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ABSTRACT: Inhomogeneous fluid solvation theory (IFST)
and free energy perturbation (FEP) calculations were
performed for a set of 20 solutes to compute the hydration
free energies. We identify the weakness of histogram methods
in computing the IFST hydration entropy by showing that
previously employed histogram methods overestimate the
translational and orientational entropies and thus under-
estimate their contribution to the free energy by a significant
amount. Conversely, we demonstrate the accuracy of the k-
nearest neighbors (KNN) algorithm in computing these
translational and orientational entropies. Implementing the
KNN algorithm within the IFST framework produces a
powerful method that can be used to calculate free-energy
changes for large perturbations. We introduce a new KNN
approach to compute the total solute-water entropy with six
degrees of freedom, as well as the translational and
orientational contributions. However, results suggest that
both the solute−water and water−water entropy terms are significant and must be included. When they are combined, the
IFST and FEP hydration free energies are highly correlated, with an R2 of 0.999 and a mean unsigned difference of 0.9 kcal/mol.
IFST predictions are also highly correlated with experimental hydration free energies, with an R2 of 0.997 and a mean unsigned
error of 1.2 kcal/mol. In summary, the KNN algorithm is shown to yield accurate estimates of the combined translational-
orientational entropy and the novel approach of combining distance metrics that is developed here could be extended to provide
a powerful method for entropy estimation in numerous contexts.

■ INTRODUCTION

Inhomogeneous fluid solvation theory (IFST) is a statistical
mechanical framework for calculating solvation free energies.
The effect of a solute on the free energy of the surrounding
solvent is quantified by calculating the enthalpy and entropy
relative to bulk water.1−3 The solvation enthalpies are
computed from interaction energies, and the solvation
entropies are computed from intermolecular correlations.
Only two-particle contributions are considered, and thus, the
solvation entropy is calculated as the sum of a solute−water
correlation term (Ssw) and a term from the change in water−
water correlations (ΔSww). Ssw and ΔSww are expected to
contribute unfavorably and favorably to the solvation free
energy, respectively.4 IFST has been applied to proteins,5−7

peptides,8 host−guest complexes,9 small molecules,10,11 and
bulk water.12−14 Previous work in this laboratory has
demonstrated that hydration free energies for six small solutes
calculated using IFST agree well with hydration free energies
calculated using the more-established method of free-energy
perturbation (FEP).10 In this case, the R2 coefficient of
determination was 0.99 and the mean unsigned difference

was 0.69 kcal/mol. However, this work also identified the
problem with using a histogram method to calculate the IFST
correlation functions. This problem is that the histogram bin
sizes must be sufficiently small to capture the complexity of the
probability density function but sufficiently large to avoid
convergence issues. This is a well-known concern with
histogram methods and has been addressed previously by a
number of approaches.15,16 In the previous study, the amount
of data from a 100 ns simulation was insufficient to yield
converged entropy estimates for the required histogram bin
sizes.10 The necessary use of inadequate histogram bin sizes led
to underestimation of the entropy terms, as evidenced by the
inability of the Cartesian coordinate system to recapitulate the
radial distribution function of bulk water and the underestimate
of the orientational entropy of bulk water. However, the Ssw and
ΔSww terms are expected to be opposite in sign and the
magnitudes of both are expected to be underestimated. Thus, a
cancellation of errors is expected to yield a reasonable estimate
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of the solvation entropy, as observed. To avoid the inherent
issue in histogram methods of selecting a bin size, other
implementations of IFST have used the k-nearest neighbors
(KNN) algorithm17−19 to calculate the orientational entro-
pies.9,14 The KNN method yields an asymptotically unbiased
entropy estimate, and we have recently demonstrated the
accuracy of a KNN algorithm with an orientational distribution
of known entropy.20 In this work, we develop a KNN method
to calculate the total solute−water solvation entropy Ssw. We
then compute hydration free energies for a set of polar,
nonpolar, and charged solutes using IFST and compare the
results with hydration free energies calculated using FEP.21

■ METHODS
Hydration free energies were computed using FEP and IFST
for the polar, nonpolar, and charged solutes listed in Table 1.

