
A Concrete Security Treatment of Symmetric
Encryption in a Quantum Computing World

Shahram Mossayebi

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

School of Mathematics and Information Security
Royal Holloway, University of London

2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/77297721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

These doctoral studies were conducted under the supervision of Prof. Rüdiger Schack.
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Abstract

Even though it is not clear when (or if) quantum computers will be built, the
theoretical existence of quantum computing has potentially far-reaching consequences
for the future of cryptography. This thesis aims to provide an in-depth analysis of
the security of existing (non-quantum) symmetric encryption schemes against an
attacker with quantum capabilities.

Here, formal security models will be developed and justified in the provable security
framework. Our results add to existing efforts in post-quantum cryptography by
providing security proofs for cryptographic schemes within the concrete security
paradigm. In practice, this is more relevant than the asymptotic security paradigm
that is usually assumed in post-quantum cryptography.

We begin by exploring how existing classical confidentiality notions translate into a
security model, where a quantum adversary is only allowed to make classical queries.
Then we give a formal analysis of the security of encryption schemes, such as Counter
mode, in this model.

Next we turn our attention to another natural and conservative security model where
a quantum adversary is permitted to make quantum queries. To demonstrate the
quantum adversary’s power in this model, we show how it can break the security
of block ciphers such as the Even-Mansour scheme. We further discuss the security
of existing symmetric encryptions by defining security notions for confidentiality in
this model. Specifically, we give a formal definition of the security of symmetric
encryption schemes under both a quantum superposition chosen plaintext attack
and a quantum superposition chosen ciphertext attack. Attention is also given to
semantic security in this model.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . 11

This chapter gives an overview of the thesis, and presents its overall structure. We

provide the motivation for our research and describe the contributions of our work.

We also present the overall structure of the chapters to follow.

1.1 Motivation

Cryptography was once used only by authorities for confidential communication, but

now it is part of our everyday lives. Any call we make using our mobile phones, most

of web browsing we do, any payment we make using our electronic cards, etc., are all

use some sort of cryptographic protocols to provide us with some sort of security.

Cryptographic protocols are built upon a deep theoretical background from both

mathematics and computer science. In general, their security is rigorously analysed in

a formal mathematical framework where computational power of a classical adversary

(who is in possession of a classical computer) is considered. This approach is called

provable security, and was proposed by Goldwasser and Micali [64] primarily to

formalise the security of asymmetric schemes. Security proofs via this approach

only hold within specific security definitions and with regard to a number of secu-

rity parameters about the assessed scheme and assumptions about the adversary’s

capabilities. Therefore they do not rule out all classes of attack, and there may

exist a practical attack against a scheme that is provably secure. To address this

shortcoming, Bellare and Rogaway [15, 14, 13] introduced practice-oriented provable
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1.1 Motivation

security. This applies the provable security approach to practical cryptographic

schemes, and formulates its results in a concrete manner that is more meaningful to

practice. This approach is also known as concrete security. Symmetric encryptions

are fundamental cryptography primitives, and before the development of concrete

security, it was not possible to analyse them in the provable security framework. This

is because symmetric encryptions such as block ciphers have no security parameter,

and hence it is not possible to define their security merely in terms of an adversary’s

computational power.

In 1981, while cryptography was mainly concerned with classical adversaries, in

another part of the scientific world, Feynman [60] raised a question about the

possibility of building quantum computers. Following Feynman’s idea, a number of

quantum algorithms such as Shor’s algorithm [103] were developed that would, if fully

realised on a quantum computer, break modern cryptosystems such as those based

on the difficulty of factoring [94] or the discrete log problem. Emerging quantum

technologies raise the question that if an adversary possesses a quantum computer,

then which modern cryptosystems are secure, and which are not? In other words,

since the security of modern cryptographic schemes is based on the computational

power of the classical adversary, they must be re-examined for the case of a quantum

adversary who is in possession of a quantum computer. Moreover, understanding

which modern cryptosystems are secure against quantum adversaries is a relevant

and important question because, for example, highly confidential information that is

encrypted today should remain protected even if quantum computers are built in

couple of decades. This is the subject of a new research field, called post-quantum

cryptography [22]. This field attempts to design cryptographic schemes which will

be secure even in the presence of quantum computers. To be secure in a quantum

setting, a cryptosystem must have an underlying problem that is hard for a quantum

computer, as well as a security reduction that shows how to solve this hard problem

by using a quantum adversary that breaks the cryptosystem.

Quantum computing appears to have very little impact on symmetric encryption.

The generic quantum attack on block ciphers using Grover’s algorithm [65] requires

O
(
2n/2

)
queries for key length n and thus can be countered by doubling the key

length. For this reason, symmetric encryption has not been the subject of research

in post-quantum cryptography, and there has not been a systematic exploration to
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1.2 Contribution

see whether their security proofs carry over to this quantum setting. Therefore we

will miss out on any case where a symmetric encryption scheme might have flaws in

its construction that could be exploited by a quantum adversary.

In contrast to the above, there is also another natural and conservative security

model that is beyond post-quantum cryptography. This is a model that allows the

quantum adversary to issue quantum queries. This is possible if any cryptosystem

is run on a quantum computer. So far, there has been little discussion, however, of

the security of existing symmetric encryptions in this security model. Furthermore,

the question has not been explored much of how existing classical security notions

translate into this quantum setting, and whether they can be satisfied.

1.2 Contribution

This thesis considers the security of symmetric encryptions in two different models.

These are: a quantum computation security model where a quantum adversary is

only allowed to make classical queries, and a quantum superposition security model

where quantum queries are permitted.

In the case of the quantum computation model, we explore how existing classical

confidentiality notions translate into this model by formally analysing the security of

encryption schemes such as Counter mode. We provide our security analysis in the

concrete security framework. In this way, the security of an encryption scheme is

quantified based on properties of its underlying primitive, such as the block length

or key length, as well as resources available to the quantum adversary.

We then turn to the quantum superposition model, where we discuss the security

of simple block ciphers such as the Even-Mansour scheme [57]. We show that a

quantum adversary with superposition access to an encryption oracle can break the

Even-Mansour block cipher with key length n using O(n) queries. This should be

compared to the lower bound given by Even and Mansour for their scheme, and to

the generic quantum attack against symmetric encryption schemes using Grover’s

algorithm, both of which require O
(
2n/2

)
queries. Our O(n) attack extends to two

special cases of the multiple-round Even-Mansour scheme. These are the case of
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1.3 Thesis Structure

arbitrarily many rounds using a single permutation with identical round keys, and

the case of two rounds using a single permutation with round keys derived from a

very basic key schedule.

Furthermore, we explore how existing classical confidentiality notions translate into

this model. We introduce a new confidentiality notion called Real-or-Permutation

(RoP). We show that the notion of RoP in the quantum superposition model arises

as its classical counterpart, as opposed to the other classical confidentiality notions

which need to be rethought from scratch. We demonstrate that RoP is satisfiable in

the quantum superposition model by proving the security of a generic symmetric

encryption schemes under both a quantum superposition chosen plaintext attack and

a quantum superposition chosen ciphertext attack. Since ultimately we are interested

in the security of our schemes in the semantic security model [64, 12], we also propose

a quantum analogue of semantic security and discuss its implication with RoP.

1.3 Thesis Structure

We start off Chapter 2 by explaining the structure of security definitions and security

proofs in the provable security framework. This is followed by a discussion on

asymptotic and concrete approaches in the provable security framework. We then

turn to quantum mechanics, where we explain some of its basic principles through

describing the Mach-Zehnder interferometer. These principles are: quantum superpo-

sition, unitary evolution, measurement, entanglement, and the density operator. In

Chapter 3 we discuss the idea of quantum computers before explaining the quantum

circuit model as a model of quantum computation. We also discuss the possibility

of quantum computers being built, and we mention several advances in the field.

The quantum algorithms of Simon and Grover are explained in Chapter 3. Some

limitations of quantum computers are also pointed out. We give a definition for a

quantum adversary, and explain two different models of quantum attack.

In Chapter 4, we define the basic building blocks of symmetric encryption such as

block ciphers and modes of operation. We also provide definitions for pseudorandom

function families, pseudorandom permutation families, and quantum pseudorandom

function families. Furthermore, we discuss the basic security models used for symmet-
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1.3 Thesis Structure

ric encryption and state the relations which hold between these models. Considering

these security definitions, we assess the security of Counter mode against quan-

tum computation attacks. At the end of this chapter, we discuss other symmetric

primitives that help us to achieve other cryptographic goals such as integrity.

Chapter 5 shows how powerful quantum superposition attacks could be. We explain

the construction of the Even-Mansour scheme, and how the slide with a twist attacks

work on it. Then we discuss the possibility of exploiting this attack using Simon’s

algorithm. We explain why this attack is successful even though it is only partially

satisfies Simon’s problem. At the end, an extension of this attack to other variations

of the Even-Mansour scheme is discussed.

In Chapter 6, we define the basic security models used for symmetric encryption

in the quantum superposition model. This chapter begins by arguing that existing

classical security models for encryption schemes need to be rethought from scratch

in the quantum superposition model. Moreover, we define a new confidentiality

notion, Real-or-Permutation (RoP), and discuss its achievability under a quantum

superposition chosen plaintext attack and a quantum superposition chosen ciphertext

attack. We also define a quantum analogue of semantic security and show a reduction

from RoP to semantic security.

In the final chapter, Chapter 7, we discuss the meaning of our results, further works,

and open problems.

12



Chapter 2

Preliminaries

Contents

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Provable Security . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Asymptotic vs. Concrete Security . . . . . . . . . . . . . . 17

2.3 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Unitary Evolution . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.6 The Density Operator . . . . . . . . . . . . . . . . . . . . . 29

This chapter briefly explains a number of key ingredients of both cryptography and

quantum mechanics. We start by giving the notation, followed by a discussion on

the main cryptographic framework we will use in the thesis, and finally we finish off

the chapter by giving a hint of quantum mechanics and its properties (mostly) via

describing a physical experiment.

2.1 Notation

Let X be a set. Then |X | denotes its size and x←$X denotes sampling an element

uniformly at random from X and assigning it to x. We use {0, 1}∗ to denote the set of

all finite binary strings. Let x be a binary string. We use |x| to denote its bit length.

Let {0, 1}n represents the set of all binary strings of length n where n is any positive

integer. For a bit b, let bn denotes the strings of n consecutive b. For any two strings
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2.2 Provable Security

x and y, x⊕ y denotes their bitwise addition and x || y denotes their concatenation.

To show the set of all functions with domain X and range Y we use Func (X ,Y). We

use Perm (X ) to show the set of all permutations on domain X . If X = {0, 1}l or

X = {0, 1}∗, and Y = {0, 1}n for any positive integers l and n then for compactness

of notation we will often use Func (l, n), Func (∗, n) and Perm (l), respectively. An

algorithm may be randomised, unless otherwise stated. An adversary is an algorithm.

We use capital letters (such as A) to denote a classical adversary. For any algorithm

A, we use y ← A (x1, x2, . . .) to denote the operation of running algorithm A on

inputs x1, x2, . . . with fresh coins and assigning its output to y. When a definition

involves multiple experiments, if the name of an experiment is surrounded by a box,

the experiment includes the boxed codes , otherwise it dose not. Often the boxed

code replaces the code adjacent to it.

2.2 Provable Security

Traditionally, the approach towards designing a cryptographic scheme has been seen

as a cycle of ‘build’, ‘break’, and ‘fix’. That is, a cryptographic goal is recognised,

and a cryptographic solution is proposed. One then tries to discover its weaknesses

through concrete attacks. If any are found, the solution is amended to remove the

weaknesses. If any new weaknesses are found at any later point in time, then the

solution is amended again. There are a number of difficulties with this heuristic

approach. Assume that at one point no new weaknesses are found. It is unclear

whether this is because all the solution’s weaknesses have been found and fixed, or

whether there are still weaknesses yet to be found. In the other words, it is unclear

when the cycle has concluded. Hence, the cycle should be iterated until one feels

confident that the solution is adequate. But, one should always consider that a

design error might be discovered at any time.

Shannon [100] introduced a more systematic approach to cryptography by taking

proofs and definitions into account. Shannon showed what it means for a scheme

to be perfectly secure. Shannon set a goal to achieve privacy, then he defined a

symmetric encryption scheme and proved that the scheme achieves the goal perfectly.

The symmetric encryption scheme is known as ‘one-time pad’. Shannon argued

that given two different messages, M0 and M1, and a ciphertext C, where C is the

14



2.2 Provable Security

encryption of either M0 or M1 with equal probability, then the scheme is perfectly

secure. The probability is taken over any randomised encryption algorithm and the

choice of key. Perfect security, also called information-theoretic security, though

very powerful and desirable, proved to be difficult to achieve in practice. To achieve

perfect privacy, the size of the messages in bits should not exceed the size of the key

bits. In cryptography, however, it is usually preferred to encrypt many message bits

with a finite key bits instead of some arbitrary key bits. A finite key bits is easier

to manage in practice. Moreover, parties do not need to know the total size of a

message prior to encryption.

In contrast to Shannon’s perfect security, there is another approach to modern

cryptography. Instead of focusing on the impossibility of any attacks on a scheme, it

focuses on the infeasibility of those attacks. Cryptographic schemes in this approach

are considered breakable in theory but not in practice. In order to assess the

security of a scheme, the amount of computing power available to an adversary is

considered. As long as the adversary does not have too much computing time or

other computational resources, the scheme is considered secure. Hence, it is called

computational security. Hereafter by ‘security’ we mean computational security

unless otherwise stated. Rabin [92] was one of the first cryptographers to came

up with a mathematical proof of security for a scheme. But it was not until 1982

when Goldwasser and Micali [64] published their pioneering work providing a formal

mathematical framework to rigorously analyse security of cryptographic schemes.

Their proposed formal framework essentially consisted of a ‘security definition’, a

‘cryptographic scheme’, and a ‘reduction proof technique’. This approach has come

to be called provable security.

The first step in provable security is the formulation of security definitions in a precise

mathematical form. That is, what it actually means to say that a cryptographic

scheme is secure and what goal it intends to achieve. For instance, the goal of a

scheme may be is to achieve confidentiality or to achieve ciphertext integrity. A

security definition is usually expressed as an ‘experiment’ conducted by a ‘challenger’.

An adversary plays the experiment with regards to a cryptographic scheme while it

might be given access to a set of ‘oracles’ maintained by the challenger. Provable

security is concerned with the probability of an adversary ‘winning’ the experiment.

The winning condition could take different forms, such as an adversary distinguishing
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2.2 Provable Security

between two experiments, or finding the plaintext corresponding to a given challenge

ciphertext. The winning probability of an adversary is represented by the adversary’s

‘advantage’. The advantage is a measure of how much better an adversary can do

to win the experiment compared to simply guessing. That is, the maximal winning

probability over a class of adversaries which indicates the security of a scheme. The

advantage over a class of adversaries lets us quantify the security of a scheme against

all adversaries with bounded resources. If the advantage of a ‘feasible’ adversary

exceeds some acceptable threshold by a substantial amount, then the scheme is

considered broken. A classical adversary is a randomised algorithm parametrised

by its computational resources. For a quantum adversary see Section 3.4. Usually

the resources of interest are the number of oracle queries made by the adversary, the

size of the oracle queries, and the running time of the adversary. By convention [15],

the running time includes the space required to store the program that describes the

adversary. The latter prevents the adversary from embedding arbitrary large look-up

tables in its description.

The second step of the provable security approach is reduction proof technique. Here,

the security of a scheme with regards to a particular security definition is proved via

a reduction to the security of the underlying cryptographic primitive or some number-

theoretic hard problem, such as factoring. The reduction proof technique enables us

to focus on the security of the underlying primitive or the underlying hard problem

instead of directly looking into cryptanalysis of the original scheme. The basic idea

of reduction is the same as the theory of NP-completeness. Assume, without loss

of generality, an adversary A attacks a scheme S with underlying primitive P . A

reduction transforms A to another adversary A′ which simulates the challenger for

A against S and uses A’s output to break the underlying primitive P . If A is able to

break S then A′ is able to break P . Hence, as long as the underlying primitive P is

secure, then the scheme S is secure.

Note that security proofs only hold within specific security definitions and with

regards to a number of assumptions about the adversary’s capabilities. Therefore

they will not rule out all classes of attack. For instance, there may exist an attack

in practice against a provably secure scheme. Another important point is that the

heuristic provable security approach and the complexity of the constructions make

cryptographic schemes inefficient in practice. Koblitz and Menezes [76, 75] point out
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2.2 Provable Security

some of the above issues among other criticisms of provable security. The issues they

raise make an important point that when one uses results from provable security,

great attention must always be given to the context of the results and what they

actually mean in practice. Bellare [10] discusses that the term ‘provable security’

is in some way misleading. Provable security does not prove a scheme secure. It is

merely a demonstration of a reduction of the security of a scheme to the intractability

of some underlying primitive. Bellare suggests the term reductionist security instead

of provable security.

It is worth mentioning that the information-theoretic security falls into the provable

security paradigm where the term ‘provable’ makes more sense because the security

proofs are unconditional.

2.2.1 Asymptotic vs. Concrete Security

Since its inception, provable security has mainly evolved in a complexity theoretic

framework where adversaries and transformations are ‘efficient’ if they run in poly-

nomial time, and adversaries’ ‘success probabilities’ are bounded by a negligible

function. In this approach, a ‘security parameter’ is introduced which is relative

to the polynomial running time and success probabilities. A scheme is secure if

every polynomial time adversary obtains only negligible advantage in attacking the

scheme. This is called the asymptotic approach, and is used in all early cryptographic

definitions and security proofs [95]. Results expressed in the asymptotic framework

proved to be unpopular among practitioners because they require precise numbers

about the adversary’s computational resources or the security parameters etc, which

are only loosely captured by the asymptotic framework. For instance, block ciphers

are widely used and very popular in practice, but they seemed to be outside of the

domain of provable security for some time [10].

