumulation of related functionality into layers is common

practice across networking disciplines. The strength of

isolation has varied across different types of networks.

In order to explain SDN, let us consider the common

current network environment, the Internet. At its heart,

the Internet consists of routers connected with each other

and with hosts, servers, and clients. Routers form the

nodes of a network interconnecting multiple hosts and
other routers. Each router forwards packets along links,

and the router decides where to forward packets in the

data plane using information derived by the control plane.

A simple control plane is a computer program that (among

other duties) uses routing protocols to discover pathways

upon which to forward packets. It had been commonplace

for a single manufacturer to provide an integrated system

that would implement a given set of routing protocols,
compute appropriate forwarding rules, and install these in

the hardware of the data plane. Such systems provide little

opportunity to install new or experimental control planes

(e.g., a new algorithm that routes packets according to a

different criteria) but in return the limited flexibility was

balanced by a system that offered most customers what

they required. Each router vendor would satisfy the com-

pliance need, meaning their products behaved correctly
and conformed with appropriate Internet standards. How-

ever, such a vertically integrated system offered little

opportunity for innovation. Additionally, the vertically in-

tegrated systems meant that a superior data plane from one

vendor could not be simply connected to the superior

control plane of a competitor vendor.

Such vertically integrated systems meant that network

service providers (and researchers) were frustrated by the
time and expertise needed to develop and deploy new

network services. The widespread use of vertically in-

tegrated networking equipment has left limited opportu-

nity for innovation. Aside from customers and researchers

that wished to deploy and reinvent the control plane, re-

searchers focused upon the network data plane realized

that commercial systems rarely provided the right environ-

ment to evaluate their ideas. In contrast to the software
used for implementing new routing algorithms in the con-

trol plane, innovation in the data plane could require

measurements, and redesigned control of the data plane’s

high-speed networking hardware. Given that data-plane

design is a delicate balance of considerations (speed, fea-

tures, and pricing), unnecessary features were shunned by

commodity network-equipment vendors. This lack of op-

portunity for innovation motivated the development of
SDN on reconfigurable systems.

B. Reconfigurable Systems
The reconfiguration of hardware has been a core re-

quirement underlying many decades of networking suc-

cess. Reconfiguration in network systems covers a wide

spectrum of use cases from the onetime configuration of

devices when a system starts its life, through the runtime
reconfiguration of algorithms implemented in networking

devices to allow their operation at line rate, to adapting the

operation of previously configured devices by maintenance

programming.

Throughout much of the long history of computer net-

working, reconfigurable logic has provided core function-

ality in commodity electronics. Such an example is the

early use of programmable array logic to permit the prog-
ramming of unique device identifiers [e.g., media access

control (MAC) address] after device manufacture. This

permitted the cheap manufacture, assembly, and testing of

devicesVdespite each one being uniquely configured.

Field-programmable gate array (FPGA) devices have a

long association with high-speed networking equipment.

For example, FPGA devices are commonly used to provide
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the control logic required to interconnect application-spe-
cific integrated circuit (ASIC) devices while providing

management functions along with power and thermal

control. FPGA devices have been widely used on high-

speed network interfaces to implement rules intended to

process incoming and outgoing packets (e.g., for filtering

packets) and continue to see use as offload processing,

configured to provide data processing as either a coproces-

sor alongside more general purpose computer systems or a
less-flexible dedicated network switch silicon. Since FPGA

devices can be configured in live systems, they have seen

widespread use implementing network protocols, and

protocol-translation services. In each of these cases, the

FPGA can be reconfigured as requirements change.

In this paper, we treat reconfiguration as a spectrum of

activities ranging from initial configuration, through in-

system changes in functional design (complete and partial
reconfiguration), to include updating parameters within a

reconfigurable device (such as table entries). We distin-

guish between reconfiguration and programmability. By

reconfiguration we refer to selecting one option from a

given set (including a range of values, e.g., set register

value to 0xF) to change the operation of an element. By

programmability, we refer to providing a set of instructions

(of varying type, number, and order, e.g., repeat a lookup
operation until a match is found) to set the operation of an

element.

C. Biased History: Reconfigurable Network
Systems and SDN

We assert a close relationship between reconfigurable

(network) systems and SDN. Recently, SDN owes much of

its journey into popular consciousness on the back of
OpenFlow [5], an interface between the control plane and

the data plane. However, the core ideas of software-defined

networking predate that work by several decades. Recon-

figurability has played many critical roles, from the earliest

implementations of network prototypes [6] through work

on active networks [7] and flexible network systems [8]. In

addition, a series of SDN interface approaches propose

alternative protocols for control-plane programmability,
and we present them extensively in Section III.

The OpenFlow interface was first and foremost an

open-source standard. The code, documentation, and re-

ference implementation (software and hardware) are

openly available to any interested party. Such practice is

not new, as much of the early Internet Engineering Task

Force (IETF) work began as open development. What

makes the OpenFlow particularly interesting was its re-
liance on open-source hardware based upon reconfigurable

systems [9]. If SDN owes much of its relaunch to

OpenFlow, then OpenFlow owes much of its popular adop-

tion to the ready availability of implementations. The

NetFPGA [10]–[12] platform, itself an open-source FPGA-

based reconfigurable platform, provided the ideal base for a

prototype OpenFlow hardware implementation [5].

It is clear that reconfigurable systems have made core
contributions to networking in general and SDN in parti-

cular. Feamster et al. [2] provide a technical history of

SDN, and additional surveys can be found in [3] and [13].

D. Scope and Related Work
We presume that the reader is familiar with the key

elements of common Internet-style packet-switched net-

works, where each packet has information sufficient for
conveyance toward the final destination. However, any

network is more than a simple process that forwards pack-

ets along links in a network. Networks are subject to a

combination of requirements such as the coordination of

decisions about where to send packets, the need to opti-

mally interconnect different types of physical networks

(e.g., wireless mobile and wired), or the need to subdivide

a network based on geography or administrative domain.
Each function adds complexity to the organization and

operation of the underlying network. Tackling the combi-

natorial effect of complexity is not specifically considered

within the Internet. It is the control of this expansive

complexity that SDN attempts to tackle.

We have purposely limited the scope of this paper to

local area network (LAN) and wide area network (WAN)

applications. While the intersection of reconfigurable sys-
tems and SDN is wide ranging, the resurgence of interest

in SDN has remained firmly focused upon LAN and WAN

(with emphasis on Internet protocols and wired Ethernet-

based networks, unless otherwise noted). While this is not

an SDN-imposed restriction, it is the most common use

case for SDN-based networks.

Similarly, we limit the scope of this paper to wired

networks. SDN is independent of the physical media, as
the abstraction of the network elements make this implicit.

However, we will not explicitly explore the implications

for mobile/wireless networks here. Interested readers may

find relevant an early SDN-enabled for mobile networks

[14], optimizing placement of overlapping LTE cells [15],

and an example of a full enterprise deployment incorpo-

rating authentication, authorization, and accounting [16].

Additionally, we mention only in passing the plethora of
other software-controlled networks, such as advances in

networks-on-chip (NoC) reconfiguration under software

control. Such work has ranged from reconfigurable topo-

logies [17] and configurable channels [18], to fault recov-

ery [19] and circuit-switched NoCs [20]. Finally, while

reconfigurable systems have made an impact upon the

wireless domain through software-defined radio (SDR)

[21], we will not discuss these technologies here.
While not specifically SDN, as a matter of scope it is

important to make clear the relationship with network

functions virtualization (NFV). NFV is an emerging net-

work architecture concept that employs host virtualization

technologies such as Xen [22] that allow entire classes of

network node functions to be treated as building blocks.

These blocks may be connected, or (in the language of

Zilberman et al. : Reconfigurable Network Systems and Software-Defined Networking

1104 Proceedings of the IEEE | Vol. 103, No. 7, July 2015



NFV) chained, together to create communication services.
It is clear that SDN complements the NFV idea and pro-

vides a powerful enabling tool. However, NFV is a mecha-

nism for organizing elements along the datapath in a

network (e.g., firewalls, network intrusion detection sys-

tems, caches for various traffic types). Since an initial

white paper [23], researchers have extracted some of the

ideas of NFV into the form of a reconfigurable network

system [24], and there is a nascent community engaged in
abstracting such data-plane elements to enable SDN-like

innovation in network function control [25].

II . SOFTWARE-DEFINED NETWORK

A. Introducing the Software-Defined Network
Utilizing SDN, the software-defined network may

naively be considered as based upon simple concepts:

SDN networks routinely utilize a common and well-de-

fined interface between a control plane and a data plane.

The control plane is responsible for global coordination

(such as routing and fault recovery). The data plane is
where routine packet-by-packet operations occur. Excep-

tional events in the data plane become events sent to the

control plane. The control plane can modify data-plane

behavior. The separation of the control plane and the data

plane is not a new concept. It might be argued that what
SDN popularized is the use of a clearly defined interface

between the two. Next, we compare a traditional router

with SDN.

Fig. 1 illustrates a router-based network alongside its

SDN equivalent. In each case, there is a subdivision of

work between the data plane and the control plane. The

data plane implements several processing functions on

each packet: 1) buffering (and/or storing) packets while
the headers are processed; 2) examining the header and

looking up header information in the forwarding table (the

table storing the forwarding rules) to identify the actions

the switch should perform; and 3) queuing packets for

transmission. An example of a switch action is updating

the time-to-live (TTL) in IP packets. (The TTL field is

decremented each time a packet passes through a router.

When the value reaches zero, the packet is discarded and
an error is generated.) These functions are done for all

routers, whether SDN or not.