The force field parameters for the molecules were taken from
CHARMM36,22 and the force field parameters for neon were
taken from CHARMM27.23 The bond lengths, bond angles and
dihedral angles were set to their force field equilibrium values
for all molecules. Water molecules were modeled with the
TIP4P-2005 water model.24

Water Setup. A water shell of radius 50.0 Å was first
generated around each solute with the SOLVATE program
version 1.0 from the Max Planck Institute.25 The resulting
water globules were then cut to rhombic dodecahedral
(RHDO) unit cells with side lengths of 25.0 Å for the
uncharged solutes and 30.0 Å for the charged solutes. Larger
systems were used for the charges solutes, as the perturbation
to bulk water is expected to extend to the third solvation shell
in this case.26 To standardize the geometries of the water
molecules, every hydrogen atom was deleted and all the
necessary hydrogen atoms and lone pairs were built using the

appropriate geometry for TIP4P-2005 water. No additional
ions were included in the systems.

IFST Protocol. Equilibration was performed for 1.0 ns in an
NPT ensemble at 300 K and 1 atm using Langevin temperature
control and Nose−́Hoover27 Langevin piston pressure
control.28 All systems were brought to equilibrium before
continuing, by verifying that the energy fluctuations were stable.
MD simulations were performed using an MD time step of 2.0
fs. Electrostatic interactions were modeled with a uniform
dielectric and a dielectric constant of 1.0 throughout the
equilibration and production runs. van der Waals interactions
were truncated at 11.0 Å with switching from 9.0 Å.
Electrostatics were modeled using the particle mesh Ewald
method,29 and the systems were treated using rhombic
dodecahedral periodic boundary conditions (PBC). All solute
atoms were fixed for the entirety of the equilibration and
production simulations. 80.0 ns of production simulation in an
NPT ensemble were performed at 300 K and 1 atm for each
system. System snapshots were saved every 400.0 fs, yielding
200 000 snapshots in total for each system. MD simulations
were performed using NAMD30 version 2.8 compiled for use
with CUDA-accelerated GPUs.

IFST Calculations. IFST calculates the difference in free
energy (ΔGIFST) between a solution and the same number of
solvent molecules (n) in the bulk, by combining the differences
in interaction energy (ΔEIFST) and entropy (ΔSIFST).

1,2 These
are termed the local quantities and correspond to Ben-Naim’s
standard energy and entropy of solvation.31 If desired, ΔGIFST
can also be computed for small subvolumes, allowing the
contribution of specific regions to be calculated and
visualized.9−11 ΔEIFST is calculated from the mean solute−
water interaction energy (Esw), the mean water−water
interaction energy (Eww), and the mean interaction energy of
a bulk water molecule (Ebulk).

Δ = + −

= + Δ

E E E nE

E E
IFST sw ww bulk

sw ww (1)

Ebulk and Eww are defined as half the interaction energy of a
water molecule with all other water molecules in the system.
We have implemented the minimum image convention to
ensure consistent energy evaluations throughout the periodic
cell.32−34 Previous work on quantitative application of IFST has
shown that Ebulk must be calculated to high precision in order
to yield accurate results.10 For the TIP4P-2005 water model
and using the protocol described here, Ebulk is calculated from a
100 ns NPT simulation of 364 water molecules in a rhombic
dodecahedral unit cell with side lengths of 25.0 Å at 300 K and
1 atm as −11.5702 kcal/mol. ΔSIFST is calculated from the
solute−water entropy (Ssw) and the difference in water−water
entropy (ΔSww), with higher-order correlations not considered.

Δ = + −

= + Δ

S S S nS

S S
IFST sw ww bulk

sw ww (2)

The solute-water term (Ssw) is typically calculated as the sum
of translational (Ssw,trans) and conditional orientational (Ssw,orient)
contributions.

= +S S Ssw sw,trans sw,orient (3)

It is important to note that IFST calculates entropies that are
relative to a random distribution and are always negative (or
zero for a random distribution). In this work, we develop novel

Table 1. Solutes Studied In This Worka

class solute

initial
RHDO
size (Å)

water
molecules

experimental
ΔG hydration
(kcal/mol)