Bellare and Rogaway introduced ‘practice-oriented provable security’ via a series

of papers [15, 14, 13]. The goal of this is to explicitly capture the quantitative

nature of security, as opposed to the qualitative nature of security captured by the

asymptotic framework, through a concrete treatment of security. This is often called

concrete security. In this approach, the adversary’s advantage is quantified by the
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2.3 Quantum Mechanics

adversary’s resources. Hence the adversary’s computational model becomes relevant

in the concrete security. For instance, consider a scheme S with underlying primitive

P . We assume that P is secure against an adversary A′ running in time t′, making

q′ oracle queries, totalling µ′ bits. Then the scheme S may be proved to be secure

against an adversary A running in time t, making q oracle queries, totalling µ bits.

Bellare [10] also points out that the quality of a reduction is very important. For

instance, tightness of security bounds in a reduction affects efficiency of the reduction

in practice. A reduction with tighter security bounds is more efficient. Therefore

the concrete security results help protocol designers to understand what security to

expect in practice.

In this thesis, we are interested in concrete security treatment of symmetric schemes

against quantum adversaries.

2.3 Quantum Mechanics

Quantum mechanics is a branch of physics relating to atomic and subatomic scale

phenomenon which classical mechanics could not explain. Quantum mechanics began

at the turn of the 20th century and it gradually gained acceptance and experimental

verification between 1900 and 1930 through the contribution of multiple scientists to

the foundation of its revolutionary principles.

One of the experiments which cannot be reasonably explained with classical mechanics,

but can be easily explained with quantum mechanics, is the interference that happens

in the Mach-Zehnder interferometer. It is a simple experiment which exemplifies a

number of the main principles of quantum mechanics which we explain in this chapter.

Depending on the hardware used in the experiment, it can be run with photons,

electrons, neutrons, atoms, or even molecules. Here we assume the experiment is set

up for photons.

The Mach-Zehnder interferometer, as depicted in the Figure 2.1, consists of two

half-silvered mirrors (or beam splitters), two full mirrors, and two photon detectors.

The interferometer is a device that allows us to measure the interference of photons

following two different paths. We label the lower path with |0〉 and the upper path
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|0〉

|1〉

|0〉 Detector

|1〉 Detector

Beam Splitter

Mirror

Figure 2.1: The Mach-Zehnder interferometer

50% probability

50% probability

|0〉

|1〉

Figure 2.2: Each detector clicks with 50% probability
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with |1〉. To see the behaviour of the half-silvered mirror, we simplify the experiment

by replacing the full mirrors with two detectors instead, as shown in the Figure 2.2.

Assume a single photon travelling in the lower path |0〉. Here we assume a photon

always starts in the |0〉 path unless otherwise stated. When the photon passes through

the half-silvered mirror, exactly one of the two detectors clicks. Note that the clicks

we get are discrete. Precisely one of the detectors clicks at any one time. For instance,

we never get two half-clicks, or any other fractions of a click. This discreteness is one

of the main properties of quantum mechanics. By repeating the experiment we notice

that each detector clicks about half of the time. The simplest explanation is that the

half-silvered mirror acts as a classical coin flip, randomly sending each photon one

way or the other with 50% probability. We now consider the full apparatus again

as depicted in Figure 2.1. Note that the two paths to the detectors are the same

length. We know that the first half-silvered mirror, with 50% probability, sends a

photon in one of the two paths. Hence, we expect each of the |0〉 and |1〉 detectors

to detect roughly half of the photons. It turns out that this classical intuition is

false since all the photons are detected at the |1〉 detector. A rough explanation

for now is that when exiting the first beam splitter, the reflected beam picks up

a phase shift while the transmitted beam does not. This phase shift introduces a

phase difference between the two paths. Since the two paths are the same length,

there is constructive interference on the path to the |1〉 detector, and destructive

interference on the path to the |0〉 detector. We can shift the probability distribution

from 100% detection by the |1〉 detector to 100% detection by the |0〉 detector by

placing a π-phase shifter along the |0〉 path. Therefore, by observing the detectors,

we can distinguish whether this π-phase shifter exists or not. Moreover, if we place

phase shifters φ0 and φ1 along the |0〉 and |1〉 paths respectively, the proportions are

cos2
(
φ0−φ1

2

)
detections by the |0〉 detector and sin2

(
φ0−φ1

2

)
detections by the |1〉

detector, as shown in Figure 2.3.

We explain the role of the experiment’s key ingredients in the following subsections.

2.3.1 Notation

Let [n] denotes the set {1, . . . , n}. A vector space is denoted with capital script

letters such as V . A vector is denoted with bold lower case letters such as v. We use
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φ0

Phase Shifter

φ1

|0〉

|1〉

p0 = cos2
(
φ0−φ1

2

)

p1 = sin2
(
φ0−φ1

2

)

Figure 2.3: The Mach-Zehnder interferometer with two phase shifters. By adjusting
the phase shifter, one can change the probabilities of photons striking the |1〉 detector
and the |0〉 detector.

21



2.3 Quantum Mechanics

Cn to denote the n-dimensional complex vector space. We denote the components

of a vector v ∈ Vn by vi, i ∈ [n]. We use bold capital letters such as M to denote

matrices. The components of a matrix M ∈ Vm×n are denoted by Mi,j where, i ∈ [m]

and j ∈ [n]. Let In denotes the n× n ‘identity’ matrix. We will often use merely I

instead, when the dimension is clear from context. If M is square we use M−1 to

denote the ‘inverse’ of the matrix M. Let M∗ denote ‘complex conjugate’ of the

matrix M, and MT denotes the ‘transpose’ of the matrix M. We use M† to denote

the Hermitian conjugate or ‘adjoint’ of the matrix M. Note that M† =
(
MT

)∗
. For

a matrix M, let Tr (M) denotes the trace of M. For any two matrices M and N,

let M⊗N denote their tensor product. We use Dirac notation to denote quantum

states. Let |v〉 = v and 〈v| = v∗. The latter is called a ‘bra’ and the former a ‘ket’.

For any two vectors v and w, we use 〈v|w〉 to denote their inner product, and we use

|v〉〈w| to denote their outer product. If |v〉 =
∑

i∈[n] αi |vi〉 and |w〉 =
∑

j∈[n] αj |wj〉,
the tensor product |v〉⊗ |w〉 =

∑
i∈[n]

∑
j∈[n] αij |vi〉⊗ |wj〉. For abbreviation we also

often use, |vi, wj〉, |viwj〉 or |vi〉 |wj〉 instead of |vi〉 ⊗ |wj〉. We use H to denote the

Hilbert space, which is a complex vector space with the inner product 〈·|·〉. Finally,

for two variables i and j, we denote the Kronecker delta by δij .

2.3.2 Superposition

A classical state is a state in which a physical system can be found when it is observed.

Consider a physical system that can be in n different, mutually exclusive classical

states, for instance the states |1〉 , . . . , |n〉. A pure quantum state |ψ〉 is a linear

combination or a superposition of the classical states

|ψ〉 =
∑
i∈[n]

αi |i〉 , (2.1)

where αi is called the amplitude of |i〉 in |ψ〉. It is a complex number. The squared

of the amplitude of |i〉, |αi|2, tells us the probability of observing the system in the

state |i〉. Hence
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∑
i∈[n]

|αi|2 = 1 . (2.2)

We discuss how to obtain the probability in the next subsection.

A system in quantum state |ψ〉 can be in a superposition of all classical states. The

states |1〉 , . . . , |n〉 form an ‘orthonormal basis’ of an n-dimensional Hilbert space

where a quantum state |ψ〉 is a vector in this space. Consider a 2-dimensional Hilbert

space where the states (orthonormal basis) are |0〉 and |1〉. This orthonormal basis

is also referred to as the computational basis. A qubit is a quantum state (a vector)

which can be written as a linear combination of |0〉 and |1〉.

Recall the Mach-Zehnder interferometer. The labels |0〉 and |1〉 are classical states

of the lower and the upper path, respectively. In the experiment, after striking the

first beam splitter, a photon behaves as though it is propagated through all possible

paths to the detectors. Therefore the state of a photon after exiting the first beam

splitter is a superposition of the two states, 1√
2
|0〉+ 1√

2
|1〉. Similarly, if a photon is

sent through the first beam splitter starting in the |1〉 path, its state after exiting

the beam splitter is 1√
2
|0〉 − 1√

2
|1〉. Note that the negative sign is the phase shift

picked up by the reflected beam. If we bring the phase shifters φ0 and φ1 into the

picture then they change the state in the following way

1√
2
|0〉+

1√
2
|1〉

φ0∧φ1

−−−−−−−→ eiφ0

√
2
|0〉+

eiφ1

√
2
|1〉

=
ei
φ0+φ1

2

√
2

(
ei
φ0−φ1

2 |0〉+ e−i
φ0−φ1

2 |1〉
)
.

(2.3)

The second beam splitter operates in the same way as the first. Hence, it transforms

ei
φ0+φ1

2

√
2

(
ei
φ0−φ1

2 |0〉+ e−i
φ0−φ1

2 |1〉
)

−→ ei
φ0+φ1

2

(
cos

(
φ0 − φ1

2

)
|0〉+ i sin

(
φ0 − φ1

2

)
|1〉
)
.

(2.4)

Equation 2.4 shows us that the experimental outcomes are influenced by the existence
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of different possible paths leading to detection. For instance, the equation tells us

that a photon can strike the |0〉 detector from two different paths. One with the

probability amplitude of cos
(
φ0−φ1

2

)
, and the other with the probability amplitude

of i sin
(
φ0−φ1

2

)
.

2.3.3 Measurement

Consider the quantum state |ψ〉, which is a superposition of a number of classical

states (see Equation 2.1). Measuring |ψ〉 in the computational basis yields one and

only one classical state |i〉 with probability |αi|2, where αi is the corresponding

amplitude. The outcome is not determined prior to the measurement. We merely

can predict that the measurement outcome is the state |i〉 with probability |αi|2.

This means that measuring a quantum state induces a probability distribution on

the classical states, which implies

∑
i∈[n]

|αi|2 = 1 . (2.5)

Moreover, measuring the quantum state |ψ〉 collapses |ψ〉 to the classical state |i〉
and destroys all other information that the superposition |ψ〉 might have contained.

Thus, a measurement is ‘irreversible’.

The above is an example of a projective measurement. In general, a projective

measurement is described by a set of projectors M1, . . . ,Mm (m ≤ n) which satisfy

the completeness equation

∑
i∈[m]

Mi = I . (2.6)

Let V be a subspace of the Hilbert space H. Let Mi project on subspace Vi. Then

for every state |ψ〉 ∈ V , we can write
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|ψ〉 =
∑
i∈[m]

|ψi〉 , (2.7)

where |ψi〉 = Mi |ψ〉 and |ψi〉 ∈ Vi. Applying this projective measurement to the pure

quantum state |ψ〉 yields the outcome i with probability

‖|ψi〉‖2 = Tr (Mi |ψ〉〈ψ|) , (2.8)

and the quantum state collapses to a new state

|ψi〉
‖|ψi〉‖

=
Mi |ψ〉
‖Mi |ψ〉‖

. (2.9)

Now we can show that measurement in the computational basis is a special case of

the projective measurement, where Mi projects onto the computational basis state

|i〉 and the corresponding subspace Vi is the space spanned by |i〉. Consider a single

qubit |ψ〉 = α0 |0〉+ α1 |1〉 where the two possible outcomes are defined by the two

projectors M0 = |0〉〈0| and M1 = |1〉〈1|. Note that the two projectors satisfy the

completeness equation. The probability of obtaining 0 after the measurement is

‖M0 |ψ〉‖2 = ‖α0 |0〉‖2 = |α0|2 , (2.10)

and the state |ψ〉 collapses to

α0 |0〉
‖α0 |0〉‖

=
α0

|α0|
|0〉 . (2.11)

Note that α0/ |α0| is an irrelevant phase factor. Similarly, the probability of obtaining

1 after the measurement is |α1|2 and the quantum state collapses to

α1 |1〉
‖α1 |1〉‖

=
α1

|α1|
|1〉 , (2.12)
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where α1/ |α1| is an irrelevant phase factor.

We look back at the state of a photon after exiting the first beam splitter in the

Mach-Zehnder interferometer:

1√
2
|0〉+

1√
2
|1〉 . (2.13)

If we measure this state in the computational basis, then we find the photon in the

|0〉 path with probability
∣∣∣ 1√

2

∣∣∣2, and in the |1〉 path with probability
∣∣∣ 1√

2

∣∣∣2. Similarly,

regarding the state of a photon after passing through the second beam splitter,

ei
φ0+φ1

2

(
cos

(
φ0 − φ1

2

)
|0〉+ i sin

(
φ0 − φ1

2

)
|1〉
)
, (2.14)

a photon arrives at the detector |0〉 or |1〉 with probability cos2
(
φ0−φ1

2

)
and

sin2
(
φ0−φ1

2

)
, respectively.

The most general quantum measurement, called a positive operator-valued measure-

ment, or POVM, is described by positive operators Ei satisfying

∑
i∈[m]

Ei = 1 . (2.15)

2.3.4 Unitary Evolution

Consider a closed quantum system, which is a system that is not interacting in any

way with other systems. Quantum mechanics tells us that the state of a closed

quantum system evolves during the time from, say, |ψ〉 at time t1 to |ϕ〉 at time t2.

These states are related by a unitary operator U which depends only on times t1

and t2
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|ϕ〉 = U |ψ〉 . (2.16)

This unitary transformation explains how the states of a closed quantum system at

two different times are related. A linear operator U is unitary if and only if U−1

exists and U† = U−1. Equivalently, U is unitary if and only if UU† = I. Thus, any

unitary operation on quantum states is ‘reversible’. Hereafter we always consider

closed quantum systems unless otherwise stated.

Unitary operators can be described in matrix form. For instance, the action of the

beam splitter in the Mach-Zehnder interferometer is

|0〉 −→ 1√
2

(|0〉+ |1〉)

|1〉 −→ 1√
2

(|0〉 − |1〉) ,
(2.17)

which can be described by the matrix


1√
2

1√
2

1√
2
− 1√

2

 , (2.18)

while the action of the phase shifters is described by the matrix

1 0

0 eiφ

 . (2.19)

In Chapter 3 we see the importance of unitary operations in quantum computation

and that they allow us to consider time as ‘discrete’ and discuss ‘computational

steps’.
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2.3.5 Entanglement

Consider a quantum system of more than 1 qubit. The quantum state of this system

is described by the tensor product of its components. For instance, if the system

consists of i qubits, each represented by |ψi〉 where i ∈ [n], then the quantum state

of the system is described by

|ψ1〉 ⊗ . . .⊗ |ψn〉 . (2.20)

Assume a 2-qubit system. Let |ψ1〉 = α0 |0〉 + α1 |1〉 and |ψ2〉 = α0 |0〉 + α1 |1〉
describe the state of first and second qubit, respectively. For both qubits we have

that |α0|2 + |α1|2 = 1. Also, |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. The state of the 2-qubit

system is

|ψ〉 = |ψ1〉 ⊗ |ψ2〉

= α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 ,
(2.21)

where |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 and |ψ〉 ∈ H1 ⊗H2. This implies that a

2-qubit system has 4 basis states, |00〉, |01〉, |10〉 and |11〉. More generally, an n-qubit

system has 2n basis states of the form |b1b2 . . . bn〉 where bi ∈ {0, 1}.

The state |ψ〉 is a ‘product state’ if and only if α00α11 = α01α10. The product state

can be factored into the product of two independent qubit states. However, the state

of a bipartite system can also be in a form such that cannot be decomposed as the

tensor product of two independent qubit states. For example the Einstein-Podolsky-

Rosen (EPR) [56] state

1√
2
|00〉+

1√
2
|11〉 . (2.22)

When this is the case, the two qubits are, in a way, strongly correlated. This introduces

an important idea related to composite quantum systems, called entanglement. The

EPR state is interesting because observing either the first qubit or the second qubit
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immediately fixes the unobserved qubit to a classical state. For instance, if the

outcome of measuring the first qubit in Equation 2.22 is the classical state |0〉, then

the EPR state collapses to |00〉. Thus, we obtain information about the second qubit

by only observing the first qubit.

2.3.6 The Density Operator

Consider the state vector of a quantum system that evolves in time via a number

of unitary operations until it is measured. At this time, one can employ projective

measurement to predict the probabilities for different results. Assume we want to

confirm the predictions. We need to prepare a known initial state, apply the unitary

operations on it, and then measure it. If we iterate this process enough, the results

should show statistical agreement with the predicted probabilities. But, in general, it

is impossible to prepare the exact same quantum state every time. Instead, what we

know is that the quantum system is in state |ψi〉 with probability pi. This is known

as ‘statistical mixture’. The state of the quantum system is either |ψ1〉 or |ψ2〉 (or

any others) but we do not know exactly which one. Note that this is not the same

as saying the quantum system is in state |ψ〉 = |ψ1〉+ |ψ2〉+ · · · , which is known as

‘coherent superposition’. In some sense, the quantum system is in both |ψ1〉 and |ψ2〉
(and any others) at the same time. In the case of statistical mixture, we have some

probability distribution of states.