In both cases, the control plane must handle all possi-

ble circumstances, including any exceptional packets. For

example, in IPv4 and IPv6, packets that exceed their TTL

require such exceptional handling to include discarding

the packet and returning a control packet to the source

reporting the error. The control plane also configures the
data plane and manages the mechanisms by which the data

Fig. 1. Functionality in a classical router-based network and the equivalent SDN network. (Hosts are not shown.) (a) Classical-router network.

(b) SDN network.
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plane forwarding tables are computed and configured. Ty-
pically, this involves running one or more routing proto-

cols, exchanging local routing information with other

router peers, and deriving a local forwarding table.

Commonplace approaches to separate control-plane

and data-plane functionality involve implementing control-

plane functionality in a high-level programming language

and operating on a general purpose processor. The control

plane may implement sophisticated programs, but without
optimization, per-packet processing performance may be

low. In contrast, the data plane implements optimum net-

work performance (e.g., high per-packet processing rate,

minimal latency), but only for the most commonly en-

countered cases.

As show in Fig. 1, equivalent SDN systems support

identical functionality. These consist of a data plane with an

optimization for high-speed forwarding and a control plane
to handle exceptions and create content for the forwarding

table of a switch element. The differences arise due to

differences in the abstractions defined between the data-

plane system and the control-plane system among SDN

implementations. Effectively, SDN treats network devices

as fast but simplistic forwarding elements which can be

used as building blocks for higher order functionality, such

as routing and access control. Furthermore, by providing a
common abstraction, new architectures can arise. For ex-

ample, as illustrated in Fig. 1, the SDN network may share a

single SDN controller among different switch elements.

B. Reducing Complexity: Motivation for SDN
Network architects, engineers, and operators are pre-

sented with the challenge to provide state-of-the-art net-

work infrastructure and services, all while minimizing the
associated purchase and operation costs. Researchers in

networking extend this challenge by also seeking to ex-

plore novel and potentially disruptive ideas in a state-of-

the-art network infrastructure. It is into this space that

SDN has arisen.

A core design principle of the SDN paradigm is to de-

fine an open interface, exposed by network devices, which

allows control of the connectivity and traffic flow of the
device [26]. This interface definition allows seamless net-

work reconfiguration of the network control logic. Effec-

tively, SDN tries to define a common abstraction which

encodes the reconfiguration capabilities of the underlying

network devices.

The SDN thesis is in two parts: first, networks lack the

ability to enable innovation, and second, they lack proper

network abstractions. These limitations have resulted in an
inability to keep pace with user requirements and to keep

the costs of such networks under control. In part, this

challenge to innovation stems from user requirements that

are inflexible or unclear (e.g., user requirements that are

stated informally, or user requirements that are statically

bound to particular systems). Pursuit of the SDN thesis

leads to the notion that control and maintenance of

network infrastructure and services is better done by a
machine which exploits the common control abstraction

across all network devices, from programmatic configu-

ration to monitoring and mechanized management.

We now describe examples where the use of SDN

makes tangible impact on the complexity of a problem. The

first shows how SDN can be used as an innovation enabler.

In this case, SDN addresses an ongoing problem. A net-

work operator wishes to try new ideas in an already com-
plex network. The operator wants to understand what

changes occur, how those changes have impacted the net-

work, and to understand and interpret the resulting sys-

tems. Furthermore, in common with any good science, the

operator wants repeatability with well-defined constants

and variablesVparticularly in attempting to quantify the

impact of the change. The idea of testing innovation within

existing networks provided a core motivation of the origi-
nal OpenFlow paper [5].

A second motivating example shows how a conso-

lidated viewpoint impacts networking. A consolidated

viewpoint is one whereby an observer could see and/or

control an entire network rather than rely upon triggering

a desired behavior by configuring many autonomous de-

vices. A consolidated viewpoint also permits both im-

proved behavior and new applications. Imagine a security
scenario: a malicious machine is interrogating machines,

probing for vulnerabilities, but doing so in a nondeter-

ministic way. Observations of small amounts of malicious

traffic may go unnoticed. However, centralized informa-

tion would have identified the malicious intent faster

through improved global awareness.

Now we consider a more sophisticated routing exam-

ple. In a simplified network, all links are interconnected by
routers, each making its own local forwarding decisions

about the next hop to send a given packet based on desti-

nation address. In contrast, routing in such a non-SDN

network is the result of a coordinated exchange of infor-

mation about local connectivity, whereupon a routing me-

chanism can identify new or updated pathways. In a

distributed network of routers, an operational failure leads

to each router identifying the optimum path and making
simple optimizations leading to local forwarding rules.

However, despite a simple routing solution electing an

apparent optimum, it is in fact a local minimum, and this

solution can lead to overloading in (other) nonlocal links.

The solution then involves each participant router iterat-

ing solutions in the hopeful (but nonguaranteed) pursuit of

a global optimum. With more (nonlocal) routing informa-

tion, a better global routing solution could be found,
avoiding the intermediate local minima and improving

convergence. A very simple example of this situation is

shown in Fig. 2: Each host (HA through HD) communicates

with host HE, with a link capacity of 10. Initially, all the

traffic goes through link L1. In a distributed network, if

link L1 fails, each of the routers will autonomously try for

the next best path. This means that initially all traffic will
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be directed to link L2. Suppose A and B succeed. Then C

and D will fail, as the link will be overprovisioned. C and D

will then autonomously try link L3 and succeed. In a net-

work with centralized traffic management, such as pro-

vided over SDN, router D will first announce the failure to

the traffic management application, which reprograms
(through the controller) all routers.

As suggested by this example, the ability to make rout-

ing decisions is improved when a regional or global aware-

ness of a system of routers is available. Without an SDN

approach, the use of local-only information leads to poorer

results in general and does not take advantage of well-

established heuristics that can operate when knowledge

and control on a broader scale is possible.

C. Actualization of SDN
To date, network complexity has been tackled by mod-

ular decomposition or modularization (breaking a problem

into subtasks) and abstraction (dealing with ideas and roles

rather than specific implementation details). The same

principles apply to the use of SDN to limit network control

complexity. SDN control functionality is commonly div-
ided into multiple abstraction layers, in an effort to sim-

plify and modularize the control tasks. Fig. 3 presents a

generalized model of an SDN-enabled network control

architecture. The architecture comprises three distinct

layers: the data, control, and management planes.

The data plane, the lowest layer of the architecture, is

composed of the hosts and devices of the network. In order

to enable programmability by the control plane, the SDN
paradigm builds a simple and clean functional separation

of network devices, aiming to transform each device into a

simplified forwarding engine that can be remotely con-

trolled through a well-defined but restricted southbound

interface (SI). The data-plane functionality of an SDN de-

vice comprises a limited set of operations, such as packet

header parsing and extraction of a header field tuple, sup-

port for a fixed set of packet operations (such as header
field manipulation and forwarding through a specific set of

ports), and the ability to match packet header tuples

against a lookup memory primitive (e.g., a hash table or a

content addressable memory [27]). By contrast, the con-

trol interface of the switch enables an external entity to

define the lookup memory entries and associate them with

packet actions (e.g., forward any packet addressed to A
using the nth port of the switch). Such control functions
can also encompass the handling of exception packets, in

cases where no specific handling rules exist for a packet,

and for the accumulation of usage information such as

packet counts. A final essential feature for the SI that

shapes the SDN abstraction across layers is the flow-cen-

tric treatment of packets. In the context of SDN, a network

flow is an ensemble of packets with header values that

match specific ranges. For example, a TCP flow can be
identified through a match with exact values for the IP

addresses, the IP protocol field, and the TCP port numbers,

Fig. 3. Model of an SDN control architecture. Functionality is separated in three layers: the data plane, the control plane, and the management

plane. Integration between layers is realized through the southbound interface (SI), connecting network devices with the network operating

system, and the northbound interface (NI), connection control application with the network operating system.

Fig. 2. Simple network topology with multiple links between

routers D and E.
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while a routing flow can be reflected through a match for

the IP destination address. Effectively, the flow granularity

is user defined and dynamic, comprising any set of packet

header fields (Fig. 4 presents the available header fields in

OpenFlow version 1.0). The flow abstraction is fundamen-

tal across all network devices and permits control conver-

gence across different network elements (e.g., routers,
switches, firewalls, and middleboxes).

In order to illustrate the design of a pragmatic SI, we

elaborate the abstraction of the OpenFlow protocol. Each

network device is modeled as a datapath, an ensemble of

device ports and flow tables. The flow table is a core pro-

tocol abstraction reflecting the device forwarding policy.

Each flow table entry is split into three sections: the

flow match, the action list, and the statistics. The flow
match defines a flow using all the important header fields

of a packet. Field wildcarding is supported, meaning any

value will be accepted on the designated fields. The flow

action list contains a list of packet operations, allowing

header modifications and packet forwarding, applied to

every matching packet. Finally, flow statistics of matched

data include both byte counters and packet counters. Fig. 4

presents the structure of the flow table entry and two ex-
ample entries. The first is a routing flow, matching only

the destination address and forwarding packets with desti-

nation IP address 8.8.8.8 to port 2. The second is a flow

switching entry, where all ten fields need to match the

table entry. The action is set to drop a matched packet. We

use these examples to highlight the generality of the

OpenFlow abstraction to flexibly accommodate data-plane

processing complexity. While the routing rule requires
only a destination IP address extraction from each packet,

the flow switching policy exhibits higher complexity. Be-

cause flow matches from different flow entries may over-

lap, the protocol assigns a flow priority to each flow entry

in order to break ties. In addition, each flow entry contains

optional timeout values, which identify the time period

that a flow remains active in the flow table. Furthermore,

the protocol provides message primitives to control the

flow table, to query switch configuration and port and

table statistics, and to intercept and inject data-plane traf-

fic. The ability to intercept traffic is commonly used as an

exception channel for traffic that is not handled by the

device policy and, along with the network statistics polling

messages establishes a set of powerful primitives to de-
velop proactive and reactive control schemes.