nonpolar benzene 25 376 −0.847

nonpolar ethane 25 365 1.847

nonpolar isobutane 25 377 2.347

nonpolar methane 25 382 1.947

nonpolar neon 25 358 2.747

nonpolar propane 25 371 2.047

nonpolar toluene 25 374 −0.947

polar acetamide 25 384 −9.748

polar ammonia 25 376 −4.347

polar cresol 25 371 −6.149

polar ethanol 25 364 −5.147

polar methanol 25 374 −5.147

polar methylamine 25 373 −4.647

polar N-methyl acetamide 25 371 −10.148

polar phenol 25 374 −6.649

polar propan-2-ol 25 376 −4.849

charged acetate 30 643 −78.744

charged formate 30 631 −77.344

charged methylammonium 30 651 −75.344

charged methylguanidinium 30 631 −65.944
aThe 20 solutes for which the hydration free energies were computed,
along with the size of the RHDO periodic cell and the number of
water molecules in the system for each case. The experimental
hydration free energies and their sources are also noted.
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KNN approaches to calculate Ssw,trans and Ssw. These can be
combined to yield Ssw,orient by substituting into eq 3. We
calculate these quantities for the whole system rather than for a
set of subvolumes. While it is valid to compute the
contributions of each subvolume using this method, more
data is required for proper convergence. We use a first nearest
neighbor (k = 1) approach in all cases.17

∑ ∑ π
γ= +

= =
⎪ ⎪
⎪ ⎪⎧
⎨
⎩
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⎤
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R is the gas constant, F is the number of frames sampled, Vi is
the volume of the system in frame i, and γ is Euler’s constant,
which corrects for the asymptotic bias. In this case the nearest
neighbor distance (dtrans) is the Euclidean norm between the
Cartesian coordinates of water molecule j in frame i, and its
nearest neighbor water molecule k in frame l:

= − + − + −d x x y y z z( ) ( ) ( )ij kl ij kl ij kltrans
2 2 2

(5)

For correct treatment of waters near the periodic boundary,
the minimum image convention is used. The orientational
distance (dorient) between two water molecules is the distance
between the rotations required to bring the two orientations to
the same reference orientation. The correct distance metric for
the rotation group is twice the geodesic distance on the unit
sphere.20

= || ||
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This matrix representation of the rotations for water molecule j
in frame i and its nearest neighbor water molecule k in frame l
are denoted by Rij and Rkl and the quaternion representations
are denoted by qij and qkl. ||M|| andMT represent the Euclidean
(Frobenius) norm and the transpose of the matrix M
respectively. The total solute−water entropy is estimated by
combining the translational and orientational distance metrics.
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We noted from previous work that the ratio of Esw and ΔEww
was approximately minus a half, as shown in Table 2.10 Thus,
solute−-water interactions are offset by reduced water−water
interactions. Prompted by this observation, ΔSww is calculated
in a very simple manner in this work.

Δ = −S S1/2ww sw (9)

Thus, solute−water correlations are offset by reduced water−
water correlations. Once ΔEIFST and ΔSIFST have been
calculated, they can then be combined to yield ΔGIFST.

Δ = Δ − ΔG E T SIFST IFST IFST (10)

FEP Protocol. The equilibrated systems for the IFST
simulations were used as the startpoints for the FEP systems.
These systems consist of the solute in water and correspond to
the λ=0.0 states. FEP calculations were performed in both
forward and backward directions to yield corresponding
predictions for annihilation (λ=0.0 to λ=1.0) and creation
(λ=1.0 to λ=0.0) of the solutes. Each annihilation and creation
was split into 24 steps to yield 48 λ windows per system. The
lambda schedules for the uncharged and charged solutes are
reported in Tables S1 and S2 respectively. Two measures were
adopted to avoid the numerical instabilities that occur when λ
approaches 0.0 or 1.0. First a soft-core potential was employed
with a van der Waals radius-shifting coefficient of 5.0 for the
uncharged solutes and 4.0 for the charged solutes.35,36 Second,
electrostatic interactions were scaled down to zero between
λ=0.0 and λ=0.4 for uncharged solutes and between λ=0.0 and
λ=0.575 for charged solutes.37 Starting with the equilibrated
systems generated for the IFST simulations, further equilibra-
tion was performed at 300 K and 1 atm for 250 ps in an NPT
ensemble for each lambda window. This was followed by 1.0 ns
of production simulation in an NPT ensemble. MD simulations
were performed using NAMD30 version 2.8.

FEP Calculations. The change in free energy (ΔGFEP) was
calculated as the sum of free energy changes for a series of N
small steps between intermediate states a and b.21

∑Δ = Δ
= = +

→G G
a b a

N

a bFEP
1, 1 (11)

The change in free energy was calculated for each small step
(ΔGa→b) using the partition functions (Q) for the two states,
which are calculated from the Hamiltonians (H).
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b

a
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The results for the forward and backward FEP simulations
were combined using the Bennett Acceptance Ratio (BAR)
method.37,38 BAR was implemented using the ParseFEP Plugin
from VMD.39 In the context of FEP, the solvation energy
(ΔEFEP) is simply the difference in total interaction energy
between the solution and the bulk solvent. It is thus equal to
the total solvation energy from IFST.

