Secure and Trusted Execution: Past, Present and Future — A Critical Review in the
Context of the Internet of Things and Cyber-Physical Systems

Carlton ShepherdT, Ghada Arfaouit, Takovos Gurulian®, Robert P. Leef, Konstantinos Markantonakis',
Raja Naeem Akram!, Damien Sauveron!¥, and Emmanuel Conchon®
tISG-SCC, Royal Holloway, University of London, Egham, United Kingdom

SXLIM (UMR CNRS 7252 / Université de Limoges), Département Mathématiques Informatique. Limoges, France

YLaBRI (UMR CNRS 5800 / Université de Bordeaux), Talence, France
iOrange Labs, Chdtillon, France.
Email: {carlton.shepherd.2014, iakovos.gurulian.2014, robert.lee.2013} @live.rhul.ac.uk, ghada.arfaoui@orange.com,
{k.markantonakis, r.n.akram}@rhul.ac.uk, {damien.sauveron, emmanuel.conchon}@unilim.fr

Abstract—Notions like security, trust, and privacy are crucial
in the digital environment and in the future, with the advent
of technologies like the Internet of Things (IoT) and Cyber-
Physical Systems (CPS), their importance is only going to
increase. Trust has different definitions; some situations rely on
real-world relationships between entities while others depend
on robust technologies to gain trust after deployment. In this
paper we focus on these robust technologies, their evolution in
past decades and their scope in the near future. The evolution
of robust trust technologies has involved diverse approaches;
as a consequence trust is defined, understood and ascertained
differently across heterogeneous domains and technologies.
In this paper we look at digital trust technologies from the
point of view of security and examine how they are making
secure computing an attainable reality. The paper also revisits
and analyses the Trusted Platform Module (TPM), Secure
Elements (SE), Hypervisors and Virtualisation, Intel TXT,
Trusted Execution Environments (TEE) like GlobalPlatform
TEE, Intel SGX, along with Host Card Emulation, and En-
crypted Execution Environment (E3). In our analysis we focus
on these technologies and their application to the emerging
domains of the IoT and CPS.

Index Terms—Trust, Trustworthiness, Trusted Computing,
Trusted Platform Module, Trusted Execution Environment,
GlobalPlatform, Java Card, Intel SGX, Host Card Emulation,
Encrypted Execution Environment, Internet of Things, Cyber-
Physical System

1. Introduction

Computer devices, large or small, now form hetero-
geneous interconnected networks that consist of complex
sub-systems and sub-networks, managed and maintained by
divergent organisations. In a centralised environment, where
all devices are vetted (offline) beforehand, establishing trust
in individual devices or groups of devices can potentially
be straightforward. In contrast, with increased numbers of
devices, offline vetting can be difficult in some situations,

and the situation becomes more challenging. For both of
these scenarios, a wide range of robust technologies are
deployed to provide assurance that individual devices are
secure and running in a trusted state. Such technologies, in
the context of this paper, are referred to as trust technologies.
These technologies are pivotal in designing, developing
and implementing secure computing. A secure computing
scheme is one that has a secure, trusted and verifiable envi-
ronment. The applications running in such an environment
have the assurance that no malicious entity can interfere, as
any such intervention would be detected by the robust trust
technologies used.

Diversification of trust technologies has occurred in
several different settings. Each inception provides additional
services to further develop secure computing environments.
Each new trust technology helps to define and articulate
the notion of trust in a device’s state and security in a
distributed environment. For example, Trusted Computing
Group (TCG) [48], [49], ARM TrustZone [13] and M-Shield
[50] are based on the effectiveness of trust evaluation and
validation mechanisms [51]. With increased reliance on on-
demand and ubiquitous services, connecting with a wide
range of devices that might not be under the control of
a particular organisation/individual is becoming common-
place. In such a chaotic and ever-changing environment,
dynamic establishment and verification/validation of digital
trust is crucial. The need for digital trust will only grow with
increasing adoption of cloud computing, mobile platforms,
the Internet of Things (IoT) and Cyber-Physical Systems
(CPS).

A secure computing environment is crucial for emerging
technologies like the IoT and CPS, as these technologies
will be interacting directly with the physical world and
potentially assisting individuals and societies in their daily
activities. Modern life will be heavily dependent upon them,
requiring increased levels of assurance that devices forming
part of the IoT and CPS will perform as stated. The security,
trustworthiness and reliability of such devices may become
the differentiating factor and in section 2 we briefly discuss
an adversarial model and criteria for evaluation of secure and

trusted execution technologies, in the context of the IoT and
CPS. We discuss the evolution of secure and trusted execu-
tion proposals over the years in sections 3 to 8. We evaluate
these technologies in section 9 for their effectiveness based
on the criteria defined in section 2.2.

2. Threat Model and Evaluation Criteria

In this section, we define the potential threat model and
evaluation criteria for such technologies, in the context of
their application in the IoT and CPS.

2.1. Threat Model

In this section we discuss two generic types of adversary
[41]. This categorisation is based on the level of access an
adversary has to a particular device and not on the basis
of an individual adversary’s ability to compromise a given
device. This categorisation is valid because in the IoT and
CPS, an adversary can have physical access to individual
devices.

2.1.1. On-Device Adversary. On-device adversaries are
malicious users that can potentially compromise the device.
By doing so, depending upon the depth of compromise, they
can control the execution of any sensitive applications, and
kernel space services. We further divide the capabilities of
this adversary:

1) Malicious Application Adversary: An adversary
that develops a malicious application and gets it
installed on to the target device(s).

2) Malicious Root Adversary: An adversary that has
compromised the kernel space of a device, giving
himself root access. He cannot compromise the
hardware of the device.