The primary (operational) benefit of the SDN paradigm

is the flexibility to rapidly develop new control logic in

networking elements and effectively enable evolvability. In

order to achieve this, the SDN paradigm exploits the flex-

ibility of high-level languages and employs a control-plane

layer to implement the network logic on general purpose

servers. The control layer, often referred to as the network
operating system (NOS), provides abstracted interfaces to

network forwarding elements of varied capability and SI

support, while managing contention for resources. Effec-

tively, the control-plane layer is responsible for synthesiz-

ing the output of the control applications running on top of

the NOS into a forwarding policy and distributing it to all

the switches of the network. Additionally, the control plane

is responsible for transforming input from the SI into
semantically richer higher level abstractions, e.g., estab-

lishing the network topology. Furthermore, in order to

improve the scalability and availability of the control plane,

existing NOS borrow established techniques from the dis-

tributed systems domain to achieve horizontal scaling be-

tween control-plane nodes. Such distributed NOS employ

an abstraction layer, the east–west interface, which allows

seamless synchronization between the views of individual
data-plane nodes. Such interfaces are implemented using

distributed consensus protocols or popular database ser-

vices, like the Infispan [28] distributed key/value store

which is employed by the OpenDaylight controller [29].

While maintaining a common network view between dis-

tinct nodes, this approach permits the data-plane control

requirements to be scaled among multiple servers.

Fig. 4. Examples of matching rules and actions. The first example (a) shows a routing rule matching of a destination IP address 8.8.8.8 to

output port 2. The second example (b) shows a rule matching each field in the header with a specific value, and dropping the packet

if all the fields are matched.
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There exists a tension between centralization and de-
centralization. Centralization is considered to offer en-

hanced network control and planning. For several of the

SDN use cases (e.g., security or globally optimal routing),

centralization is an enabling force. However, such central-

ization runs contrary to historic practice. Decentralized

approaches are sometimes regarded as more resilient to

failure and robust to changes in circumstance. While this

tension is not resolved, significant efforts are taken by NOS
(e.g., OpenDaylight) to ensure fundamental properties of

resilience can be maintained by multiple redundant servers.

Finally, the top layer of the SDN architecture, the

management plane, consists of the management applica-

tions which manifest the control logic of the network. This

layer consists of common network control applications like

firewall, access control and routing, but can also enrich the

network capabilities by introducing new applications. In-
teraction between control applications on the management

plane and the control plane is realized through the north-

bound interface (NI) of the NOS. The NI is defined by the

control plane of the network. Its primitives vary between

platforms, spanning from direct SI access to indirect access

based on building new primitives (synthesizing multiple

low-level interactions of the SI). Control applications can

run on hosts separate from the control-plane nodes, ac-
cessing the NI through various standard services, or they

can be physically integrated with the control layer during

the compilation of the NOS.

III . PROGRAMMING LANGUAGES AND
PLATFORMS FOR SOFTWARE-DEFINED
NETWORK RECONFIGURATIONS

The SDN paradigm defines an abstract architectural model

for the control of the network and identifies some key

design properties (e.g., flow-centric treatment of traffic).

The realization of SDN across the different layers of the

network still remains an open question for the research

community, which we elaborate on in this section.

The majority of research efforts in the field of SDN

programming languages and platforms have focused on the
control and management planes, while data-plane research,

with its line-speed expectations, has limited research to only

a few facets based upon reconfigurable devices.

A. Management Plane, Control Plane, and NI
Programming Languages

The management and control plane of the SDN archi-

tecture orchestrates the network logic. The primary design
goal of the control plane is to expose an application

programming interface (API), the NI, which allows devel-

opers to focus on programming the network rather than the

device, thus abstracting the effort to consolidate control across

multiple devices and locations. In addition, control-plane

platforms aim to construct new reconfiguration abstractions,

by synthesizing low-level reconfiguration capabilities of the

underlying network infrastructure. For example, heteroge-
neous support of SDN reconfiguration capabilities across the

network forwarding devices (e.g., variable support for fast-

path packet modifications between forwarding elements) can

be abstracted through runtime network policy optimization

(e.g., setting up end-to-end paths that apply packet modifica-

tions on the most appropriate device of the path).

The NOS is the main building block of the SDN control

plane. Similar to a traditional operating system, it executes
management-plane applications, and it is responsible for

coordinating access and securing network resources. Early

NOS approaches, like Ethane [30] and NOX [31], provided

low-level OpenFlow protocol translation and multiplexing

and supported basic network services, like switching

Ethernet address monitoring in order to map them to net-

work device ports and minimize traffic broadcasting) and

user-based access control (strong user authentication and
association with a network policy that allows use of spe-

cific applications). Nonetheless, the wide adoption of the

SDN paradigm has motivated the enhancement of NOS

with novel capabilities, like NOS scalability through state

sharing between different instances, monitoring, policy

conflict detection, and resolution between management

applications and network virtualization. As the SDN pa-

radigm is deployed in production networks, an interest is
put toward mature control-plane platforms, supporting a

richer set of network service. As a result, a series of vendor

and service provider consortia have been formed currently

in an effort to develop and support NOS platforms (like the

OpenDaylight [29], ONOS [32], Ryu [33], and Floodlight

[34] platforms). At the moment of writing, the standardi-

zation of the NI of the NOS still remains an open question.

The abstraction varies between existing NOS, and it is
highly influenced by the target deployment environment

(e.g., a controller targeting carrier grade networks, like

ONOS, requires a different set of control-plane function-

alities, in comparison to a controller targeting virtualized

data centers, like the VMware NSX [35]). Although a de-

tailed discussion of the NI is beyond the scope of this

paper, it is interesting to note that as the NI becomes more

tightly coupled with the underlying controller function
(e.g., routing versus security), its semantics will tend to

converge to a common definition [3].

The development of the data-plane layer has created an

interest in effective management-plane development envi-

ronments using domain-specific languages (DSLs).

Management-plane DSLs are built on top of the control

plane and use the NI provided by the control plane. The

novelty and effectiveness of the SDN approach has devel-
oped an interesting competition between programming

language experts to define new DSLs with support for all

the required programming primitives and semantics. This

led to the development of multiple languages aiming to

address different aspects of control-plane programming.

For example, Netcore [36] provides a high-level forward-

ing policy language, Nettle [37] transforms the view of
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control applications and focuses on changes in the state of
network elements rather than event processing, while

Maple [38] provides a scalable multicore scheduler and

runtime policy optimizer for OpenFlow control to match

available device resource configuration. Nonetheless, sev-

eral programming languages have been developed by evolv-

ing existing languages, such as Flog [39], which combines

ideas from FML [40] and Frenetic [41]. Research on SDN

DSLs has explored also the applicability of different
programming paradigm on the expressability of the man-

agement plane. With the exception of Pyretic [42], most

high-level SDN programming languages adopt a declarative

paradigm, then explore further specific programming

models: functional programming [36], [38], [41], logic

programming [39], [43], dataflow programming [40], and

functional reactive programming [37], [44]. At the time of

writing, no single language stands up to all the challenges
imposed by SDN. We do not expect this situation to change

in the future.

Research on management-plane applications has moti-

vated solutions for a wide range of network problem. To

exemplify how these solutions are leveraged through the

SDN paradigm, we will focus on a common network prob-

lem; maintaining consistency during policy updates. The

centralized nature of SDN introduces a significant problem
in incremental policy update deployment. A policy update

for a network path that spans across multiple switches can

result in transient policy violations, if the processing of the

flow table modification messages is not timely and ordered

across all switches. Nonetheless, the semantics of the re-

configuration abstraction in existing commercial off the

shelf (COTS) platforms is not designed to provide such

update consistency semantics [45]. Traditional network
control protocols support weak consistency models, using

distributed eventual-consistent algorithms (e.g., routing

protocols) [46]. In the context of SDN, multiple solutions

have been proposed to address this problem, by introducing

in the NOS NI transactional update interfaces. The NOS

implementation of these interfaces aggregate policy up-

dates, analyzes them for potential conflict during deploy-

ment, and schedules their deployment accordingly using
two-phase commit algorithms [47]–[49].

B. SI Programming Languages
Existing SDN approaches have widely adopted the

OpenFlow protocol [5] as the SI. Released as an open-

source implementation that fulfilled a need, OpenFlow has

become widely available in commercial SDN devices.

OpenFlow holds an important position in its role as an early
SDN enabler. It assimilates a low-level, assembly-like ma-

chine language, closely aligned with and limited by the

underlying hardware. The burden remains on the prog-

rammer, who needs intimate understanding of the hard-

ware (such as switch details and available resources), as

well as behavioral details of the handling of overlapping

rules and rule ordering. This was one of the incentives for

the development of the management layer languages.
Nonetheless, such limitations reduce OpenFlow code re-

usability. Consequently, creating modular/reusable code is

challenging and the development process is prone to error.