Δ = ΔE EFEP IFST (13)

The estimated statistical error in the FEP free energy
predictions using BAR was less than 0.5 kcal/mol in all cases.

Additional Considerations. As discussed previously, IFST
ignores the small nonlocal contributions to the solvation free
energy1 and the small contribution of the volume change to the
solvation enthalpy (PΔV).10 In addition to this, using a
nonpolarizable force field means that the free energy changes
associated with polarization of the solutes and the water
molecules are ignored for both FEP and IFST.40

Table 2. Observed Relationship Between Esw and ΔEww
a

solute Esw (kcal/mol) ΔEww (kcal/mol) ΔEww/Esw

acetamide −29.44 14.78 −0.50
benzene −15.78 8.33 −0.53
isobutane −9.83 4.70 −0.48
methane −3.64 1.17 −0.32
methanol −19.68 9.73 −0.49
N-methyl acetamide −29.10 14.22 −0.49

aThe solute−water interaction energy (Esw) and the change in water−
water interaction energy (ΔEww) for the six solutes studied previously.
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One very important point must also be considered for the
four charged solutes. For systems with non-zero charge, the use
of PBC requires correction terms to calculate thermodynamic
properties, such as the solvation free energy, correctly.41−43 In
this work, we use correction terms used previously to study
charged polyatomic solutes.44 We computed the ΔGA+B+D and
ΔGC1 correction terms using equations 14 and 15, respectively.

Δ Δ Δ= −+ + −G G GA B D Non PBC
PB

PBC
PB

(14)

Δ
ρ γ
ε

= −G
N q

6C
A w w

1
0 (15)

The terms on the right-hand side of equation 14 are charging
energies calculated using the Poisson−Boltzmann (PB) solver
in CHARMM45 using non-PBC and PBC with dielectric
constants of 78.4 (experimental) and 60 (TIP4P-2005)
respectively. In equation 15, NA is Avogadro’s constant, ρw is
the average number density of water molecules in the system,
γw is the quadrupole moment trace of the solvent model
(0.0099 e·nm2 for TIP4P-2005), q is the formal system charge,
and ε0 is the vacuum permittivity. The hydration free energies
for the charged solutes calculated using FEP and IFST were
then corrected by these two terms. We did not calculate the
separate correction terms for the enthalpy and entropy.
Analysis of Results. The results from FEP and IFST are

compared by two methods. The correlation between the
predictions is assessed by computing the coefficient of
determination (R2), and the difference in prediction is assessed
by computing the mean unsigned difference (MUD).
Randomly Generated Data. The KNN approach to

calculating Ssw,trans and Ssw was first assessed using randomly
generated data. Relevant data were produced by generating
Cartesian coordinates and orientations for 364 molecules in a
cubic box. The edge length of the box was randomly varied
between 99.0% and 101.0% of 25.0 Å to mimic the NPT
ensemble that we are interested in. This process was repeated
to generate separate frames and Ssw,trans and Ssw were calculated
using eqs 4 and 7, respectively. This process was repeated 96
times to calculate a mean and standard deviation. To generate
biased data with known entropy, the Cartesian coordinates x, y,
and z can be divided by the divisors A, B, and C, and the
orientations can be restricted to within a certain distance of the

reference orientation by the divisor D.20,46 The expected
relative entropy (Hbiased) can then be calculated using eq 16.

π π π= − − −H D D ABCln[ / sin / ] ln( ) ln( )biased (16)

■ RESULTS AND DISCUSSION
The first stage of analysis was to validate the new approach to
calculating the relative translational entropy using eq 4. We
used different numbers of randomly generated samples to
explore the convergence properties of the calculation and the
results are presented in Figure 1.
As expected, increased sampling leads to more accurate

entropy predictions and reduced standard deviations. For the
biased data, 200 sample frames yield a mean predicted entropy
that is within 2.0% of the expected entropy. It is interesting to
note that the observed entropies (Hobserved) in Figure 1b are
well approximated by a power law that approaches a converged
entropy (Hconverged). For a given number of samples (N) and
constants k and p, this can be expressed as follows:

= + −H H kN p
observed converged (17)