Assume a quantum system described by a set of state vectors {|ψ1〉 , . . . , |ψn〉} with

their corresponding probabilities {p1, . . . , pn} such that
∑

i pi = 1. All we know is

that the quantum system’s state is |ψi〉 with probability pi. The density operator is

an operator ρ associated with the ensembles {pi, |ψi〉} and is defined as

ρ =

n∑
i=1

pi |ψi〉〈ψi| . (2.23)

Note that ρ is a positive operator and Tr (ρ) = 1. The density operator, also called

the density matrix, is an alternative mathematical approach to formulate quantum

mechanics. For instance it can be regarded as the state of a quantum system. In

order to measure the state, we can apply an operator Mi, Mi ≥ 0 and
∑

i Mi = 1, to
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ρ to obtain the probability of an outcome i:

Pr [outcome = i|state = ρ] = Tr (ρMi) , (2.24)

where i ∈ [m]. Hence, applying measurement to a density operator results in a

probability distribution. If we are given two density operators ρ0 and ρ1 then after

measuring them we obtain two probability distributions, P0 and P1 respectively. We

can distinguish between these two probability distributions. In fact distinguishing

between probability distributions is an important and well-studied problem in statis-

tical science. This gives us an interesting intuition. Since we are able to distinguish

between two probability distributions, P0 and P1, then we can also distinguish be-

tween their corresponding density operators ρ0 and ρ1. There are different measures

for quantum distinguishability [61]. Here we discuss two of them which we will use

in the thesis: ‘trace distance1’ and ‘fidelity’. Both of these distance measures are

‘static’, meaning they quantify how close two quantum states are.

Given two quantum states ρ and σ, the trace distance between them is

D (ρ, σ) =
1

2
Tr |ρ− σ| . (2.25)

The quantum trace distance can be related to the classical trace distance by consid-

ering the probability distributions induced by a measurement.

Result 1 ([89] Theorem 9.1) Given two quantum states ρ and σ, and a POVM

{Em}, let pm = Tr (ρEm) and qm = Tr (σEm) indicate the probabilities of obtaining a

measurement outcome labelled by m. Then

D (ρ, σ) = max
{Em}

D ({pm} , {qm}) ,

where the maximum is over all POVMs {Em}.
1This is also known as Kolmogorov distance.
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The trace distance is a metric. If the two quantum states (probability distributions)

are identical then D = 0, and if they are orthogonal then D = 1. The trace distance

preserves the unitary transformations

D
(
UρU†,UσU†

)
= D (ρ, σ) . (2.26)

And the triangle inequality holds:

D (ρ, σ) ≤ D (ρ, τ) + D (τ, σ) . (2.27)

The other distance measure is fidelity. Given two quantum states ρ and σ, their

fidelity is defined to be

F (ρ, σ) = Tr

(√
ρ1/2σρ1/2

)
. (2.28)

Similar to the trace distance, the fidelity preserves unitary transformation, and we

can relate it to the probability distributions obtained by a measurement

F (ρ, σ) = min
{Em}

F ({pm} , {qm}) , (2.29)

where the minimum is over all POVMs {Em}. The fidelity is not a metric but

arccos (F (ρ, σ)) (2.30)

is a metric. This also satisfies the triangle inequality:

arccos (F (ρ, σ)) ≤ arccos (F (ρ, τ)) + arccos (F (τ, σ)) . (2.31)
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The fidelity is qualitatively related to the trace distance. When two quantum states

become more distinguishable, the fidelity decreases while the trace distance increases.

On the other hand, when two quantum states become less distinguishable, the fidelity

increases while the trace distance decreases [89]. This can be shown by

1− F (ρ, σ) ≤ D (ρ, σ) ≤
√

1− F (ρ, σ)2 . (2.32)

In the next chapter, we explain how one can perform computation by exploiting the

properties of quantum mechanics. Moreover, we discuss quantum algorithms and

define a quantum adversary.
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Quantum Computation

Contents

3.1 Quantum Computers . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Quantum Circuit Model . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Physical Realisation of Quantum Computers . . . . . . . . 38

3.2 Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Simon’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Limitations of Quantum Computers . . . . . . . . . . . . 47

3.4 Quantum Adversary . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Quantum Computation vs. Quantum Superposition Attack 51

In this chapter, we give an overview of quantum computation. Then a model of

quantum computation is described. We also discuss the possibility of realisation of

quantum computers. Moreover, we explain a number of quantum algorithms and

their limited ability to solve problems. Finally we provide the definition of a quantum

adversary to use in the next chapters.

3.1 Quantum Computers

The Turing machine [105] is a mathematical model for a ‘universal’ computer.

According to the modern Church-Turing thesis, any ‘reasonable’ model of computation

can be ‘efficiently’ simulated on a probabilistic Turing machine. By ‘reasonable’,

we mean any model of computation that can be defined in a realistic physical

framework. From a complexity theory perspective, an efficient simulation means

that the amount of resources used by the Turing machine is polynomially bounded
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by the amount of resources used by the given realistic model of computation. In

1981, Feynman [60] raised a question about the possibility of simulating ‘quantum

physics’ with a universal computer. He discussed as follows: Given an n-particle (say

n qubits) quantum system that is evolving in time, then the amount of information

required, in classical terms, for simulation of the quantum system grows exponentially

in time. Therefore, in general, simulating the natural evolution of a quantum system

on a probabilistic Turing machine involves exponential slowdown. But, that is in

contrast with the notion of an efficient simulation. Feynman proposed the idea of a

‘quantum computer’ in order to efficiently simulate a general quantum evolution on

a computing apparatus based on quantum physics.

Following the above idea, Deutsch [46] introduced a formal model for universal

quantum Turing machines. He proposed that the quantum Turing machine might

be faster than the classical Turing machine in solving certain classical problems.

These are problems with classical input and output. He also proved that any given

quantum machines can be simulated by universal quantum computers, subject to

exponential slowdown. Later on, a separation between probabilistic classical and

quantum models was shown by Bernstein and Vazirani [23]. They constructed the

first universal quantum computer that could efficiently simulate a large class of

quantum Turing machines with only a polynomial overhead. There are also other

quantum computational models such as the quantum circuit model [47]. Most of

the known quantum algorithms are defined in the quantum circuit model. Yao [111]

showed that the two models, the quantum Turing machine and the quantum circuit,

are mathematically equivalent in terms of their computing power. In this thesis we

only discuss the quantum circuit model.

3.1.1 Quantum Circuit Model

A ‘qubit’ (see Subsection 2.3.2) is the quantum analogue of a ‘bit’, which is a

fundamental elementary unit of classical computation. While a bit represents either

0 or 1, a qubit represents 0 and 1 simultaneously. To build a quantum computer, we

need to prepare a number of qubits to operate on them. Assume we place n qubits

in a quantum register, initially in state
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|ψ0〉 = |0n〉 . (3.1)

There exists an operator U such that if we apply it to the register only once, then

we transform the state |ψ0〉 to another quantum state |ψ1〉 that is a superposition of

all 2n possible configurations of n qubits

|ψ1〉 =
1√
2n

∑
b∈{0,1}n

|b〉 . (3.2)

Therefore, any further operation applied to this quantum register will be applied to

the all 2n configurations in ‘parallel’. Contrast this with the classical computation

where, after an operation on n bits, a classical register only holds one of the 2n

configurations at a time. Hence, any further operation applied to the classical register

will be applied to merely one of the 2n configurations.

In general, during a quantum computation, a quantum system evolves in time

according to the operation U

∑
b

αb |b〉
U−→
∑
b

βb |b〉 , (3.3)

where
∑
|αb|2 = 1 and

∑
|βb|2 = 1. The operation U is a linear transformation

that maps the state on the left hand side to the state on the right hand side. As

discussed in Subsection 2.3.4, the operation U is unitary. In fact, the operation

must be unitary, otherwise we are not able to find the Hamiltonian corresponding

to the closed quantum system by solving the Schrödinger equation [99]. Intuitively,

quantum computation can be seen as a sequence of a number of unitary operations

U = U1U2 . . .Um , (3.4)

where m is polynomially bounded in n. The operators Ui, i ∈ [m], are elementary
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|b〉 H 1/
√

2
(
|0〉+ (−1)b |1〉

)
Figure 3.1: Schematic representation of H gate operating on a qubit in state |b〉

|b〉 S eibφ |b〉

Figure 3.2: Schematic representation of S gate operating on a qubit in state |b〉

unitary transformations usually acting on 1, 2 or 3 qubits. They are known as

elementary quantum logic gates [47].

We have already introduced two 1-qubit gates. Recall the beam splitter and the

phase shifter in the Mach-Zehnder interferometer (see Subsection 2.3.4). They are

unitary operations. The beam splitter operation is known as the Hadamard gate and

is denoted by H:

H =
1√
2

1 1

1 −1

 . (3.5)

The phase shifter operation is known as the phase shift gate, and is denoted by S:

S =

1 0

0 eiφ

 . (3.6)

Moreover, in general if we apply a Hadamard transformation to a state of, say, n

qubits such as |i〉 where i ∈ {0, 1}n then we get:

H⊗n |i〉 =
1√
2n

∑
j∈{0,1}n

(−1)i·j |j〉 , (3.7)

where i · j =
∑

k∈[n] ikjk denotes the inner product of the n-bit strings i, j ∈ {0, 1}n.

Another important quantum gate is a 2-qubit gate called the controlled-NOT gate

or ‘CNOT’ for short:
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|b〉 ⊕ |b⊕ a〉

|a〉 |a〉

Figure 3.3: Schematic representation of CNOT gate operating on 2 qubits in state
|a〉 |b〉

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (3.8)

Any unitary transformation can be built from a ‘universal’ set of quantum gates [47].

It turns out that such a universal set could consist of merely all 1-qubit gates

together with the CNOT gate [8]. Moreover, it is proven that a set consisting of

the Hadamard gate, controlled-NOT gate, and phase shift gate with a suitable phase

φ, is universal [32]. In this thesis, by a ‘universal set of gates’, we mean the latter or

any other possible universal set consisting of a number of arbitrary 1-qubit gates and

the CNOT gate. Other universal sets of gates also exist [52, 80]. This description of

quantum gates suffices for the purposes of this thesis, but for more details we refer

to work of Nielsen and Chuang [89], and Kaye et al. [72].

A ‘quantum circuit’ [47] (also known as a ‘quantum network’ or an ‘acyclic quantum

gate array’), is a finite directed acyclic graph, that is formed by ‘input nodes’,

‘elementary quantum gates’, and ‘output nodes’. There are n input nodes, which

contain the input as classical bits that is essentially a basis state. The quantum

gates each act on at most 2 qubits, and determine how the state of the input

evolves over time. The quantum gates are chosen from a universal gate set. The

outcome is achieved by measuring the output qubits in the output nodes. In general,

that probabilistically yields a string of classical bits as the output of the quantum

computation. The ‘size’ of a quantum circuit is the number of elementary quantum

gates in the circuit. A quantum circuit is ‘efficient’ if the total size of the circuit is

polynomially bounded in the number of bits of the input. The ‘depth’ of a quantum
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circuit is the maximum number of elementary quantum gates placed on any path

from an input to an output, and indicates the required time to implement a quantum

circuit if the quantum gates can perform in parallel. A quantum circuit is required to

be ‘uniformly’ generated. This means that a classical Turing machine can efficiently

output a description of the quantum circuit. For instance, a C program that can

be run on a classical computer and efficiently output a description of the quantum

circuit.

Note that we may use the term ‘register’ instead of ‘node’. A register consists of at

least one node. If we say an n-qubit state is placed in a register, that means the

register consists of n nodes.

Since quantum circuits are reversible, in order to imitate a classical computation on

a quantum computer, the corresponding classical circuit must be reversible too. It

turns out that any classical computation can be represented by a reversible classical

circuit without losing much in efficiency [20]. Therefore, quantum computation can

imitate any classical computation without losing much in efficiency, and possibly

do more. For further reading on quantum gates and circuits, we refer to work of

DiVincenzo [53].

3.1.2 Physical Realisation of Quantum Computers

Developing a large scale quantum computer is not an easy task [51]. To begin with,

a suitable physical presentation of a collection of qubits is required. For instance, a

qubit could be considered as the states of a vertical and horizontal polarised photon,

or the two spin states of a spin 1/2 atom in the ground and excited states. In each

of these cases one state denotes |0〉 and the other |1〉. Realisation of a suitable

qubit means to accurately know a qubit’s physical parameters, such as its internal

Hamiltonian, couplings to its other states, and the interaction with other qubits. We

need to be able to physically prepare these qubits in their initial states. This is not

a trivial task in some cases.

To perform a quantum computation, a physical implementation of a universal set of

quantum gates is needed. We require these unitary transformations to be implemented
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in a way that each can act on a small number of qubits. This is usually done by

identifying Hamiltonians which generate the unitary transformation. For instance

Uj = eiHjt/~ where j ∈ [n]. During all these processes, the qubits, as a closed

quantum system, must remain coherent. This means we must be able to keep the

physical qubits from interacting with the environment, also known as ‘quantum noise’.

In practice, however, the qubits are susceptible to perturbation by quantum noise.

This perturbation is called decoherence. Finally, to get the quantum computation

outcome, we require the ability to measure specific qubits. In practice though,

measurements are not 100% efficient. The state of nearby qubits or quantum noise

have a negative effect on the measurement outcome.

There are different proposals for a natural presentation of a qubit. For instance,

electromagnetically trapped particles such as ‘trapped ions’ [39, 66], and ‘trapped

single electrons’ [85]. Others are ‘molecular spins in liquids’, also known as ‘nuclear

magnetic resonance’ (NMR) [70], and ‘nuclear and electron spins in silicon’ [71,

86]. Moreover, there are proposals such as ‘optical photon’ [91], ‘superconducting

qubits’ [102, 110, 90], and ‘solid state qubits with quantum dots’ [7, 81]. The problem

is that none of these proposals overcame all the difficulties mentioned in the above.

At least not until now.

Discussing the above proposals in detail is beyond the scope of this thesis. But

for more details we refer to work of Nielsen and Chuang [89] and Chen et al. [35].

Here we merely point out a number of advances in the field. For example, IBM

opts to develop superconducting qubits but, in general, the error rate of the qubits

is too high to allow operation on them. But, IBM has been able to reduce the

errors in elementary quantum computations [93]. Also recently, researchers built a

superconducting multi-qubit processor with 99% reliability in performing 1-qubit

and 2-qubit quantum gates [9].

There is another possible proposal known as ‘adiabatic’ [58, 37] quantum computing.

This is mainly an approach to address the decoherence problem. It refers to an

evolution in which the quantum system always remains in its instantaneous eigenstates.

The ground state of a quantum system is very robust against decoherence. Hence,

if one can perform adiabatic quantum computation when a system is in its ground

state, then it remains in the ground state all the time and it is only the nature of the
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ground states which evolves into the final outcome of the computation. The D-Wave

company currently builds a 512-qubit superconducting quantum computer which

performs adiabatic computation to solve optimisation problems [42]. The company

has been joined by Google and NASA for further developments of its quantum

computer [38]. Despite this enthusiasm, D-Wave’s quantum computer is the subject

of much debate [101, 97]. The drawback of adiabatic quantum computing is that

the lowest eigenstate of a quantum system might get very close to a higher state.

Therefore, to suppress non-adiabatic transformation between them, the adiabatic

evolutions have to be performed extremely slowly. This, may lead to other problems.

3.2 Quantum Algorithms

At the heart of quantum computation are quantum algorithms which enable us to

harness the power of quantum computation.

Early quantum algorithms were designed after Deutsch [46] suggested that quantum

computers might be faster than classical computers in solving certain problems.

Deutsch and Jozsa [48] gave the first quantum algorithm that showed an expo-

nential advantage over the best deterministic classical algorithm. Call a function

f : {0, 1}n → {0, 1} balanced if it has an equal number of 0 and 1 outputs. Given the

promise that a function f is constant or balanced, the Deutsch and Jozsa algorithm

determines whether it is constant or balanced. This was followed by the work of

Brassard and Berthiaume [24], who recast this problem in complexity theoretic

terms, that showed an exponential advantage over the best probabilistic classical

algorithm with zero error probability. However, a probabilistic classical algorithm

with exponentially small error probability could efficiently solve [104] the problems

explored in [48] and [24].

Simon [104] designed an algorithm that demonstrated an exponential advantage

over the best probabilistic classical algorithms. Later on, Shor [103], inspired by

Simon’s algorithm, discovered a quantum algorithm to solve the discrete logarithm

and factoring problem in polynomial time. Shor’s algorithm meant that a number of

asymmetric cryptographic schemes such as RSA [94] could be broken in a reasonable

amount of time using a quantum computer. This eventually led to the inception
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of a new research field, called post-quantum cryptography [22]. This field attempts

to design cryptographic schemes which are secure even in the presence of quantum

computers.

Grover [65] found another quantum algorithm for solving the database search problem.

Grover’s algorithm showed only a polynomial speed up over classical algorithms, but

it is applicable to solving a wide range of problems (see Subsection 3.2.2).

The quantum algorithms we discuss here, and in fact most of the known quantum

algorithms, can be described in the ‘black-box model’ [107, 40]. This is a model

of computation where a problem is defined in terms of a black-box that can be

applied. A black-box is also, equivalently, called an ‘oracle’ that can be queried.

We use the terms ‘black-box’ and ‘oracle’ interchangeably. The only way to extract

information from an oracle is to query it. That is, to supply an input and receive

the corresponding output. The ‘complexity’ of a black-box algorithm that solves a

black-box problem is the number of oracles used by the algorithm. Intuitively, an

oracle is a sub-circuit that implements a function.

For the purpose of this thesis, we only explain quantum algorithms of Simon and

Grover, but we refer to work of Aharonov [5] and Mosca [87] for more details of

quantum algorithms.