At the time of writing, OpenFlow does not have suffi-

cient expressability to cover the entire functionality

provided by network devices, nor can it optimize their

performance. This is true even for devices having an archi-

tecture compliant with the OpenFlow specification. For
this reason, another abstraction layer is often provided be-

tween the two. For example, Broadcom’s OpenFlow data-

plane abstraction (OF–DPA) [50] defines and implements

a hardware abstraction layer that maps the Broadcom’s

StrataXGS switch architecture to the OpenFlow 1.3.1

switch and pipeline. Similar approaches are currently ex-

plored by other vendors. The protocol oblivious forwarding

(POF) [51] proposal sets an ambitious goal to provide an
abstraction table above the device driver, but also to extend

OpenFlow’s protocol-dependent instruction to be protocol

independent. A prototype POF implementation is available

for the Huawei’s NE5000 core router, which uses the

proprietary microcode for its network processor. Further-

more, P4 (an acronym for programming protocol indepen-

dent packet processors) [52], [53] sets three more

ambitious goals: switch reconfigurability in the field, pro-
tocol independence, and independence from underlying

hardware. In this way, P4 operates as a complement to SDN

protocols, like OpenFlow, and considers reconfiguration of

the data plane to support (in target hardware or evaluation

designs) specific operations that are then manipulated by

such protocols as OpenFlow.

C. Data-Plane Programming Languages
While OpenFlow handles the low-level aspects of the

data plane, it is not the language used to program widely

used data-plane devices. Network processors, whose host

processing units require special programs, were for many

years using proprietary programming languages (e.g.,

Marvell’s XLP [54], EZchip [55]). The use of specialized

processing units, optimized for bandwidth, led to the de-

velopment of different instruction set architectures by
each company, exploiting the advantages of each architec-

ture. In 2008, Cisco was the first company to introduce a

network processor that was fully ANSI-C compatible [56].

This approach was later followed by Ericsson [57], and

most recently by EZchip [58].

Several attempts have been made to go beyond as-

sembler and C-like programming languages for packet

processing. PacLang [59] was an early attempt for a high-
level data-plane language prototyped on the Intel IXP2400

network processor. Based around the premise of strong

typing (explicit variable type casting, checked at compile

time) and linearizable types (any object variable is used

exactly once within the program, thus simplifying memory

management), PacLang presented a transformation-based

methodology to separate architecture details from the
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high-level program specification. The application code was
written in a high-level language and then matched to the

network processor architecture using an architecture map,

ping script. Compared to previous solutions for a single

task or pipeline, a novelty of PacLang was its ability to

handle multicore network processors.

PX [60] (and its earlier incarnation [61]) is a high-level

language for specifying packet-processing requirements,

designed for field-programmable gate array (FPGA) imple-
mentations. It is also focused on what should be done,

rather than how, leaving the hardware implementation

details to be handled by the compiler. The compiler, in

turn, generates code in VHDL and Verilog hardware de-

sign languages (HDL).

While no implementation is available to date for

network applications, functional languages also present a

future direction for reconfigurable network devices. Lan-
guages such as Chisel [62] and HardCaml [63], which

generate low-level Verilog or VHDL code, are suited for

such purposes.

D. Proprietary Environments
While the predominant SDN realizations remain cur-

rently under the umbrella of the Open Networking Found-

ation (ONF) [64] or IETF [65], some organizations choose
to have their own environments supporting the same con-

cepts. This allows these organizations to maintain a

proprietary environment, implementing mechanisms that

best suit their hardware and software, easing customer

migration and removing restrictions imposed by public

standards or specifications.

Cisco’s open network environment (ONE) tries to go

beyond SDN and set the foundations for, what Cisco
describes as, an Internet of Everything (IoE) [66]. Their

approach does not reject SDN, but rather tries to extend it

to create a better integrated solution for Cisco devices.

Accordingly, Cisco’s network processors (e.g., nPower X1

[67], Typhoon [68], and QFP [69]) are OpenFlow capable.

The difference lies in the development environment un-

derlying it, dubbed onePK [70]. onePK allows a program-

mer to write code in one of several languages (C, Java,
Python) using a set of APIs that abstract the OS and net-

work device internals. Effectively, onePK enables easy in-

teroperability with multiple layers of the SDN model, as

well as other interfaces and languages, like OpenFlow and

HTTP-based services [71], either seamlessly or through

plugins [72]. The onePK environment also integrates with

Cisco’s application-centric infrastructure (ACI), which

operates at a higher architectural level.
A very different approach is taken by Xilinx’s software-

defined specification environment for networking (dubbed

SDNet) [73]. SDNet assumes that the underlying hardware

is completely programmable (e.g., FPGA), and uses this to

implement programmability of the data plane. The concept

contains a complete design flow, from SDNet high-level

description language, through the SDNet hardware design

language compiler, to Xilinx’s design tool (Vivado) that
generates the FPGA implementation’s bitstream. The data-

plane packet processing units allow firmware updates be-

tween packets. While SDNet is not tied to a specific

southbound programming language, it does not reject

them either: the user may choose to implement, for exam-

ple, OpenFlow protocol support in hardware, and provide

custom code to support it.

Additional environments, such as Juniper’s Junos
Fusion, Huawei’s SoftCom, and Arista’s software-driven

cloud networking (SDCN), exist, with various levels of

maturity and conformance with ONF. The adoption of

these (primarily commodity/closed-source) environments

by the networking community is yet to be seen.

IV. RECONFIGURATION IN
ELECTRONIC SWITCHING

In current electronic switching, software-defined networks

commonly rely on header processing. Header processing is

the stage where the header (the part of the packet that

contains address and network-handling details) is identi-

fied and examined. This is also the stage where packet

actions are decided, such as setting a packet’s destination

within the device (e.g., queue, flow, port), or selecting the
number of replications of a packet. However, there are

further reconfiguration aspects to switching, which are

discussed in this section.

A. Header Processing
A networking element does not always require header

processing. For example, a host computer attached to the

network with a single-port network interface card (NIC)
may forward all packets from the network to the central

processing unit (CPU), and all packets from the CPU to the

network, without further processing. However, this is rare-

ly the case. Recall simple operations of our basic switch in

Section II: as a packet enters a device, its header is parsed,

matching rules are checked, and actions are applied to it.

The analysis may examine specific bits or detect an ex-

pected format (Fig. 4), or perform a more sophisticated
parsing. Clearly, the level of reconfiguration required for

this stage may vary between devices. Devices that support

only one header type may have little need for reconfigura-

tion, but devices supporting more sophisticated header pro-

cessing might benefit from the ability to dynamically

reconfigure hardware to perform functions more effectively.

Highly reconfigurable systems could permit defining

which protocols are admissible (or excluded), the number
of headers within a packet to be looked up, or even de-

scribe complex lookup operations when multiple network-

ing protocols are being used. Furthermore, reconfiguration

flexibility allows adding support for new protocols. As

new protocols emerge, a network operator may need de-

vices to recognize these protocols and handle the packets

accordingly.
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It is instructive to consider a few examples of how
network actions can be driven by the structure of packet

headers. For example, a most basic admission action is

‘‘Should the packet be admitted or dropped?’’. Other ex-

ample actions are to assign a packet to a specific destina-

tion output port, or to specify a quality-of-service queue

within the device. Packets terminating within a device

(e.g., exception packets) may have actions that differ from

those for packets sent to a remote destination. The stage at
which actions are assigned can also vary, yet three stages

are commonly localized: The classification stage (where

necessary information is extracted from the header, such

as the protocol, the packet’s source, and destination), the

forwarding stage (where the destination queue and/or

output port of the packet inside the device is decided), and

the modification stage (where the header of the packet is

being altered). The shared property of all these stages is
that they require configuration, both of actions and of

results.

The header processing module may conduct many fur-

ther operations, from collecting statistics to security ope-

rations (e.g., dropping packets with a false source address).

Such functions can be rich, varied, and almost arbitrarily

sophisticated, attesting to a need for expressive forms

of SDN.
Currently, the hardware involved in network systems

support a variety of reconfiguration mechanisms. The sim-

plest involves using registers for configuration, yet their

use tends to be limited to enabling or disabling a function.

A standard header processing configuration is imple-

mented using tables or databases. The most common table

is a forwarding table. The routing table is an example of

dynamically configurable data structure associated with
the routine operation of a router. During operation the

router learns new IP addresses, along with a port assign-

ment through which they are accessible. This information

is added to the routing table and new packets arriving to

the router are sent to the right port accordingly. As net-

work connectivity changes over time, so does the routing

table: entries are not only added, but also deleted or al-

tered. While the routing table can be considered a stored
state, the result of modifying the routing table is an ope-

rational reconfiguration: packet flows previously sent to

port X may be sent to port Y as a result of an entry being

modified, their content (e.g., header fields) may be modi-

fied, or e.g., they may be dropped.

Header parsing uses tables that are indexed by packet

headers, e.g., destination IP addresses. Each entry in such

tables contains specific primitive actions such as setting
the packet’s destination, drop the packet, etc. These tables

used for header parsing require memory, which in turn

scales in direct proportion to the number of entries in a

table. For this reason, for many years these tables were

implemented using external memory modules, using dif-

ferent memory technologies. Over time, shrinking silicon

processes allow more and more on-chip memory. As

external memories not only add to a networking element’s
cost, but also to its power consumption and overall size,

there is a considerable motivation for using on-chip mem-

ory to implement these tables. This trend in monolithic

implementation stands in contrast with the progressive

need to increase table size to accommodate more table

entries. Consequently, some network and packet proces-

sing devices use external memories, while other contain all

tables on-chip. A variant of those are configurable net-
working devices that allow selection between relatively

small internal and larger external memories.