− = −H H k p Nln[ ] ln( ) ln( )observed converged (18)

This allows Hconverged to be estimated using a series of
Hobserved from different number of samples, by finding the value
of Hconverged that maximizes the correlation between ln[Hobserved
− Hconverged] and ln(N). Figure 1c shows a plot of this
correlation for 100 estimates of Hconverged. The maximum value
of R2 corresponds to the value of Hconverged that best fits the
data. This observation has been noted in previous work using
the KNN approach and can be a useful technique in estimating
entropies using limited data.18 However, we do not use this
approach to compute the thermodynamic entropies in this
work. For the randomly generated biased data in this case, the
optimal value of Hconverged is −0.6872 and the expected relative
entropy is −0.6931. We further investigated the accuracy of the
method by calculating the relative translational entropy for
increasingly biased data. Figure 2 illustrates a plot of the
expected and predicted entropies for four cases.
The standard deviations are less than 0.003 entropy units in

each case. This corresponds to a thermodynamic entropy of
approximately 0.005 cal/K·mol for each particle. After assessing

Figure 1. Convergence of the calculated translational entropy. Convergence of the calculated relative translational entropy with increased sampling
for the randomly generated uniform data (a) and biased data (b). The expected relative translational entropies are marked as solid lines. The plotted
points represent 40, 80, 100, 200, 400, 800, 1000, and 2000 sample frames in each case and the error bars represent the standard deviations for each
level of sampling. (c) The coefficient of determination between ln[Hobserved − Hconverged] and ln(N) for the biased data at 100 equally spaced values of
Hconverged between −0.6583 and −0.6952.
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the precision and accuracy of the KNN method, we moved on
to study data from MD simulations. As shown previously, KNN
only yields accurate estimates of the entropy if the samples are
independent.20 For the conditional relative orientational
entropy in bulk water it was demonstrated that a sampling
interval of greater than 400 fs was necessary. We explored the
sampling interval in the context of relative translational entropy
for simulations of bulk water and a solution of benzene. Figure
3a shows the convergence of −TΔSsw,trans for increasing
sampling intervals with a constant number of frames (2000)
and Figure 3b shows the convergence of −TΔSsw,trans for
increasing simulation time with a constant time step (20000 fs).
The results demonstrate that a sampling interval of 400 fs

does not yield independent samples for the relative translational
entropy. In this case, a sampling interval of greater than 1 ps is
necessary. However, they also suggest that an acceptable degree
of convergence is provided by relatively few frames. After

reviewing this data, we employed a sampling interval of 40.0 ps
and a simulation time of 80.0 ns to calculate the relative
translational entropy of the 20 solutes, yielding 2000 frames.
After considering the relative translational entropy, we

repeated the analysis to validate the new approach to
calculating the total solute-water entropy using eq 7. The
results from analyzing the convergence using random data are
presented in Figure 4.
As was the case for the relative translational entropy, the

convergence is well approximated by a power law, with an
optimal value of Hconverged at −2.364 while the expected relative
entropy is −2.399. Again, increased sampling lead to more
accurate entropy predictions and 100 sample frames yield a
mean predicted entropy that is within 10.0% of the expected
entropy for the biased data. The accuracy of the combined
translational-orientational entropy estimates are illustrated in
Figure 5, which is a plot of the expected and predicted
entropies for five cases.
We explored the sampling interval in the context of

combined translational-orientational entropy for simulations
of bulk water and a solution of benzene. Figure 6a shows the
convergence of −TΔSsw for increasing sampling intervals with a
constant number of frames (20 000) and Figure 3b shows the
convergence of −TΔSsw for increasing simulation time with a
constant time step (4000 fs).
The results demonstrate that a sampling interval of greater

than 2.0 ps is necessary for the relative combined translational-
orientational entropy but that acceptable convergence is again
reached with relatively few frames. We employed a sampling
interval of 4.0 ps and a simulation time of 80.0 ns to calculate
the relative combined translational-orientational entropy of the
20 solutes, yielding 20000 frames. Having determined the
sampling interval and simulation time necessary for sufficient
convergence, we moved on to consider the 20 solutes. Table 3
reports the thermodynamic predictions for the 20 solutes
calculated using FEP and IFST. If one computes the hydration
free energy as the sum of ΔEIFST and −TΔSsw (ignoring the
−TΔSww term) the correlation with ΔGFEP is very good (R2 =

Figure 2. Predicted and expected entropies for increasingly biased
data. Observed and expected translational entropies for the cases A =
1/B = 1/C = 1, A = 1/B = 1/C = 2, A = 1/B = 2/C = 2, and A = 2/B =
2/C = 2. The expected entropies are calculated using eq 16 with D = 1.

