
	 1	 	

Palimpsest: A layered language for exploratory image

processing

Alan F. Blackwell

University of Cambridge Computer Laboratory

alan.blackwell@cl.cam.ac.uk

Abstract

Palimpsest is a novel purely-visual language intended to support exploratory live

programming. It demonstrates a new paradigm for the visual representation of

constraint programming that may be appropriate to future generations of keyboardless

and touchscreen devices. The current application domain is that of creative image

manipulation, although the paradigm can support a wider range of computational

expression. The combination of constraint semantics expressed via a novel image-

layering metaphor provides a new approach to supporting a gradual slope of

abstraction from direct manipulation to behaviour specification. Exploratory

evaluations with a range of users give an indication of likely audiences, and

opportunities for future development and application.

Keywords: visual programming; visual arts; live coding; constraint semantics

Manuscript accepted for publication in Journal of Visual Languages and Computing,

(accepted July 2014)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77406045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	 2	 	

1. Introduction

How are visual programming languages related to the software used to manipulate

visual images? Visual artists often use applications such as Photoshop to create or

modify images. This can involve a long sequence of manipulations and

transformations. From a programming language perspective, we might think of that

sequence as a program: a composition of individual operations whose output is a new

artwork. However this kind of visual interaction sequence is more often described as

direct manipulation, rather than programming, despite the fact that Shneiderman

originally defined direct manipulation in relation to programming (Shneiderman

1983).

The advantage of direct manipulation is that the user can easily anticipate and

evaluate the effect of each action as it is taken, rather than waiting until program

execution time (or command execution time, in the more familiar comparison

between command line and GUI). The disadvantage of direct manipulation is that

reduced abstraction and expressive power makes it laborious to repeat the same

operations, or variants on them. It is possible, in powerful tools like Photoshop, to

construct a simple kind of program in the form of a macro recording – a sequence of

operations that can be replayed. However, it is difficult to parameterise a macro

recording, or change its behaviour in response to new data or external events.

The goal of this research is to develop an interaction paradigm that shares properties

of both image editors and programming languages, offering increased abstraction

power to people who work with images. Although the research is theoretically

motivated (by the relationship between direct manipulation and visual abstraction),

there are a number of possible applications in the visual arts. One of these is the

creation of animations, by replaying sequences of image transformations. Another is a

kind of version or configuration control, in which different combinations of image

transformations might be derived from each other or compared. A third is the

performance practice of live coding, in which digital artworks are created in front of

an audience, using tools that minimise the separation between run-time and edit-time.

Each of these offers increased connection between the program editor and execution

environment, in the manner defined by Tanimoto as “liveness” (2013).

	 3	 	

This paper describes the design, implementation and evaluation of Palimpsest, a novel

image manipulation environment and live visual programming language that

demonstrates these properties. The focus on image manipulation revives the long-

standing challenge of the "purely visual" language, of which Smith's Pygmalion

(Smith 1977), Furnas's BitPict (1991), and Citrin's VIPR (1994) have been creative

earlier examples. Although often mooted in this journal and related venues, purely-

visual languages have seldom seemed compelling on machines that do, after all, have

keyboards. In the age of tablets and touch interaction, keyboards have suddenly

become a real inconvenience and hindrance in routine interaction, so this seems a

better time than any to explore text-free notations.

The name Palimpsest is inspired by the fact that on touch devices, abstract notations

are often superimposed over directly manipulated content. In media and cultural

studies, the word palimpsest has been extended from its original sense of a text

written over an erased original, to refer to the layered meanings that result when

different cultural or historical readings are superimposed1 (Dillon 2007). The

palimpsest thus offers a metaphor for the integration of computational capabilities

into the visual domain.

1.1. Application example

As a simple example of how Palimpsest might be applied, consider a typical image-

editing operation in which a person’s face has been separated from the background of

an image, and is placed over a coloured frame. The frame is initially red, but the artist

decides that the colour should be related to the skin tone in the face. In Photoshop,

this would involve using an eyedropper to select the new default colour, and then

filling the frame with that colour. However in Palimpsest, the colour can be treated as

a visual variable. The variable initially had a constant value of red, but is now bound

to a sampled value. The artist then decides that, rather than skin tone, the frame

should match the collar of the shirt the person is wearing. In Photoshop, the default

colour would be changed, and another fill carried out. However in Palimpsest, the

change can be defined simply by modifying the location of the sampled value. Now

imagine that the artist likes both of the moods provided by these two colours, and

																																																								
1 For example in the work Cambridge Palimpsest by artist Issam Kourbaj, which was
created to commemorate the 800th anniversary of the University, and was one of the
inspirations for the title.

	 4	 	

decides to create an animation alternating between them. In Photoshop this would not

be possible. In Palimpsest, the colour-sample location can be bound to a function that

changes over time, turning the static picture into a dynamic one contrasting the effect

of the two frames.

As an introductory tutorial, illustrating typical operation of Palimpsest, appendix A

shows a sequence of screenshots corresponding to the scenario just described. A

complete video sequence of the interaction is included in the supplementary materials

published with this paper.

1.2. Outline of paper

The remainder of this paper is structured as follows. The programming paradigm

itself is first described, including an overview of the novel execution model, data

types, edit/debug facilities, and support for alternative flow of control and

encapsulation. Throughout the discussion, the user-interface design considerations of

Palimpsest are discussed in terms of the Cognitive Dimensions of Notations (Green &

Petre 1996)2. The current prototype implementation is summarised, followed by

preliminary evaluation of this prototype with three different kinds of user population.

A discussion of related work addresses previous systems that have combined elements

of direct manipulation and abstract behaviour specification, as well as related

approaches to user functionality and interaction techniques. The final discussion

proposes a model for future work of this kind, and sets out an agenda for future

research that will develop the Palimpsest concept.

2. The Palimpsest programming paradigm

This section provides a high-level overview of Palimpsest operation. An extended

step-by-step tutorial introduction is included in appendix B. The supplementary

material published with this paper also includes a video demonstrating the operation

of these basic aspects.

																																																								
2 It is assumed that readers of this journal will be familiar with the Cognitive
Dimensions framework – in order not to break the flow of discussion, citations are not
included on every occasion a dimension is mentioned. However, for quick reference,
appendix C provides capsule definitions derived from a popular textbook presentation.

	 5	 	

Palimpsest allows users to combine source material (photographs, simple shapes or

ink) and treatments of that material (e.g. filters or geometric transformations). Source

material and treatments are partially transparent, and are layered on top of one another

such that a final image is built up from elements in many layers, just as in

professional image manipulation tools such as Photoshop. The behaviour of

individual layers can be modified, as usual in such tools, by adjusting parameter

values.

However, unlike conventional systems such as Photoshop, parameter values are also

represented as image layers, making them first class values in this novel visual

language. Interaction with the system involves creating new layers, superimposing

them on layers already created, and adjusting values. The resulting stack of source

material, values and treatments provides both a visual palimpsest (in the media studies

sense), and a layered historical record of the process by which it was achieved. The

resulting image can also be viewed in a simplified exhibition mode, with control

information hidden and the layers composited together.

Figure 1 – a screen dump of the main Palimpsest window, with the
ordered stack of layers visible as thumbnails at the left. The current layer
(a slanted orange line) appears above the other layers in the main view,
and the corresponding thumbnail is shaded light blue in the stack at the

left to show the location of the current layer within the stack.

The primary Palimpsest display (Fig 1) is an image composed from multiple layers

overlaid on top of each other. This stack of overlapping layers is also rendered as

thumbnails at the side of the main display, but spread out so that the order of the

	 6	 	

individual layers is visible. The current viewpoint can be moved up and down the

stack – layers below that point are visible, but not those above (the user viewpoint is

of an observer looking down through the stack, with the upper part of the stack behind

them). The dynamic visual appearance resulting from this behaviour can be seen in

the videos included with the supplementary material.

Figure 2 – the current layer, showing typical controls – here a slider at
the left, two points in the middle, a button at the top right and two

viewports (at the bottom – these are explained later). The visual content
of this layer is the orange line already seen in Fig. 1, while a magenta

rectangle and other content can be seen on the layers below

In addition to its visual content, a layer may also include interactive controls such as

sliders, buttons and viewports (Fig. 2). Although all layers have controls, only the

controls on the current layer are visible. User interaction with the controls either

modifies values or invokes actions.

2.1. The stack metaphor

Many actions in Palimpsest result in the creation of a new layer on top of the current

one, so that the stack continually grows upward. As a result, the stack has two

functions: it presents an intuitive compositional metaphor for building up images from

components, and it also provides a history of user actions. By analogy to applications

such as Photoshop, the Palimpsest stack could be described as combining the

functionality of the Photoshop “layer” palette with the “history” palette.

	 7	 	

The convention of providing a navigation panel at the left of the screen, with a larger

main panel showing a magnified view, is commonplace in applications such as

Powerpoint. However, the Palimpsest behaviour is very different to these, in the way

that it represents a stack of superimposed images rather than a simple ordering.

As the number of layers becomes large, the complexity of the image may increase. In

order to reduce this visual complexity, layers further down the stack are therefore

incrementally faded, making the current working context is relatively clear. As

described later, the stack can be simplified by aggregating a group of layers into a

collection, with redundant layers removed from display unless specifically requested

by the user.

Figure 3 – rendering details of the Palimpsest stack overview. Note
reference to the position of the current layer (reflecting the blue grid),

and visual depictions of overlap order, tilt, shadow cues, and slight
transparency in overlap regions.

	 8	 	

The stack overview is rendered as a set of partially overlapping cards, in order to

emphasise this difference from conventional applications (see Fig. 3). A further

difference with respect to such applications is that, when new layers are added, the

stack grows upward rather than downward. This can be understood by analogy to the

way that the Photoshop layers palette grows upward, for example after a paste

operation (although the same operation causes the history palette to grow downward!).

The choice between these two options (events in time being ordered in either a

downward or upward direction) represents a usability trade-off. Earlier versions of

Palimpsest did follow the more usual convention, until it became clear that building

up layers requires an upward metaphor for the direction of time, just as in geological

diagrams. The chosen solution seems currently to be unique in comparison to other

systems for visual programming by demonstration. In Kurlander’s CHIMERA (1990)

frames are presented in reading order (left to right), while various others (e.g.

Schachman’s Recursive Drawing (2013)) follow the Powerpoint convention.