Network and packet processing devices which employ

many tables and allow a large flexibility often face the

challenge of meeting conflicting size requirements by dif-

ferent customers: one application will require table A to be

large and table B to be small, whereas a second application

will require a lot of entries in table B and no use of table A at
all. This contradiction can be solved by sharing databases

across a device: allowing a user to select the memory size

for each table out of a shared pool. This approach is reso-

nant to ones often used in FPGA devices, where the FPGA

provides users with a shared pool of memory resources that

can be utilized according to an implementation’s needs.

The flexibility expected in header processing has grown

over time. If two decades ago a static configuration was
acceptable, and a decade ago marked the emergence of

network processors, then today many devices claim to be

fully programmable and highly flexible. This is largely

driven by market forces, as chip vendors try to reach as

many market segments as possible. In addition, users re-

quire programmability in order to be able to reconfigure

their network over time, adding new protocols, altering

configurations, and so on. While in the past network pro-
cessors used proprietary processor architectures that maxi-

mize performance (e.g., Marvell’s DataFlow architecture

[74]), then today more and more network processors

embed ‘‘traditional’’ RISC architectures (such as EZchip,

Broadcom, Ericsson, Cisco). This trend is possibly another

step toward the less intelligent programmable hardware

driven by the SDN paradigm.

B. Traffic Management
Header processing is focused on where packets are

sent. In contrast, traffic management is focused on how a

stream of packets to a certain destination is being handled,

which is commonly referred to as the quality of service

(though traffic management is broader than that). Quality

of service covers many parameters (such as bandwidth,

latency, and jitter) and is provisioned using different types
of mechanisms within a traffic management device (e.g.,

scheduling and rate limiting). As traffic management de-

vices need to match the services bought by the user to the

available resources, they tend to be highly configurable.

Such devices require the ability to intimately configure and

tweak resources, allowing every traffic flow to be assigned

to a correct group of detailed servicing rules.
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We distinguish between two classes of reconfiguration
mechanisms: mechanisms that affect the way the device

works, and mechanisms that set the way a specific traffic

flow is handled within the device. The second type of

configuration mechanism is typically easier to handle,

since it is usually implemented within a table, written as

part of the power up sequence. The entries in such a table

indicate what different properties should be assigned per

flow. Examples include setting the level of priority or the
committed bandwidth.

Configuration mechanisms of the first type (that af-

fect intrinsically how a device works) can vary signifi-

cantly. For example, a scheduler may allow one or more

scheduling schemes to be defined (such as strict priory

versus weighted fair queuing [75], [76]), and weights need

to be assigned to any flow or group of flows in a weighted

scheduling scheme. Similarly, a traffic shaper needs to be
assigned average and peak rates as well as a burst size [77].

Congestion management is another class of complex

network operation amenable to (if not requiring) reconfig-

uration support. Example functions range from the simple

setting of thresholds in different queue management

schemes (such as random early detection [78], where a

packet is dropped before being admitted to a filling queue)

to rate adaptation (by methods such as explicit congestion
notification [79] and quantized congestion notification

[80]). Changing the traffic rate of a flow requires changing

the configuration of thresholds and shaping parameters in

a networking device, which in turn modifies the rate of a

given flow (e.g., a congested flow).

Despite being a general paradigm, when OpenFlow was

introduced and SDN got traction, the focus of data-plane

research was on header processing. There is a growing
understanding that other aspects of the data plane need to

be defined as well. Furthermore, as the central manage-

ment of SDN allows an end-to-end view of resource utili-

zation across the network, using it to improve aspects of

traffic management is called for. The use of the control

plane for traffic management was well studied by different

groups (as surveyed in [3] and [81]). Implementations of

traffic management in the data plane, in hardware (as op-
posed to software-based solutions, such as QueuePusher

[82]), are still rare. One example of such implementation

was presented by Sivaraman et al. [83], who implemented

SDN-enabled queue management in an FPGA. Further

study of enabling traffic management in the data plane is

still underway [84]. The lack of research done to date in

this area is somewhat surprising, given that it was pro-

posed as a characteristic of SDN a long time ago [1].

C. Switching Devices and Functions
The last building block of a switching device that we

discuss is the switching unit. The most basic switching

unit is the crossbar, which allows a dynamic connection

between input/output (I/O) pairs between the ports of

this network element. For this switching method to be

nonblocking (meaning all possible combinations of I/O pair
assignments can be accommodated), it must be configur-

able, allowing inputs to change their paired outputs over

time, e.g., allowing packets incoming on port N to be sent to

any port M, according to their header. This type of switching

is near instantaneous in electrical switching but can take

milliseconds in some electromechanical photonic switches

(discussed in Section VI-B). As crossbars (whose internal

resource consumption grows quadratically with port size)
fail to scale with the performance required in modern

networks, other, more scalable, multistage switching

architectures are gaining traction within current day systems

(e.g., Clos [85] and Fat-Tree [86]).

Switching elements have several modes of use. For ex-

ample, a network switching chip can work as a standalone

device (with all its interfaces serving as ports), or it may be

connected in a mesh with other identical devices (to create
a system capable of higher radix, bandwidth or both). In

less common cases, a device may connect to a larger fabric

mesh to create a multiboard or a multichassis switch (e.g.,

using commercial devices such as Broadcom’s BCM88750

and BCM88650 [87]). This is commonly achieved using

modular (i.e., board or box) assemblies. In this case, the

end user buys a module, which can be used in a variety of

different ways. A fabric module can be configured to ope-
rate as a single-stage switch fabric in a standalone chassis,

or as a first and last stage (but, for example, not middle

stage) fabric switch, connecting to a different fabric chassis

when placed in a multichassis system [88]. This type of a

configuration allows scaling switching systems based

around common building blocks, such as Huawei’s

NE5000E and Cisco’s CRS-X, from a few terabits per sec-

ond to hundreds of terabits per second [88]–[90].
Networking devices regularly offer more programma-

bility and reconfiguration than available to the end users.

Decisions taken during the design of a system, and settings

applied during the assembly of devices within these sys-

tems, limit the level of reconfiguration available to the end

user. Consider the example above, where devices used to

create a multiboard or a multichassis may have programma-

ble modes of operation. These devices also typically support
multiple types of physical interfaces (e.g., 10 GbE, 40 GbE,

100 GbE), but once assembled on a given board the inter-

face type is set to match the optical transceiver of this

module and cannot be altered. This means the end user can

alter the device or module’s role within a system, but can-

not alter the type of physical connectivity. This start-of-life

setting benefits both silicon vendors and their customers:

silicon vendors design and fabricate only one chip to sup-
port different market segments, whereas their customers

use the device’s programmability to manufacture and sell

the most power-efficient, cost-effective networking system.

At the time of this writing, SDN-enabled electronic

switching devices are increasingly being introduced by

commercial vendors. This trend is also emerging in the

latest photonic switches discussed in Section VI.
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V. TECHNOLOGIES FOR
RECONFIGURABLE NETWORK SYSTEMS

Several types of technologies are applicable for networking
devices. In considering how reconfigurable systems
approach could be used more effectively, we consider a
spectrum that trades configurability for performance, and
what we might do to better achieve both. This section
provides an overview of these considerations and discusses
the trends over the last few decades.

Let us first describe the spectrum of programmability
and configurability. The most programmable type of device
is a general purpose CPU. Completely programmable, it
allows any programmer to create a networking device of
his own design, where only the device interfaces set the
limitations of the CPU-based system.

Network processors (we omit graphics processing units
from this discussion) are less programmable than CPUs, as
they are designed for a specific purpose, and their archi-
tecture matches that purpose. Network processors vary
considerably in their architecture, therefore it is hard to
make generalizations about their level of programmability:
some network processors force a single datapath structure
and allow programming the actions taken in every stage of
the datapath, whereas others allow flexibility in the struc-
ture the datapath itself. The level of expertise required to
program a network processor is higher than required to
program a CPU, as the programmer often needs to write
(device-specific) programs in order to configure each pro-
cessing unit within the network processor.

We consider traditional FPGAs to be less programma-
ble than network processors. An FPGA device is built from
a set of resources (programmable logic blocks, memory
blocks, and I/O). Using HDL (or high-level languages
generating HDL descriptions) a user can design the FPGA
to perform any operation, limited only by the available
resources. Once completed, the design is then downloaded
to the FPGA device. Once a resource is configured to work
in a certain way, it will maintain this function until the
device is powered off or the device is reprogrammed. This
limitation on the use of a resource within the FPGA makes
the FPGA less programmable than a network processor.

FPGA vendors offer processing cores embedded within

the FPGA (e.g., [91] and [92]). These processing cores can
be either soft cores (built using the FPGA’s general purpose

logic), or hard cores (built from dedicated silicon) [93].

Hard core processors (e.g., [94]) typically offer a better

performance than softcore processors (e.g., [95] and [96]),
however their dedicated silicon presents a waste of re-

sources for FPGA designs that do not require a processor.

Implementing a networking device over an FPGA requires
a larger set of skills than programming a network processor.

Even when using high-level programming languages, the

user needs a deeper understanding of hardware aspects.
The implementation of an FPGA (including simulation,

synthesis, and routing) requires a set of skills not tradi-

tionally possessed by software engineers.

The least configurable devices are application-specific
integrated circuits (ASICs) and COTS networking devices.

While the level of reconfiguration of these devices varies,

from highly configurable to completely transparent, as a

group they are far less configurable than other solutions.