3.2.1 Simon’s Algorithm

Distinguishing between two different classes of computable functions is known to be

hard in classical computation [104]. For instance, it takes a classical algorithm an

exponential amount of time to determine whether a function, given as a black-box, is

two-to-one or one-to-one. A classical lower bound for the number of function queries

is Ω
(
2n/4

)
[104]. Simon’s algorithm, on the other hand, solves this problem by

querying the function O (n) times, where n is size of the domain. Therefore Simon’s

algorithm shows an exponential improvement over the best classical algorithm.

Problem 1 (Simon’s Problem) Given a function f : {0, 1}n → {0, 1}n for which

there exists s ∈ {0, 1}n such that for any n-bit strings i and j, f(i) = f(j) if and
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only if i = j or i = j ⊕ s, find s.

We now explain how Simon’s algorithm solves Problem 1. We start by preparing two

quantum registers in the initial state 0,

|ψ0〉 = |0n〉 |0n〉 . (3.9)

Then we apply the Hadamard transformation to the first register to get:

|ψ1〉 =
1√
2n

∑
i∈{0,1}n

|i〉 |0n〉 . (3.10)

Now if we query function f (or equivalently, apply Uf to the two registers) we get:

|ψ2〉 =
1√
2n

∑
i∈{0,1}n

|i〉 |xi〉 , (3.11)

where f (i) = xi. Note that the second register now stores all 2n configurations

of function f (i). Applying a projective measurement, {(I⊗ |i〉〈i|)}, to the second

register, yields:

|ψ3〉 =
1√
2

(|i〉+ |i⊕ s〉) |xi〉 , (3.12)

for a random i ∈ {0, 1}n. Now the second register stores the measurement outcome

xi while the first register collapses into a superposition of states corresponding to

the measurement outcome. To find s, we only focus on the first register. Again we

apply a Hadamard transformation to the first register. The result is:
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|ψ4〉 =
1√

2n+1

 ∑
j∈{0,1}n

(−1)i·j |j〉+
∑

j∈{0,1}n
(−1)(i⊕s)·j |j〉


=

1√
2n+1

 ∑
j∈{0,1}n

(−1)i·j
(

1 + (−1)s·j
)
|j〉

 .

(3.13)

Note that we used Equation 3.7 and the fact that (i⊕ s) · j = (i · j)⊕ (s · j). The

amplitude of |j〉 in Equation 3.13 is non-zero if and only if s · j = 0 mod 2. If we

measure |ψ4〉, we obtain, say, j1. We repeat this algorithm n times to get j1, . . . , jn.

Therefore we obtain n− 1 linear equations

ji · s = 0 mod 2 where i ∈ [n] . (3.14)

By applying Gaussian elimination modulo 2, we can find a solution of the set of

equations that is either 0n or the correct s. Note that finding the solution also

means determining whether the function f is two-to-one, in the case where s 6= 0, or

one-to-one, when s = 0.

3.2.2 Grover’s Algorithm

Assume we are given an unordered database that contains N entries. We are

interested in an entry i that satisfies a number of properties. It is easy to verify

whether the properties are satisfied. But it is hard to find i, if it exists. This is

known as the database search problem or just the search problem. The best classical

algorithm requires at least Ω (N/2) queries to solve this problem with a probability

of 1/2. In a comparison, Grover’s algorithm [65] solves this problem in O
(√

N
)

queries with quadratic increase in speed.

Problem 2 (Search Problem) Given an arbitrary function f : {0, 1}n → {0, 1},
find x ∈ {0, 1}n such that f (x) = 1, otherwise output ‘no solution’.
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In order to solve Problem 2, Grover’s algorithm prepares a quantum superposition of

states that consists of all 2n possible configurations of f each with equal amplitude

1/
√

2n. The configurations are checked to see if they satisfy f (x) = 1, and their

amplitudes are manipulated to produce the correct configuration with probability

at least 1/2. The key to Grover’s algorithm is the selective shifting of the phase of

those configurations that satisfy the desired properties. This is known as amplitude

amplification. Note that manipulating the phase of a state does not change the

probability of being in that state. For instance, if we apply the unitary transformation

S, where φ = π, to a state (see Equation 3.6) then we put a ‘−1’ in front of |1〉 in the

state. In Subsection 2.3.3, we mentioned that probability disregards the sign of the

amplitude. Therefore the overall measurement probability distribution is intact. The

phase of a state has no analogue in classical computation, and we can exploit it to

our advantage. If we can manipulate the phase of each configuration in a quantum

state in a way such that it induces destructive interference on ‘bad’ configurations

and constructive interference on ‘good’ configurations, then we can increase the

probability of finding the solutions.

We use s to denote the number of solutions for f (x) = 1. We define the oracle O as

|x〉 O−→ (−1)f(x) |x〉 . (3.15)

Moreover, we define the unitary transformation Ug which manipulates the phase of

|0n〉 by placing ‘−1’ in front of it

|x〉 Ug−→ (−1)δx0 |x〉 . (3.16)

We use G to denote the Grover iteration such that G = −H⊗nUgH
⊗nO.

Now we explain Grover’s algorithm [65]. We prepare n qubits in the initial state |0n〉.
Then we apply the Hadamard transformation to it to obtain a uniform superposition

of all x:
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|ψ〉 =
1√
2n

∑
x∈{0,1}n

|x〉 . (3.17)

Now we define the following ‘good’ and ‘bad’ states, denoted by |g〉 and |b〉 respectively,

as:

|g〉 =
1√
s

∑
f(x)=1

|x〉 and |b〉 =
1√

2n − s
∑

f(x)6=1

|x〉 . (3.18)

Therefore we can rewrite |ψ〉 as follows,

|ψ〉 =

√
2n − s

2n
|b〉+

√
s

2n
|g〉 . (3.19)

We apply G to |ψ〉 a number of times. The Grover iterate performs two reflections.

The oracle O performs a reflection through |b〉 in the plane defined by |b〉 and |g〉,
and

−H⊗nUgH
⊗n = H⊗n (2 |0n〉〈0n| − I) H⊗n = 2 |ψ〉〈ψ| − I (3.20)

is a reflection through |ψ〉 in the plane defined by |b〉 and |g〉. Now if we measure

the final state we obtain a solution.

Note that each G is considered as one oracle query. The number of required oracle

queries depends on the number of solutions s. To see how many oracle queries are

required, we rewrite the state |ψ〉 again

|ψ〉 = sin θ |g〉+ cos θ |b〉 , (3.21)

where θ = arcsin
(√

s/2n
)

. After q oracle queries, the two reflections performed by

G transform the state |ψ〉 to
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∣∣ψ′〉 = sin (2q + 1) θ |g〉+ cos (2q + 1) θ |b〉 . (3.22)

According to the state |ψ′〉, the probability of obtaining a solution after measurement

is p = sin ((2q + 1) θ)2. To increase this probability we need to pick q such that

p = sin ((2q + 1) θ)2 = 1. Note that if we choose q′ such that

q′ =
π

4θ
− 1

2
(3.23)

then (2q′ + 1) θ = π/2 hence p = 1. Therefore, we need a discrete number of queries

q. Assuming that |q − q′| ≤ 1/2, and the number of solutions is s ≤ 2n/2, then [31]

p = sin ((2q + 1) θ)2 = (sin θ)2 =
s

2n
. (3.24)

Because arcsin θ ≥ θ, then the number of oracle queries is [31]

q ≤ π

4θ
≤ π

4

√
2n

s
. (3.25)

Grover’s algorithm only has a quadratic advantage over the best classical algorithm.

Bennett et al. [21] show that the Grover bound is the best one could do to solve a

search problem. Boyer et al. [31] give tight bounds on any possible quantum search

algorithm and Zalka [113] shows that Equation 3.25 is optimal. Grover’s algorithm

has many application. For instance, it can be used to find the shared secret key of a

symmetric encryption such as AES [3]. Moreover, the work of Brassard et al. [34, 33],

based on Grover’s algorithm, gives a quantum algorithm to find collisions in an

arbitrary r-to-one function after O
(

3
√
N/r

)
oracle query. The latter can be used to

find collisions in hash functions.
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3.3 Limitations of Quantum Computers

So far in this chapter, we have shown the power of quantum computation over

classical computation. We mentioned problems that quantum algorithms can solve

exponentially faster than classical algorithms, as well as problems that quantum

algorithms can solve merely polynomially faster. But as it turns out, there are

problems that quantum algorithms cannot solve efficiently [108]. They are just better

than classical algorithms at solving certain types of problem.

In complexity theory, classes such as P and PSPACE refer to the set of decision

problems that can be solved in polynomial time, and in polynomial space, using

a deterministic Turing machine, respectively. The hardest problems in NP are in

what is known as the NP-complete class. The problems in NP can be reduced to

problems in NP-complete. The general belief is that NP 6= P, this has not been

proven. If an NP-complete problem is found to be in P, then it implies that all NP

problems are in P, which would mean NP = P.

Another important complexity class is one that consists of problems which can be

solved in polynomial time, with bounded error probability, by a probabilistic Turing

machine. These are called BPP. This definition explicitly allows for a small proba-

bility that the solution is wrong. It is conjectured that P = BPP [68]. A quantum

extension of BPP is called BQP [23]. The latter is the class of problems that can

be solved in polynomial time, with bounded error probability, by a probabilistic

quantum Turing machine. Aaronson [4] suggests that P ⊂ BQP. This means that

quantum algorithms could solve, in polynomial time, problems that cannot be solved

efficiently by classical algorithms.

3.4 Quantum Adversary

A quantum adversary is a quantum algorithm that runs on an ideal quantum computer.

We use capital letters such as A to denote a quantum adversary. We define a general

quantum adversary, that without loss of generality, complies with a given security

definition. In Section 2.2, we discussed that a security definition is usually expressed
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as an ‘experiment’ conducted by a ‘challenger’. A quantum adversary plays the

experiment with regards to a cryptographic scheme. To do so, the quantum adversary

maintains a number of registers. Specifically, registers for input and output, a register

for querying its ‘oracles’ that are maintained by the challenger, a register for storing

its internal state between each oracle query, and a register for classical communication.

Formally, all of these registers are quantum registers. The provided oracles could

be classically or quantumly queried, depending on the security definition. Generally

we assume that oracle queries made by a quantum adversary are quantum states.

If a security definition merely allows classical access to the provided oracles, then

the quantum queries are measured by the oracle before being answered. Note that

measuring a quantum state yields a random classical string. On the other hand, if

quantum queries are allowed, then the oracle applies a unitary transformation to the

quantum queries.

Often at the beginning of an experiment, a number of variables with their initial

values are introduced. A quantum adversary might use these variables as its input.

Or it might just simply place |0n〉, or any other string, in its input register. Then the

quantum adversary queries its oracle. The oracle queries are placed in a quantum

register prepared by the quantum adversary. The quantum register is shared between

the quantum adversary and the oracle. The oracle prepares its response by applying

a unitary transformation to the quantum register. If the oracle is merely classically

accessible, it first measures the quantum register. Then the oracle writes its classical

response, based on the measurement outcome, to the quantum register. Note that

this is the same as, say, the quantum register being sent back and forth between the

quantum adversary and the oracle. The quantum adversary performs a number of

unitary transformations on its registers between each oracle query. It finally produces

an output.

Definition 1 [Quantum Adversary] A quantum adversary A maintains a number

of quantum registers. That is, specifically, there are two quantum registers inp and

out for inputs and outputs respectively, a quantum register Q for the purpose of

making quantum oracle queries, a quantum register S for storing its internal state

between each oracle query, and a quantum register R for classical communication

with the environment (such as specifying the type of a query, the length n, and any

other query parameters). The quantum adversary always begins by preparing some
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initial quantum state in its input register. Then, A prepares an n-qubit quantum

query in the register Q. The oracle takes the form of a unitary transformation, Uf ,

defined by its action on the first 2n qubits of the register Q such that

Uf |x, y〉 = |x, y ⊕ f (x)〉 , (3.26)

where x and y are n-bit strings. This defines the action of Uf for arbitrary quantum

states in the register Q. This includes superposition of states, mixed states, and

states entangled with state of the register S. If the oracle merely accepts classical

queries, then it measures the first n qubits in the register Q to obtain a n-bit string

x. The oracle then replaces the first n qubits in the register Q with its response f (x).

The quantum adversary’s ability to store its internal state in the register S means

that it can make interactive oracle queries. Formally, the action of the quantum

adversary is a quantum operation. That is, a completely positive map, acting on

its registers. Finally, A outputs by measuring the out register. We will quantify

resources available to the adversary as follows. The running time of an adversary

A is the time, in seconds, that elapses until A writes its final output and halts,

including any initialisation steps. In addition to the number of oracle queries made

by A, we specify the total size, measured in number of qubits, of all oracle queries.

In some cases, we will also quantify the size of the classical output of A.

The standard formal model for a quantum computer is the quantum circuit model

described in Subsection 3.1.1. The above definition of a quantum adversary, however,

deliberately avoids referring to a particular quantum computing model. The concrete

security reductions given in this thesis are black-box reductions. They assume the

existence of a specific quantum adversary attacking one scheme and, based on this,

construct a specific quantum adversary attacking another scheme. For the reductions,

the hardware realisation of the adversary or the quantum computing model on which

it is based are irrelevant. The resources given in the definition above, which are those

that play a role in the reductions, do not depend on the details of the adversary or

the computational model. This should be regarded as a strength of the concrete

security approach, since it is unknown what form a future quantum computer will

take [97].
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To fully characterise the resources used by a quantum adversary, one needs to quantify,

in addition to the running time, the size of the adversary. In principle there are

many ways of doing this. For instance, one could limit the physical volume, the size

of the available Hilbert space, and the size of the classical memory available to the

quantum adversary. Corresponding resource parameters could easily be added to our

reduction theorems. But since they would simply appear unchanged on both sides of

the equations, they would not add anything and have therefore been omitted in the

above definition of a quantum adversary.

The theorems proved in this thesis are reductions of the following form. Given a

specific adversary A that attacks some scheme SA using certain physical resources,

an adversary B is constructed that attacks another scheme SB using broadly similar

resources. In order to draw conclusions from such a reduction in the concrete security

framework adopted here, one has to make (often heuristic) assumptions about the

security of scheme SB. For example, one might assume that no quantum adversary

which can be physically realised in the next 30 years, and which runs for at most t

seconds and makes at most q oracle queries, can break SB with probability larger

than ε, where t, q are suitably large numbers and ε is a suitably small number. This

allows one to draw similarly concrete conclusions about the security of scheme SA.

Now we give a couple of examples of the interaction between a quantum adversary

and its oracles. When the register Q contains a quantum superposition of states∑
x αx |x, 0〉, then the oracle’s action, Uf , on the register Q, is given by

Uf

∑
x

αx |x, 0〉 =
∑
x

αx |x, f (x)〉 . (3.27)

In a classical n-bit randomised encryption query, the oracle measures the first n

qubits in the register Q to obtain a bit string x. It then replaces the first (n+ nr)

qubits of Q with the oracle response (f (x, r) , r), where nr is the length of the random

string r. In an n-bit randomised quantum encryption query, the oracle takes the form

of a unitary operation, Uf(·,r), defined by its action on the first (2n+ nr) qubits in

the register Q,
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Uf(·,r) |x, y, z〉 = |x, y ⊕ f (x, r) , z ⊕ r〉 , (3.28)

where x and y are n-bit strings and z is a nr-bit string. This defines the action of

Uf(·,r) for arbitrary states in the register Q, including superposition of states, mixed

states, or states entangled with state of the register S. For instance, the action of

Uf(·,r) on the superposition state |ψ〉 =
∑

x αx |x, 0, 0〉 is given by

Uf(·,r)
∑
x

αx |x, 0, 0〉 =
∑
x

αx |x, f (x, r) , r〉 . (3.29)

The resources required to apply the unitary Uf(·,r) to a quantum register are in-

dependent of the initial state |ψ〉 of the register. Applying a unitary operator can

be thought of as a single physical operation, for which the number of terms in the

superposition state |ψ〉 is irrelevant. Since the encryption oracle does not ‘know’

whether it acts on a superposition or on a single basis state, we have assumed above

that the random string r required for the randomised encryption is chosen exactly

once every time Uf(·,r) is applied, i.e., r is the same for all terms in the sum in

Equation 3.29.

In the case where f is a permutation, an alternative way to define a quantum oracle

query would be through a unitary U′f(·,r) acting on (n+ nr) bits. This definition

would be

U′f(·,r) |x, z〉 = |f (x, r) , z ⊕ r〉 . (3.30)

3.4.1 Quantum Computation vs. Quantum Superposition Attack

In the previous section, we discussed that the quantum adversary is given either

classical or quantum access to its oracles with regards to the security definition.

Assume the quantum adversary with classical access to its oracle. By making an

oracle query, the quantum adversary can evaluate one instance of the oracle at a

time. It then can take advantage of the quantum computation power between each
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oracle query to attack a cryptosystem. To describe this approach we use the term

quantum computation attack.

For example, consider the case where the quantum adversary attacks a simple

symmetric encryption scheme such as Even-Mansour [57] with a key size n. We

explain this in details in Section 5.1. The quantum adversary queries the oracle on a

number of messages to get their corresponding ciphertexts. After each oracle query,

the quantum adversary possesses a message/ciphertext pair. Given a message and

its corresponding ciphertext, the key can be recovered using Grover’s algorithm [65]

after 2n/2 quantum operations. This is in comparison with the classical ‘exhaustive

key search’ attack that requires 2n classical operations. Although the key can be

recovered faster than a classical attack in this manner, it still takes the quantum

adversary an exponential time to recover any key. Hence the Even-Mansour scheme

is considered secure against a quantum computation attack. Another example is to

attack an asymmetric encryption scheme such as RSA [94]. Given the public key

and a message/ciphertext pair, the quantum adversary can recover the private key

in polynomial time using Shor’s algorithm [103].