2.2. Representing constraints between layers

	

Figure 4 – A thresholding and colour substitution layer, with two
viewports showing the layer from which the original image was extracted

(left) and the layer defining the substitute colour (right). This example
has been created with two operations, each of which defines one of the
viewports. The user has started with an original image, and pressed the

	 9	 	

“cut out” button. This creates a thresholded image (the same operation is
performed at the start of Appendix A, and can be seen in the thumbnail
screenshots and supplementary video). The threshold image layer, at the
time it is created, contains a viewport showing the linked relationship to

the original layer. This is a dynamic constraint – if the original layer
changes, the thresholded image will also change dynamically. Second,

the user has created a colour layer. When the threshold layer is first
created, no fill colour is specified, and the colour viewport is empty. Here,
the user has clicked on the empty viewport to create a colour value layer
(this operation can also be seen in appendix A, and in the supplementary
video). This viewport also represents a dynamic constraint – if the colour
value changes, the fill colour in this layer will also change, as seen in the
video. Note that this figure has been visually simplified by cropping to

exclude a number of elements not relevant to the explanation of
viewports, those additional elements include the layer stack, threshold
value, and suggestions for exploration, all of which are visible in other

figures and explained elsewhere in the paper.

A layer can include one or more viewports that refer to a layer elsewhere (Figure 4).

The viewport is the primary mechanism for value passing and reference in Palimpsest.

It provides functionality that in conventional language paradigms might be

implemented as value assignment, value reference or parameter binding. The actual

implementation, as discussed later, resembles the constraint pointers proposed by

Vander Zanden et al (1994).

In terms of the physical layering metaphor, a viewport can be imagined as a tunnel

between layers, allowing the user to look through a tunnel opening in one layer, in

order to see another layer at the other end of the tunnel. A scaled image of the

referenced layer is shown inside the viewport. To reduce visual clutter, only viewports

on the current layer are visible (a trade-off between the Cognitive Dimensions of

visibility and hidden dependencies).

The role of viewports in Palimpsest can also be considered by analogy to cell

references in a spreadsheet formula. Each layer in Palimpsest has a single value, just

as each cell in a spreadsheet has a single value. A layer is thus analogous to a

spreadsheet cell. A spreadsheet cell can contain a formula, including a reference to the

value of another cell. A viewport in Palimpsest is analogous to that reference. If the

value of that other cell changes, the value of this one will change accordingly. In

Palimpsest, if the value at the other end of the viewport changes, the value of the

	 10	 	

current layer will change accordingly, as seen in Figure 4. As in a spreadsheet, layer

values are constantly recalculated to maintain these constraint relationships.

Viewports can be created in three ways. When a new layer is created, it often

represents some transformation of the layer below (for example, blurring or masking

an image). The blurred layer includes a viewport that can be used to return to the

source image, even if it is hidden or moved elsewhere in the stack. The second way to

create a viewport is to drag any layer from the stack onto the current layer. It can be

dropped on the background to create a new reference, or dropped onto an existing

viewport to replace that reference. The third way is that many layers include possible

parameters or default values that are represented as empty viewports. Clicking on an

empty viewport creates a new layer of the required type.

2.3. Data types to support image manipulation

The “output” of Palimpsest is the image produced by alpha-compositing3 all the

visible layers in the stack. However those layers may include pixel data (e.g.

photographs), geometric shapes (e.g. rectangles or ellipses), text (words or

paragraphs) and freehand ink strokes. Furthermore, most layers can be modified by

manipulating controls and/or specifying value constraints via viewports.

																																																								
3 Alpha blending is a standard technique in computer graphics that combines multiple
image layers based on the degree of transparency specified for each pixel. This is
normally referred to as the alpha channel, and is encoded alongside the RGB channels
in the image bitmap.

	 11	 	

Figure 5 – a freehand ink layer, including a control slider to determine
stroke width (left) and a viewport to determine colour (right)

To illustrate a typical effect, the appearance of shapes, text and ink can all be

constrained to use different colours or stroke sizes (Fig. 5). Image treatment layers

such as blurring, thresholding or fading, and geometric transformations such as

rotation, translation and scaling can also be customised with value constraints

modifying their parameters. As in any programming language, the viewports

specifying these constraints must match the data type of the expected parameter.

The set of types was refined throughout the development of Palimpsest, in order to

support sufficiently general geometric and image manipulation functions while also

offering an immediate visual interpretation. A key design objective was to escape

reliance on mathematical abstractions. For many arts practitioners these seem to be an

obstacle to adoption of computational methods – arts practitioners have often found

school mathematics challenging, and many avoid situations in which mathematical

abstractions or notation are routinely used (Church et al 2012).

The resulting set of visual value types is: Shape, Image, Mask, Colour, Amount (as a

proportion 0-1), Point, Direction, Count, Rate and Event. Each of these can be

	 12	 	

represented by a value layer that provides a visual representation of the value, with

direct manipulation controls that allow the user to adjust and explore the appearance

of values throughout the range. In addition to manually exploring the value range, the

user can also drop a value onto any slider handle, defining a constraint relationship.

This provides a transition between direct manipulation and program control.

Examples of value layers and controls, with the design rationale for each, are

provided in table 1.

Amounts are represented by an
expanding circle whose area can cover
the whole screen (a value of 1) or
shrink to a point (a value of 0). They
can be interactively adjusted using a
slider, to explore the appearance of
values throughout the range.

Colour values are adjusted with three
slider controls for each of the RGB
values4.

Masks can be defined as a union of
filled regions, shapes or thresholded
images. Viewports maintain links to the
original shapes, which may change
dynamically. The eraser button at the
top left can be used to selectively erase
part of the mask, which will override
that part of the resulting union.

																																																								
4 Rather than a didactic explanation of RGB colour space, users acquire understanding of the space by
exploring the effects of manipulation (each slider handle shows the brightness of that component, and a
sample patch shows the blended result). Note that it would have been equally easy to apply the same
approach to HSB or CMYK sliders – and that those colour spaces may be more relevant to existing
graphic design applications. Palimpsest aims to support creative exploration of computational concepts,
so RGB has been retained precisely because it reflects technical and scientific conventions.

	 13	 	

A point is a draggable handle that
simply represents its own location
anywhere on the screen. X and Y
components are available as sliders at
the side of the screen, whose
relationship to the main control
location is made clear by the common
fate of their constrained movements.

Direction is represented as a compass
heading, with a needle whose length
varies with magnitude. Mathematically,
the result can be used as a vector,
although the user need not be aware of
this.

Rate is visualized as a moving sweep
hand, controlled with a magnitude
slider that changes the speed of the
rotating hand

Count: There is little need for precise
counting in the visual domain of
Palimpsest. Distinction between 1, 2 or
3 items is significant, but the interval
between (say) 892 and 903 is less
important. Count values are therefore
controlled via a logarithmic slider.
Although the precise number can be
seen, the main visualization is a square
arrangement of dots, indicating
magnitude at a glance.

Table 1 – types of value layer supported in Palimpsest, with associated
design rationale.

	 14	 	

2.4. Learning to use constraints by exploration

a) b)

c)

Fig 6 – value type conversions: a) an amount defined by height of a point
– the vertical bar at the left shows the height being measured, and the

large circle indicates the derived amount; b) a direction vector defined by
angle and magnitude – the sloping bar in the centre shows the resulting

vector, based on angle and magnitude viewports; c) arithmetic scaling of
an amount – the area of the circle in the middle shows the original

amount, and the large dotted rectangle indicates the derived amount.
Addition and subtraction change the height of this rectangle, while
multiplication and division change its width. These controls can be

explored and directly manipulated in any order, or bound to values from
other layers by converting them to viewports.

Previous experience with developing programming systems for use by artists has

found that anxiety about mathematical operations such as trigonometry has been a

severe obstacle to simple visual manipulations. In Palimpsest, mathematical

operations are therefore presented in the same way as simpler value definitions – the

behavior of an operation can be explored by direct manipulation of sliders, and other

values can be dropped onto those sliders for programmatic control. Examples are

shown in figure 6 of use of coordinates to convert between points and amounts,

	 15	 	

simple trigonometry to convert between amounts and directions, and a four-function

calculator that visualizes arithmetic operations as the changing area of a rectangle.

Fig 7 – an animation path specified to follow the shape defined on an
ellipse layer (the viewport on the right), at a rate defined on a rate layer

(the viewport on the left).

More complex behaviours are also presented as conversions between value types – for

example, a motion trajectory can be defined by deriving a moving point value from a

shape, ink or mask layer (Fig. 7).

Fig 8 – three buttons suggesting layer types for further exploration (top
right). This type of layer provides an animated point, as in Fig 7, which
might usefully be used to create an oscillating value based on the height
of the point (top button), or as a point defining one end of a line (middle
button). Every layer also includes a button that can be used to request a

brief tutorial explaining the behaviour and use of that type (bottom button
– the tutorial will appear as a new layer).

	 16	 	

Exploration of Palimpsest functionality often involves experimenting with these

conversion layers. To encourage exploration, each Palimpsest layer includes a small

selection of other layer types that it might be interesting to create next. These are

offered as a changing set of control buttons at the top right of the window (Fig. 8).

Pressing one of these creates a new layer of that type, with a viewport linking it to the

layer where it was created. Most layers also provide a link to a two or three sentence

tutorial description, naming the layer type and its general capabilities.

Fig 9 – the green component of a colour value layer has been constrained
to follow a derived amount (visible on the layer underneath). The slider

for the green component has been replaced by a viewport.

Alternatively, type conversions can be created dynamically in response to the user

dragging and dropping a layer of one type onto a control or viewport of another type

(Fig. 9). This is often useful as a means of creating values that change dynamically –

via a constraint relationship to an animated point.

2.5. Deriving abstract values from direct manipulation

Many programmable systems become hostile to exploratory design through a

combination of the Cognitive Dimensions of abstraction hunger, premature

commitment, and viscosity. An earlier version of Palimpsest inadvertently

demonstrated these faults, because geometric transformations such as rotation were

specified by first creating a treatment layer to rotate an image, then a viewport to

specify the vector. The abstraction hunger resulted from the fact that the user needed

to request a mathematical operation as the first step. Premature commitment resulted

	 17	 	

from the fact that a choice had to be made as to which operation was required. And

viscosity resulted from the fact that to change the operation (e.g. from rotation to

scaling), the layer had to be deleted and a new one created.

Figure 10 – an ellipse has been rotated using direct manipulation, by
dragging the curved arrow handle (top right). This action has resulted in
the appearance of an empty viewport for specifying the rotation vector

(to the left of the handle). This viewport can then be used under program
control to modify the rotation value, as an alternative to further direct

manipulation.

The revised approach to geometric transforms illustrates the Palimpsest philosophy of

supporting exploration through direct manipulation. All shapes and image layers were

given conventional “handles” for direct manipulation of the image via scaling,

rotation and translation. In most image editing software, these handles result in affine

transforms that are stored internally to the software, but whose parameter values are

never explicitly revealed to the user. In Palimpsest, the abstract parameters resulting

from the direct manipulation are exposed to the user, so that the same transformation

values can also be applied elsewhere.