COTS devices provide a closed feature set that the user may

choose if and how to use, but the function itself is rarely

programmable. Some contemporary high-end devices in-

troduce a level of programmability into their packet pro-
cessing units, using processing cores, however we classify

those as a hybrid with microprocessors. While using a

COTS device often requires the least expertise, designing

one is the most challenging. It engages people with a wide

set of expertise, from frontend and backend designers to

embedded software engineers. Note the distinction that we

make here between CPU and COTS networking devices:

CPUs share with COTS devices a very long and expensive
design cycle, but once CPUs reach the market, the custo-

mer can use them for a wide range of applications. A COTS

networking device has its application set during the design

stage, and it cannot be changed after that. This also reflects

on the level of risk: if a bug is found in a networking device

implemented over a CPU, the effort required to fix the bug

is minimal. Fixing a bug in a COTS device can have an

indeterminate complexity, often requiring changes in the
manufacturing masks or even a new device fabrication,

costing millions of dollars.

A. Evolution of Networking Devices Bandwidth
While CPUs offer the best level of programmability,

they are not present in all networking devices. High levels

of programmability are mostly seen in slower devices, while

the highest bandwidth is commonly provided by the least
configurable devices. Economic drives propose one reason

for this phenomenon, but a technological insight is pro-

vided in Fig. 5. This figure presents the evolution of aggre-

gated bandwidth of networking devices over several

decades, starting from 1 Gb/s of the early 1990s to con-

temporary performance levels exceeding 1 Tb/s. As the

figure shows, from the 1990s, CPUs (the most program-

mable devices) provided the best performance. Over time
COTS devices (the least reconfigurable) managed to deliver

the highest bandwidth. To better understand this conclu-

sion, we explain the details of the figure.

For network processors and COTS networking devices,

we use the manufacturer’s declaration of bandwidth. For

FPGAs, we present the maximal theoretical bandwidth,

calculated using the IEEE 802.3 standards methodology

where the quantity of I/O that can be used by a net-
working interface is multiplied by its maximal frequency.

The definition of bandwidth per CPU is the product of

device’s bus width and core frequency, for a single core.

Each point in the graph presents the ‘‘best of breed’’

performance for a given device type at a particular snapshot

in time. All known devices available on the market to date

were considered, including but not limited to Intel, AMD,
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EZchip, Netronome, Broadcom, Marvell, Mellanox, Altera,
and Xilinx.

For CPUs, we calculate the effective bandwidth as the

product of bus width and core frequency, as it is an indi-

cation of the internal pipe bandwidth as well as the pos-

sible packet rate (the number of packets processed every

second). Although multicore processing was the direction

taken to improve CPU performance, the product of the

above bandwidth and the number of cores is not equal to
the total device bandwidth. The internal communication

bus of multicore CPUs is not designed to match the core

bandwidth, even given optimizations [97]. As the multi-

core communication is the primary bottleneck, and its

throughput is less than a single core’s, we present a single

core bandwidth and consider intercore communication a

challenge for future networking initiatives, such as the

Intel Omni-Path fabric [98].
Fig. 5 also reveals that in the previous century, CPU

performance led all other solutions, while the last decade

shows a more modest improvement of datapath bandwidth

performance per core. In a comparison of 2007 and mid-

2015 best-in-breed CPUs across all four SPEC CPU2006

benchmarks [99] we make an important performance ob-

servation. For whole-system performance, the speed

benchmarks (CINT2006 and CFP2006) improved by a
factor of approximately four and the throughput bench-

marks (CINT2006rate and CFP2006rate) by a factor of 15,

yet the relative performance per core improved by less

than two, and the relative throughput performance per

core improved by less than a factor of four. This difference

also contributed to the emergence of network processors.

ASIC/COTS devices have played an interesting role in

the evolution of network devices. A single modern network
device may consist of many types of high end silicon

devices, e.g., traffic managers (implementing packet rate

limiters such as described earlier) or packet processors

(devices implementing header parsing and header-field

lookup to trigger specific processing). Yet the highest
bandwidth capacity is always presented by the switching

devices (those devices that, having the highest port count,

provide port-to-port connectivity). The lower the com-

plexity of the device, the fewer are the features beyond just

switching, and the higher its bandwidth. The complexity of

the device impacts both silicon area and difficulty in

achieving a design that meets all the criteria. This drives

devices toward simplicity, reducing features, in order to
improve performance. This optimization of the ASIC and

COTS devices is evident in comparison with network pro-

cessors, which are built in the same semiconductor pro-

cesses and subject to the same manufacturing constraints

as CPUs, FPGAs, and other devices. It should be noted that

the growth of bandwidth in COTS devices is tightly related

to the mechanical aspects of the target switching systems.

The bandwidth is often a multiplication of 24 ports times
the maximal interface speed available, as this is the number

of ports fitting a front panel of a card in a 19-in rack. Thus,

24, 48, and 96 ports are commonly used for port count,

with the addition of a few uplink and management ports.

FPGAs have shown a consistent improvement over the

last decade, with a steep increases in performance. On the

other hand, the graph also demonstrates why FPGAs do not

gain more traction with system vendors: the place where
the FPGAs match the COTS devices performance is always

at the same time or after COTS devices became available on

the market. This means that the FPGA-based design will

only start when a COTS-based design is already available.

We account for early access to FPGA technology by large

vendors and the reduced design cycle time of FPGA. How-

ever, eventually the networking devices need to be tested

and validated in the lab, which can take a considerable
amount of time. In order to replace COTS devices, FPGA

devices need to be available a couple of years ahead of COTS

devices with the same clock frequency (and other perfor-

mance characteristics). Altera’s Stratix 10 is an example of

such an attempt, as Altera gained early access to manufacture

it in 14 nm by an Intel semiconductor fabrication plant [100].

The design of a networking device is more than just

interface bandwidth and clock frequency. Other FPGA
resources (e.g., logic elements, embedded block memories,

etc.) need to match those of COTS networking devices.

The FPGA must provide a superset of all these resources or

the design will not be able to carry the required feature set.

This raises the complexity and cost requirements of

FPGAs. Having said this, we prefer not to engage in a

direct comparison of FPGA to COTS devices as we think a

fair comparison is difficult. This is primarily due to the fact
that simple metrics (such as gate count) do not adequately

capture the true capabilities of an FPGA.

B. High-Speed Interface Adoption By
Networking Devices

Fig. 6 presents the adoption of networking interface by

different classes of networking devices over time. In this

Fig. 5. Evolution of networking device bandwidth. In the last

decade, the least programmable devices (COTS) provided the

highest bandwidth performance, whereas the most programmable

devices (CPU) made the least improvement.
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figure, we focus on members of the IEEE 802.3, ITU-T

G.707/Y.1322, and ITU-T G.709/Y.1331 standards families,

starting with the basic 10-Mb/s IEEE 802.3 standard, and

spanning the higher speeds projected by (at the time of

writing) future standards. Interfaces composed from sev-

eral parallel lanes, such as 4 � 3.125 Gb/s XAUI, are con-
sidered by their aggregated bandwidth (e.g., 10 Gb/s). The

figure shows over time (x-axis) when a particular technol-

ogy class achieved a particular performance plateau. The

introduction of the new IEEE and ITU-T standards is

shown by the two bottom rows. A particular point on the

graph indicates an approximate point in time of ‘‘initial

adoption,’’ when products that embodied that interface

performance level were available from the designated class
(‘‘FPGA,’’ ‘‘network processors,’’ ‘‘switching systems’’). We

choose to refer here to ‘‘switching systems’’ rather than

ASIC/COTS devices, as most COTS switching devices do

not connect directly to the network, but instead are inter-

connected with a vendor-specific (non-IEEE 802.3x or

ITU-T G.709/Y.1331) interface, such as Interlaken [101] or

SPI4.2 [102]. As such, the vendor-specific solutions more

readily achieve targeted performance levels between their
own components using proprietary ASICs.

While one would have expected the networking sys-

tems to be the last to come into the market, as their design

cycle is unlikely to exceed the availability of silicon de-

vices, the contrary thing happens: since the mid-1990s,

commercial systems always came into the market ahead of

the official announcement of standards. While this is driv-

en by companies wishing to gain customers by being first-

to-market, this also relates to the long life-cycle defining

standards and the involvement of vendors in this process.

This involvement allows them to complete their design

ahead of the publication and wide availability of the stan-
dard. The introduction of new standards varies signifi-

cantly between standardization bodies. As Fig. 6 shows,

ITU-T recommendations were once ahead of IEEE by up to

seven years. While we cannot attest to the reason, we

believe it is the combination of the focus of ITU-T on

optical communication rather than electrical, and the nar-

row market segment aimed by the G.707 and G.709 stan-

dards (i.e., optical transport networks), which allowed
fewer requirements and faster consolidation.

Network processors appear also to follow the same trend:

being early in the market, available to the system designers

that require them. An anomaly is observed for the intro-

duction of network processors supporting 100-Gb/s inter-

faces, announced later than the standards. This is possible as

several network processing devices announced in 2010 (the

year of the IEEE 802.3ba standard) were not able to reach an
aggregated 100-Gb/s bandwidth, and the one that did

(EZchip NP-4) used an Interlaken interface (an interconnect

protocol driven by Cisco and Cortina Systems).

The desire of FPGA vendors to gain a larger market

share is demonstrated by their adoption of high-speed in-

terfaces. While in the past FPGAs were last to adopt new

Fig. 6. High-speed interfaces adoption by networking devices. Commercial switching systems tend to adopt new high-speed interfaces before a

standard is concluded. FPGA devices do not claim support of new interfaces before a standard is completed.
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standards (e.g., 10 Gb/s), today we see a trend for FPGA
transceivers to match or exceed the developing standard.