Now assume that the quantum adversary is given quantum access to its oracle. The

quantum adversary can make a quantum superposition query. For example, if the

query is a superposition of all messages then the oracle response contains all the

corresponding ciphertexts. This gives the quantum adversary an additional power

besides its quantum computation power to attack a cryptosystem. We use the term

quantum superposition attack to describe this property. For example, in Chapter 5, we

show that the Even-Mansour scheme is insecure against the quantum superposition

attack.

In general, a quantum computation attack against modern cryptosystems is the

subject of the field of post-quantum cryptography [22]. Here, the assumption is that

the honest parties use classical computation and communication, while the adversary

might be in possession of quantum computers. The quantum adversary is then able

to launch a quantum computation attack against the cryptosystems used by the

honest parties. In contrast, the quantum superposition attack is beyond the field of

post-quantum cryptography. A quantum superposition attack is possible when the

honest parties use quantum computation. Different attacks are possible depending
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on whether the honest parties use classical or quantum communication. We have

already discussed that any classical algorithm can be run on a quantum computer

(see Subsection 3.1.1).

Note that the quantum superposition attack is more powerful that the quantum com-

putation attack. Moreover, a security definition that allows quantum superposition

queries is stronger than a security definition that is restricted to classical queries.

In the next chapter, we discuss the security of a number of symmetric schemes and

the achievability of a number of security definitions against quantum computation

attacks.
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Symmetric Encryption
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This chapter gives an overview of symmetric encryption. We mostly focus on

primitives and security notions. While discussing the latter, we introduce a new

indistinguishability-based security notion. Then we explain relations among all the

given security notions in this chapter. Moreover, we discuss the security of symmetric

encryption schemes against the quantum computation attack. We finish this chapter

by discussing a security notion for achieving integrity.

4.1 Cryptographic Primitives

Cryptographic schemes are built on a number of smaller and simpler schemes called

primitives. The cryptographic schemes are designed to achieve a goal. For instance,

encrypting messages. Primitives can also be considered as simple cryptographic

schemes, but they merely provide some sort of ‘hardness’ or ‘security’ properties

that must be properly used to design more complex schemes to achieve a goal.
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Cryptographic primitives can be drawn from two main groups: ‘symmetric’ and

‘asymmetric’. Block ciphers such as DES or AES can be used as symmetric primitives,

and RSA, for instance, can be used as an asymmetric primitive. In this thesis we

solely focus on symmetric primitives and symmetric cryptography.

4.1.1 Block Ciphers

At the centre of symmetric cryptography are block ciphers that play a very important

role in modern cryptography. Block ciphers are one of the most widely used primitives.

They are simple and adaptable with efficient implementation. Block ciphers are also

essential to many cryptographic schemes that are used in practice. Widely used

block ciphers such as DES and AES have been subject of intensive cryptanalysis, and

to this day no major security flaw has been found in their design. This is another

reason to consider block ciphers as reliable primitives.

A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n that takes a k-bit

string and an n-bit string as input, and returns an n-bit string as its output. The

variables k and n denote the key length and the block length respectively. They

are parameters associated with the block cipher, and vary according to its design.

For each K ∈ {0, 1}k we denote EK : {0, 1}n → {0, 1}n as the function defined by

EK (x) = E (K,x). A block cipher can be considered as a family of functions where

each key identifies a function. In general, for any block cipher E and any key K, the

function EK is required to be a permutation on {0, 1}n. This implies the existence

of an inverse function E−1
K for EK , with E−1

K (EK (x)) = x.

The popular block ciphers are the ‘Data Encryption Standard’ (DES), triple DES

(3DES), and the ‘Advanced Encryption Standard’ (AES). In the early 1970s, IBM

designed DES. Later in 1976, DES was standardised by the United States National

Bureau of Standards (now known as the National Institute of Standards and Tech-

nology, NIST) [1]. DES is a 64-bit block cipher designed based on a ‘Feistel cipher’

structure [59], with a 56-bit key. Its relatively short key size left DES vulnerable to

key recovery attacks such as ‘brute-force’ attacks. In 1998 DES was broken. The

Electronic Frontier Foundation built a specific machine with a cost of less than

$250,000, and recovered a DES key in less than 3 days. A simple solution to address
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such attacks is to increase the size of the key. Triple DES (3DES) provides a relatively

simple method of increasing the key size by using DES three times in a form of

‘encrypt-decrypt-encrypt’, with either two or three different keys. In 1985, 3DES was

standardised, and it became part of the Data Encryption Standard in 1999.

Daemen and Rijmen designed the block cipher ‘Rijndael’ as part of a proposal

submitted to NIST during the competition to find a successor for DES in 1997. The

Rijndael block cipher is based on a ‘substitution-permutation network’, and has

a 128-bit block size but three different key lengths of 128 bits, 192 bits, and 256

bits. It won the NIST competition that required the winner to provide at least the

same level of security as 3DES but be substantially more efficient. In 2001, NIST

standardised the Rijndael block cipher under the name of ‘Advanced Encryption

Standard’ (AES) [3].

4.1.2 Pseudorandom Functions and Permutations

This subsection, as well as Subsections 4.2.1 and 4.2.2, contains background material

from modern cryptography. These subsections do not refer to the quantum adversary

defined in Chapter 3, but to a classical adversary definition based on a Turing

machine model. Here we measure running time in discrete steps rather than seconds.

We follow Bellare et al. [13] in including in the running time, the space required to

store the program that describes the adversary. This prevents the adversary, e.g.,

from embedding arbitrary large look-up tables in the program. Measuring space and

running time in the same units makes sense because the time required to read in a

program is generally proportional to the program length. In this way the number

of Turing machines bounded by a given running time is finite, so that taking a

maximum over all classical adversaries bounded such is well defined.

Normally in the context of provable security, block ciphers are modelled as pseudoran-

dom functions or pseudorandom permutations [82, 83, 15]. A pseudorandom function

is a family of functions such that a function chosen uniformly at random from the

family of functions is indistinguishable from a function chosen uniformly at random

from the set of all functions [62, 63]. This is expressed via the ability of an adversary

to distinguish between two experiments. We are interested in the probability of the
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Experiment Expprf−1
F (A)

K ←$K
b← AFK(·)

return b

Experiment Expprf−0
F (A)

f ←$ Func (X ,Y)
b← Af(·)

return b

Figure 4.1: The PRF definition

adversary doing so. We now provide a formal definition for pseudorandom functions.

Definition 2 [Pseudorandom Functions (PRF)] Let F : K×X → Y be a family

of functions identified by the set K. Define two experiments Expprf−0
F and Expprf−1

F

for an adversary A as depicted in Figure 4.1. The adversary A has access to an

oracle, and returns a bit as its output. The advantage of A is defined as

AdvprfF (A) = Pr
[
Expprf−1

F (A) = 1
]
− Pr

[
Expprf−0

F (A) = 1
]
.

The advantage of the function family is given by

AdvprfF (t, q) = max
A

{
AdvprfF (A)

}
, (4.1)

for any integers t, q. Here the maximum is over all adversaries A with a running time

of at most t, making at most q oracle queries.

A low value of AdvprfF (t, q) indicates that F is a secure PRF for reasonable values

of t and q.

In the previous subsection we explained that block ciphers can be regarded as a

family of permutations. Therefore we can also model block ciphers as a family of

pseudorandom permutations. They can be described in a similar way.

Definition 3 [Pseudorandom Permutations (PRP)] Let F : K×X → X be a

family of permutations identified by the set K. Define two experiments Expprp−0
F
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Experiment Expprp−1
F (A)

K ←$K
b← AFK(·)

return b

Experiment Expprp−0
F (A)

Π←$ Perm (X )
b← AΠ(·)

return b

Figure 4.2: The PRP definition

and Expprp−1
F for an adversary A as depicted in Figure 4.2. The adversary A has

access to an oracle, and returns a bit as its output. The advantage of A is defined as

AdvprpF (A) = Pr
[
Expprp−1

F (A) = 1
]
− Pr

[
Expprp−0

F (A) = 1
]
.

The advantage of the function family is given by

AdvprpF (t, q) = max
A

{
AdvprpF (A)

}
,

for any integers t, q. Here the maximum is over all adversaries A with a running time

of at most t, making at most q oracle queries.

A low value of AdvprpF (t, q) indicates that F is a secure PRP for reasonable values

of t and q.

Block cipher constructions can be modelled as either PRFs or PRPs. Although PRPs

better model a block cipher, analysis of a block cipher construction is sometimes

easier if one assumes the underlying primitives are PRFs. The following lemma

proves that the prf-advantage and the prp-advantage of a block cipher are always

close to the amount given by the ‘birthday attack’.

Result 2 (PRP/PRF Switching Lemma ([16] Proposition 2.5)) Let F : K×
X → X be a family of functions identified by the set K. For any adversary A that

makes at most q oracle queries, then
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∣∣∣AdvprfF (t, q)−AdvprpF (t, q)
∣∣∣ ≤ q (q − 1)

2 |X |
.

So far, the definitions given in this subsection merely consider classical adversaries.

We now define quantum pseudorandom functions (QPRF). This is analogous to the

definition of PRFs except that now a quantum adversary is given quantum super-

position access to its oracle. Therefore, the quantum adversary can make quantum

superposition queries, and the oracle responds to each query by applying a unitary

transformation to the adversary’s quantum register. The unitary transformation

depends on the experiment that the quantum adversary is playing.

Note that Zhandry [114] shows how to construct a QPRF assuming that one-way

functions exist. However, Zhandry’s work is in the asymptotic setting, as opposed to

concrete setting which applies in this thesis. From a concrete perspective a QPRF

is simply a function family together with the definition of an advantage against a

quantum adversary. Here is the formal definition:

Definition 4 [Quantum Pseudorandom Functions (QPRF)] Let F : K×X →
Y be a family of functions identified by the set K. Define two experiments Expqprf−0

F

and Expqprf−1
F for a quantum adversary A as depicted in Figure 4.3. The adversary

A has quantum superposition access to an oracle, and returns a bit as its output.

The oracle responds to each query by applying a unitary transformation to the first

2n qubits of the adversary’s quantum register, where n is the length of each query.

The advantage of A is defined as

AdvqprfF (A) = Pr
[
Expqprf−1

F (A) = 1
]
− Pr

[
Expqprf−0

F (A) = 1
]
.

This advantage refers to a specific quantum adversary using resources as discussed

in Section 3.4. These include the running time t, and the number of queries q.

Notice that in the above we do not provide a definition of the advantage of the

function family similar to Equation 4.1. The reason is that, the maximum of the
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Experiment Expqprf−1
F (A)

K ←$K
b← AFK(·)

return b

Experiment Expqprf−0
F (A)

f ←$ Func (X ,Y)
b← Af(·)

return b

Figure 4.3: The QPRF definition

advantage over all adversaries limited by a set of given resources is only well defined

with respect to a precise model of computation. But as we explained in Section 3.4,

the concrete security reductions in this thesis do not require the specification of

a formal quantum computing model. Such a specification might even limit the

generality of our reductions unnecessarily.

In Chapter 6 we give constructions based on a QPRF. For these constructions to

be secure, we need to assume that there exists a function family F such that its

QPRF-advantage is very small for any quantum adversary using resources that are

available now or might become available in the foreseeable future. Such function

families exist in the form of standard block ciphers, for instance AES-256. The

best currently known quantum attack against AES-256 is based on Grover’s search

algorithm [65], which requires of the order of 2128 queries to succeed with high

probability. The security of the schemes discussed in Chapter 6 thus depends on the

heuristic assumption that AES-256 or similar block ciphers cannot be broken by a

quantum computer using realistic resources.

4.2 Encryption Schemes

Symmetric encryption provides ‘privacy’ for two parties that share a secret key. A

symmetric encryption scheme consists of three algorithms: key generation, encryption,

and decryption. A key generation algorithm produces a key that two parties need to

share prior to any communication. The key is then used by an encryption algorithm

that specifies how to produce the ciphertext from a plaintext. The ciphertext is

transmitted between the parties. Then a decryption algorithm specifies how to

recover the plaintext from the ciphertext by using the key.
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We denote a symmetric encryption scheme by SE = (K, E ,D). The key generation

algorithm is denoted by K. This is a randomised algorithm that takes no input, and

returns a key K. The key is chosen uniformly at random from a set of keys and

is usually a random bit string with an arbitrary size. We also often use the same

notation, K, with regards to the set of keys representing the key space. When the

key K is generated, it needs to be securely exchanged between two parties. How the

two parties securely exchange the key is beyond the scope of this thesis. However,

we refer to the work of Bellare and Rogaway [18, 19] for more details on secure ways

to exchange a key. Here we assume the two parties are in possession of the secret

key K.

A message spaceM⊂ {0, 1}∗ and a ciphertext space C ⊂ {0, 1}∗ are associated with

the symmetric encryption scheme SE . The encryption algorithm is denoted by E . It

may be either randomised or stateful. If the encryption algorithm E is stateful, then

the key generation algorithm K outputs the initial encryption and decryption states,

%0 ∈ Σ and ς0 ∈ Σ respectively, alongside the key K. The randomised encryption

E : K ×M→ C takes the key K ∈ K and a message m ∈M as input, and returns a

ciphertext c ∈ C. Note that the randomised E uses fresh coins each time it is invoked.

Therefore, invoking E on the same inputs twice may not yield the same results. The

stateful encryption E : K×M×Σ→ C×Σ takes the key K ∈ K, a message m ∈M,

and the current encryption state % ∈ Σ as input, then returns a ciphertext c ∈ C and

updates the encryption state.

The deterministic decryption algorithm is denoted by D. The decryption algorithm

D : K × C → M ∪ {⊥} takes the key K ∈ K and a ciphertext c ∈ C as input,

and returns either the corresponding message m ∈ M or the symbol ⊥ meaning

the ciphertext is invalid. If the encryption scheme is stateful then the decryption

algorithm D : K×C ×Σ→ (M∪ {⊥})×Σ takes the key K ∈ K, a ciphertext c ∈ C,
and the current state ς ∈ Σ as input, and returns either the corresponding message

m ∈M or the symbol ⊥, and updates the decryption state.

In this thesis we always consider a symmetric encryption scheme to be randomised,

unless otherwise stated. For any key K ∈ K, any sequence of messages mi ∈ M,

i ∈ [q], and any sequence of ciphertexts ci ← EK (mi), we expect that m′i ← DK (ci)

where mi = m′i with probability 1. In case of the stateful encryption scheme, for any
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key K ∈ K and initial states %0, ς0 ∈ Σ, any sequence of messages mi ∈ M, i ∈ [q],

and any sequence of ciphertexts

(ci, %i)← EK (mi, %i−1) , i ∈ [q] (4.2)

we expect that

(
m′i, ςi

)
← DK (ci, ςi−1) (4.3)

where mi = m′i with probability 1.

4.2.1 Notions of Confidentiality

The security of a symmetric encryption scheme is examined against an adversary

that is not in possession of the secret key but has some prior information about

the plaintext. For example, the adversary might know the length of the plaintext,

or that it is an English word. The adversary also gets to see the ciphertext that

is transmitted between the honest parties. This information must not enable the

adversary to recover the secret key or gain any partial information about the plaintext.

For example, a (stateless) deterministic encryption scheme is considered insecure

in this sense because when an adversary observes two identical ciphertexts, it can

conclude that they both correspond to the same plaintext. Therefore it obtains

partial information about the plaintext without actually knowing the plaintext. This

is not the case of course, if the symmetric encryption scheme is randomised or stateful.

However, it is still possible that even a randomised or stateful symmetric encryption

scheme, due to its design for instance, leaks information about the plaintext.

Goldwasser and Micali [64] were the first to formally model the security of encryption

schemes. They introduced two notions of security, called semantic security and

polynomial security, and proved them to be equivalent. Initially, semantic security

was defined primarily for asymmetric encryption schemes in an asymptotic framework.

If a given encryption scheme is semantically secure, then an adversary should be
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unable to obtain any partial information about the plaintext from the ciphertext.

In practice, semantic security is what we desire. But in theory, semantic security is

complex and difficult to work with. However, there is an Indistinguishability-based

definition that is easier to work with. These two definitions are equivalent. This

means that we can analyse the security of a scheme in the indistinguishability model

while being convinced that the security properties we obtain are those that we expect

from semantic security.

Bellare et al. [12] introduced several Indistinguishability-based (IND) security models

for symmetric encryption schemes in a concrete framework. They presented two

new indistinguishability notions called Left-or-Right (LoR) and Real-or-Random

(RoR). The authors also gave an adaptation of semantic security notion (SEM),

and an adaptation of polynomial security, called Find-then-Guess (FtG) in an

indistinguishability-based security model. The four notions given by the authors

consider two different types of attack, called chosen plaintext attack (CPA) and

chosen ciphertext attack (CCA). In the former, an adversary is given an encryption

oracle, while in the latter, an adversary is given both an encryption oracle and a

decryption oracle. The adversary can query the encryption oracle on any plaintext

to obtain a corresponding ciphertext. Moreover, in CCA model the adversary can

query the decryption oracle, to obtain the corresponding plaintext.

In a model based on indistinguishability, an adversary is required to distinguish

between the encryptions of two different plaintexts. That is, the adversary merely

needs to find a bit corresponding to each plaintext rather than recovering the whole

plaintext.

We explain the four notions LoR, RoR, FtG, and SEM under both chosen plaintext

and chosen ciphertext attacks. Then we discuss the relations among these notions

given by Bellare et al. [12]. Moreover, we present a new indistinguishability-based

notion called Real-or-Permutation (RoP), and we prove that RoP and RoR are

equivalent.

The results given in this subsection are in the symmetric setting but they carry over

to the asymmetric setting.
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4.2.1.1 Left-or-Right Indistinguishability

The adversary plays two experiments, one for LoR-CPA and the other for LoR-CCA.