3) Malicious Hardware Adversary: An adversary that
has the ability to introduce hardware Trojans.

2.1.2. Off-Device Adversary. Off-device adversaries are
malicious users that do not fall under any of the categories
discussed in the previous section. This type of adversary
manipulates the communication interface and tries to find
any loopholes in the security of the device. The objective is
to introduce a malicious code into the device that might then
give the control of the device to the geographically remote
adversary.

2.2. Criteria

In this section, we describe the evaluation criteria for
the trust technologies discussed in this paper.

1) User Control: The trust technology deployed as part
of the device is under the control of its user.

2) Centralised Control: The trust technology deployed
as part of the device is under the control of its issuer
or maintainer — a centralised authority other than
the end-user.

3)

4)

5)

0)

7

8)

9)

10)

1)

12)

13)

14)

15)

Managed Access: To use the features and services
of the trust technology, prior authorisation is re-
quired from the device manufacturer. Managed ac-
cess can be implemented as part of the both user
and centralised control

User Managed Access: To use the features and
services of the trust technology, prior authorisa-
tion from the end-user of the device is required.
Similar to the managed access, this can also be
implemented as part of the user and centralised
control.

Open Access: To use the features and services
of the trust technology, no prior authorisation is
required.

Static Verification: The trust technology has the
ability or it can be extended to provide static
integrity verification of the device platform and
applications running on it.

Continuous Verification: The trust technology has
the ability or it can be extended to provide continu-
ous integrity verification of the device platform and
applications running on it, monitoring individual
runtime instructions.

Tamper-Resistant Hardware: The hardware on
which the trust technology is implemented is
tamper-resistant.

Secure Storage (Internal): The device has substan-
tial internal storage used for protecting sensitive
data/applications.

Secure Storage (External): The device has sub-
stantial external storage used for protecting sensi-
tive data/applications. This also includes encrypted
data/applications stored on external storage, which
may itself not be secure (an adversary may be able
to read its contents).

Isolated Execution: The trust technology provides
services to enable an application to execute in
complete isolation, without interference from any
other application on the device.

Protection Against Bit Faults: The trust technology
provides adequate protection against fault attacks
that might change a byte or bit value (by laser
beam) stored in non-persistent storage.
Software/Hardware Binding: Individual applica-
tions and services installed on the device are se-
curely bound to the underlying hardware. No new
software can be introduced to such devices without
knowing the correcting binding technique.
Remote Attestation: The trust technology can pro-
vide evidence to assure a remote device that it and
the associated device (platform and applications)
are functioning properly.

Protection Against Adversary: The trust technology
can protect the device against any modification by
the adversaries described in this paper.

3. Trusted Platform Modules (TPMs)

For in-depth discussion of individual components and
their functionality please refer to [12], [28]. In this section,
we examine how the TPM provides a secure boot to the
host device along with trustworthy reporting and attestation
operations.

Secure Boot (Measurement Operation). When a user
boots up her computer, the first component to power up
is the system BIOS (Basic Input/Output System). On a
trusted platform, the boot sequence is initiated by the Core
BIOS (i.e. CRTM: Core Root of Trust Measurement), which
first measures its own integrity. This measurement is stored
in PCRy' and later it is extended to include the integrity
measurement of the rest of the BIOS. The Core BIOS then
measures the motherboard configuration setting, and this
value is stored in PCR;. After these measurements, the Core
BIOS will load the rest of the code of the BIOS.

The BIOS will subsequently measure the integrity of
the ROM firmware and the ROM firmware configuration,
storing them in PCR» and PCR3 respectively. At this stage,
the Trusted Building Block (TBB) is established and CRTM
will proceed with integrity measurement and loading of the
Operating System (OS).

The CRTM measures the integrity of the “OS Loader
Code,” also termed the Initial Program Loader (IPL), and
stores the measurement in the PCR. The designated PCR
index is left to the discretion of the OS. Subsequently, it
will execute the “OS Loader Code” and on its successful
execution, the TPM will measure the integrity of the “OS
Code”. After measurement is made and stored, the “OS
Code” executes. Finally, the relevant software that initiates
its execution will be subjected to an integrity measurement,
and values will be stored in a PCR. Then the software
will be sanctioned to execute. This process is shown in
Figure 1, which illustrates the execution flow and integrity
measurement storage.

By creating a daisy chain of integrity measurements, a
TPM provides a trusted and reliable view of the current state
of the system. Any software, whether part of an OS or an
application, has an integrity measurement stored in a PCR
at a particular index. If the value satisfies the requirements
of the software or requesting entity, then it can ascertain the
trustworthiness of the system or otherwise take action. As
discussed before, a TPM does not make any decisions: it
only measures, stores, and reports integrity measurements
in a secure and reliable manner. When a TPM reports an
integrity measurement, it is recommended that it should

1. A Platform Configuration Register (PCR) is a 160-bit (20 bytes) data
element that stores the result of the integrity measurement, which is a
generated hash of a given component (e.g. BIOS, operating system, or an
application). Therefore, a group of PCRs form the integrity matrix. The
process of extending PCR values is: PCR; = Hash(PC’R/iHX), where
i is the PCR index, PCRIi represents the old value stored at index 4,
and X is the sequence to be included in the PCR value. “||” indicates the
concatenation of two data elements in the given order. The starting value
of all PCRs is set to zero.

Load Application A
Code

Measure Application
Code

Load OS Code

Measure OS Code

Load OS Loader
Code

Execution
Flow

Integrity
Measurements,

Measure OS Loader
Code

?

Core Root of Trust
Trusted Building Block (TBB) and Roots of Trust

(CRTM) Code
Figure 1: Trusted Platform Boot Sequence

generate a signature on the value, thus avoiding replay and
man-in-the-middle attacks [49].