For example (at the time of this writing), Altera is an-

nouncing in its newest FPGA devices (Stratix 10) tran-

sceivers capable of 56 Gb/s, ahead of the 25.7 Gb/s used by

100 Gb/s CAUI-4. This appears aimed at the optical inter-

networking forum (OIF) 400-Gb/s standard [103]. The ad-

vantage of FPGAs in this field is that once their transceivers

meet the electrical requirements of the new standard, the
FPGA companies can design and release logical cores (e.g.,

PCS–PMA for the physical coding and media-attachment

layers, and new MAC protocols for the data-link layer) at

any point in time without affecting the customers hard-

ware. Such processes were easier when all standards used a

two voltage level, e.g., non-return-to-zero (NRZ) transmis-

sion, but with new proposals involving more sophisticated

physical layer interfaces, including multilevel coding, e.g.,
pulse amplitude modulation (PAM), support of a standard

cannot practically be announced before all transceiver re-

quirements have been settled. As if to demonstrate this

point, Xilinx announced support of 100 Gb/s in 2008 in

the Virtex-5, though its transceivers maximum rate was

6.25 Gb/s [104]. Xilinx has also announced support for

400 Gb/s [105], demonstrating a 400-Gb/s MAC capability

using an Interlaken interface [101] as (at the time of this
publication) no 400-Gb/s IEEE or ITU-T standard has been

ratified.

C. Power Consumption
Efficient power consumption is a common challenge

across all types of networking devices and networking

markets. In the high-end market, the power density of

silicon has grown to the point where devices limit their
feature set in order to meet the power budget. Configur-

ability is one of the main mechanisms today to address the

power budget limitations without reducing any device fea-

ture set [106]. A silicon vendor or an FPGA designer can

design a device which addresses requirements for a wide

market segment and provides configuration options that

reduce power consumption when a feature is not required.

This may be implemented as configurable table size, pow-
ering on and off of certain stages/units/blocks in the design

or configuring the device frequency (and thus its band-

width). Many more power saving by configuration tech-

niques exist, which are not limited to networking devices

(e.g., voltage scaling). New manufacturing processes pro-

mise considerable power saving, yet none of these leads to

a ground breaking reduction in power consumption. Pho-

tonic switches (Section VI-B) can provide power saving,
however, they remain applicable only to fabric switching

devices and not, for example, to network processors.

D. Balancing the Forces
The networking market is not altruistic, and the even-

tual goal of all system vendors is to sell more products. To

this end, each vendor wants to be first in the market,

presenting the most advanced solution with the richest
features set, the highest bandwidth, and the lowest power

consumption. Unfortunately, life is a series of compro-

mises, and designing a networking device is no different.

We have already mentioned time to market and compli-

ance with standards, but this is not the only limitation.

Silicon vendors often find themselves limited by technol-

ogy constraints, more so than architecture limitations, e.g.,

the maximal power or power density of their device as well
as the maximal silicon area with a reasonable yield. By

today’s standards, the scale of integration of a typical net-

work ASIC is remarkable: Intel’s Xeon E7 v2 employs

4.3 billion transistors for a die area exceeding 500 mm2

[107]. Xilinx’s Virtex-7 2000T FPGA device is built from 6.

8 billion transistors [108]. Over seven billion transistors

are floorplanned in devices such as Broadcom’s Tomahawk

[109]. Factors including integration scale, performance
demand, and competitive pressure drive a complex set of

interrelated decisions that face the design of any new de-

vice: should the number of lookup entries in a table come

at the expense of a certain protocol support? Should mul-

tiple interface standards be supported at the expense of

area or latency? As silicon vendors try to address a large

number of customers, in-house ASIC designs can often

reach better capabilities, as they only need to suit their
own system needs: the size of lookup tables and supported

protocols are set by their end system, and its front panel

options define the interfaces that will be supported. This

reduces the overall number of features, but improves the

quality of each.

VI. PHOTONICS

As data rates have risen, copper cables have increasingly

been replaced by optical fiber. For point-to-point links,

photonic communication offers clear advantages in lower

energy consumption per bit and increased signal integrity

at high bit rates and long reach without the use of digital

signal processing (DSP) [110]. The increased reach and

signal integrity also provide latency benefits due to reduced

buffering and DSP delays. In contrast, packet switching
(switching on a per packet basis) has remained in the elec-

tronic domain. The only area of widespread commercial

adoption of photonic switching has been in space and/or

wavelength circuit switches (switching on timescales much

larger than packet lengths) in wide area and long haul net-

works. However, these circuit switches demonstrate the

potential for energy and latency saving having energy

consumption of the order of 0.01 nJ/b [111] (approximately
three orders of magnitude lower than electronic routers)

when used for router bypass. In this section, we review the

state of the art in photonic networking, in particular,

seeking to answer two questions. First, how can we build

reconfigurable photonic arrays (to work alongside reconfi-

gurable electronic arrays such as FPGAs) in future net-

works? Second, how will photonic switching affect the
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ability to apply the techniques of SDN in future systems? In
Section VI-A and B, we describe developments in photonic

integration and photonic switch technologies which will be

necessary to build reconfigurable photonic systems. In

Section VI-C, we contrast photonic router architectures

with conventional electronic versions concentrating on the

application of SDN techniques.

A. Photonic Integration
Despite the advantages of point-to-point photonic links,

their use is not ubiquitous. In data centers, the links be-

tween hosts and the local rack switch are commonly

copper, while photonic links replacing the copper inter-

connect for memories and peripherals (internal: e.g., PCI-

Express, or external: e.g., USB) is rarer still. In part, this is

due to the low level of integration and the consequent high

cost (particularly for packaging) of photonic devices. For
example, a 10-Gb/s optical transceiver may cost tens of

dollars and still requires a high bandwidth, power hungry

electronic link across printed circuit board tracks between

the optical module, and the processor or switching device.

Integrating CMOS electronics with photonics on the same

chip or in the same package has been a long term industry

goal in order to share the packaging cost over a larger sys-

tem [112]. FPGAs already feature high-speed serial electro-
nic transceivers, as discussed in Section V. The addition of

photonic transceivers is a logical, and probably inevitable,

future step. Indeed, in order to continue the increase in

bandwidth of switching systems (described in Section V-A),

future systems will require integrated photonics using

wavelength division multiplexing (WDM). These will be

used to overcome bandwidth limits due to the number of

connectors fitting onto a rack unit front panel or the
number of high-speed signal pins on a chip. The cost issue is

also important to reconfigurability: the high cost of optical

modules has meant that previous research has focused on

defining photonic network architectures which minimize

the number of components. However, reconfigurability

inevitably requires overprovisioning (e.g., FPGA-based

configurable logic blocks and transceivers) which can

only occur when these components are low cost.
While serial electronic transceivers operating at up to

12.5 Gb/s have been integrated on the same die as config-

urable logic, the highest bit rates have been achieved by

implementing the transceivers on a separate silicon die

connected to the configurable logic of the FPGA via an

interposer. The interposer is a carrier, usually fabricated

from silicon or glass, with only passive interconnect be-

tween the active dies and the package substrate [113]. This
approach enables individual functions, for example, con-

figurable logic, memory, and serial transceivers to be fabri-

cated using optimized processes before final integration, as

well as reducing overall costs through reduced individual

die area. An alternative to the interposer approach is to

attach photonic transceivers directly to the CMOS chip in a

3-D arrangement [114]. Ultimately this offers minimum

interconnect delays between circuit elements and maxi-
mum bandwidth between layers but is challenging due to

thermal, stress, and reliability issues and requires new

methods for testing.

B. Photonic Switching
Photonic switches are the key component of future re-

configurable photonic systems. High bandwidths and port

count photonic switches are achieved using a combination of

space switching (switching between waveguides or fibers) and

wavelength switching. The differences between space and
wavelength switching are illustrated in Fig. 7. Space switching

allows multiple wavelengths to be switched in a single

operation resulting in high bandwidth and low serialization

latency. In wavelength switching, the signal wavelength

defines the route through the network. However, unlike in

electronic switches in which the signals are regenerated at

each sequential element [register, first-in–first-out (FIFO),

etc.], optical loss, crosstalk, and noise build up along a cascade
of optical switches, limiting scalability of the network.

The reconfiguration time of photonic switch technolo-

gies varies over some six orders of magnitude. At millisec-

ond to microsecond timescales, microelectromechanical

systems (MEMS) [115], [116], piezoelectric [117], thermo-

optic, or liquid crystal beam steering technologies are suit-

able for occasional or start-of-life reconfiguration. These

technologies offer scalability to large port counts (up to
200 ports for piezoelectric and > 1000 ports for MEMS at

the current time) and low loss (G 1 dB for piezoelectric

devices) for transmission through a cascade of switches

without electronic regeneration or amplification. These

switches are already widely used in circuit switches in

wide area networks and increasingly in data centers (see

Section VI-C).