Both experiments begin by the challenger choosing a secret key K ∈ K and a random

bit b ∈ {0, 1}. The adversary is given access to a left-or-right encryption oracle which

it can adaptively query. The encryption oracle queries sent by the adversary are in

the form of (m0,m1) such that |m0| = |m1|. Upon arriving each encryption query,

the oracle encrypts one of the messages c ← EK (mb), and returns the ciphertext.

We call this ciphertext the challenge ciphertext. Additionally, in the LoR-CCA

experiment, the adversary is given access to a decryption oracle. The adversary may

query the decryption oracle on any ciphertext except the challenge ciphertext. The

decryption oracle returns a message m← DK (c) corresponding to each decryption

query. At some point the adversary outputs a bit b′, and the experiment returns b′

as well.

Definition 5 [LoR-CPA and LoR-CCA] Let SE = (K, E ,D) be a symmetric

encryption scheme. Define experiments Explor−cpa−bSE (A) and Explor−cca−bSE (A) for an

adversary A and a bit b as depicted in Figure 4.4. In both experiments, the adversary

A is given access to a left-or-right encryption oracle LoR (·). It is additionally given

access to a decryption oracle Dec (·) in the latter experiment. No restriction is

imposed on the adversary’s queries, except, it is assumed that the probability that

the adversary queries Dec (·) on previously returned ciphertexts by LoR (·) is zero.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b. The adversary wins if b′ = b. The corresponding advantages of an

adversary A are given by:

Advlor−cpaSE (A) = Pr
[
Explor−cpa−1

SE (A) = 1
]
− Pr

[
Explor−cpa−0

SE (A) = 1
]
,

Advlor−ccaSE (A) = Pr
[
Explor−cca−1

SE (A) = 1
]
− Pr

[
Explor−cca−0

SE (A) = 1
]
.

The advantage functions of the scheme are defined to be:
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Explor−cpa−bSE (A) Explor−cca−bSE (A)

K ← K
b′ ← ALoR(·) b′ ← ALoR(·),Dec(·)

return b′

LoR ((m0,m1))

if |m0| 6= |m1| then
return ⊥

else
c← EK (mb)
return c

end if

Dec (c)

m← DK (c)
return m

Figure 4.4: The LoR-CPA and LoR-CCA confidentiality notions. The boxed codes
are excluded in LoR-CPA experiment, whereas they replace the codes adjacent to
them in LoR-CCA experiment.

Advlor−cpaSE (t, qe, µe) = max
A

{
Advlor−cpaSE (A)

}
,

Advlor−ccaSE (t, qe, µe, qd, µd) = max
A

{
Advlor−ccaSE (A)

}

for any positive integers t, qe, µe, qd, µd. Here the maximum is over all adversaries A

with a running time of at most t, making at most qe queries to the encryption oracle,

totalling at most µe bits, and in case of Explor−cca−bSE (A), making at most qd queries

to the decryption oracle, totalling at most µd bits.

We say that the scheme SE is LoR-CPA (t, qe, µe)-secure (respectively LoR-CCA

(t, qe, µe, qd, µd)-secure) if Advlor−cpaSE (A) (respectively Advlor−ccaSE (A)) is small for

all adversaries A using reasonable resources.
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4.2.1.2 Real-or-Random Indistinguishability

This notion can be seen as an adaptation of LoR notion. The difference is that

the adversary adaptively queries the real-or-random encryption oracle each time

on a single message m, instead of two messages (m0,m1). If b = 1, the encryption

oracle encrypts m and returns c← EK (m), otherwise the encryption oracle chooses a

random bit string r where |r| = |m| and returns c← EK (r). Therefore, the adversary

is required to distinguish between the ciphertext corresponding to its query and the

ciphertext of a redundant string. Now we give the formal definition.

Definition 6 [RoR-CPA and RoR-CCA] Let SE = (K, E ,D) be a symmetric

encryption scheme. Define experiments Expror−cpa−bSE (A) and Expror−cca−bSE (A) for

an adversary A and a bit b as depicted in Figure 4.5. In both experiments the

adversary A is given access to a real-or-random encryption oracle RoR (·). It is

additionally given access to a decryption oracle Dec (·) in the latter experiment. No

restriction is imposed on the adversary’s queries, except, it is assumed that the

probability that the adversary queries Dec (·) on previously returned ciphertexts c

by RoR (·) is zero.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b. The adversary wins if b′ = b. The corresponding advantages of an

adversary A are given by:

Advror−cpaSE (A) = Pr
[
Expror−cpa−1

SE (A) = 1
]
− Pr

[
Expror−cpa−0

SE (A) = 1
]
,

Advror−ccaSE (A) = Pr
[
Expror−cca−1

SE (A) = 1
]
− Pr

[
Expror−cca−0

SE (A) = 1
]
.

The advantage functions of the scheme are defined to be:

Advror−cpaSE (t, qe, µe) = max
A

{
Advror−cpaSE (A)

}
,

Advror−ccaSE (t, qe, µe, qd, µd) = max
A

{
Advror−ccaSE (A)

}
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Expror−cpa−bSE (A) Expror−cca−bSE (A)

K ← K
b′ ← ARoR(·) b′ ← ARoR(·),Dec(·)

return b′

RoR (m)

if b = 1 then
c← EK (m)

else

r ←$ {0, 1}|m|
c← EK (r)

end if
return c

Dec (c)

m← DK (c)
return m

Figure 4.5: The RoR-CPA and RoR-CCA confidentiality notions. The boxed codes
are excluded in RoR-CPA experiment, whereas they replace the codes adjacent to
them in RoR-CCA experiment.

for any positive integers t, qe, µe, qd, µd. Here the maximum is over all adversaries A

with a running time of at most t, making at most qe queries to the encryption oracle,

totalling at most µe bits, and in case of Expror−cca−bSE (A), making at most qd queries

to the decryption oracle, totalling at most µd bits.

We say that the scheme SE is RoR-CPA (t, qe, µe)-secure (respectively RoR-CCA

(t, qe, µe, qd, µd)-secure) if Advror−cpaSE (A) (respectively Advror−ccaSE (A)) is small for

all adversaries A using reasonable resources.

4.2.1.3 Find-then-Guess Indistinguishability

The adversary plays two experiments FtG-CPA and FtG-CCA. Both experiments

begin by the challenger choosing a secret key K ∈ K and a random bit b ∈ {0, 1}.
In the previous two notions, LoR and RoR, the adversary runs in only one phase.
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In FtG, the adversary runs in two phases. It begins with the find phase, where

the adversary is given access to an encryption oracle. The adversary queries the

encryption oracle on adaptively chosen messages m, to which the encryption oracle

returns c← EK (m) in response. The aim of the find phase is for the adversary to

choose two equal length messages (m0,m1) upon which it wishes to be challenged.

The adversary also may preserve some state information s that might help it in the

later phase. Then the challenger sends the challenge ciphertext c← EK (mb) to the

adversary. In the guess phase the adversary tries to determine the message to which

c decrypts. Additionally, the adversary is given access to a decryption oracle in

FtG-CCA experiment. The decryption oracle can be queried by the adversary on

any message except the challenge ciphertext. Finally, the adversary outputs a bit b′,

and the experiment returns b′ as well.

Definition 7 [FtG-CPA and FtG-CCA] Let SE = (K, E ,D) be a symmetric en-

cryption scheme. Define experiments Expftg−cpa−bSE (A) and Expftg−cca−bSE (A) for an

adversary A and a bit b as depicted in Figure 4.6. In both experiments, the adversary

A is given access to an encryption oracle EK (·). The adversary is additionally given

access to a decryption oracle DK (·) in the latter experiment. The two messages

(m0,m1), output by the adversary at the end of the find phase, must be the same

length. No restriction is imposed on the adversary’s queries, except, it is assumed

that the probability that the adversary queries DK (·) on the challenge ciphertexts c

is zero.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b. The adversary wins if b′ = b. The corresponding advantages of an

adversary A are given by:

Advftg−cpaSE (A) = Pr
[
Expftg−cpa−1

SE (A) = 1
]
− Pr

[
Expftg−cpa−0

SE (A) = 1
]
,

Advftg−ccaSE (A) = Pr
[
Expftg−cca−1

SE (A) = 1
]
− Pr

[
Expftg−cca−0

SE (A) = 1
]
.

The advantage functions of the scheme are defined to be:
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Experiment Expftg−cpa−bSE (A)

K ← K
((m0,m1) , s)← AEK(·) (find)
c← EK (mb)
b′ ← AEK(·) (guess, c, s)
return b′

Experiment Expftg−cca−bSE (A)

K ← K
((m0,m1) , s)← AEK(·),DK(·) (find)
c← EK (mb)
b′ ← AEK(·),DK(·) (guess, c, s)
return b′

Figure 4.6: The FtG-CPA and FtG-CCA confidentiality notions in the left hand and
the right hand side, respectively.

Advftg−cpaSE (t, qe, µe) = max
A

{
Advftg−cpaSE (A)

}
,

Advftg−ccaSE (t, qe, µe, qd, µd) = max
A

{
Advftg−ccaSE (A)

}

for any positive integers t, qe, µe, qd, µd. Here the maximum is over all adversaries A

with a running time of at most t, making at most qe queries to the encryption oracle,

totalling at most (µe − |m0|) bits, and in case of Expftg−cca−bSE (A), making at most

qd queries to the decryption oracle, totalling at most µd bits.

We say that the scheme SE is FtG-CPA (t, qe, µe)-secure (respectively FtG-CCA

(t, qe, µe, qd, µd)-secure) if Advftg−cpaSE (A) (respectively Advftg−ccaSE (A)) is small for

all adversaries A using reasonable resources.

4.2.1.4 Semantic Security

This notion captures the idea of security for an encryption scheme defined by Shannon

(see Section 2.2). This is, a secure encryption scheme should hide all information

about an unknown plaintext. In other words, an encryption scheme is secure if an

adversary is unable to obtain any partial information about the plaintext from the

ciphertext. The security in Shannon’s notion is computationally unconditional, but

in semantic security it depends on an adversary’s computational effort.

The adversary plays two experiments SEM-CPA and SEM-CCA. The experiments

are characterised by a bit b ∈ {0, 1}. The adversary runs in two phases. First, in

the select phase, the adversary is given access to an encryption oracle. It adaptively
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queries the encryption oracle, which returns the corresponding ciphertext c← EK (m).

At the end of this phase, the adversary outputs a message space. The message space

must be valid, this means all the messages with non-zero probability must have the

same length. The adversary may also retain some state information s that might

help it in the later phase. The challenger samples the message space to obtain two

messages m0 and m1. It then sends the challenge ciphertext c ← EK (m1) to the

adversary. In the second phase, the predict phase, the adversary is also given access

to the encryption oracle. At the end of this phase, the adversary outputs a function

f and a value α. Additionally, in SEM-CCA experiment the adversary is given access

to a decryption oracle in both phases. The decryption oracle can be adaptively

queried on any ciphertext except the challenge ciphertext. The adversary hopes

that if b = 1 then f (m1) = α, otherwise f (m0) = α. Note that if the latter is the

case, then the adversary has not seen the corresponding ciphertext. The encryption

scheme is semantically secure if the adversary succeeds about as often in the latter

case (f (m0) = α) as the former case.

The message space can be considered as a probabilistic algorithm which the adversary

outputs its code. Each time this program is executed, it samples and outputs two

messages. Moreover, the function f is deterministic to which the adversary outputs

its program.

Definition 8 [SEM-CPA and SEM-CCA] Let SE = (K, E ,D) be a symmetric

encryption scheme. Define experiments Expsem−cpa−bSE (A) and Expsem−cca−bSE (A)

that are characterised by a bit b for an adversary A as depicted in Figure 4.7. In

both experiments the adversary A is given access to an encryption oracle EK (·).
The adversary is additionally given access to a decryption oracle DK (·) in the latter

experiment. No restriction is imposed on the adversary’s queries, except, it is assumed

that the probability that the adversary queries the challenge ciphertext c to DK (·)
is zero. At the end of the select phase, the adversary outputs a valid message space

M. Moreover, the adversary outputs a function f and a value α at the end of the

predict phase.

In both experiments, the adversary’s goal is to output a function f and a value α

such that f (mb) = α. Then the adversary wins. The corresponding advantages of

an adversary A are given by:
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Experiment Expsem−cpa−bSE (A)

K ← K
(M, s)← AEK(·) (select)
m0 ←M; m1 ←M
c← EK (m1)
(f, α)← AEK(·) (predict, c, s)
if f (mb) = α then
b′ ← 1

else
b′ ← 0

end if
return b′

Experiment Expsem−cca−bSE (A)

K ← K
(M, s)← AEK(·),DK(·) (select)
m0 ←M; m1 ←M
c← EK (m1)
(f, α)← AEK(·),DK(·) (predict, c, s)
if f (mb) = α then
b′ ← 1

else
b′ ← 0

end if
return b′

Figure 4.7: The SEM-CPA and SEM-CCA confidentiality notions in the left hand
and the right hand side, respectively.

Advsem−cpaSE (A) = Pr
[
Expsem−cpa−1

SE (A) = 1
]
− Pr

[
Expsem−cpa−0

SE (A) = 1
]
,

Advsem−ccaSE (A) = Pr
[
Expsem−cca−1

SE (A) = 1
]
− Pr

[
Expsem−cca−0

SE (A) = 1
]
.

The advantage functions of the scheme are defined to be:

Advsem−cpaSE (t, qe, µe) = max
A

{
Advsem−cpaSE (A)

}
,

Advsem−ccaSE (t, qe, µe, qd, µd) = max
A

{
Advsem−ccaSE (A)

}

for any positive integers t, qe, µe, qd, µd. Here the maximum is over all adversaries

A with a running time of at most t, making at most qe queries to the encryption

oracle, totalling at most µe bits, and in case of Expsem−cca−bSE (A), making at most

qd queries to the decryption oracle, totalling at most µd bits. Note that the running

time t includes the maximum time required to sample from the message space, and

the maximum time required to run the function f on any string. Moreover, the

length of the encryption queries µe includes a sum over all sampled messages from

the message space M, also a sum over the size of the program for the message space,

the functionf , and the length of the value α.

We say that the scheme SE is SEM-CPA (t, qe, µe)-secure (respectively SEM-CCA
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(t, qe, µe, qd, µd)-secure) if Advsem−cpaSE (A) (respectively Advsem−ccaSE (A)) is small for

all adversaries A using reasonable resources.

Semantic security is a very strong notion of security. Despite this, we show that

indistinguishability-based notions imply semantic security.

4.2.1.5 Real-or-Permutation Indistinguishability

We introduce a new notion of security that is very similar to the notion of RoR.

The adversary plays two experiments: RoP-CPA and RoP-CCA. Both experiments

begin with the challenger choosing a key K ← K and a bit b ∈ {0, 1}. In both

experiments, the adversary is given access to a real-or-permutation encryption oracle.

The adversary adaptively requests the encryption of messages m. The encryption

oracle response depends on the bit b. If b = 1 then the oracle returns the ciphertext

c← EK (m). Otherwise, the challenger chooses a random permutation function with

the same domain size as the message length, then applies the permutation function

to the message. Finally, the encryption oracle encrypts the permuted message and

returns the ciphertext. We call the ciphertext that is returned by the encryption

oracle, the challenge ciphertext. Additionally, in the RoP-CCA experiment, the

adversary is given access to a decryption oracle. The decryption oracle can be queried

on any ciphertext except the challenge ciphertext. The adversary is required to

distinguish between the encryption of a message and the encryption of a permutation

of that message.

Definition 9 [RoP-CPA and RoP-CCA] Let SE = (K, E ,D) be a symmetric

encryption scheme. Define experiments Exprop−cpa−bSE (A) and Exprop−cca−bSE (A) for

an adversary A and a bit b as depicted in Figure 4.8. In both experiments, the

adversary A is given access to a real-or-permutation encryption oracle RoP (·), and

it is additionally given access to a decryption oracle Dec (·) in the latter experiment.

No restriction is imposed on the adversary’s queries, except, it is assumed that the

probability that the adversary queries Dec (·) on previously returned ciphertext by

RoP (·) is zero.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the
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challenge bit b. The adversary wins if b′ = b. The corresponding advantages of an

adversary A are given by:

Advrop−cpaSE (A) = Pr
[
Exprop−cpa−1

SE (A) = 1
]
− Pr

[
Exprop−cpa−0

SE (A) = 1
]
,

Advrop−ccaSE (A) = Pr
[
Exprop−cca−1

SE (A) = 1
]
− Pr

[
Exprop−cca−0

SE (A) = 1
]
.

The advantage functions of the scheme are defined to be:

Advrop−cpaSE (t, qe, µe) = max
A

{
Advrop−cpaSE (A)

}
,

Advrop−ccaSE (t, qe, µe, qd, µd) = max
A

{
Advrop−ccaSE (A)

}

for any positive integers t, qe, µe, qd, µd. Here the maximum is over all adversaries A

with a running time of at most t, making at most qe queries to the encryption oracle,

totalling at most µe bits, and in case of Exprop−cca−bSE (A), making at most qd queries

to the decryption oracle, totalling at most µd bits.

We say that the scheme SE is RoP-CPA (t, qe, µe)-secure (respectively RoP-CCA

(t, qe, µe, qd, µd)-secure) if Advrop−cpaSE (A) (respectively Advrop−ccaSE (A)) is small for

all adversaries A using reasonable resources.

Next we show that RoP and RoR are equivalent. In Chapter 6 we will describe the

quantum analogue of distinguishability notions when the adversary is given quantum

superposition access to its oracles. We prove that the quantum analogue of the

RoP notion of security is achievable even against such a strong adversarial model.