Reporting and Attestation Operations. The
attestation process, whether initiated by the relevant
user/administrator/third-party locally or remotely, involves
the generation of a signature using the respective Attestation
Identification Key (AIK) on the (associated/requested) PCR
values [28]. The signature assures requesters of the validity
of the integrity measurement stored in the PCRs. The
choice of the AIK and PCR index is dependent on the
respective user, platform (OS) or application.

4. Secure Elements (SEs)

A secure element (SE) is a tamper-resistant platform
capable of securely hosting code and confidential data (i.e.
any assets like cryptographic keys) according to rules and
security requirements established by its owner. Historically,
invented in the mid-1970s, the first secure element was
the smart card, which was based on a one-chip, secure
microcontroller running a minimal secure operating system,
which was for a long time restricted to only one application.
In contrast to a TPM, SEs are able to run secure code and
not limited to only performing cryptographic operations. For
a considerable period, smart cards were the only type of SE
used under different form factors and with different types
of connectivity, such as USB dongles and contactless cards.

However, following the introduction of Near Field Com-
munication (NFC) technology in mobile phones, there are
now three different form factors of SE: the Universal Inte-
grated Circuit Card (UICC) which is basically a smart card
often under the SIM card format; the embedded SE (eSE),
which is usually a smart card microcontroller integrated in
the NFC chip or directly in the hardware of the mobile
phone; and the secure microSD card, which is based on a
smart card microcontroller. Both the UICC and microSD
card are removable.

5. Hypervisors and Virtualisation

In this section, we discuss Intel TXT and Java Card, as
examples of hypervisors and virtualisations.

5.1. Java Card

Java Card [43] is a technology that provides an interop-
erable secure platform for secure elements, which enables
them to run multiple applications, called applets, written
in a subset of Java language. Basically, the components of

Application provider A Application provider B

package A.Y

package A.X

package B.Z

Trusted
applet 1

Trusted
applet 4

[Java Card API]

Java Card Virtual Machine
(byte code interpreter and verifier)

Trusted 45':0 N
applet 3

Trusted ASEO‘
applet2 |

Secure Operating System and Hardware

Figure 2: Java Card Architecture

a Java Card platform are: a Virtual Machine (VM) which
is composed of a bytecode interpreter providing hardware-
independence and, since version 3.x (for the classic edi-
tion), a mandatory embedded bytecode verifier; a set of
APIs to hide the complexity of the underlying smart card
communications protocols, to offer access to cryptographic
functionalities and to enable features for secure execution
(transaction mechanisms, inter-applet sharing mechanisms,
etc.); a Java Card Runtime Environment (JCRE), which
is not illustrated in Figure 2, but which provides security
mechanisms such as the atomic update of persistent data,
and a firewall which ensures a strong isolation between
applets and the system and between applets coming from
different contexts (a context being related not to an appli-
cation provider but to the package from which the applets
are instantiated). As illustrated in Figure 2, applets from the
same package are in the same context and classical access
level modifiers are valid in this space. For applets from the
same applications provider but which are located in different
packages or for applets from different application providers,
the firewall enforces the security rules by restricting the
rights of an applet to access objects owned by another
applet in a different context to only items that are explicitly
tagged as shared (illustrated Figure 2 by the Shareable
Interface Object (SIO), since the object must implement
an interface extended from Shareable, which manages
items authorized to be called). Though Java Card can host
multiple applets, this is only a single threaded environment.
The applet provisioning mechanism is not defined by Java
Card but by GlobalPlatform [44]. The regular ownership
model for Java Card is issuer-centric (ICOM) [46], which

means that only the issuer of a Java Card can load and install
his applications on it. However, GlobalPlatform provides
different ways to authorize some third parties (for instance
applications providers) to control some spaces on the card,
called Security Domains. According the level of entitlement
given to the third party and to its representative Security
Domain on the card, applets can be loaded and installed
based on an authorization token, or if the trust that the
issuer grants to the third party is lower, authorization can
be given only if the applets are signed by the issuer or
by a trusted certification authority. In most of the devices
running Java Card nowadays, similar mechanisms apply, so
that only trusted applets can be loaded and executed on the
platform. However some more open provisioning but still
secure mechanisms are considered, like the GlobalPlatform
Consumer-Centric Model (GP-CCM) [47] and the User-
Centric Ownership Model (UCOM) [45], [46].

5.2. Intel Trusted Execution Technology (TXT)

Intel’s TXT [21], formerly known as LaGrande tech-
nology, aims to defend computing platforms from gen-
eralised software attacks, including firmware, BIOS and
rootkit attack vectors. Broadly, TXT constructs a chain of
trust from an on-board TPM that extends to the Virtual
Machine Monitor (VMM) to enable trusted hypervisor and
OS launch. Specifically, at each stage of the launch sequence
— beginning with the BIOS, option ROM and Master Boot
Record (MBR) — a series of SHA-1 hashes are measured
and compared with those extended from the TPM’s Platform
Configuration Registers (PCRs) to verify launch integrity.
Underlying system modifications, such as by rootkits or
other surreptitious software, can be detected due to changes
in the launch configuration that cause it to deviate from
the stored known values. TXT interoperates with Intel’s
Virtualisation Technology (Intel VT) [22], which provides
native extensions for hardware virtualisation, with the aim
of providing trusted launched of VMs where applications
can be executed with a high degree of isolation while
retaining elements of trust. Facilities are also offered for
platform attestation, in which a local or remote party is
able to determine the trust status of the launch configuration
of the platform or VM, i.e. whether it was instantiated
correctly or not. One disadvantage of TXT is its significant
hardware Trusted Computing Based (TCB), comprising the
TPM, CPU chipset, motherboard and system buses; its ad-
vantage, however, is a widely-deployed means of spawning
trusted VMs and performing measured launches. Figure
3 demonstrates a high-level architecture for instantiating
trusted launch of VMs via TXT.