Figure 3. Effect of sampling interval and sampling time on −TΔSsw,trans. (a) Effect of increasing the sampling interval for a fixed number of 2000
frames on the relative translational entropy for bulk water (blue circles) and benzene (red diamonds). The plotted points represent 200, 400, 800,
1200, 1600, 2000, 2400, 2800, 3200, 3600, and 4000 fs. (b) Effect of increasing the simulation time for a fixed sampling interval of 20 000 fs on the
relative translational entropy for bulk water (blue circles) and benzene (red diamonds). The plotted points represent 8.0, 16.0, 24.0, 32.0, 40.0, 48.0,
56.0, 64.0, 72.0, and 80.0 ns.
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0.992), but the mean unsigned difference (MUD) is 5.6 kcal/
mol. If one includes the −TΔSww term, calculated using eq 9,
the correlation between ΔGIFST and ΔGFEP is still very good (R

2

= 0.999) and the MUD is 0.9 kcal/mol. This result illustrates
the importance of including the −TΔSww term. The excellent
correlation can be seen in Figure 7, which shows the FEP and
IFST predictions of hydration free energy for the 20 solutes.
We also assessed the ability of IFST to accurately predict the

experimental hydration properties. Figure 8 shows the
correlation between the IFST predictions and the experimental
hydration free energies.
The correlation between ΔGIFST and ΔGExperimental is excellent

(R2 = 0.997), with a mean unsigned error (MUE) of 1.2 kcal/
mol. These results suggest that the TIP4P-2005 water model in
combination with the CHARMM forcefield is suitable for
quantitative application using IFST. However, future applica-
tions of IFST should consider using KNN entropy estimates in
place of histogram entropy estimates. Table 4 reports the
translational, orientational and total entropies for six solutes
calculated IFST with a histogram method and a KNN method.
The data shows that the histogram method underestimates

Figure 4. Convergence of the combined translational-orientational entropies. Convergence of the calculated relative entropy with increased sampling
for the randomly generated uniform data (a) and biased data (b). The plotted points represent 40, 80, 100, 200, 400, 800, 1000, 2000, 4000, 8000,
10000, and 20000 frames in each case. (c) The coefficient of determination between ln[Hobserved − Hconverged] and ln(N) for 100 equally spaced values
of Hconverged between −2.32 and −2.42.

Figure 5. Observed and expected entropies for increasingly biased
data. Observed and expected entropies for the cases A = 1/B = 1/C =
1/D = 1, A = 1/B = 1/C = 2/D = 1, A = 1/B = 2/C = 2/D = 1, A = 2/
B = 2/C = 2/D = 1, and A = 2/B = 2/C = 2/D = 2. The expected
entropies are calculated using eq 16.

Figure 6. Effect of sampling interval and sampling time on −TΔSsw. (a) Effect of increasing the sampling interval for a fixed number of 20 000 frames
on the relative entropy for bulk water (blue circles) and benzene (red diamonds). The plotted points represent 800, 1200, 1600, 2000, 2400, 2800,
3200, 3600, and 4000 fs. (b) Effect of increasing the simulation time for a fixed sampling interval of 4000 fs on the relative translational entropy for
bulk water (blue circles) and benzene (red diamonds). The plotted points represent 8.0, 16.0, 24.0, 32.0, 40.0, 48.0, 56.0, 64.0, 72.0, and 80.0 ns.
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−TΔSsw,trans by approximately 2-fold and −TΔSsw,orient by
approximately 3-fold for the bin sizes used previously.10

Thus, ignoring or underestimating −TΔSww can lead to
approximate cancellation of errors for certain cases. However,
if the −TΔSsw term is calculated accurately, then the −TΔSww
term becomes important, as shown by the MUD of 5.6 kcal/
mol when it is excluded and the MUD of 0.9 kcal/mol when it
is included.