Moreover, we will go on to prove that the quantum analogue of RoP implies the

quantum analogue of SEM.
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Exprop−cpa−bSE (A) Exprop−cca−bSE (A)

K ← K
b′ ← ARoP(·) b′ ← ARoP(·),Dec(·)

return b′

RoP (m)

if b = 1 then
c← EK (m)

else
Π←$ Perm (|m|)
m′ ← Π (m)
c← EK (m′)

end if
return c

Dec (c)

m← DK (c)
return m

Figure 4.8: The RoP-CPA and RoP-CCA confidentiality notions. The boxed codes
are excluded in RoP-CPA experiment, whereas they replace the codes adjacent to
them in RoP-CCA experiment.
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RoP-ATK

Th. 9

Th. 10

RoR-ATK

Re. 3 Re. 4

LoR-ATK

Re. 5

Re. 6

FtG-ATK

Re. 8 Re. 7

SEM-ATK

Figure 4.9: Relations among confidentiality notions where ATK ∈ {CPA,CCA}. A
solid line denotes a security-preserving reduction from a notion to another, while a
dotted line denotes a reduction that is not security-preserving.

4.2.1.6 Relations Among Notions

Here we discuss the relations among different notions of security from a concrete

security perspective. The concrete results help us to see how strong a notion of

security is, compared to other notions to which it is asymptotically equivalent. Bellare

et al. [12] show the reduction among LoR, RoR, FtG, and SEM. It turns out that

LoR security implies other notions of security. On top of that we prove that RoP

implies RoR which means, as we can see below, RoP also implies LoR. The relations

among notions are illustrated in Figure 4.9.

We adopt the notations used by Bellare et al. [12]. We use A ⇒ B to denote a

security-preserving reduction from A to B, i.e., a reduction where the advantage

of an adversary against B is bounded by the advantage of an adversary against A

multiplied by a small constant factor. If a reduction from A to B is not security

preserving, we follow the work of Bellare et al. [12] and use the notation A → B.

Notice that even a not security-preserving reduction can lead to a secure scheme

if the security parameters are chosen suitably large. We examine the relations

simultaneously with respect to CPA and CCA. Therefore, we use the symbol ATK

instead of CPA and CCA.

The first two results show that LoR and RoR are equivalent.

Result 3 (RoR-ATK ⇒ LoR-ATK ([12] Theorem 1)) For any symmetric en-
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cryption scheme SE = (K, E ,D),

Advlor−cpaSE (t, qe, µe) ≤ 2 ·Advror−cpaSE (t, qe, µe) and

Advlor−ccaSE (t, qe, µe, qd, µd) ≤ 2 ·Advror−ccaSE (t, qe, µe, qd, µd) .

Result 4 (LoR-ATK ⇒ RoR-ATK ([12] Theorem 2)) For any symmetric en-

cryption scheme SE = (K, E ,D),

Advror−cpaSE (t, qe, µe) ≤ Advlor−cpaSE (t, qe, µe) and

Advror−ccaSE (t, qe, µe, qd, µd) ≤ Advlor−ccaSE (t, qe, µe, qd, µd) .

The next two results show that LoR security implies FtG security but the reduction

from FtG to LoR is not security-preserving. This is because the advantage of an

adversary against LoR security is bounded by the advantage of an adversary against

FtG security multiplied by the total number of encryption oracle queries, as shown

in Result 6. Hence the level of LoR security that can be achieved decreases as the

total number of encryption oracle queries increases.

Result 5 (LoR-ATK ⇒ FtG-ATK ([12] Theorem 3)) For any symmetric en-

cryption scheme SE = (K, E ,D),

Advftg−cpaSE (t, qe, µe) ≤ Advlor−cpaSE (t, qe + 1, µe) and

Advftg−ccaSE (t, qe, µe, qd, µd) ≤ Advlor−ccaSE (t, qe + 1, µe, qd, µd) .

Result 6 (FtG-ATK → LoR-ATK ([12] Theorem 4)) For any symmetric en-

cryption scheme SE = (K, E ,D),
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Advlor−cpaSE (t, qe, µe) ≤ qe ·Advftg−cpaSE (t, qe, µe) and

Advlor−ccaSE (t, qe, µe, qd, µd) ≤ qe ·Advftg−ccaSE (t, qe, µe, qd, µd) .

The following two results show that FtG security and SEM security are equivalent.

From the latter we can deduce that LoR security implies SEM security. This is

an important result because SEM security reflects the security we want in practice.

On the other hand, it is easier to analyse our scheme using the LoR notion of

security. Therefore, if we can prove that our scheme is LoR secure, then SEM security

automatically follows.

Result 7 (SEM-ATK ⇒ FtG-ATK ([12] Theorem 6)) For any symmetric en-

cryption scheme SE = (K, E ,D),

Advftg−cpaSE (t, qe, µe) ≤ Advsem−cpaSE (t, qe, µe) and

Advftg−ccaSE (t, qe, µe, qd, µd) ≤ Advsem−ccaSE (t, qe, µe, qd, µd) .

Result 8 (FtG-ATK ⇒ SEM-ATK ([12] Theorem 7)) For any symmetric en-

cryption scheme SE = (K, E ,D),

Advsem−cpaSE (t, qe, µe) ≤ 2 ·Advftg−cpaSE (t, qe, µe) and

Advsem−ccaSE (t, qe, µe, qd, µd) ≤ 2 ·Advftg−ccaSE (t, qe, µe, qd, µd) .

In the next two theorems we prove that RoR security and RoP security are equivalent.

Theorem 9 (RoP-ATK ⇒ RoR-ATK) For any symmetric encryption scheme

SE = (K, E ,D),
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Advror−cpaSE (t, qe, µe) ≤ Advrop−cpaSE (t, qe, µe) and

Advror−ccaSE (t, qe, µe, qd, µd) ≤ Advrop−ccaSE (t, qe, µe, qd, µd) .

Proof Assume that A is an adversary attacking SE = (K, E ,D) in RoR sense. We

construct a new adversary B, using A, that attacks SE in RoP sense.

B uses its oracles, RoP (·) and Dec (·), to provide a simulation of A’s oracles, LoR (·)
and Dec (·). The adversary B runs A.

When A makes an encryption oracle query, B will respond with the output from

its encryption oracle RoP (·). The output depends on the bit b. Note that in RoP

experiments, a permutation Π is chosen uniformly at random for each encryption

query if b = 0. Then applying Π to any message leads to a uniform probability

distribution of all messages. Therefore, the output is a random message which gets

encrypted by the encryption oracle. When A makes a decryption oracle query, B

will respond with the corresponding plaintext. It is assumed that the probability

that the adversary queries the decryption oracle on ciphertexts previously returned

by the encryption oracle is zero.

At some point, the adversary A outputs a bit b′.

For either case of b = 0 or b = 1, B provides a perfect simulation of RoR-CPA and

RoR-CCA experiments for A. So B succeeds with the same probability as A. Hence,

for B’s advantage we have:

Advrop−atkSE (B) = Pr
[
Exprop−atk−1

SE (B) = 1
]
− Pr

[
Exprop−atk−0

SE (B) = 1
]

= Pr
[
Expror−atk−1

SE (A) = 1
]
− Pr

[
Expror−atk−0

SE (A) = 1
]

= Advror−atkSE (A) . (4.4)

Both B and A use the same resources. They are running in time at most t, making

qe encryption and qd decryption oracle queries, totalling at most µe and µd bits
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respectively. Since A is an arbitrary adversary, then we have proven the claimed

relation between RoP-ATK and RoR-ATK.

Theorem 10 (RoR-ATK ⇒ RoP-ATK) For any symmetric encryption scheme

SE = (K, E ,D),

Advrop−cpaSE (t, qe, µe) ≤ Advror−cpaSE (t, qe, µe) and

Advrop−ccaSE (t, qe, µe, qd, µd) ≤ Advror−ccaSE (t, qe, µe, qd, µd) .

Proof Assume that B is an adversary attacking SE = (K, E ,D) in RoP sense. We

construct a new adversary A, using B, that attacks SE in RoR sense.

A uses its oracles, RoR (·) and Dec (·), to provide a simulation of B’s oracles, RoP (·)
and Dec (·). The adversary A runs B.

When B makes an encryption oracle query, A will respond with the output from

its encryption oracle RoR (·). The output depends on the bit b. When B makes

a decryption oracle query, A will respond with the corresponding plaintext. It is

assumed that the probability that the adversary queries the decryption oracle on

ciphertexts previously returned by the encryption oracle is zero.

At some point the adversary B outputs a bit b′.

For either case of b = 0 or b = 1, A provides a perfect simulation of RoP-CPA and

RoP-CCA experiments for B. So A succeeds with the same probability as B. Hence,

for A’s advantage we have:

Advror−atkSE (A) = Pr
[
Expror−atk−1

SE (A) = 1
]
− Pr

[
Expror−atk−0

SE (A) = 1
]

= Pr
[
Exprop−atk−1

SE (B) = 1
]
− Pr

[
Exprop−atk−0

SE (B) = 1
]

= Advrop−atkSE (B) . (4.5)
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Both A and B use the same resources. They are running at most in time t, making

qe encryption and qd decryption oracle queries, totalling at most µe and µd bits

respectively. Since B is an arbitrary adversary, then we have proven the claimed

relation between RoR-ATK and RoP-ATK.

4.2.2 Modes of Operation

In Subsection 4.1.1, we discussed block ciphers such as AES. Consider an AES

scheme with a fixed key. If we encrypt the same 128-bit block of message by

AES twice, we get the same ciphertext. Hence, an adversary could gain partial

information about the encrypted message. This is because AES, like all block ciphers,

is deterministic. Therefore, they neither satisfy the semantic security model nor any

indistinguishability-based security model, unless a new key is used to encrypt each

block of a message. That is very hard to achieve in practice, and rather an unrealistic

assumption. To be able to encrypt and decrypt multiple blocks of data, with the same

key, using block ciphers, we build encryption schemes, known as modes of operation.

A mode of operation is essentially a way of encrypting/decryption arbitrary length

plaintext/ciphertext using a block cipher. It can provide a cryptographic goal such as

confidentiality, authenticity, or both. Here we merely concentrate on confidentiality

modes of operation, but we refer to work of Rogaway [96] for further details.

A number of popular confidentiality modes of operation were standardised in 2001

by NIST in SP 800-38A [55]. Among them are Electronic Code Book (ECB), Cipher

Block Chaining (CBC), and Counter (CTR). The first one, ECB, is deterministic

and therefore it does not satisfy our SEM-CPA or LoR-CPA security models. Bellare

et al. [12] proved that CBC and CTR are LoR-CPA secure, therefore, SEM-CPA

secure also. However, they are not LoR-CCA secure, therefore not SEM-CCA secure.

Here we only describe CTR mode, which is regarded as the best choice among the set

of the confidentiality modes of operation [96]. We then evaluate its security against

the quantum computing attack.
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ctr

FK

m [i] ⊕

c [i]

ctr

FK

c [i] ⊕

m [i]

Figure 4.10: Counter mode of operation. Encryption and decryption processes are
shown in the left and right hand side, respectively.

4.2.2.1 Counter Mode

CTR mode, as depicted in Figure 4.10, turns a block cipher into a stream cipher.

That is, a counter value is encrypted using the block cipher, and then the result

is XORed with the plaintext. After encryption of each block, the counter value is

updated. It is usually incremented by one.

CTR mode has two variants: stateful and randomised. We use CTR to denote stateful

counter mode, where the counter is maintained as the state of encryption. We use

CTR$ to denote randomised counter mode, where the counter is a bit string chosen

uniformly at random for each ciphertext. In either of these variants, given a counter

value and an arbitrary length message, a key stream is created. This is done by

calculating the message’s number of block, and then iterating encryption of successive

values of the counter using the block cipher accordingly. Concatenation of the block

cipher outputs yields a key stream at least as long as the arbitrary length message.

To encrypt, the message is XORed with the key stream in the one-time pad fashion.

To decrypt, the same procedure is taken to produce a key stream which is then

XORed with the ciphertext. We describe randomised CTR mode first.

Construction 1 (Randomised CTR Mode (CTR$)) Let F : {0, 1}k×{0, 1}l →
{0, 1}l be a family of functions, possibly a block cipher but not necessarily. CTR mode

over F with a random starting point is a probabilistic, stateless symmetric encryption
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CTR$-K

K ←$ {0, 1}k
return K

CTR$-EK (m)

r ←$ {0, 1}l
Parse m as m [1] · · ·m [n]
for i = 1, . . . , n do
c [i] = FK (r + i)⊕m [i]

end for
c← c [1] · · · c [n]
return (r, c)

CTR$-DK (c)

Parse c as c [1] · · · c [n]
for i = 1, . . . , n do
m [i] = FK (r + i)⊕ c [i]

end for
m← m [1] · · ·m [n]
return m

Figure 4.11: Randomised CTR mode

scheme CTR$ [F ] = (CTR$-K,CTR$-E ,CTR$-D) as shown in Figure 4.11. The

message m to be encrypted is regarded as a sequence of l-bit blocks, m = m [1] · · ·m [n].

Accordingly, the ciphertext c is a sequence of l-bit blocks c = c [1] · · · c [n].

The following result shows LoR-CPA (t, q, µ)-security of CTR$ mode.

Result 11 (Security of CTR$ Mode Using a PRF ([12] Theorem 11)) Let

F : {0, 1}k × {0, 1}l → {0, 1}l be a block cipher. For any CTR$ [F ] scheme, we have:

Advlor-cpaCTR$[F ] (t, q, µ) ≤ 2 ·AdvprfF

(
t′, q′

)
+
µ2

2l
,

where t′ = t+ (q + lµ) and q′ = µ.

We now describe stateful CTR mode.

Construction 2 (Stateful CTR Mode (CTR)) Let F : {0, 1}k×{0, 1}l → {0, 1}l

be a family of functions, possibly a block cipher but not necessarily. CTR mode

over F with a counter starting point is a stateful symmetric encryption scheme

CTR [F ] = (CTR-K,CTR-E ,CTR-D) as shown in Figure 4.12. The message m to be

encrypted is regarded as a sequence of l-bit blocks, m = m [1] · · ·m [n]. Accordingly,

the ciphertext c is a sequence of l-bit blocks c = c [1] · · · c [n]. The encryption counter

%0 and decryption counter ς0 are initially zero. Total number of encrypted blocks is

restricted to be at most 2l.
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CTR-K

K ←$ {0, 1}k
return (K, 0, ε)

CTR-EK (m, %)

c [0]← %
Parse m as m [1] · · ·m [n]
if c [0] + n ≥ 2n then
return ⊥

else
for i = 1, . . . , n do
c [i] = FK (c [0] + i)⊕m [i]

end for
c← c [0] c [1] · · · c [n]
return (%+ n, c)

end if

CTR-DK (c, ς)

Parse c as c [0] c [1] · · · c [n]
if ς + n ≥ 2n then
return ⊥

else
for i = 1, . . . , n do
m [i] = FK (c [0] + i)⊕ c [i]

end for
m← m [1] · · ·m [n]
return (ς,m)

end if

Figure 4.12: Stateful CTR mode

The following result shows LoR-CPA (t, q, µ)-security of CTR mode that is different

from Result 11.

Result 12 (Security of CTR Mode Using a PRF ([12] Theorem 13)) Let

F : {0, 1}k × {0, 1}l → {0, 1}l be a block cipher. For any CTR [F ] scheme we have:

Advlor-cpaCTR[F ] (t, q, µ) ≤ 2 ·AdvprfF

(
t′, q′

)
,

where t′ = t+ (q + lµ) and q′ = µ.

Note the difference between Result 11 and Result 12. The former shows that CTR$

is insecure regardless of the security of F as a PRF if the scheme encrypts more than

µ = 2l/2 blocks of messages with the same key. This is due to the birthday attack on

block ciphers where the prf-advantage of A may be as large as µ2/2l. In contrast,

this is not the case for CTR mode where it might be secure as long as the number of

blocks queried is at most 2l.

4.2.3 Quantum Computation Attack

In Section 3.2 and Subsection 3.4.1, we explained that quantum algorithms can be

a threat to the supposed security of modern cryptosystems. This threat is more
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serious against asymmetric cryptosystems where quantum algorithms such as Shor’s

algorithm [103] might solve their underlying hard problems using reasonable resources.

In contrast, this threat has never been seriously considered against symmetric

cryptosystems, where the best known quantum algorithms need an exponentially

large amount of resources to break them. For instance, quantum algorithms such as

Grover’s algorithm [65], and that of Brassard et al. [34, 33], despite being faster than

their classical counterparts, still need
√
N oracle queries to recover the secret key

and
(

3
√
N/r

)
oracle queries to find a collision for an r-to-one function, respectively.

We believe this is the reason for the lack of a formal security analysis of symmetric

schemes against quantum computation attacks. At first glance, this might make

sense, but we argue that this approach takes a modern cryptosystem as a black-box,

therefore it might miss out on the flaws the scheme might have in its construction.

With the latter in mind, we give a formal security analysis of CTR mode against

quantum computation attacks. We first discuss LoR-CPA security of CTR mode,

and then security of CTR$ mode. Note that, as it turns out, the following security

proofs are essentially identical to the security proofs of Counter mode in classical

setting given by Bellare et al. [12].

Theorem 13 (Security of CTR Mode Using a QPRF) Let

F : {0, 1}k × {0, 1}l → {0, 1}l be a block cipher. For any CTR [F ], assume A is a

quantum adversary attacking CTR [F ] in a LoR-CPA sense, with a running time of

at most t, making at most q queries to the encryption oracle, and the size of the

classical output µ bits, and having advantage

Advlor-cpaCTR[F ] (A) ≥ ε .