6. Trusted Execution Environments

Trusted Execution Environments (TEEs) are mobile ex-
ecution environments running along side standard mobile
environments (e.g., Android). This new family of execution
environments provides two security properties: (1) secure
execution isolation for applications running on top of a

] ‘/Hypervwsor code measured | [Launch VMs, OS, etc |
by TXT and compared to
known good value prior to
With TXT: ‘t’E;‘j‘Edt by TXT prior allowing launch
Software can onee Firmware / Eer\nsnrmeasuﬂ
be measured BIOS match? match? Ves
Yes

and verified as

Power on platform

System firmware

known good / Hypervisor
[Pawer on platform | (Hypervisor code measured) [TXT blocks launch of)
by TXT and compared to Rootkit Hypervisor
) System firmware known good value prior to

With TXT: verified by TXT prior allowing launch

Unknown to boot 3 7

softwareis CHNETE iypervisor measu

BIOS match?

measured, L v!: © PR ®

detected and

can be
blocked

|| —
UN— I —
Figure 3: Using Intel TXT for Trusted Hypervisor Launch

and VM Instantiation. (Reproduced from [23]).

TEE (also called Trusted Applications: TA) and (2) secure
storage of data and cryptographic keys. In standardization,
GlobalPlatform specifies TEE software and hardware archi-
tecture [1], a set of TEE APIs [1]-[8], a TEE protection
profile [9] and documentation about the functional testing
of two TEE APIs [10], i.e., TEE client API and TEE internal
core API. Concurrently, various TEE implementations arise.
These solutions have diverse characteristics. For instance,
only some solutions are GlobalPlatform compliant. Some
solutions are software-based (e.g., OP-TEE [20]). Others are
hardware-software solutions (e.g., TrustonIC solution [16]
requires TrustZone [13]). The availability of the solution
also varies: some solutions are commercial, hence paid
licenses, usually with specific rules (e.g., no testing is al-
lowed) are needed.

We now detail the GlobalPlatform TEE proposal and
briefly examine the main TEE implementations while high-
lighting its major characteristics.

6.1. GlobalPlatform TEE

GlobalPlatform published the first TEE specification
in July 2010. Surprisingly, the first specification did not
provide a TEE overview description. It detailed a software
interface (i.e., TEE Client API [2]) enabling applications
running in the standard mobile OS (also called Rich Exe-
cution Environment, REE) to communicate with TAs. The
specification of this API was strongly inspired by/ based on
the ARM TrustZone [13] proposal. Thereafter, GlobalPlat-
from specified a hardware and a software architecture [1].
Both architectures highlight full isolation between REE and
TEE. Every environment has its own resources (e.g., RAM,
ROM, CPU, TA, 0OS...)) and communications between the
two environments are only performed via the TEE Client
APIL

Figure 4 presents the main software components of a
TEE. The trusted kernel clearly runs TAs. In addition, it
provides facilities to TA developers. The trusted kernel must
also proceed to a secure boot (authentication and isolation
from the REE) at every start-up. TEE Internal API [3], [4]

is the interface that enables TAs to communicate with other
TAs and to access trusted hardware resources (via trusted
functions). Finally, two interfaces are provided in the REE:
TEE Client API as previously described and TEE Functional
API, which offers applications running in REE a set of rich
OS-friendly APIs.

REE TEE
Shared
Client Client ,agfﬂ'sf/ Memory | Trusted | Trusted
Application Application View | Application Application

U " TEE Functional API

TEE Client API TEE Intemal AP1

Rich OS Components Trusted OS Components

More Privileged | Less Privileged
e, TS
o

a

i =

TEE Trusted -
s Communication Crz Functions

Y Al Trusted Kemel

Public Peripherals Trusted Peripherals

Platform Hardware

Figure 4: Software TEE Architecture [1]

Besides the interfaces previously mentioned, GlobalPlat-
form specifies three more interfaces. Trusted User Interface
API [7] enables secure display and input. For instance, this
API can be used by TAs to protect PIN or password entry.
TEE Secure Element API [5] enables TAs to communicate
with applications running on a secure element. TEE Sockets
API [6] enables TAs to establish and use network commu-
nications using a socket-style approach.

6.2. Technologies

TEE technologies are key components in building a
mobile platform with a TEE. We discuss three proposals.

Aegis is a single-chip secure processor. It ensures the
authentication of platforms and software using crypto-
graphic keys computed by a physical unclonable function
(PUF) [14]. In addition, it guarantees the integrity and
privacy of applications from both hardware and software
attacks by using four secure execution modes with different
privileges and memory protection approaches.

ARM TrustZone Technology is a security architecture
for building a TEE platform. It is very similar to the Glob-
alPlatform proposals. Indeed, the first standardized TEE API
(i.e., TEE Client API) was originally a TrustZone Client
API. Basically, ARM TrustZone ensures software authen-
tication based on public key cryptography and platform
authentication via a secure ROM. It also proposes memory
security management approaches and three secure execution
modes. Another TrustZone-like technology is Texas Instru-
ments M-Shield Technology.