When the corresponding handle is used, a viewport appears on the layer, representing

a link to the transformation that has just been specified by direct manipulation (Fig

10). The user can either ignore these viewports, or can click on them to add a new

value layer to the stack. That layer will continue to change its value as the shape is

directly manipulated, but it can also be used as an abstract label for programmatic

manipulation of the shape, or constraining other layers to have the same value.

	 18	 	

Figure 11 – an event layer corresponding to the button action that would
fill the ellipse on the layer below (the fill button is a standard mode

control on the ellipse layer). Controls on the event layer either activate
the action (bottom centre left) or disable the relationship (bottom centre

right).

An emergent overall design principle for Palimpsest, was to ensure that any direct

manipulation control can also be used to define a new layer which duplicates the

effect of that control (Fig 11). This applies not only to value controls such as sliders

and directions, but also to menu buttons, mode controls and operations that change the

stack. This is inspired by radically user-customisable systems such as GNU Emacs, in

which every user action is bound to a LISP function that could, in principle, be used

to automate or customise that action.

Fig 12 – links to two event layers that will be triggered at defined
positions along an animated path.

	 19	 	

Simple button clicks are therefore represented by event layers showing the button to

be clicked. Event values can be triggered manually, synchronized or repeated for a

specified count or rate. They can also be dragged onto any animated path, allowing

users to specify the ordering of events as a spatial sequence of any shape within a

visual context (Fig. 12). Most conventional program control constructs can be

emulated using these purely-visual conventions. They would not be particularly useful

as a general purpose programming language (the Cognitive Dimensions include high

diffuseness, poor juxtaposability, and high viscosity), but they are effective in

providing a gentle slope from direct manipulation to more powerful abstraction.

2.6. Support for computational abstractions

Much of the image processing functionality of Palimpsest can be achieved using

simple Boolean, arithmetic and geometric operations over image and shape values,

with a small library of built-in image filters (Fig. 13).

Figure 13 – screenshot of the Palimpsest menu layer, showing one of five
tabs that can be used to create a variety of image treatments and layer

types

However, a further research objective was to investigate the extent to which more

powerful features can be presented within this general strategy of starting with direct

	 20	 	

manipulation, and providing a gentle slope of more abstract computation. Experience

with deployment of spreadsheets suggests that facilities of this kind might not be

explored by all users, who find the basic automation facilities of cells and formulae

already provide sufficient benefit over direct manipulation. However, power users,

whether self-taught or transferring knowledge from other programming environments,

are likely to recognise the potential of general computing functionality.

Fig 14 – a section of the Palimpsest stack collapsed into a single layer.
The buttons at the bottom load this layer into the main stack (left), spread
out the thumbnails into a grid so that individual layers can be selected or

masked (middle), and allow a mask to be specified (the empty mask
viewport at the right). (Buttons at the top right suggest other types for

exploration).

In order to support simple data abstraction, sections of the stack can be collapsed into

a single layer, representing a collection of other layers (Fig. 14). This collection is

rendered in the same way as the stack overview, with each member shown as a card

containing a scaled version of the layer contents. The image value of the collection

layer itself, however, is not the arrangement of cards, but the composite result of the

layers that it contains. This means that collection layers can be used for encapsulation

and abstraction of image-producing functions. They include a persistence mechanism,

by which stacks can be saved to disk as Palimpsest “programs”, and an editing

interface – the main stack can be exchanged with the contents of a collection,

allowing the behaviour of that collection to be explored and modified. Members of the

collection can be selectively disabled (either to be “commented out”, or conditionally

executed) by drawing a mask over the collection (Fig. 15). This mask can, of course,

	 21	 	

be dynamically modified under program control via a viewport referring to a mask

layer.

Fig 15 – a) collapsed section of the stack arranged as a collection in a
grid of thumbnails, and b) use of a mask to selectively enable and disable

layers within that collection. Other control elements appearing in this
figure are the same as described in the caption of Fig 14.

Simple conditional expressions allow masks to be enabled and disabled based on a

value comparison (Fig. 16). Viewports can also be enabled and disabled under user

control (or by an event layer carrying out the same action). Alternative values can be

selected, with dynamic typing so that the user can create a layer that connects one of

two different value layers to a viewport. All of these facilities allow conventional

computation algorithms to be implemented, but as with visual systems such as

ToonTalk (Kahn 1996), AgentSheets (Repenning & Sumner 1995) or BitPict (Furnas

1991) in a manner that is rather less convenient than textual symbolic notations.

	 22	 	

Typical challenges in such systems include Cognitive Dimensions of viscosity, role

expressiveness and hidden dependencies.

Fig 16 – layer to select a value between two alternatives, each of which is
a value obtained from another layer via the viewports at the top. Either of
the two alternatives can be chosen by direct manipulation (clicking on the

check mark button at the right in this screendump), or the chosen
alternative can be toggled (using the toggle button at the bottom). These

actions can be made conditional on other values by creating an event
layer to actuate the direct manipulation buttons.

The most complex facilities in the current version of Palimpsest are those that create

new instances of layers under program control. Instantiation is a conceptual

abstraction that has proven to be an obstacle in other end-user programming systems.

The standard version of Scratch (Resnick et al 2009) for example, does not provide

any mechanism to create a new sprite instance under program control. Several

attempts have been made to address this problem in Palimpsest, none of which are

likely to be acceptable to any but the most determined power user. However, the

currently most usable approach (included in the present distribution) is a layer that

can make copies of other layers, or of collections. Where the layer being copied

includes bindings to other layers via viewports, the user must specify which of those

bindings should be inherited in the new instance. At present, this can be done by

drawing a mask over the bindings that should be retained.

	 23	 	

Figure 17 – a control layer to create multiple instances of an ellipse (as
specified at the right), each with a different value substituted from within
the sequence shown at the left. The buttons at the bottom can be used to

request either a single instance (left button, indicating the next element in
the series), multiple instances (middle button, indicating one instance for
each element in the series), or a collection containing multiple instances

(right button).

In principle, the copy mechanism offers one of the major benefits of abstract

interaction over direct manipulation – the ability to repeat operations more easily. In

practice, the most useful such facility in Palimpsest has been achieved through the

ability to drag a collection of layers into a viewport. When this is done, any members

of the collection whose type matches the viewport are used to generate a map

operation, in which another copy of the target layer is made for each matching

member (Fig. 17). As with other copy operations, users have the option to place these

copies directly on the stack, or into another collection. In combination with the

viewport masking facilities described above, this could provide a simple version of

visual functional programming, with curried parameters and map operators. However,

as before, this would be sufficiently awkward to use that it must be regarded as a

curiosity, or at best a feasibility demonstrator, rather than a practical tool for regular

Palimpsest users.

	 24	 	

3. Implementation overview

The current version of Palimpsest has been implemented in approximately 40,000

lines of Java code over 300 classes. It relies heavily on the Java Graphics2D package,

especially the BufferedImage and AlphaComposite classes, which are used throughout

to provide the rendering of semi-transparent layers. The system architecture relies on

extensive caching and double-buffering to provide immediate response to user

manipulation of value controls, with all animation layers and cache updates carried

out within SwingWorker threads. There may be multiple layers animated at the same

time. Animation updates are therefore dispatched from a single thread to ensure a

consistent time base – a strategy also used in Smalltalk.

Calculation of shadows is generally the greatest performance bottleneck – the

shadows under the current layer are an essential visual cue to system behavior, so

have been rendered using a relatively high quality Gaussian blur. Automated

background removal is often necessary for imported images, in order to identify

regions of an image layer that can be considered transparent. As with shadow

calculation, high quality background removal is essential to user perception of the

layer metaphor. Noise filtering, adaptive thresholding, and compensation for

illumination gradients are all applied (adapted from the approach used by Wellner

(1993)). At present, Palimpsest does not process live video input, although this would

be a natural extension. If live input was used, performance of these algorithms would

become a more significant factor – at present, images are only processed once on

capture, with the user given some control over threshold parameters.

There is limited use of Java Swing functionality, except to manage the scrolling of the

stack overview. Although much of the interaction (e.g. binding of layers to viewports)

involves drag and drop of display elements, the Java drag and drop API was of limited

value, with its emphasis on inter-application data exchange rather than visual

representation of the drag (which is assumed to be defined by the device vendor rather

than application developer).

As with spreadsheet systems, the data-driven execution model relies on type inference

to create valid constraints in response to user actions, followed by change propagation

to update values at execution time. Type inference in Palimpsest uses Java reflection

to determine the value interfaces supported by any layer, control or viewport, with

	 25	 	

type conversion layers created automatically in response to those user actions that

require them. Collections, constraint indirection layers, and some unbound viewports

are polymorphic, meaning that the user is reliant on the “traffic light” cues (a green,

amber or red highlight) during interaction to anticipate the result of dropping a value

into a specific location.

Both the geometric operations, and the layout of user controls on Palimpsest layers,

involved a substantial amount of Java code to manipulate simple point, line and

region calculations. Swing layout components are too heavyweight for these purposes,

but comparison between the developing functions of Palimpsest and the Java

Graphics2D geometry primitives made it clear that many aspects of geometry

processing in Java are both predictable and repetitive (such as identical operations

repeated for x and y coordinates, or parameter lists of the form “(x+width, y+height)”.

A set of lightweight “natural language” utility classes for Java geometry was therefore

implemented. Base classes Location, Offset, Size and BoundingBox extended the

Java Point, Dimension and Rectangle, but included all possible constructors and

conversions combining them as well as natural language expressions such as

bottomRight, shiftLeft, centre, addMargin and so on. Although there are a large

number of such expressions in English, there is seldom any ambiguity about their

meaning. This meant that a development policy of adding further constructors and

operators whenever a layout problem could naturally be expressed in a short phrase

rapidly resulted in a robust and generic Java library, allowing reductions in code size

of 10:1 or more for much of the basic graphics functionality in the system by using

natural functional expressions such as:

Viewport.getBoundary().alignCentreTo(controlRegion.withMargin(10).getTopCentre());

The overall goal in the Palimpsest development was only to create an exploratory

prototype, not a deployable application. In particular, the target platform was not

current tablet products, but the expected resources of a product occupying this market

segment in approximately 10 years time. Execution speed and memory requirements

of the current prototype are well within this anticipated envelope. Despite the

relatively free use of memory in full resolution image buffer caches for every layer,

the current prototype runs comfortably with a 1GB Java heap. This allows creation of

Palimpsest “applications” of around 10-30 active layers, of which a dozen or so may

be encapsulated within collections. The resulting applications provide simple

	 26	 	

animation functionality, and run for hours with no performance degradation.

Response to user actions offers smooth feedback to continuous interaction, except in

cases where blurred shadows must be updated across the whole display image for

each frame.