■ CONCLUSIONS
This study addresses the quantitative accuracy of IFST by
comparing hydration free energies from IFST with hydration
free energies from FEP. In particular, we compared the
estimates of solute-water entropy using the KNN algorithm
with estimates from a histogram method. Using randomly
generated data, we demonstrated that the KNN algorithm
yields accurate predictions of translational entropy and

combined translational-orientational entropy. We note that
the KNN entropy estimates approach a converged entropy as
more samples are used and that this convergence is well
approximated by a power law. This has been noted previously
and can be used to improve entropy estimates.18 Comparison
of KNN and histogram estimates for data from MD suggests
that the histogram method overestimates the entropy and thus
underestimates −TΔS to a significant degree. For a grid
resolution of 0.5 Å and an angular bin size was 45°, the
histogram method underestimates −TΔSsw,trans by approxi-
mately 2-fold and −TΔSsw,orient by approximately 3-fold. This
problem is masked to some degree if a histogram method is
also employed to calculate −TΔSww due to cancellation of
errors. However, if a KNN method is used to calculate −TΔSsw
then −TΔSww is predicted to be significant in magnitude and
must be included. In short, it is clear that histogram methods
are not suitable for quantitative applications of IFST with the

Table 3. Thermodynamic Predictions from IFST and FEPa

class solute ΔE (kcal/mol) −TΔSsw (kcal/mol) −TΔSww (kcal/mol) ΔGIFST (kcal/mol) ΔGFEP (kcal/mol)

nonpolar benzene −6.7 12.6 −6.3 −0.4 0.4
nonpolar ethane −2.9 7.7 −3.9 1.0 2.5
nonpolar isobutane −4.0 11.8 −5.9 1.9 3.1
nonpolar methane −2.6 5.3 −2.6 0.0 2.3
nonpolar neon 0.7 2.2 −1.1 1.9 2.1
nonpolar propane −3.4 9.9 −5.0 1.6 2.8
nonpolar toluene −7.7 14.8 −7.4 −0.3 0.8
polar acetamide −13.5 11.2 −5.6 −7.9 −8.3
polar ammonia −6.6 5.9 −3.0 −3.7 −3.7
polar cresol −12.7 17.8 −8.9 −3.8 −4.4
polar ethanol −11.7 12.4 −6.2 −5.5 −4.9
polar methanol −9.8 8.9 −4.4 −5.4 −4.6
polar methylamine −9.0 9.3 −4.6 −4.3 −4.2
polar N-methyl acetamide −13.9 13.8 −6.9 −7.0 −6.8
polar phenol −11.3 14.9 −7.4 −3.8 −3.7
polar propan-2-ol −12.6 15.5 −7.7 −4.8 −4.2
charged acetate −95.8 24.6 −12.3 −77.6 −74.5
charged formate −95.5 20.5 −10.3 −78.2 −76.4
charged methylammonium −45.5 11.9 −5.9 −75.3 −76.3
charged methylguanidinium −40.7 18.0 −9.0 −66.9 −68.4

aThe IFST predictions of ΔE, −TΔSsw, and −TΔSww and the comparison of ΔGIFST and ΔGFEP for the 20 solutes studied. The corrections for using
PBC have been applied to ΔGIFST and ΔGFEP for the charged systems.

Figure 7. The predictions of ΔG from FEP and IFST. The slope of the
trendline is 0.98.

Figure 8. The predictions of ΔG from IFST plotted against the
experimental quantities. The slope of the trendline is 0.99.
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bin sizes used previously. While histogram methods could be
used to calculate accurate entropies by using smaller bin sizes,
this would introduce impractical sampling requirements.
The results of this study also reinforce the finding that short

MD sampling intervals yield correlated samples, which leads to
skewed KNN entropy estimates.20 For accurate estimation of
the translational-orientational entropy, a sampling interval of
greater than 2.0 ps is necessary to yield sufficiently uncorrelated
samples. It is probable that this problem could be fixed by
significantly increased sampling, but this is neither feasible nor
desirable. The extremely good agreement with hydration free
energies from FEP (R2 = 0.999 and MUD = 0.9 kcal/mol)
suggest that IFST is a useful free-energy method with the major
advantage that it deals equally well with large and small
perturbations. Comparison with experimental hydration free
energies also demonstrates that the TIP4P-2005 water model is
suitable for quantitative applications of IFST (R2 = 0.997 and
MUE = 1.2 kcal/mol). In addition, the success of the KNN
algorithm in estimating the combined translational-orienta-
tional entropy suggests that a similar method could be used to
estimate entropies for other correlated degrees of freedom,
provided that the correct distance metrics can be identified.
This could provide a powerful and general method for entropy
estimation in numerous contexts.
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