SGX (Software Guard eXtensions) [37] is a set of
instructions developed by Intel for its processor, allowing
applications (or parts of an application) to be executed in
a secure container referred to as an Enclave. An Enclave
provides a protection against other applications or privileged

system software such as the OS, hypervisor or even BIOS.
The main difference with TPM or TXT is that in SGX the
whole application does not have to be stored securely. Only
private data and the applications code that operates on it
has to be stored in the Enclave. To upload these sensitive
data, a software attestation mechanism is provided that relies
on a cryptographic signature based on a SHA-256 digest.
This digest certifies the identity of the software is verified,
before the codes execution, against the identity enforced
by a trusted third-party authority. SGX also provides a
remote attestation feature that allows an Enclave to check
the identity of another Enclave running on a remote host.

6.3. Programmable TEEs

Programmable TEEs are sets of software components
that enable the setup of a TEE, and the development and
debugging of TAs. In this section, we focus on six solutions.

On-board Credentials (ObC) [15] is one of the first
programmable TEEs. It is a Nokia proposal for an open
security framework. Its software architecture is completely
different to the GlobalPlatform specifications. ObC provides
six components: provisioning module, interpreter, manage-
ment module, key engine and cryptographic library inside
the TEE and a credential manager on the REE. The only
similarity with GlobalPlatform lies in the credential man-
ager, which operates like the GlobalPlatform TEE Client
API. Because of this structure, the ObC platform provides
dynamic credential provisioning and updates, credential.
The major issue with ObC is that it is available only in
Symbian 3 phones.

TrustonlC TEE [16] is the first commercial solution with
paid licenses. TrustonIC TEE is a merger and enhancement
of technologies provided by ARM [17], Giesecke & De-
vrient (G&D) [18] and Gemalto [19]. ARM provided the
TrustZone technology. G&D provided the secure mobile
operating system Mobicore. Gemalto provided the Trusted
Foundations system. TrustonIC TEE is generally GlobalPlat-
form compliant. The main TEE API has been developed but
specific APIs such as TEE arithmetical API, which enables
the implementation of new cryptographic algorithms, are
still under development.

The Open Portable TEE (OP-TEE) [20] solution is the
first open source TEE enabling developers to develop, up-
load and test TAs and to test and contribute to OP-TEE
software. The OP-TEE project was initiated by STMicro-
electronics [24] and Linaro Security Working Group [25]
and has also been supported by TrustonIC. OP-TEE software
provides the two main GlobalPlatform TEE APIs, i.e., TEE
Client API and TEE Internal APL

The Open-TEE [26] solution is also an open source TEE
and is the result of the Open-TEE project led by the Intel
Collaborative Research Institute for Secure Computing [27].
This solution has three main criteria. First, it is hardware-
independent. Therefore, TAs that are implemented and val-
idated by Open-TEE can run on top of any TEE hardware
implementations. Second, the Open-TEE solution provides
developer-friendly tools and frameworks for developing and

Android Device Android Device

Host CPU Host CPU

[[jr

h 4 h 4

NFC Controller [€— Eﬁ::ﬂi":t NFC Controlfer
I >
- -
0

MNFC Reader NFC Reader

(a) SE-based (b) HCE-based

Figure 5: Card emulation using SE and HCE

debugging TAs. Finally, this solution is GlobalPlatform
compliant.

Qualcomm SecureMSM [29] is a Qualcomm proprietary
TEE solution. It proposes a secure mobile operating system
(called Qualcomm Secure Execution Environment, QSEE)
with enhanced cryptographic capabilities and various secure
key provisioning methods. The Qualcomm solution also
ensures a secure boot functionality.

More recently, Google published a TEE called Trusty
TEE [30]. Trusty TEE is the result of an Android open
source project. It consists of a secure mobile operating
system (Trusty OS) and a set of libraries and APIs to set
communications between applications running within Trusty
OS and Android. Like the other major current solutions,
Trusty TEE is also based on ARM TrustZone technology.

7. Host Card Emulation - Remote Execution

Host-based Card Emulation (HCE) allows NFC-enabled
devices to act as contactless smart cards, without relying on
a secure element (SE). It was first introduced on Android
4.4 (API 19) [31]. It can be used by mobile applications
in order to perform transactions through NFC, including
banking and transport-related applications. Its ability to
emulate contactless smart cards facilitates interoperability
with existing card-reader infrastructures [32].

When an SE is used, typically all data received by the
NFC controller are routed directly to the SE (Figure 5a).
In the case of HCE, data is directed to the device’s CPU
instead, which is responsible for handing it to the corre-
sponding application, through the operating system (Fig-
ure 5b). In both SE and HCE scenarios, data are passed to an
application based on an Application ID (AID), as described
in the ISO/IEC 7816-4 specification [33].

Because HCE is software-based, it cannot provide the
amount of security that a hardware SE can. Device stor-
age can only be protected by the security mechanisms of
the operating system, such as application sandboxing [34].
Therefore, it is not recommended that critical transactions,
like mobile payments, be based purely on HCE [32], [35].
In such scenarios an SE, TEE, or cloud-based secure storage
can be used for safeguarding critical information.

Android devices do not always contain an SE or TEE.
In order to make HCE available to more users, cloud-
based storage that acts as a remote SE is a better solution.
However, an Internet connection may be required in order to
perform a transaction, and achieving authentication via the
cloud platform can be a challenging task. Various proposals
have been made with regard to enhancing the security of
HCE, some of which are being used by stakeholders. Such
methods include verification of the user and/or the hardware
(e.g. using PINs or biometrics), limitations to transaction
amounts, tokenised payments, operating system checks, and
white-box cryptography [36].

8. Encrypted Execution Environments (E3)

An Encrypted Execution Environment (E3) is a type of
execution environment in which the application software
that is executed is encrypted. The goal of an E3 is to allow
application execution without revealing the instructions that
make up the application.