The development and experimental platform for this work has been a Macintosh

MacBook Pro, running OS X version 10.7, with 2.2 GHz Intel Core i7 processor and

8GB 1333 MHz DDR3 memory. This is certainly outside the current range of the

intended target platform - handheld touch-screen devices – but there is no reason to

doubt that such devices will have specifications in this order within 10 years. A

further constraint is that the programming model of the current iOS and Android

canvas classes is less well suited to the implementation approach taken than the Java

Graphics2D package. Market-driven developments for hand-held devices currently

prioritise 3D rendering primitives, rather than alpha compositing of a large number of

flat planes. Nevertheless, such capabilities seem likely to make the transition from

desktop GUI libraries to handheld devices. Furthermore, the Palimpsest execution

model is well suited to multi-core processes, as much of the rendering calculation

required for individual layers can be performed relatively independently.

4. Potential Applications

The distinctive interaction style of Palimpsest has been inspired by the working

processes of visual artists, but is also more broadly applicable. The motivating

example given in the introduction to this paper was relatively trivial, expressed in

terms of Photoshop macro recording. However, the general purpose computational

functions of Palimpsest are intended to support larger-scale applications. As noted,

the processor and memory requirements for running a practical Palimpsest program

are larger than currently available on a high-end laptop, and 20-50 times greater than

the target platform of typical consumer touch-screen tablets. As increased processing

and memory capacities do become available, the following are examples of

applications that would be well-suited to the Palimpsest model:

1. Visual specification and control of real-time musical parameters. There are a huge

range of musical composition applications and games, intended for users without

musical training, that offer novel mappings between visual variables such as location,

	 27	 	

shape or colour, and musical attributes such as pitch, key signature, tempo etc (cite

Stead, MelodyMorph). Each application of this kind uses different mechanisms to

define song structures, alignment of multiple parts and other logical relations.

Palimpsest could be used by end-users to invent their own musical notation, use it to

control music synthesis, and construct their own musical composition applications

involving any kind of structure or mapping they can imagine. The real-time

performance of the current Palimpsest prototype is close to being acceptable for this

application – an increase in processor speed of 5-10 times would make it a powerful

authoring environment for new music synthesisers (using a real-time audio backend

such as SuperCollider to generate the audio waveforms).

2. Interactive data visualization. There are many applications that provide partial

mappings between numerical data and conventional chart displays, for example in

spreadsheet applications. Users with more programming ability can customize and

control a wider range of visualisation parameters with packages such as R or GnuPlot.

And libraries such as D3 provide support for scripted control of data visualisation.

However, Palimpsest makes it possible to specify any combination of mappings to

visual elements, for example as recently demonstrated by Bret Victor (2011) in a

demonstration of interactive textual programming. Data exploration with Palimpsest

could be carried out completely in the visual domain by defining individual geometric

elements in relation to imported data values, aggregating multiple pieces into a visual

unit, encapsulating this as a Palimpsest layer stack, and then instantiating it over a

data table to construct a display such as Tufte’s visual multiples (1983). By

comparison to the current Palimpsest prototype, an increase in processor speed of 50-

100 times would support the use of Palimpsest as a powerful general purpose

exploratory data visualization environment.

3. Parametric design of geometric CAD models. Powerful CAD systems allow the

design parameters of products or buildings to be expressed in terms of geometric

constraints, allowing designers to explore different options by manipulating a

relatively small number of parameters that might result in different shapes or

proportions of the overall building. These systems also allow multiple designs to be

generated from a single abstract design model, with automatic generation of sets of

detailed parts and drawings for each variation. Past experiments have represented

constraint relations as visual networks (Aish 2000) or scripts (Aish 2011). In principle,

	 28	 	

the Palimpsest interaction style could be used to define constraints on individual solid

elements, encapsulated as layer stacks that defined their visual appearance and

behaviour in the same context. By comparison to the current Palimpsest prototype, an

increase in processor speed of 500-1000 times would support the functionality of a

simple constraint-based parametric design environment.

5. Evaluation

The current implementation of Palimpsest is fully functional, and includes all features

that have been described and illustrated in the previous sections, although subject to

the performance limitations already noted. However, this implementation can only be

regarded as a concept demonstrator, rather than a functional product. In contrast,

established products such as Photoshop include far greater incidental complexity (for

example supporting a large number of import/export formats, standard image filters

and conversions and so on). Established products have also become sufficiently robust

that artists are able to develop skills and creative goals over years of practice. As a

result of these two factors (incidental complexity and robustness), it is not feasible to

evaluate the capabilities of a technical concept demonstrator in direct comparison to

established products such as Photoshop.

Evaluation of Palimpsest has therefore followed a strategy developed for conceptual

evaluation of novel interactive end-user programming paradigms. The "Champagne

Prototyping" technique was originally developed to evaluate a functional

programming extension to the Excel spreadsheet (Blackwell et al 2004). It uses

supervised tutorials and demonstrations in order to evaluate the comprehensibility and

perceived utility of novel programmable functionality within a specific context of use.

Two formal studies have been carried out in variants of this method – one controlled

laboratory study, in which a range of users were observed as they worked

systematically through a Palimpsest tutorial, and one field study, in which members of

the core target user group of professional visual artists were interviewed in their own

working context. In addition to these formal studies, Palimpsest has also been

evaluated in experimental performance contexts, by comparison to live music coding

languages.

5.1. Experimental study

	 29	 	

The goal of this study (reported in detail by Blackwell & Charalampidis (2013)) was

to assess the extent to which Palimpsest was understandable and usable by individuals

from a wide range of arts and technical backgrounds. 10 participants were recruited,

all graduate students at the University of Cambridge, but enrolled on a variety of arts

and scientific courses. Their degree of comfort with end-user programming was

assessed using the computing self-efficacy questionnaire previously applied by

Beckwith and others in end-user programming research (Beckwith et al 2006). Self-

efficacy is a concept widely used in educational psychology to identify those whose

confidence of their own ability in a particular subject is a good predictor of their

performance when learning that subject. Participants also completed a similar

questionnaire to assess their self-efficacy in visual arts (Hickman & Lord 2010).

All participants worked through a structured tutorial of Palimpsest functions, in the

following order:

Layers and the stack, the current layer and reordering layers

Values and viewports, slider controls

Images and masking

Other value types: point, direction, rate and count

Binding new values and value type conversions

Path animations

Collapsing layers into a collection

Using the menu layer to access further functionality

As in previous uses of the Champagne Prototyping method, free-report data was

collected and analysed in terms of Cognitive Dimensions of Notations framework in

order to identify potential future usability problems. Quantitative measures included

proportion of the tutorial voluntarily completed (one participant insisted on extending

the experimental session to learn about every feature of the system), period of time

spent in free exploration, favourable assessment of usability, and Likert-scale

assessments of utility and enjoyability.

This study found that, although those with high computing self-efficacy (and also

programming experience) understood the operating principles of Palimpsest, they did

not perceive it as a practical alternative to conventional programming languages,

unless they also had an interest in the visual arts. Those who had high self-efficacy in

visual arts, but low computing self-efficacy, found Palimpsest complex and difficult

	 30	 	

to understand. Those users who were most enthusiastic and engaged with the system

had high self-efficacy in both visual arts and computing.

The usability issues observed in this study resulted mostly from the novelty of the

interaction paradigm, and many are resolved simply by watching an expert user

operate the system. These novel interaction elements include the manipulation of

layers in the stack, and use of drag and drop to define constraints. Some elements of

the design represent usability compromises because they have been created explicitly

to enable more sophisticated higher-order programming operations (for example, the

menu itself appears as a layer, allowing buttons and sub-menus to be invoked from

other layers – usability would be improved if a conventional drop-down application

menu were used instead).

5.2. Field study

In order to better understand the potential applications of Palimpsest in a professional

visual arts context, a second study was conducted in which artists were interviewed in

their own studios, followed by a variant of Champagne Prototyping in which the

demonstration of Palimpsest capabilities used visual material that the artist had

provided from their own archives (Williams 2014). Four artists were recruited, all

professionals with a wide range of teaching, commission and exhibition experience.

As before, the computing self-efficacy questionnaire was used to assess their prior

familiarity and comfort with programming concepts – this ranged from extensive, to

none at all.

In contrast to the controlled experimental study, the opportunity to experiment with

their own visual material, and in their own working context, was far more effective in

exploring the potential application of Palimpsest to their work. In future studies, it

would be even more useful to assess self-efficacy in advance, and adapt the

demonstration to individual confidence (for example, one participant used Photoshop

very extensively, and initially perceived Palimpsest as a simplified version of

Photoshop, which although attractive for its relative simplicity and usability, obscured

the potential for programmable behaviour). These participants were also far more

enthusiastic about the potential for experimentation, and would have appreciated a

more extensive period of time to play with the system by themselves before the

interview.

	 31	 	

Nevertheless, this study offered a useful complement to the controlled laboratory

study. Starting with a demonstration of the basic interaction paradigm meant that all

participants understood the operation of layers and viewports. A more in-depth semi-

structured interview also provided further insight with regard to usability issues and

user motivations for using a system like this.

With regard to user motivation, not all artists are interested in using computers for

purposes of creative experimentation. On the contrary, some of those in our sample

associated computers with unwelcome bureaucratic aspects of their professional life,

such as preparing business accounts, maintaining a website or sending email. Among

these professional artists, this seems to be a more significant factor than the simple

question of self-efficacy. Some are competent at using computers, but do not

necessarily want to do so in a creative context.

With regard to usability, as with the controlled experiment, participants in this study

commented on the relatively “clunky” appearance of the menu layer, a deliberate

trade-off to support programmatic invocation of menu functions. However, a usability

problem regularly raised in this study that had not been observed in the controlled

experiment was lack of an undo operation. In comparison to direct manipulation

environments such as Photoshop, using Palimpsest for basic image editing tasks

highlighted the lack of a straightforward undo operation. This restriction is a fairly

common drawback of programming by demonstration systems, for example as seen in

Kahn’s ToonTalk (1996). The difficulty of implementing undo operations in this kind

of system is in part a consequence of the complexity in unwinding an arbitrary

execution. Simple operations in Palimpsest can usually be undone simply by

removing a layer from the stack, or following the link to a layer removed from the

stack.

5.3. Live performance

As a complementary evaluation perspective to these more conventional user studies, it

is informative to consider Palimpsest in the context of “live coding” languages that

are created by their authors for use in performance situations (Collins et al 2003) such

as Aaron’s Overtone (2011), Sorensen’s Impromptu (2005) or Magnusson’s ixi lang

(2010). These live coding languages are usually conventional text languages (e.g.