For compatibility with both circuit and packet switching,
several devices offer multiwavelength space switching on

Fig. 7. Photonic switching using (a) space switching with multiple

wavelengths per port to increase port bandwidth; and (b) wavelength

switching in which the signal wavelength defines its output port.
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nanosecond timescales: Mach–Zehnder interferometers
(MZIs) [118], semiconductor optical amplifier (SOA)

[119], and ring resonators [120]. For these switching tech-

nologies, large prototype switches have not been demon-

strated, so predictions are extrapolated from smaller scale

demonstrations. The gain of SOA switching elements ena-

bles losses to be overcome and scaling to thousands of ports

has been demonstrated using discrete components con-

nected by optical fiber [121]. However, in integrated circuit
implementations, the higher gain required to overcome

losses due to splitting and waveguide crossings causes a build

up of noise, limiting scalability. Integrated SOA switches

have been shown to scale to 64 ports with ten wavelengths

per port [119], while a hybrid MZI and SOA integrated

switch architecture has been shown to scale to 128 ports

[122]. The scaling of both MZI and ring resonator switches is

limited by optical losses and crosstalk. Ring resonators have
attracted considerable interest due to their small physical

size (down to a few micrometers diameter) and scaling to

256 ports with ten wavelengths per port has been claimed

[123], but require accurate temperature control. Ring re-

sonators can be used as both WDM space switches and

wavelength routing elements. The other main option for

wavelength routing is the arrayed waveguide grating (AWG)

[124] which is also limited in scalability by loss and crosstalk.
As discussed in Section VI-A, reconfigurable photonic

arrays will need to integrate many components on a single

chip in order to reduce die costs and amortize packaging

costs. Therefore, switching component dimensions are

critical. Section V notes the impressive track record of

smaller features and increased die sizes for standard

electronics driven, at least in part, by the cost benefits of

smaller circuits. While these improvements have provided
partial benefits to the control circuits and DSP coupled to

photonic devices, photonic systems themselves are subject

to other, unique, constraints. In particular, the minimum

size for photonic devices is determined by the wavelength

of light: typically between 800 nm and 1.6 �m for com-

munication systems. For example, optical waveguides must

be larger than one-half of the wavelength of the light in use.

This is at least an order of magnitude larger than the size of
complementary metal–oxide–semiconductor (CMOS)

transistors. This means there are fundamental limits on

the miniaturization of photonic components and, in con-

trast to the scaling of CMOS devices, photonic device sizes

cannot be continuously scaled in physical dimensions. A

key metric determining the size of photonic circuits is the

minimum achievable waveguide bend radius. In this re-

spect, silicon is superior to traditional optical materials
with minimum bend radii down to a few micrometers (due

to the high contrast between the refractive index of the

waveguide core and cladding materials) [125]. Silicon pho-

tonic elements have been demonstrated that are suffi-

ciently small as to allow large integrated photonic circuits

and switch fabrics. Typical dimensions for two-port silicon

photonic switches are 104 �m2 for MZI devices and

102 �m2 for ring resonators [126] allowing, respectively,
up to 104 or 106 switching elements to be implemented on a

400-mm2 die. The area of SOAs ranges from 104 to 105 �m2

depending on the gain required, whereas the smallest

AWGs in silicon are of the order of 105 �m2.

Reconfigurable photonic arrays incorporating photonic

transceivers and switching elements could assist in meeting

the energy and latency goals of future systems. Such arrays

could provide both circuit and packet switching func-
tionality as well as reconfigurable high-speed WDM inter-

faces with FPGA or other programmable electronic fabrics.

As discussed in Section VI-A, high levels of photonic in-

tegration (and hence low cost per device) are in order to

make this vision economically viable. The requirement

rules out devices which have large physical size or high

power, for example, photonic delay lines and buffers and

wavelength converters based on nonlinear processes. A key
question is the building block switch technology. While

slow electromechanical switches could provide reconfigu-

rability with low losses, fast electro-optic switches based on

SOA, MZI, or ring resonator technologies ultimately offer

greater functionality and potential for integration. How-

ever, further development is required to achieve very low

losses in integrated circuit implementations to make this

vision a practical reality.

C. Photonic Networks and SDN
Electronic switches and routers place packets into

memory (or at least the header in cut-through switches) to

permit header processing and routing decisions (described

in Section IV) to be carried out. Replicating this function-

ality exactly in the photonic domain including packet buf-

fering, header processing logic, and switch control, as
shown in Fig. 8(a), is challenging due to the immaturity of

both optical memory and logic. However, optical logic

functions of Internet routers such as decrementing a pack-

et’s time to live (TTL) counter has been demonstrated [127]

and continuing research aims to demonstrate routing table

lookup and checksum processing in the optical domain

under electronic control [128]. Unless the header is sent on

a separate control channel ahead of data, optical memory or
delay lines are required to delay the data while header

processing is taking place. Switched fiber or integrated

circuit recirculation loops have been demonstrated but

these have a large physical size and are unsuitable for in-

tegration with other photonic circuits and electronics.

Other studies have shown that the use of fiber delay lines is

not feasible in large switching systems such as Internet

routers [129]. This can be clearly understood by consider-
ing that a high-performance router used by Internet service

providers will typically provide 250 ms of buffering per

port; this would require 50 000 km of fiber delay lines. In

general, these all-optical packet switch approaches will

yield minimum latency, but will never achieve the density

of electronic memory and logic due to the fundamental

limitation of the wavelength of light discussed above. In
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addition, the optical processing functions cited above use

nonlinear processes which have low energy efficiency. It is

also likely that electronic routing will still be required. For

example, in [128], it is proposed that only packets with a
common address are routed optically (due to limitations in

the number of destination fields which can be examined in

an optical correlator) with other packets routed to an elec-

tronic packet switch.

Avoiding either optical memory or optical logic requires

that at least the packet header is converted back to the

electronic domain, as shown in Fig. 8(b). As with the all-

optical approach, this requires that the header be sent

ahead of the data and/or that the packet be stored in a delay
line. In order to minimize this delay, fast header processing

and low header serialization latency is required. Therefore,

the header fields are kept to a minimum in these systems

(e.g., just a valid bit plus port destination in [130] and

[131]) and so the ability to differentiate actions between

different packet types is extremely limited. In general,

although both packet switches with all-optical or electronic

header processing can achieve low latency for a limited
number of cases, the ability to apply the rich header pro-

cessing and SDN functions described in Section II is limited.

Several groups investigating large port count or multi-

ple stage optical switches have come to the conclusion that

conversion of the entire packet back to the electronic do-

main for electronic buffering and header processing is

necessary [Fig. 8(c)]. This approach enables SDN ap-

proaches to be used with little modification. It is also highly
scalable as the optical signals are regenerated at each

optical–electrical–optical (OEO) conversion point. How-

ever, this approach reduces the potential for energy and

latency benefits through photonic switching. OSMOSIS

[132], an example of such an optical switch aimed at 2000-

port shared memory supercomputers, introduced an OEO

conversion at the input of each 64-port photonic switch

stage in order to maintain short connections between elec-
tronic packet queues and the switch scheduler. Scalable

Internet routers have also been proposed using OEO stages

between the load balancing and switching stages [133].

Circuit switching [Fig. 8(d)] is the natural flow control

mechanism for photonics and is the only area which has

seen widespread commercial adoption in the form of

optical cross connects (space switches) and reconfigurable

optical add drop multiplexers (ROADM, space, and wave-
length switches) used in core networks. In these scenarios,

carriers can switch at the port or wavelength level to allow

heavy traffic flows to be rerouted or to bypass electronic

routers. Similar hybrid packet and circuit switching tech-

niques have also been proposed for data centers and high-

performance computing (HPC) either operated in parallel

with electronic packet switches [134], [135] or as a recon-

figurable physical layer for an electronic packet switch
network [136]. Traditionally, the optical space and wave-

length circuit switching has been managed by a separate

control plane, typically based on the generalized multi-

protocol label switching (GMPLS) protocol [137]. Current

research investigates the use of SDN to unify the control of

circuit and packet switching in a common structure. An

extension to OpenFlow has been developed to handle

circuit switching [138]. Other researchers propose the in-
tegration of GMPLS control structures into SDN imple-

mentations [139], [140]. There has also been a widespread

move to build SDN interfaces into commercial optical

circuit switching products, for example, [115]–[117], [141].

As circuit switches are designed to complement rather than

replace packet switches (electronic or photonic), there is

considerable scope for creating rules for packet or circuit

Fig. 8. Photonic routers. (a) All optical packet switch: may rely on

electronic packet switch backup. (b) Optical packet switch: relies on

electronic logic. (c) Optical–electrical–optical: relies on electronic

buffering and logic. (d) Circuit switched: relies on electronic or

photonic packet switching. Blue lines represent optical functions

and connections. Black lines represent electronic functions

and connections. OE ¼ optical-to-electrical conversion.

EO ¼ electrical-to-optical conversion.
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decisions [142] or reconfiguration to optimize for changing
bandwidth demands.

VII. SUMMARY

Network systems have developed to incorporate vast depth

and breadth of reconfiguration. Techniques for reconfig-

uration in networks span time scales, network implemen-

tation technologies, and approaches to reconfiguration
itself. Into this domain, SDN has emerged as a dominant

paradigm of network system reconfiguration, from the

configuration of devices at setup to the reconfiguration and

update of those devices over their lifetime. This paper

shows the interplay between the need for reconfiguration

in networks and development of SDN.

While a term only recently coined, SDN represents

many decades of developments in network control through
reconfiguration. Its rise in recent years has been in re-

sponse to an environment that had made innovation, for

both users and researchers, increasingly challenging. While

SDN itself is defined a number of ways, common across all

definitions is the strong isolation between different planes

in the network (e.g., between the control and data plane),

along with the enabling of centralized network manage-

ment, and a high level of programmability.

Within this paper, we have provided a tutorial of SDN
with an emphasis on OpenFlow which (at the time of this

writing) was the most popular incarnation of SDN. We

have argued that SDN arises to permit control and

reconfiguration across devices with a forcing function

being the increase in device flexibility. We have further

shown that the only realistic mechanism permitting

elegant interworking between the packet-centric net-

works of the electrical domain and the flow-centric
networks of the optical domain is to permit deeper levels

of network-system and device reconfiguration through

SDN. Finally, we have examined the near future for both

electronic and photonic reconfiguration technologies and

how these will be enabled by the opportunities provided

by SDN. h
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