One example illustrating the use of E3s is a company
that wants to control who is able to provision their soft-
ware to devices. Devices could be mobile phones, multi-
application smart cards or even more complicated systems
such as PCs or servers. A software provisioned by a com-
pany is likely to be the result of a large amount of investment
and/or development time. To protect its investment from
counterfeiting and unauthorised copying the company pro-
visions their software for execution in an E3. If each device
provisioned with software has its own E3 key, then software
for one device will not execute on another. In this setting, to
control provisioning of the application it is critical to limit
the knowledge that people can gain about the software. If
the operations comprising the application are known then
the software can easily be transferred from one device to
another. Using an E3 allows software to execute on only
devices that are in possession of the key with which the
software is encrypted.

The main requirement for an E3 is that the instructions
executed as part of the encrypted application must be re-
vealed only within the E3. It is not a requirement that the
instructions be executed directly from their encrypted state;
it may be acceptable for the E3 to decrypt instructions and
then execute them as long as the plain text instructions are
not revealed to the outside world. Some users may apply
extra requirements to the E3, such as encrypting any data
stored by the application outside the E3 or in the registers.
However, in general it is only necessary that the application
be encrypted at all times when it is not within the encrypted
environment.

8.1. Example E3 scheme

One example of an E3 scheme is the hardware-software
binding scheme proposed by Lee et al. in 2016 [38]. Their
proposal uses an E3 to bind hardware and software together
on a device, to attempt to prevent platform counterfeiting or
unauthorised firmware modification. The hardware-software

address address

enable

/Decryption (—————— CPU

instruction

ROM E (instruction)

|
|

i

i

|

|

! Encryption enable
[

: Unit

i

|

Figure 6: A diagram of an example E3 system as imple-
mented by Lee et al.

binding case considered by the authors is not equal to the
general E3 but is a narrower issue, with extra requirements
for the solution.

The reasoning behind the work of Lee et al. is that an
application to be provisioned to many devices would be
encrypted for each device under a different key [38]. Each
application requires the E3 that possesses the correct key, in
order to be correctly decrypted and executed. Similarly, the
hardware devices only execute applications that have been
personalised for their E3s. This personalisation is created by
encrypting the application using a device-specific E3 key.
Therefore the hardware and software are bound using this
mutual dependency based on the E3.

The scheme proposed by Lee et al. creates the E3 as
a zone surrounding the processor of the device, which also
includes a small encryption/decryption element. This added
element is responsible for decrypting all of the instructions
and data loaded from memory before the instructions are
executed by the processor. This ensures that while in mem-
ory the application is protected by the encryption scheme
used; however, the program is able to execute normally
after decryption [38]. A diagram showing the architecture
implemented by Lee et al. is found in Figure 6.

The diagram in Figure 6 demonstrates the creation of an
E3 using a processor extension that acts as an intermediary
between the processor and memory. By positioning a unit
that forwards the memory addresses and enable signals and
instructions between the CPU and memory, the authors cre-
ated an E3 for device applications to execute from, without
interfering with the processor design.

9. Comparison of Proposals

In this section, we revisit the trust technologies pre-
viously discussed and evaluate them based on the criteria
defined in section 2.2. Table 1 shows whether each of the
trust technologies satisfies individual criteria or not. The
table indicates that no single technology satisfies all of
the criteria. However, for device manufacturers and system
designers of IoT and CPS deployments it can still be useful,
as they can chose what services and assurances they would
like to have. Based on these requirements, they can mix and
match individual trust technologies from the table 1.

TPM, one of the earliest proposals for trusted computing,
has limitations as it is more directed towards static validation
of the integrity of device platforms and applications. It has
tamper-resistant hardware and the capability for internal

TABLE 1: Comparison Trust Technologies Based on Defined Criteria

Criteria

TPM SE / Java Card

TXT GP-TEE SGX HCE

User Control

Centralised Control

Managed Access

User Managed Access

Open Access

Static Verification

Continuous Verification

Tamper-Resistant Hardware

Secure Storage (Internal)

Secure Storage (External)

Isolated Execution

Protection Against Bit Faults

Software/Hardware Binding

Remote Attestation

Protection Against Adversary - On-Device Adversary 1
Protection Against Adversary - On-Device Adversary 2
Protection Against Adversary - On-Device Adversary 3
Protection Against Adversary - Off-Device

N €4 €% N> XX %SNS %S %% %N %

Nk % Sk ¥k N SSSSN XX\ %
X ¥ € NN X X N X X X X N ¥ ok ok N ¥
X % 4N X X X N\ X X X X N\ %X X ¥\ %
X ¥ 4NN X X N X X X XN ¥ ¥ ¥\ ¥
X X N K X XN KN XXX XX NN X
AR IR BN I N I T AN I R T N N Y B3

v: Supports, X: Does not support, %: In some situation supports, ¥: Limited to no support.

and external secure storage. It has limited ability to protect
an application against on-device adversaries 2 and 3 (as
discussed in section 2.1.1).

In this analysis, we have merged SE and Java Card
even though they were discussed separately in the paper.
The rationale behind this is that a substantial number of
SEs would be supporting Java Card and most the criteria
satisfied by SEs and Java Cards are common. One of the
major issues with SEs is the lack of end-user access to the
device. However, this assists the SE to protect against on-
device adversaries, as only authorised entities have access
to it, along with third party evaluations of hardware and
software platforms.

The next three proposals, Intel TXT, GP-TEE, and Intel
SGX, satisfy more or less the same criteria. The only
exception is that GP-TEE does not support open access
to application developers, who are required to gain prior
authorisation from the device manufacturer to use GP-TEE.
As all three of these provide strong isolated execution,
they protect individual applications from other potentially
malicious applications.