Aaron is committed to use of ASCII tools (Aaron et al 2011)), although McLean’s

	 32	 	

AcidSketch (McLean et al 2010) offers an example of an executable visual formalism

used in performance. Live coders regularly implement languages for their own use,

and even modify these in front of the audience. Conventional productivity and

usability measures are only of limited relevance in this context – the main goal is to

offer a novel experience to the audience, rather than to deliver a functional piece of

software. As a result, some aspects of the language may be intentionally obscure or

playful.

The author has given Palimpsest “performances” to a wide range of audiences. These

have included audiences at live coding meetings and software research conferences,

as well as more general audiences interested in the digital arts. As with some live

coded music, these performances are often accompanied by a short talk placing the

performance in the context of a research question or artistic intention. In this kind of

context, the performance can be compared to a software demo, in which software

research results are accompanied by a demonstration of the working software.

However, Palimpsest has also been used as a pure performance platform at a small

number of events, in collaboration with live coding musician and researcher Sam

Aaron. In one of these, live mixing and animation of images in Palimpsest created a

visual projection improvised from a common theme shared with the musical

improvisation (the theme was the song Red Right Hand, by Nick Cave, whose lyrics

include vivid imagery). Although motivated by the popular nightclub combination of

DJ + VJ (video jockey), this type of experimental fine art performance is more typical

of the work of audio/video live coding performance duos such as slub (Alex McLean

and Dave Griffiths (Armitage 2009)) or klipp av (Nick Collins and Fredrik Olofsson

(2006)).

In another live improvisation with Sam Aaron, an extension Palimpsest layer type was

created to send music control parameters via a socket to Aaron’s Overtone music

synthesis language. Although Palimpsest itself does not run sufficiently fast to

generate music, Overtone provided a real-time backend implementation based on the

Palimpsest parameter specification. The parameters were generated from one button

and one slider that could be bound via viewports to any dynamic event or animated

value within a Palimpsest program, for example allowing a moving melodic profile to

be defined in terms of a freehand ink shape. The audio output resulting from these

	 33	 	

control parameters was defined on the fly in live coding by Aaron, including

processed sound captured from violinist Tim Regan. This performance was in the

context of a live improvisation free jazz ensemble, including both acoustic and

electro-acoustic experimental instruments.

As with other live coding systems, functionality to support performance ideas

continues to evolve in response to performance experiences. Some examples of

specifically performance-oriented features that have emerged from experimentation

include:

 all Palimpsest data values provide a starting point for creative exploration,

rather than predictable behavior. For example, whenever a new value layer

(e.g. a colour) is created, it is initialized to a random value – rather the same

value last used (as in Photoshop) or a range extreme (as in most programming

languages).

 fragments of the “editing” process can be captured and replayed within the

“execution” process, for example via an interaction recorder that captures a

dynamic sequence of interactions on another layer (an ink layer, for example),

and replays them at variable rates.

 a snapshot layer preserves the current screen contents. This can be recorded

either in exhibition mode, or with all the technical apparatus of Palimpsest

visible, based on the observation that artists often choose to appropriate

surface aspects of a technical context into their artwork.

As artistic rather than scientific experiments, these performances are useful

indications of the potential value of Palimpsest, rather than measurable outcomes.

Nevertheless, works created by Palimpsest have been enjoyed by audiences of some

hundreds, and further invitations continue at the time of writing.

6. Related work

The introduction to this paper described the operation of Palimpsest by analogy to

image editing tools such as Photoshop. Users and audiences coming to Palimpsest

from an arts background recognise this resemblance through the graphical user

interface metaphor of superimposed layers. However, the technical capabilities and

behaviour of the system have been influenced by prior research in the design of visual

	 34	 	

programming languages, rather than image editing tools. In the current technology

generation, graphical user interfaces and visual programming languages are

considered to be separate fields of enquiry. But this research intentionally combines

the two, by reference to the earlier history of systems in which visual programming

languages also introduced new user interface metaphors.

The first of these is Sutherland's Sketchpad (1963), often recognised as both the first

graphical user interface, and the first visual programming language. As with

Palimpsest, the computational behaviour of Sketchpad was expressed in terms of

constraints between the visual elements of drawings. As with Palimpsest, the

drawings were not necessarily static (as in later drawing programs), but could

potentially be animated by "running" the Sketchpad program - Sutherland's thesis

ends with the description of a simple animation, in which a drawing of a girl's face is

made to wink.

Kay's early work leading to the Smalltalk language was directly influenced by

Sketchpad (Kay 1996), and by the recognition that the individual visual elements

could be described by analogy to the independent behaviours of elements in a

simulation language. Object-orientation thus has an origin in the composition of

visual representations. The user interaction elements that were invented to interact

with object data structures within a bitmapped display included windows, dialogs,

icons and many other elements of the modern user interface. The key Smalltalk design

principle that "everything is an object", allowing this uniform interaction style, is an

example of how programming language innovation can drive user interface

innovation. In Palimpsest, a similarly radical design philosophy started from the

conjecture that "everything is a layer" would allow basic computational elements to

be combined in a purely visual manner.

Smith's Pygmalion system (1977) made use of the Smalltalk bitmap display to extend

the expressive power of Sketchpad, moving beyond constraint and type relations to

explicitly support recursion. However the expressive power of Pygmalion was limited

by comparison to Smalltalk itself, largely because of the self-imposed constraint of

using only drawn images rather than symbolic strings to construct the concrete syntax.

Following in this line, Furnas's BitPict (1991) explored the extent to which the pixel

map itself can be used to express computation through local transformation rules.

	 35	 	

BitPict was originally presented as a potential platform for prototyping novel user

interface behaviours, although it has probably had more influence on end-user

programming languages that used graphical re-write rules, such as Repenning's

AgentSheets (Repenning & Sumner 1995) and Smith and Cypher's KidSim/Cocoa

(1994). Palimpsest uses constraints, rather than re-write rules, as its primary

computational formalism. Nevertheless, it is a conscious attempt to explore the

purely-visual ambitions of these languages.

Among graphical constraint languages, one of the most extensive early examples was

Borning's ThingLab (1981), also developed in SmallTalk, and a significant influence

on SmallTalk successors such as Squeak eToys and Scratch. ThingLab returned to the

simulation perspective of Simula, Sketchpad and SmallTalk, in which the constraints

express physical laws and object properties. A later family of applications is the use

of constraints to define 2D or 3D geometry in parametric computer-aided design

(CAD) systems. A number of these systems include graphical languages for the

specification of geometric constraints, for example Aish's Custom Objects (2000). In

Palimpsest, all data structures are replaced by constraint relations, to an extent that the

multiple controls on a layer may seem like parameters to a function. However, the

continuous live execution model of Palimpsest means that every "assignment" of a

value to one of these parameters is in fact a constraint binding.

In Palimpsest, the cache status of image buffers for each layer in the stack is

determined via the constraint network, with the layer only re-rendered when the user

is interacting with it, or when updates are propagated from other layers. This

constraint architecture, with all parameter and binding values implemented via

indirection operators (the viewports) that can be inspected and modified by users,

resembles the pointer constraints employed in Myers’ Garnet (Vander Zanden et al

1994). However, where Garnet is implemented in a relatively conventional

programming environment, with the constraints explicitly specified, constraints in

Palimpsest are often created implicitly. Where the behavior of a layer is determined

by a historic dependency (for example, the creation of a masked image layer requires

an image), Palimpsest searches down the stack to find the closest layer of the

appropriate type. This is analogous to implicit parameters in the Scala language,

which provides a degree of fluency that is valuable for rapid exploration.

	 36	 	

7. Discussion

The theoretical objective of this research has been to explore new relationships

between direct manipulation and programmable abstraction. Most programming

languages express abstractions in textual language, even where the program will be

processing images. Direct manipulation systems such as conventional image editing

applications make it more straightforward for users to modify images, but do not

support abstraction. Visual languages offer the potential for more abstract interaction

with images, and Palimpsest is an extreme experiment in that direction.

A general theoretical approach to the relationship between direct manipulation and

abstraction is provided by the Attention Investment model of abstraction use

(Blackwell 2002). Although this is a cognitive model oriented toward design analysis,

it does not directly offer design recommendations. Previous work by Wilson, Burnett

et al. (2003) has operationalized the attention investment model in a specific design

strategy for end-user debugging that they describe as “Surprise, Explain Reward”.

One objective of the current research was to identify further concrete design

guidelines of this kind.

A running theme in this paper has been the need for smooth transitions between direct

manipulation and the definition of abstract behavior in Palimpsest. This both supports

exploratory artistic practices, and also avoids the negative consequences of the

Cognitive Dimension of abstraction hunger, as exhibited by many programming

languages and tools. In Palimpsest there are two transitions in the level of abstraction

provided during system exploration. The first is between direct manipulation of an

image control, and indirect manipulation via a value layer. The second transition is

the composition of the behaviors created using value layers and viewports, by

collapsing into collections, by copying, or by modifying viewports and commands

with indirection layers.

In homage to the Surprise, Explain, Reward design strategy developed by Burnett’s

group, this approach to the transition between direct manipulation and programming

functions can be described as Manipulate, Automate, Compose. The user is able to

achieve useful results, and also become familiar with the operation of the system,

through direct Manipulation that provides results of value. The notational devices by

which the direct manipulation is expressed can then be used as a mechanism to

	 37	 	

Automate them, where the machine carries out actions on the user's behalf. Finally, all

of the functions that the user interacts with in these ways can be Composed into more

abstract combinations, potentially integrated with other powerful and/or complex

computational functions.

The different classes of potential Palimpsest applications suggest different user

populations for whom the potential for increasingly abstract interactions might be

appropriate in future. These might include musical improvisers, data analysts or

architects. In each case, Palimpsest could support the expression of computational

behaviour in the same context as interactive visualisations, without needing to resort

to text when expressing abstractions. In more creative task contexts, the availability of

an explicit action history may provide a more powerful view than typical versioning

functionality, in that all operations on an image can be retrieved, removed or modified.

Users who are already engaged in digital arts find the Palimpsest paradigm intriguing,

and the prototype engaging. Although the prototype is not yet suited to serious

application development, they enjoy using it, and would be curious to explore its

potential. Users who are familiar with a range of programming languages, but not

engaged in the arts, appreciate the novelty of the Palimpsest paradigm but do not view

it as a practical programming language syntax for general purpose use. It offers

relatively extreme trade-off choices on a number of Cognitive Dimensions – for

example, representation of a simple integer value occupies nearly a full screen, which

is a dramatic illustration of diffuseness.

Palimpsest is clearly unusual as a programming language, but at this stage of

development, it is not clear what other applications it might have. Users who work in

the arts, but are not programmers, find it difficult to assess the potential applications

of Palimpsest. If they do not use digital tools in their artistic practice, they view

computers only as business tools (e.g. “could I use it to update my web page?”).

Without clear evidence of a potential end-product, they see no reason to engage with a

tool such as this, unless they wish to explore digital representations for their own sake.

In the digital arts and cultural studies of computing, there is considerable interest in

esoteric programming languages such as Mondrian, Befunge and Brainfuck (Cox &

McLean 2013) that are created as artistic or conceptual explorations rather than being

intended as practical software engineering tools. There is some intersection between

	 38	 	

these languages, and the languages developed for live coding performance, where the

audience view both the source code and the resulting artefact. Languages such as

Magnusson’s ixi lang (2010) and McLean’s Tidal (2010), while not immediately

comprehensible to audiences, provide a visible relationship between construction and

execution that offers a puzzle to be interpreted rather than a straightforward

expression of an algorithm. Palimpsest is appreciated in this kind of context (for

example, in an invited session at the 2012 Psychology of Programming Interest Group

conference, where McLean and Magnusson gave live coded musical performances

alongside a Palimpsest demonstration).

Current work is extending Palimpsest for use in this kind of application, for example

via improved musical and visual integration with Aaron’s Overtone live coding

language (2011). However, future research will return to exploring more general

image processing applications, as they become practical through greater memory

capacity in graphics cards and hardware support for alpha blending. The most

significant potential for extension of the Palimpsest paradigm is likely to arise from

the availability of more powerful graphics libraries for functional reactive

programming languages. Palimpsest could be reimplemented in such a language far

more straightforwardly and robustly than the current Java Graphics2D

implementation.

8. Conclusion

This paper has presented Palimpsest, a novel purely-visual language for exploratory

programming. It offers a new paradigm for visual languages, based on a spreadsheet-

like constraint specification mechanism that is integrated with image composition

functionality. Based on this novel interaction mechanism, a powerful range of

computational functions can be supported, including data types that can both be

directly manipulated and provide a basis for abstract composition of functionality.

At present, Palimpsest has been applied and evaluated in arts-related contexts, where

the live execution is appropriate to performance situations, and the potential for

exploration of image processing operations offers creative potential for the visual arts.

However, the underlying interaction metaphor may also offer potential to support

scripting or automation applications in future generations of keyboardless and

	 39	 	

touchscreen devices. The experimental implementation that has been described in this

paper currently requires significantly greater computational resources than those

presently available on such devices, but reimplementation on more powerful hardware

will allow such applications to be investigated.

References

Aaron, S., Blackwell, A.F., Hoadley, R. & Regan, T. (2011). A principled approach to

developing new languages for live coding. In Proceedings of New Interfaces for

Musical Expression.

Aish, R. (2000). Custom Objects: A model-oriented end-user programming

environment. Workshop on Visual Languages for End-User and Domain-Specific

Programming. University of Washington.

Aish, R. (2011). DesignScript: Origins, Explanation, Illustration. Proceedings of the

Design Modelling Symposium, pp 1-8.

Armitage, T. (2009). Making music with live computer code. Wired UK, 24

September 2009.

Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck, S., Lawrance, J., Blackwell, A.

and Cook, C. (2006). Tinkering and gender in end-user programmers' debugging. In

Proceedings of CHI 2006, pp. 231-240.

Blackwell, A.F., McLean, A., Noble, J. and Rohrhuber, J. (2014). Collaboration and

learning through live coding. Dagstuhl Reports 3(9), 130-168. Edited in cooperation

with Jochen Arne Otto.

Blackwell, A.F. (2002). First steps in programming: A rationale for Attention

Investment models. In Proceedings of the IEEE Symposia on Human-Centric

Computing Languages and Environments, pp. 2-10.

Blackwell, A.F., Burnett, M.M. and Peyton Jones, S. (2004). Champagne Prototyping:

A research technique for early evaluation of complex end-user programming systems.

In Proceedings of IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), pp. 47-54.

	 40	 	

Blackwell, A.F. and Charalampidis, I. (2013). Practice-led design and evaluation of a

live visual constraint language. University of Cambridge Computer Laboratory

Technical Report UCAM-CL-TR-883.

Borning, A. (1981). The Programming Language Aspects of ThingLab, a Constraint-

Oriented Simulation Laboratory. ACM Trans. Program. Lang. Syst. 3, 4 (October

1981), 353-387.

Citrin, W., Doherty, M. and Zorn, B. (1994). Formal semantics of control in a

completely visual programming language. In Proc. IEEE Symposium on Visual

Languages. 1994. St. Louis, 208-215.

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. (2003). Live Coding in Laptop

Performance. Organized Sound 8, 321–330.

Collins, N. and Olofsson, F. (2006). klipp av: Live Algorithmic Splicing and

Audiovisual Event Capture. Computer Music Journal 30(2), 8-18.

Cox, G. and McLean, A. (2013). Speaking Code: Coding as Aesthetic and Political

Expression. MIT Press.

Dillon, S. (2007). The Palimpsest: Literature, criticism, theory. Continuum.

Furnas, G.W. (1991). New Graphical Reasoning Models for Understanding Graphical

Interfaces, Human Factors in Computing Systems CHI ‘91 Conference Proceedings,

New Orleans, April 28 - May 2, 1991, 71-78.

Green, T.R.G. & Petre, M. (1996). Usability analysis of visual programming

environments: a 'cognitive dimensions' approach. Journal of Visual Languages and

Computing, 7,131-174.

Hickman, R. & Lord, S. (2010). An examination of adolescents' self-efficacy,

engagement and achievement in representational drawing. Australian Art Education

32 (2),73-85

Kahn, K. (1996) ToonTalk™—An animated programming environment for children.

Journal of Visual Languages and Computing 7 (2): 197–217.

	 41	 	

Kay, A. (1996). The early history of Smalltalk. In History of Programming

Languages II, T.J. Bergin, Jr. and R.G. Gibson, Jr., eds. ACM, New York. 511--598.

Kurlander, D. and Feiner, S. (1990). Editable graphical histories. In E.P. Glinert (ed.).

Visual Programming Environments: Applications and Issues. IEEE Press, Los

Alamitos, CA. pp. 416-423.

Lieberman, H. (Ed.). (2001). Your Wish Is My Command: Programming by Example.

San Francisco: Morgan-Kaufmann.

McLean, A., Griffiths, D., Collins, N., and Wiggins, G. (2010). Visualisation of Live

Code. In Electronic Visualisation and the Arts London 2010. Available online at

http://yaxu.org/visualisation-of-live-code/ (accessed 22 Mar 2014).

McLean, A. and Wiggins, G. (2010). Tidal – Pattern Language for the Live Coding of

Music. In Proceedings of the 7th Sound and Music Computing conference.

Magnusson, T. (2010). ixi lang: a constraint system for live coding. In Proceedings of

the 16th International Symposium on Electronic Art, pp. 198-200.

Repenning, A., & Sumner, T. (1995). Agentsheets: A medium for creating domain-

oriented visual languages. IEEE Computer, 28(3), 17-25.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,

K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y. (2009). Scratch:

Programming for All. Communications of the ACM, November 2009.

Schachman, T. (2011). Recursive Drawing. Online application available at

http://recursivedrawing.com/draw.html [last accessed 30 August 2012]

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming

Languages. IEEE Computer 16, 8 (August 1983), 57-69.

Smith, D.C. (1977). PYGMALION: A Computer Program to Model and Stimulate

Creative Thinking. Birkhäuser, Basel, Switzerland.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). KidSim: programming agents without

a programming language. Communications of the ACM 37 (7), 54-67.

	 42	 	

Smith, R.B. (1986). Experiences with the alternate reality kit: an example of the

tension between literalism and magic. SIGCHI Bull. 17, SI (May 1986), 61-67.

Sorensen, A. (2005). Impromptu: An interactive programming environment for

composition and performance. Proc. Australasian Computer Music Conference,

Brisbane: ACMA, pp. 149–153.

Sutherland, I.E. (1963/2003). Sketchpad, A Man-Machine Graphical Communication

System. PhD Thesis at Massachusetts Institute of Technology, online version and

editors' introduction by A.F. Blackwell & K. Rodden. Technical Report 574.

Cambridge University Computer Laboratory

Tanimoto, S.L. (2013). A Perspective on the Evolution of Live Programming. In Proc.

First International Workshop on Live Programming, (in association with ICSE 2013),

pp. 31-34 Available online at http://www.cs.washington.edu/ole/Liveness2013.pdf

(last accessed 22 March 2014).

Tufte, E.R. (1983). The visual display of quantitative information. Graphics Press.

Vander Zanden, B., Myers, B. A., Giuse, D., and Szekely, P., Integrating Pointer

Variables into One- Way Constraint Models, ACM Transactions on Computer Human

Interaction, 1, 2, 161-213, 1994.

Victor, B. (2011). Dynamic Drawing. Blog entry dated Mar 3 2011. Available online

at http://worrydream.com/#!/DynamicPicturesMotivation [last accessed 26 Aug 2012]

Wellner, P. (1993). Interacting with paper on the DigitalDesk. Commun. ACM 36, 7

(July 1993), 87-96.

Williams, M. (2014). Evaluation of a live visual constraint language with

professional artists.

Wilson, A. Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham,

M., and Rothermel, G. (2003). Harnessing curiosity to increase correctness in end-

user programming. In Proceedings of the SIGCHI conference on Human factors in

computing systems (CHI '03). ACM, New York, NY, USA, 305-312.

	 43	 	

Appendix A – Tutorial Example

This tutorial includes thumbnail images taken from a narrated video demonstrating

the application example described in section 1.1. The full video is provided in the

supplementary materials supporting this paper.

When an image is loaded
into Palimpsest, it appears as

a new layer

Clicking the “cut-out” button
removes the background, so

that layers beneath are
visible.

The drawing menu provides
a set of basic geometric

shapes

Clicking the rectangle button
creates a new shape layer on

top of the image layer

Layer contents are moved
and resized using standard

drag handles

The stack of layers can be
reordered by dragging the

thumbnails at the left

The rectangle layer is now
below the image layer

Clicking the empty color
viewport creates a new color

layer with RGB sliders

The color of the rectangular
frame behind the image is
now defined by that color

layer

The menu of value layer
types includes a color

sampler for dynamic color
values

The color sample layer
obtains a color from a

specified point within an
image layer

Now we can return to the
rectangle layer, and bind its
color to the sampled value

	 44	 	

The color sample value is
dragged across the screen

from the layer stack

A green highlight shows that
the value can be dropped

onto the color viewport

Now the color of the
rectangle is bound to the

sample value

When the sample point is
dragged to a different

location, the color changes
dynamically

A dynamic path can be
defined for the sample point
by creating another shape

layer

An ink layer has been
created, allowing the user to

draw a freehand path.