The discussion includes HCE to highlight that there is
another way to achieve trusted computing, by not executing
the security sensitive information on the device in the field.
The actual application can execute in a secure location,
while the mobile handset supporting HCE might be in the
field, potentially in the hands of malicious users. Such an
architecture has its benefits, but on the device in the field it
does not provide strong security protection.

Finally, the E3 shows a lot of promise, especially for
embedded devices, ranging from intellectual property pro-
tection to strong binding between software and host hard-
ware, and protection against strong adversaries. In the table
1, we have mentioned that it has tamper-resistant hardware
support to reflect the E3 security system shown in figure 6.

10. Conclusion

In this paper, we have discussed the evolution of tech-
nologies aiming to provide secure and trusted computing, by
discussing the major milestone proposals. Such technologies
have extended the basic notion of secure and trusted comput-
ing to divergent domains. Application of these technologies
is now required to accommodate the imminent emergence
of the IoT and CPS. We discussed evaluation criteria for
trust technologies and their application in the IoT and CPS.
Based on these criteria we evaluated each of the proposals.
We showed that no single technology meets all of the
criteria. However, IoT and CPS designers and developers
can mix-and-match several of these technologies to achieve
a desirable combination for their specific deployment. Fur-
thermore, such an analysis is useful as a guide for future
research, by indicating where the gaps are in term of secure
and trusted computing.

Acknowledgements

Carlton Shepherd and Robert P. Lee are supported by
the EPSRC and the UK government as part of the Centre
for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/K035584/1).

Emmanuel Conchon and Damien Sauveron are sup-
ported by the IoTSec (IoT Security) project funded by
Région Limousin.

The authors would like to thank anonymous reviewers
for their valuable comments that help us improve the paper.

References

[1] GlobalPlatform, “TEE System Architecture, version 1.0,”
GlobalPlatform Specifications, December 2011. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

——, “TEE Client API Specification, version
alPlatform Specifications, July 2010. [Online].

https://www.globalplatform.org/specificationsdevice.asp

1.0, Glob-
Available:

”

“TEE Internal Core API Specification, version 1.1 |

GlobalPlatform Specifications, July 2014. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

——, “TEE Internal API Specification, version 1.0,” Glob-
alPlatform Specifications, December 2011. [Online]. Available:

https://www.globalplatform.org/specificationsdevice.asp

“TEE Secure Element API Specification, version 1.1,”
GlobalPlatform Specifications, September 2015. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

“TEE Sockets API Specification, version 1.0,”
GlobalPlatform Specifications, July 2015. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

, “Trusted User Interface API Specification, version 1.0,”

GlobalPlatform Specifications, June 2013. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

——, “TEE TA Debug Specification, version 1.0,” Glob-
alPlatform Specifications, February 2014. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

——, “TEE Protection Profile, version 1.2, GlobalPlat-
form Specifications, January 2015. [Online]. Available:
https://www.globalplatform.org/specificationsdevice.asp

——, “TEE Initial Configuration Test Suite 1.1.0.1,” Glob-
alPlatform Specifications, March 2016. [Online]. Available:

https://www.globalplatform.org/specificationsdevice.asp

“TPM Main: Part 1 Design Principles,” The Trusted
Computing Group (TCG), Rev 1.4, March 2011. [Online]. Available:
http://www.trustedcomputinggroup.org/resources/tpm%5C_main%5C
specification

——, “Trusted Computing Group, TCG Specification Architecture
Overview,” The Trusted Computing Group (TCG), Rev 1.4, OR,
USA, August 2007.

ARM Security Technology, “Building a Secure System
using TrustZone Technology,” April 2009. [Online]. Avail-
able: http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492¢/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon
physical random functions,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, ser. CCS
’02. New York, NY, USA: ACM, 2002, pp. 148-160.

Kari Kostiainen, “On-board Credentials: An Open Credential
Platform for Mobile Devices,” Doctoral dissertation, Aalto University,
Helsinki, 2012.

TrustonIC, “Trusted Executed Environment (TEE),”
Visited on April 2016. [Online]. Available:
https://www.trustonic.com/technology/trusted-execution-environment

ARM, “ARM the Architecture for the Digital World,” Visited on
April 2016. [Online]. Available: https://www.arm.com/

Giesecke & Devrient, “Giesecke & Devrient Creating confidence,”
Visited on April 2016. [Online]. Available: https://www.gi-
de.com/fr/index.jsp

Gemalto, “Gemalto - Security to be free,” Visited on April 2016.
[Online]. Available: http://www.gemalto.com/france

Linaro, “OP-TEE,” Visited on April 2016. [Online]. Available:
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE

Intel Corporation, “Intel Trusted Execution Technology:
White Paper,” Visited on April 2016 [Online].
Available: http://www.intel.com/content/www/us/en/architecture-

and-technology/trusted-execution-technology/trusted-execution-
technology-security-paper.html

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Intel Corporation, “Intel Virtualization Technology
(VT),” Visited on April 2016 [Online]. Available:
http://www.intel.com/content/www/us/en/virtualization/virtualization-
technology/intel-virtualization-technology.html

A. Sallam, “XenDesktop and The Evolution of Hardware-
Assisted Server Technologies,” Citrix: Trends and
Innovations, February 2014. Visited on April 2016 [Online].
Available: https://www.citrix.com/articles-and-insights/trends-and-
innovation/feb-2014/xendesktop-and-the-evolution-of-hardware-
assisted-server-technologies.html#Intel%C2 % AE%20Hardware-
Assisted%20Security %20Technologies

STMicroelectronics, “About STM,” Visited on April 2016. [Online].
Available: http://www?2.st.com/content/st_com/en.html

Linaro, “Linaro Security Working Group,” Visited on April 2016.
[Online]. Available: https://wiki.linaro.org/WorkingGroups/Security

Open-TEE project, “Secure Systems group - Intel Collaborative
Research Institute for Secure Computing,” Visited on April 2016.
[Online]. Available: https://open-tee.github.io/

“Intel Collaborative Research Institute for Secure Computing,”
Visited on April 2016. [Online]. Available: http://www.icri-sc.tu-
darmstadt.de/icri-sc/institute/

R. N. Akram, K. Markantonakis, and K. Mayes, "Trusted Platform
Module for Smart Cards”. In 6th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), O. Alfandi, Ed.
Dubai, UAE. IEEE CS, March 2014.