The user wants various color
over the face, followed by the

color of the shirt

Closing the ink path provides
a looped animation

Clicking the path animation
button creates a new layer

with a point value that moves
over the shape

The layer representing the
moving point value is

dragged into the main area

The green highlight shows
that the moving value point
can be bound to the color

sample position.

The final result is a frame
that changes its color

continuously, based on a
path sampled from the

framed image

	 45	 	

Appendix B – Full Palimpsest Tutorial

This appendix reproduces the full text of the built-in interactive tutorial included with

the Palimpsest system. It is provided as a reference for the available layer types, and

also gives a flavour of what it is like to interact with the system when working

through this tutorial.

Introduction	
Welcome	to	Palimpsest,	a	sketchbook	for	playful	exploration	of	powerful	
computer	graphics.	
A	palimpsest	is	a	picture	with	many	layers.	
Try	making	some	new	layers	underneath	this	text	by	pressing	the	ellipse	button	
below.	
(then	to	continue	this	introduction,	press	NEXT)	

Layers	and	Stack	
The	main	part	of	the	screen	shows	the	current	layer	(now	it	is	this	text).		You	can	
see	through	the	current	layer	to	layers	stacked	underneath.	
The	stack	overview	at	the	left	shows	all	the	layers.		You	can	choose	which	one	is	
current	by	clicking	on	it.		
Try	that	now,	then	use	the	stack	overview	to	come	back	to	this	text	

Layer	Order	
Note	that	that	the	main	view	looks	"down"	at	the	stack	layers	below	the	current	
one,	while	layers	above	it	can't	be	seen.	
The	order	of	the	layers	can	be	changed	by	dragging	them	up	and	down	in	the	stack	
overview	at	the	left.	
Try	it	now	(then	come	back	to	this	text).	

Values	
Many	layers	have	values	that	can	be	changed.	
Values	are	on	separate	value	layers,	connected	by	"viewports"	between	layers.	
Try	clicking	on	the	empty	viewport	below,	to	make	a	value	layer	that	changes	the	
colour	of	this	text	with	sliders.	

Slider	Controls	
For	convenience,	some	values	can	be	changed	on	the	same	layer	where	they	are	
used.	
Try	dragging	the	slider	handle	at	the	right	up	and	down.	
You	can	also	convert	a	slider	to	a	separate	value	layer	by	clicking	on	the	handle	
(without	dragging).	

Images	
Image	layers	can	be	created	by	dragging	image	files	(png,	jpg	or	gif)	into	
Palimpsest	from	the	desktop	or	a	folder.	
You	can	also	browse	for	images	by	pressing	the	LOAD	IMAGE	button.	

	 46	 	

Masks	
You	can	extract	part	of	an	image	using	a	mask.	
Masks	can	be	made	in	any	shape.	
Try	using	the	button	at	the	top	right	of	an	ellipse	layer	to	make	a	mask.	

Applying	Mask	
A	value	from	one	layer	can	be	used	in	another	by	dragging	it	from	the	stack	
overview	into	the	main	view	area.		Try	applying	a	mask	to	an	image	like	this:	
1.	Click	on	an	image	layer	in	the	stack	overview	at	the	left,	to	make	it	the	current	
layer	in	the	main	view.	
2.	Drag	a	mask	layer	from	the	stack	overview	and	drop	it	into	the	main	view	area.	

All	Value	Types	
There	are	several	kinds	of	value.	You	have	already	seen	Colour,	Amount,	Image	
and	Mask	‐	others	are:	
Point	(for	places	on	the	screen)	
Direction	(for	movement)	
Rate	(for	speed)	
Count	(for	repetition)	
Try	them	out	using	the	buttons.	

Viewports	
Wherever	a	viewport	shows	a	value	from	another	layer,	it	can	be	replaced.	
Use	the	button	on	the	left	below	to	make	another	colour	layer,	then	drag	that	layer	
out	of	the	stack	overview,	and	onto	the	colour	value	viewport	on	the	right.	
The	viewport	changes	to	show	the	new	value	‐	try	changing	it	back	to	the	original	
colour.	

Hiding	Layers	
You	may	have	noticed	that	to	reduce	clutter,	the	original	image	layer	was	hidden,	
by	removing	it	from	the	stack.	
A	viewport	in	the	mask	result	shows	the	original	layer.		You	can	return	the	hidden	
layer	to	the	stack	by	clicking	on	that	viewport.	

Animation	Paths	Intro	
A	shape	can	be	used	to	define	the	path	of	an	animated	point.	
Make	an	ellipse,	then	use	the	PATH	button	at	the	right	of	the	ellipse	layer	to	create	
an	animated	path	layer.	

Value	Conversions	
It	is	often	useful	to	convert	values	of	one	kind	into	another.	
For	example,	use	the	button	at	the	top	right	of	an	animated	path	layer,	to	create	an	
amount	based	on	the	height	of	the	moving	point.	
Then	go	to	a	layer	with	an	amount	slider	(e.g.	a	colour)	and	drag	the	new	moving	
amount	from	the	stack	overview	onto	a	slider	handle	instead	of	a	viewport.	

Collapsing	into	Collections	
Layers	can	be	organised	by	collapsing	sections	of	the	stack	into	a	collection	layer.	

	 47	 	

Try	it	using	the	button	below.	You	can	return	layers	to	the	stack	by	going	to	the	
new	collection	layer,	and	clicking	on	the	one	you	want.	

Moving	to	the	Trash	
Unwanted	layers	can	be	removed	from	the	stack	by	clicking	the	trash‐bin	at	the	
top	left.	
This	creates	a	trash	layer	at	the	bottom	of	the	stack.	
You	can	retrieve	deleted	layers	by	going	there,	and	clicking	the	one	you	want.	

Shortcut	Keys	
There	are	a	few	useful	shortcut	keys:	
Up	and	down	arrows	move	up	and	down	the	stack.	Up/down	with	the	shift	key	
held	down	swaps	the	current	layer	with	the	one	above	or	below	it.	
The	delete	key	has	the	same	effect	as	clicking	the	trash	bin.	
The	space	bar	starts	an	exhibition	mode	with	all	controls	hidden.	

Menus	
Different	kinds	of	layer	can	be	created	using	buttons	on	a	menu,	accessed	via	the	
menu	button	at	the	top	left	of	the	Palimpsest	window.	
Try	it	now	to	see	the	available	menu	tabs	‐	some	buttons	will	already	be	familiar,	
while	others	are	advanced	functions	to	explore	in	future.	

End	of	Basic	Tutorial	
You	have	now	seen	the	basic	Palimpsest	functions.	To	explore	other	types	of	layer,	
use	the	menu	button.	
Many	layers	also	have	buttons	at	the	top	right,	suggesting	possible	ideas	to	
explore	next.	
More	advanced	layer	types	also	have	a	button	to	request	a	tutorial	page	with	more	
advice.	

Drag	
(Advanced)	Basic	shapes	and	images	can	be	moved,	resized	or	rotated	by	dragging	
handles.	
The	actual	amounts	by	which	the	handles	are	dragged	can	be	used	as	value	layers	
‐	click	on	the	viewport	to	see	the	layer	for	move	(the	centre	point),	rotate	(a	
direction)	or	scale	(an	amount).	
Drag	a	different	value	layer	into	the	viewport	(for	example	a	moving	point)	to	
automate	these	actions.	

Event	Values	
(Advanced)	All	buttons,	sliders	and	value	viewports	can	be	automated	using	Event	
layers.	
To	create	an	Event	layer,	right‐click	on	a	control	‐	try	it	on	the	"NEXT"	button	
below.		If	you	drag	an	event	layer	onto	a	path,	the	event	will	be	triggered	when	the	
animated	point	goes	past	it.	

Advanced	Introduction	
(Advanced)	Reference	entries	for	other	layers.	

	 48	 	

The	remaining	tutorial	pages	cover	advanced	topics.		Rather	than	reading	through	
in	order,	it	may	be	more	convenient	to	return	to	individual	pages	when	they	are	
needed,	using	the	TUTORIAL	button	that	appears	on	the	right	hand	side	of	many	
layers.	

Paragraph	
(Advanced)	The	paragraph	layer	arranges	text	over	multiple	lines.	
Different	shapes	can	be	defined	with	a	mask.	
Note	that	there	are	almost	no	editing	functions.		The	best	way	to	enter	text	is	to	
create	it	in	an	external	application,	copy	it,	and	use	the	paste	button	on	the	
paragraph	layer.	

Ink	
The	ink	layer	lets	you	build	up	a	shape	from	freehand	elements.	
Individual	ink	strokes	can	be	dragged	around	to	change	their	position,	or	dragged	
out	of	the	main	viewing	area	into	the	stack	overview	to	put	them	on	a	separate	
layer.	

Spin	
(Advanced)	The	spinning	direction	turns	clockwise	or	counter‐clockwise	at	the	
specified	rate.	
If	a	specific	distance	(length)	is	required,	create	a	normal	direction	value	with	the	
required	distance	using	the	direction	viewport	in	the	spinning	direction	layer.	

Using	Collections	
A	collection	combines	its	members	into	a	single	image	‐	use	a	mask	to	include	only	
some	of	them.	
You	can	replace	the	whole	stack	with	the	contents	of	a	collection,	using	the	big	
blue	button.		To	return	the	original	stack,	a	backup	copy	is	provided	at	the	top	of	
the	new	stack.	
Note	that	you	can	view	collections	either	as	a	stack,	or	arranged	into	a	grid	to	see	
the	contents	more	easily.	

Sequences	
(Advanced)	A	sequence	of	points	or	amount	values	can	be	created	in	a	single	
collection.	
Use	a	count	value	to	define	how	many	values	there	will	be	in	the	collection.	
Controls	on	the	sequence	layer	specify	the	starting	value,	and	the	difference	to	be	
added	between	each	member	of	the	sequences.	

Copying	Layers	
(Advanced)	There	are	some	powerful	facilities	to	copy	collections	of	layers.	
Drag	a	collection	of	values	into	a	viewport	on	another	layer,	to	make	multiple	
copies	having	those	values.	
Alternatively,	use	the	copy	button	to	copy	a	single	layer	or	collection,	and	draw	a	
mask	over	any	viewports	that	should	have	the	same	value	as	the	original.	

Mask	Advanced	
(Advanced)	Mask	layers	can	be	built	up	from	multiple	sources.	

	 49	 	

You	can	drag	additional	shapes	onto	a	mask	layer,	and	they	will	be	added	to	the	
mask	area.	
You	can	also	paint	additional	mask	areas,	or	erase	areas,	by	drawing	directly	on	
the	mask.	

Blur	
(Advanced)	Blur	layers	provide	a	blurred	version	of	another	image,	but	can	also	
be	used	as	a	soft‐edged	mask.	
The	standard	blur	is	evenly	textured.	A	textured	blur	can	also	be	created	by	
dragging	a	suitably	textured	image	onto	the	blur	layer	‐	light	and	dark	areas	of	
that	image	define	transparency	variations.	