Qualcomm, “Qualcomm Haven Security
) Visited on April 2016. [Online].
https://www.qualcomm.com/products/snapdragon/security

Google, “Trusty TEE,” Visited on April 2016. [Online]. Available:
https://source.android.com/security/trusty/index.html

Google, “Host-based Card Emulation,” Vis-
ited on April 2016. [Online]. Available:
http://developer.android.com/guide/topics/connectivity/nfc/hce.html

——, Smart Card Alliance, “Host Card Emulation (HCE) 101:
White paper,” August 2014

“ISO 7816 Part 4: Interindustry Commands for
Interchange,” Visited on April 2016. [Online]. Available:
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816-
4.aspx

M. Alattar and M. Achemlal,

Platform
Available:

“Host-Based Card Emulation:

Development, Security, and Ecosystem Impact Analysis”,
in Proceedings of the High Performance Computing and
Communications, 2014 [EEE 6th Intl Symp on Cyberspace

Safety and Security, August, 2014.

Pannifer, Steve and Clark, Dick and Birch, Dave “HCE and SIM
Secure Element: Its not black and white: White paper,” June 2014

UL, “HCE security implications - Analyzing the security aspects of
HCE: White paper,” January 2014

McKeen, Frank and Alexandrovich, Ilya and Berenzon, Alex and
Rozas, Carlos V. and Shafi, Hisham and Shanbhogue, Vedvyas and
Savagaonkar, Uday R., “Innovative Instructions and Software Model
for Isolated Execution,” in Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and
Privacy, HASP ’13. Tel-Aviv, Israel: ACM, 2013, pp. 10-1-10-8.

R. P. Lee, K. Markantonakis and R. N. Akram, “Binding Hardware
and Software to Prevent Firmware Modification and Device
Counterfeiting”, in Proceedings of the 2nd ACM Workshop on
Cyber-Physical System Security (CPSS), J. Zhou and J. Lopez (eds.),
Xian, China, May 30, 2016.

M. G. Msgna, H. Ferradi, R. N. Akram, K. Markantonakis,’Secure
Application Execution in Mobile Devices”. The New Codebreakers,
Ryan, A. Peter Y. and Naccache, David and Quisquater, Jean-Jacques
(ends), Springer Berlin Heidelberg, 2016, pages 417-438

[40]

[41]

[42]

[43]

[44]

[45]

K. Markantonakis and R. N. Akram, "A Secure and Trusted
Boot Process for Avionics Wireless Networks”, 16th Integrated
Communication, Navigation and Surveillance Conference (ICNS),
Aloke Roy (eds.), Herdon, VA, USA, April 2016, IEEE

R. N. Akram and K. Markantonakis, ”Challenges of Security and
Trust of Mobile Devices as Digital Avionics Component”, 16th
Integrated Communication, Navigation and Surveillance Conference
(ICNS), Aloke Roy (eds.), Herdon, VA, USA, April 2016, IEEE

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes,
"Trusted Platform Module for Smart Cards”. In 6th IFIP International
Conference on New Technologies, Mobility and Security (NTMS),
0. Alfandi, Ed. Dubai, UAE. IEEE CS, March 2014.

Oracle, “Java Card Technology”, Vis-
ited on April 2016. [Online]. Available:
http://www.oracle.com/technetwork/java/embedded/javacard

GlobalPlatform, “GlobalPlatform Card Specification = v2.3”,
Visited on April 2016. [Online]. Available:
https://www.globalplatform.org/specificationscard.asp

R. N. Akram, K. Markantonakis, and D. Sauveron, “A
Novel Consumer-Centric Card Management Architecture and
Potential ~ Security Issues”. Information Sciences, Volume

[46]

[47]

[48]

[49]

[50]

[51]

321, 10 November 2015, Pages 150-161, ISSN 0020-0255,

http://dx.doi.org/10.1016/j.ins.2014.12.049.

R. N. Akram, K. Markantonakis, and K. Mayes, ”A Paradigm Shift
in Smart Card Ownership Model”. In Bernady O. Apduhan, Osvaldo
Gervasi, Andres Iglesias, David Taniar, and Marina Gavrilova,
editors, Proceedings of the 2010 International Conference on
Computational Science and Its Applications (ICCSA 2010), pages
191200, Fukuoka, Japan, March 2010. IEEE Computer Society.

GlobalPlatform, “A New Model: The Consumer-Centric Model and
How it Applies to the Mobile Ecosystem”, Visited on April 2016.

ISO/IEC 11889-1: Information Technology - Trusted Platform Module
- Part 1: Overview, Online, ISO Standard 11 889-1, May 2009.

TPM Main: Part 1 Design Principles, Online, Trusted Computing
Group (TCG) Specification 1.2, Rev. 116, March 2011.

“M-Shield Mobile Security Technology: Making Wireless Secure,”
Texas Instruments, Whilte Paper, February 2008.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
Dependable and Secure Computing, IEEE Transactions on, vol. 1,

no. 1, pp. 11-33, 2004.