Calculator	
The	calculation	layer	takes	an	amount	as	an	input,	and	turns	it	into	a	different	
value.	
The	central	area	shows	the	original	amount.		The	dotted	rectangle	shows	how	this	
original	value	is	adjusted	‐	first	by	adding	or	subtracting	height,	then	by	scaling	
the	width.	
Try	playing	with	the	sliders	to	see	what	effect	they	have.	

Sweep	
Use	the	sweep	layer	over	a	changing	image,	such	as	a	moving	line.	
New	versions	of	the	image	are	drawn	over	older	ones,	which	gradually	fade.	
The	fade	rate	can	be	adjusted	by	dragging	a	rate	value	onto	the	sweep	layer.	

Making	Points	
(Advanced)	There	are	two	ways	of	converting	other	layers	to	point	values	‐	using	
the	centre	point	of	any	image	or	shape,	or	using	the	middle	of	two	other	points.	
Use	the	viewing	mode	control	to	choose	which	(or	all)	of	the	alternative	
conversions	is	visible.	

Making	Amounts	
(Advanced)	There	are	several	ways	of	converting	other	layers	to	amount	values	‐		
using	the	position	of	a	point	on	the	screen	(either	X	or	Y),		using	the	size	of	a	shape	
or	image	(either	width	or	height),	or		using	a	direction	(either	angle	or	distance).	
Use	the	viewing	mode	control	to	see	all	of	the	available	conversions.	

Making	Directions	
(Advanced)	There	are	several	ways	of	converting	other	layers	to	direction	values	‐		
using	the	path	between	two	points,		using	the	long	axis	of	a	shape	or	ink	layer	
stroke,	or		using	amounts	for	angle	and	distance.	
Use	the	viewing	mode	control	to	choose	which	(or	all)	of	the	alternative	
conversions	is	visible.	

Colour	Sampler	
(Advanced)	The	colour	sampler	defines	a	colour	value	taken	from	a	patch	at	a	
specific	point	in	an	image.	
The	size	of	the	sample	patch	can	be	adjusted	‐	the	resulting	value	is	the	average	
colour	across	the	patch.	

	 50	 	

Event	
(Advanced)	The	event	value	layer	can	be	used	to	produce	regular	events,	
occurring	at	a	specified	rate.	
When	triggered,	it	repeats	as	many	times	as	specified	by	the	count	value.	
If	the	repeat	mode	button	is	turned	on,	this	continues	until	repeat	mode	is	turned	
off.	

Cut	Out	
The	cut‐out	layer	can	be	used	to	cut	out	a	foreground	picture	from	an	even‐
coloured	background.	
Both	light	and	dark	backgrounds	are	recognised.	The	slider	adjusts	the	amount	of	
the	picture	remaining	between	light	and	dark.	
Colour	values	can	be	specified	to	replace	either	the	light	or	dark	parts	with	an	
even	colour.	If	no	replacement	colour	is	specified,	those	areas	are	left	transparent.	

Rubbing	
The	rubbing	layer	lets	you	"rub"	over	an	image	to	extract	the	parts	you	want.	
It	uses	a	hidden	mask	layer	that	can	be	viewed	by	clicking	the	mask	viewport.	
Extracted	parts	can	be	dragged	onto	the	stack	overview	to	make	new	layers.	

Animation	Paths	Complete	
An	animated	point	moves	between	locations	along	a	path	at	a	steady	speed,	
controlled	by	the	rate	value.	
The	path	can	be	defined	either	by	a	single	shape,	or	by	the	outline	of	a	mask.	
If	an	event	layer	is	dragged	onto	the	path,	that	event	will	be	triggered	when	the	
moving	point	passes	the	nearest	path	location	to	the	event	marker.	

Mouse	Tracker	
The	mouse	tracker	can	be	used	to	make	a	Palimpsest	display	that	reacts	to	user	
actions.	
While	active,	the	point	value	follows	the	mouse.	Use	the	play	button,	keyboard	
Enter,	or	click	to	start	and	stop	tracking.	
The	point	can	also	be	moved	up	and	down	with	arrow	keys.	Hold	down	the	option	
key	for	fine	adjustment.	

Recording	
The	recording	layer	can	be	used	to	record	all	mouse	actions	in	the	layer	
underneath	it,	then	play	them	back	at	an	adjustable	rate.	
There	is	no	way	to	make	multiple	recordings	at	present.	Moving	to	other	layers	
before	stopping	the	recording	can	also	have	unpredictable	effects.	

Choice	
(Advanced)	The	choice	layer	can	provide	any	kind	of	value,	choosing	between	two	
alternatives	of	the	same	type	(two	colours,	two	shapes,	two	masks,	two	points	
etc).	
To	automate	the	selection,	make	a	trigger	by	right‐clicking	on	a	control	button	that	
selects	one	alternative	or	swaps	between	them.	

	 51	 	

Comparison	
(Advanced)	The	comparison	layer	compares	two	amounts,	and	presents	a	mask	
based	on	the	result.	
If	the	amount	on	the	right	is	smaller,	then	the	mask	will	be	empty.	If	it	is	larger,	the	
mask	value	from	the	viewport	is	used.	
The	resulting	mask	can	be	used	to	make	an	image	appear,	or	to	activate	members	
of	a	collection.	

Dependency	Graph	
(Advanced)	The	dependency	graph	can	be	used	to	review	which	layers	use	values	
from	other	layers.	
The	graph	can	quickly	become	crowded,	so	it	may	be	helpful	to	collapse	the	layers	
of	interest	into	a	separate	stack.	

Annotation	
The	annotation	layer	can	be	used	to	make	notes	about	a	value	on	another	layer.	
It	will	also	pass	on	that	value,	controlled	by	a	disable/enable	button.	
Sorry,	but	the	text	editing	functions	are	useless.	I	recommend	that	you	copy	your	
text	from	outside	Palimpsest,	and	use	the	paste	button.	

Trigger	Commands	
(Advanced)	Trigger	layers	can	automate	the	behaviour	of	a	button	or	slider.	
The	event	viewport	on	the	trigger	layer	can	be	used	to	coordinate	or	repeat	
multiple	triggers.	
As	with	other	event	layers,	a	trigger	layer	can	be	dragged	from	the	stack	onto	an	
animated	path.		The	trigger	action	will	occur	when	the	animated	point	passes	the	
event	marker.	

Trash	
The	trash	collection	can	be	used	to	store	layers	not	required	in	the	stack	(even	if	
some	viewports	still	use	them).	
To	clean	up	the	trash	collection,	click	the	trash	bin	icon.	The	cursor	then	changes	
to	deletion	mode	‐	any	member	of	the	collection	that	you	click	on	will	be	deleted.	

Multi	Value	Copy	
(Advanced)	The	multi‐value	copy	can	be	used	to	make	multiple	copies	of	another	
layer,	each	using	a	different	value	from	a	collection.	
Different	buttons	make	either	a	single	layer	copy	using	the	next	value,	multiple	
copies	on	the	stack	for	each	value,	or	multiple	values	placed	into	another	
collection.	

Shuffle	Stack	
The	shuffle	layer	can	be	used	to	change	the	order	of	the	stack.	
The	up	and	down	buttons	at	the	left	move	the	current	layer	view	up	and	down	the	
stack	(like	up/down	arrow	keys).	
The	buttons	at	the	right	change	the	order	by	moving	the	layer	underneath	up	or	
down	the	stack	(like	shift	up/down).	
The	centre	button	turns	exhibition	mode	on	and	off	(like	space	bar).	

	 52	 	

Snapshot	
The	snapshot	layer	creates	a	snapshot	of	the	whole	stack,	as	seen	from	under	this	
layer.	
It	captures	either	the	exhibition	mode,	or	the	user	view	of	Palimpsest	‐	including	
any	controls	on	the	layer	below.	
To	reduce	confusion	with	controls	in	the	picture,	the	controls	for	saving	are	inside	
a	grey	border.	

Recovered	Stack	
This	layer	preserves	the	stack	as	a	collection	of	layers.	
You	can	replace	the	whole	stack	with	this	collection,	using	the	big	blue	button.	
To	return	the	original	stack,	a	backup	copy	is	provided	at	the	top	of	the	new	stack.	

Viewport	Status	
The	viewport	status	layer	lets	you	modify	the	way	that	one	layer	uses	a	value	from	
another.	
The	connection	between	the	layers	can	be	temporarily	disabled	or	enabled	by	
clicking	the	cross/tick	button.	It	can	be	cancelled	altogether	by	clicking	the	trash	
icon.	

End	
This	is	the	end	of	the	tutorial.	
Other	features	of	Palimpsest	can	be	discovered	by	exploring	the	menus,	and	trying	
the	layer	types	suggested	at	the	top	right	of	each	current	layer.	
Enjoy	playing	with	Palimpsest!	

Appendix C: Capsule definitions of Cognitive Dimensions

The Cognitive Dimensions of Notations framework was introduced in this journal by

Green & Petre (1996). A special issue of this journal (Vol. 17 No. 4) presented papers

reviewing applications of the framework over the subsequent 10 years.

The underlying concept of the Cognitive Dimensions framework is that the user is

considered to be interacting with an information structure, which is composed of

components and the relationships between them. The notation includes visual

representations of components and relationships. The usability characteristics result

from the interaction between the visual representation and the environment that is

used to view, navigate, create and modify it.

The following definitions are based on those presented in Blackwell, A.F. and Green,

T.R.G. (2003). Notational systems - the Cognitive Dimensions of Notations

framework. In J.M. Carroll (Ed.) HCI Models, Theories and Frameworks: Toward a

multidisciplinary science. San Francisco: Morgan Kaufmann, 103-134.

	 53	 	

Abstraction availability of abstraction mechanisms, ranging from
abstraction hunger (abstractions are required) to abstraction
hating (abstraction are not possible).

Closeness of mapping correspondence between representation and application
domain.

Consistency similar semantics are expressed in similar syntactic forms.

Diffuseness verbosity of language, for example in terms of screen real
estate.

Error-proneness the notation invites mistakes and the system gives little
protection.

Hard mental operations high demand on cognitive resources such as short term
memory or maintenance of subgoal dependencies.

Hidden dependencies important relationships between components are not visible.

Premature commitment constraints on the order of doing things.

Progressive evaluation work-to-date can be checked at any time.

Provisionality degree of commitment to actions or marks.

Role-expressiveness the purpose of a component within the overall structure is
readily inferred.

Secondary notation extra information can be expressed in means other than
formal syntax.

Viscosity resistance to change of the structure.

Visibility and
juxtaposability

ability to view components easily.

	