Then there exists a quantum adversary B attacking F with a running time of at most

t′ = t+ (q + lµ), making at most q′ = µ queries to the oracle, and having advantage

AdvqprfF (B) ≥ ε

2
.
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Proof We first prove the security of CTR [F ] against a quantum adversary A when

F is replaced by a random function f . Then we look at A’s probability of success

when F is our given family of functions. Finally we reduce the security of the scheme

to QPRF security of F .

Recall Construction 2. Consider the construction CTR [f ] where the function F

is replaced with a random function f ←$ Func (l, l). The function f takes distinct

counter values as input. The output of f on successive counter values yields a truly

random and unpredictable sequence of bits. This bit string is XORed with the

message in an one-time pad fashion. Therefore the quantum adversary A does not

gain any information about the encrypted messages. This is an information theoretic

result which stands regardless of the computing power and computing time of the

adversary. Hence,

Advlor-cpaCTR[f ] (A) = 0 . (4.6)

Next, we look at the security of CTR [F ] where F is the given family of functions.

The adversary plays the experiment Explor-cpaCTR[F ]. The adversary’s advantage is:

Advlor-cpaCTR[F ] = Pr
[
Explor-cpa-1

CTR[F ] (A) = 1
]
− Pr

[
Explor-cpa-0

CTR[F ] (A) = 1
]
. (4.7)

Now assume A is a quantum adversary attacking LoR-CPA security of CTR [F ]. We

construct a new quantum adversary B, using A, to attack QPRF security of F . B
uses its oracle to provide a simulation of A’s oracle.

The quantum adversary B runs A. The adversary B maintains a counter (we assume

that B does this perfectly) and a bit d←$ {0, 1}. Then, upon receiving an encryption

query (m0,m1) from A, B queries its oracle on a counter value and XORs the result

with the message md. It then sends the ciphertext to A. Eventually A outputs a bit

b′. The quantum adversary B outputs 1 if b′ = d, otherwise it outputs 0.

When b = 1 we have:
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Pr
[
Expqprf -1

F (B) = 1
]

=
1

2
+

1

2
·Advlor-cpaCTR[F ] (A) . (4.8)

And when b = 0 we have:

Pr
[
Expqprf -0

F (B) = 1
]

=
1

2
+

1

2
·Advlor-cpaCTR[f ] (A) . (4.9)

Hence,

AdvqprfF (B) = Pr
[
Expqprf -1

F (B) = 1
]
− Pr

[
Expqprf -0

F (B) = 1
]

=
1

2
·Advlor-cpaCTR[F ] (A)− 1

2
·Advlor-cpaCTR[f ] (A)

=
1

2
·Advlor-cpaCTR[F ] (A) . (4.10)

This concludes the proof. The adversary B needs to query its oracle q′ = |mb| /l
times, which is equal to µ. B runs in time at most t′ = t + (q + lµ) that is equal

to the maximum running time of A plus the overhead for answering the encryption

oracle queries.

We now discuss LoR-CPA security of CTR$ mode.

Theorem 14 (Security of CTR$ Mode Using a QPRF) Let

F : {0, 1}k×{0, 1}l → {0, 1}l be a block cipher. For any CTR$ [F ] scheme, assume A
is a quantum adversary attacking CTR$ [F ] with a running time of at most t, making

at most q queries to the encryption oracle, and the size of the classical output µ bits,

and having advantage

Advlor-cpaCTR$[F ] (A) ≥ ε .

Then there exists a quantum adversary B attacking F with a running time of at most

t′ = t+ (q + lµ), making at most q′ = µ queries to the oracle, and having advantage
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AdvqprfF (B) ≥ 1

2

(
ε− µ2

2l

)
.

Proof We first prove the security of CTR$ [F ] against a quantum adversary A when

F is replaced by a random function f . Then we look at A’s probability of success

when F is our given family of functions. Finally we reduce the security of the scheme

to QPRF security of F .

Recall Construction 1. Consider the construction CTR$ [f ] where f ←$ Func (l, l) is

a random function. The function f takes counter values, that may not be distinct, as

input. Let r is the initial encryption counter. The security is achieved (or precisely,

the advantage of the adversary is 0) as long as each block of a message is XORed

with the output of f (r + i) where the value of r + i was never taken by f as input.

Therefore, this encryption has the same effect as encrypting with one-time pad. To

prove LoR-CPA security of CTR$ [f ] we explore the probability of the value r + i

repeating more than once, which would mean that the encryption could not be

considered as one-time pad.

The adversary makes q oracle queries in the form of (m0,m1) where |m0| = |m1|.
We use (mi,0,mi,1) to denote the i-th encryption query. Each mi,0 or mi,1 contains

ni number of blocks. We use mi,b [j] to denote the value of the j-th l-bit block

mi,b where b ∈ {0, 1}. The challenge ciphertext is denoted by ci. We can show the

encryption of messages as

mi,b = mi,b [1]mi,b [2] · · ·mi,b [ni] and (4.11)

ci = (ri, ci [1] ci [2] · · · ci [ni]) , (4.12)

where i ∈ [q], and ri ←$ {0, 1}l is chosen by the encryption oracle. Now we define

Col to be the event that the following n1 + · · ·+ nq values contain at least two values

that are the same:
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r1, r1 + 1, · · · , r1 + n1 − 1
r2, r2 + 1, · · · , r2 + n2 − 1
...

...
rq, rq + 1, · · · , rq + nq − 1 .

(4.13)

Also we define ¬Col to be the event that the above values are all distinct. We can see

that in LoR-CPA game, Col might happen regardless of which message is encrypted,

because r is chosen by the encryption oracle independently of the encrypted message.

Moreover, we can see that in the case of ¬Col, the advantage of the adversary is 0,

because the encryption oracle encrypts messages in a one-time pad fashion. We now

calculate the advantage of the adversary if Col is true.

Advlor-cpaCTR$[f ] (A) = Pr
[
Explor-cpa-1

CTR$[f ] (A) = 1
]
− Pr

[
Explor-cpa-0

CTR$[f ] (A) = 1
]

=
(

Pr
[
Explor-cpa-1

CTR$[f ] (A) = 1
∣∣∣Col

]
· Pr [Col]

+Pr
[
Explor-cpa-1

CTR$[f ] (A) = 1
∣∣∣¬Col

]
· Pr [¬Col]

)
−
(

Pr
[
Explor-cpa-0

CTR$[f ] (A) = 1
∣∣∣Col

]
· Pr [Col]

+Pr
[
Explor-cpa-0

CTR$[f ] (A) = 1
∣∣∣¬Col

]
· Pr [¬Col]

)
=
(

Pr
[
Explor-cpa-1

CTR$[f ] (A) = 1
∣∣∣Col

]
−Pr

[
Explor-cpa-0

CTR$[f ] (A) = 1
∣∣∣Col

])
· Pr [Col]

≤ Pr [Col] . (4.14)

Above, the parenthesised term has an upper bound of 1. Now we need to calculate

Pr [Col]. Recall Equation 4.13. We use Coli to denote the event that a collision exists

among the first i rows of Equation 4.13. We also use ¬Coli to denote the event that

no collision exists in the first i rows. Then we have:
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Pr [Col] = Pr [Colq]

= Pr [Colq−1] + Pr [Colq|¬Colq−1] · Pr [¬Colq−1]

≤ Pr [Colq−1] + Pr [Colq|¬Colq−1]

≤
...

≤ Pr [Col1] +

q∑
i=2

Pr [Coli|¬Coli−1]

=

q∑
i=2

Pr [Coli|¬Coli−1] . (4.15)

We are now required to find an upper bound for the probability of a collision upon

receiving the i-th query, given that no collision happened in the first i− 1 queries.

We begin with a simple case when i = 1, 2. Upon receiving the first query, the

probability of a collision is 0, because there is no previous row in Equation 4.13.

Upon receiving the second query, we need to find out the probability that one of the

values r2+1, · · · , r2+n2 is equal to one of the values in the first row r1+1, · · · , r1+n1.

Note that r1 is fixed. Therefore we can see that a collision can happen if and only if,

r1 − n2 + 1 ≤ r2 ≤ r1 + n1 − 1 . (4.16)

Hence,

(r1 + n1 − 1)− (r1 − n2 + 1) + 1 = n1 + n2 − 1 (4.17)

choices of r2 exist that could yield a collision. Then we can calculate the following

probability,

Pr [Col2|¬Col1] ≤ (n1 + n2 − 1)

2l
. (4.18)

Given this intuition, we now extend Equation 4.18 for the case where 2 ≤ i ≤ q

and we assume that no collision happened in the first i− 1 rows. A collision might
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happen between row i and each of the first i− 1 rows, therefore:

Pr [Coli|¬Coli−1] ≤ (ni + n1 − 1) + (ni + n2 − 1) + · · ·+ (ni + ni−1 − 1)

2l

=
(i− 1)ni + ni−1 + · · ·+ n1 − (i− 1)

2l
. (4.19)

We drop the last negative term in the above equation to get:

Pr [Col] ≤
q∑
i=2

Pr [Coli|¬Coli−1]

≤
q∑
i=2

(i− 1)ni + ni−1 + · · ·+ n1

2l
. (4.20)

Note that in the above equation, ni occurs with weight i− 1 in the i-th term of the

sum. Also it occurs with weight 1 in the j-th term of the sum where j = i+ 1, . . . , q.

Therefore its total weight is (i− 1) + (q − i) = q − 1, so we get:

Pr [Col] =
(q − 1) (n1 + · · ·+ nq)

2l
. (4.21)

Finally the advantage of the adversary is

Advlor-cpaCTR$[f ] (A) ≤ Pr [Col]

≤ (q − 1) (n1 + · · ·+ nq)

2l

≤ µ2

2l
. (4.22)

Next, we look at the security of CTR$ [F ] where F is the given family of functions.

The adversary plays LoR-CPA game. The adversary’s advantage is:
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Advlor-cpaCTR$[F ] (A) = Pr
[
Explor-cpa-1

CTR$[F ] (A) = 1
]
− Pr

[
Explor-cpa-0

CTR$[F ] (A) = 1
]
. (4.23)

Now assume A is a quantum adversary attacking LoR-CPA security of CTR$ [F ].

We construct a new quantum adversary B, using A, to attack QPRF security of F .

B uses its oracle to provide a simulation of A’s oracle.

The quantum adversary B runs A. The adversary B chooses a bit d←$ {0, 1}. Then,

upon receiving an encryption query (m0,m1), B queries its oracle on (r + i) where

i ∈ [n], r ←$ {0, 1}l, and then XORs the result with the message md. It then sends

the ciphertext to A. The adversary B chooses a fresh r for each query. Here we

assume that B simulates the encryption oracle for A perfectly. Eventually A outputs

a bit b′. The adversary B outputs 1 if b′ = d, otherwise it outputs 0.

When b = 1 we have:

Pr
[
Expqprf -1

F (B) = 1
]

=
1

2
+

1

2
·Advlor-cpaCTR$[F ] (A) . (4.24)

And when b = 0 we have:

Pr
[
Expqprf -0

F (B) = 1
]

=
1

2
+

1

2
·Advlor-cpaCTR$[f ] (A) . (4.25)

Hence,

AdvqprfF (B) = Pr
[
Expqprf -1

F (B) = 1
]
− Pr

[
Expqprf -0

F (B) = 1
]

=
1

2
·Advlor-cpaCTR$[F ] (A)− 1

2
·Advlor-cpaCTR$[f ] (A)

=
1

2

(
Advlor-cpaCTR$[F ] (A)− µ2

2l

)
. (4.26)

This concludes the proof. The adversary B needs to query its oracle |mb| /l = µ

times. B runs in time at most t′ that is equal to the maximum running time of A
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plus the overhead for answering the encryption oracle queries.

We note that proofs of Theorems 13 and 14, given above, are similar to their classical

counterparts. In other words, classical security proofs of CTR$ mode and CTR mode

carry over to a quantum setting where, quantum computation attacks are considered.

If we look at the characterisation of these types of security proofs, then we can break

them into two parts. In the first part, the security of an idealised scheme is assessed.

This analysis is merely a probabilistic process and the type of adversary, whether it

is classical or quantum, has nothing to do with it. The second part is a reduction.

In this, the advantage of the adversary distinguishing between the ideal scheme and

the real scheme which we are interested in its security, is bounded by the advantage

of the adversary breaking the underlying primitive using comparable resources. This

is where the type of the adversary matters and one must consider possible attacks

that are unique to a quantum adversary.

More rigorously, Theorems 13 and 14 can be seen as black-box reductions [69]. That

is, if the theorem states that the security of P implies the security of S, then S can

be constructed from P , merely using P as a black-box and regardless of the specifics

of how P works. Moreover, the security reduction is also black-box. Because, an

algorithm for breaking P can be constructed from a black-box for breaking S.

To elaborate, and for the sake of concrete security framework, we give an example.

Consider CTR$ mode in Construction 1. According to Result 11, the security bound

of this scheme against a classical adversary A is:

Advlor-cpaCTR$[F ] (A) ≤ 2 ·AdvprfF (B) +
µ2

2l
. (4.27)

Theorem 14 shows the security bound of this scheme against an adversary A that

can mount quantum computation attack. This is:

Advlor-cpaCTR$[F ] (A) ≤ 2 ·AdvqprfF (B) +
µ2

2l
. (4.28)

92



4.2 Encryption Schemes

Now suppose the function F : {0, 1}l → {0, 1}l where l = 128. Also assume the

adversary, whether classical or quantum, makes q = 230 encryption oracle queries. If

each query is 213 bits long (which is a kilobyte) then the total amount of encrypted

data is 243 bits which is µ = 236 128-bit blocks. The question is whether CTR$ [F ]

mode is secure against the adversary, given this information. To calculate the

advantage of the adversary, we need to calculate prf-advantage or qprf-advantage of

F . We first consider the classical case. Result 11 tells us that the security of the

scheme against a classical adversary A is bounded above by the prf-advantage of

F against another classical adversary B. The classical adversary B makes q = 236

queries, and to best of our knowledge, the best known classical attack against PRF

security of F is the birthday attack. Therefore we assume B’s advantage is no more

than q2/2128. Hence we can get:

Advlor-cpaCTR$[F ] (A) ≤ 2 · µ
2

2128
+

µ2

2128

≤ 1

255
. (4.29)

Now we consider the quantum case. Analogously, Theorem 14 tells us that the

security of the scheme against a quantum adversary A is bounded above by the

qprf-advantage of F against another quantum adversary B. Similarly to the classical

case, the best attack the adversary B can mount against QPRF security of F is the

birthday attack. Therefore we get the same security bound as above for the quantum

adversary:

Advlor-cpaCTR$[F ] (A) ≤ 2 · µ
2

2128
+

µ2

2128

≤ 1

255
. (4.30)

Note, one might think that the best quantum attack on QPRF security of F is the

quantum collision finding algorithm [34, 33]. In Subsection 3.2.2, we explained that

the work of Brassard et al. [34, 33], based on Grover’s algorithm, gives a quantum

algorithm to find collisions in an arbitrary r-to-one function after O
(

3
√
N/r

)
oracle
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queries. Hence, to find a collision for a two-to-one function F , one only needs O
(

3
√
N
)

evaluations of the function F . With regards to the latter and Equation 3.25, one

could say that B’s advantage is no more than 4 · q3/2l, under the assumption that

the best attack the quantum adversary B can mount against QPRF security of F is

the quantum collision finding algorithm. Therefore in the case of F , where l = 128,

we would get:

Advlor-cpaCTR$[F ] (A) ≤ 8 · µ
3

2128
+

µ2

2128

≤ 8 · 2108

2128
+

272

2128

≤ 1

217
. (4.31)

Equation 4.31 suggests that CTR$ [F ] provides little security against this quantum

adversary. However, we emphasize that this is not true. The collision finding

algorithm [34, 33] uses Grover’s algorithm to evaluate the function. To do so, the

algorithm needs superposition access to the function. In this case the adversary

needs superposition access to F . Since the adversary is only given classical access

to its oracle then the security bound given in Equation 4.30 holds. Therefore, from

this example we can deduce that the security bounds of CTR$ mode are the same

for both classical and quantum adversaries. The same follows for CTR mode.

A natural question regarding the above would be whether all similar classical security

proofs carry over to this quantum setting. Or what class of classical security proofs

carry over to this quantum setting. There are a number of works with regards to this

question. For instance, Crépeau [41] and Yao [112] showed that the quantum oblivious

transfer can be seen as a construction of quantum oblivious transfer from a black-box

for bit commitment. Damgaard and Lunemann [44], and Lunemann and Nielsen [84]

prove that a few classical protocols are quantum secure. Hallgren et al. [67] formalise

a family of classical security proofs that carry over to the quantum setting against

efficient quantum adversaries under reasonable computational assumptions. Moreover,

Watrous [109] and Unruh [106] discuss quantum zero-knowledge and quantum proofs

of knowledge, respectively. In the case of a classical symmetric encryption scheme,

we believe the classical security proofs carry over as we have shown it for CTR$ mode
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and CTR mode. But a general formalisation of that needs further work and we leave

it as an open problem.

4.3 Message Authentication Code

Until now, we have explored cryptographic ways and tools that enable us to achieve

confidentiality. That is, encryption can help two parties to establish a private

communication which prevents an eavesdropper or an active adversary from gaining

partial information about messages sent over an unprotected communication channel.

However, this does not guarantee the identity of the origin of encrypted messages.

Moreover, this does not prevent adversaries from tampering with encrypted messages

as long as the results decrypt to valid messages. For example, assume we want

to send an order to our bank to transfer some money to another account. All the

communication between us is encrypted using the secret key we have shared with the

bank. It turns out that privacy is not enough to protect our order, as an adversary

can tamper with ciphertexts sent to the bank. For instance, it can flip some bits in

ciphertexts which then might directly effects the corresponding bits in the decrypted

messages. In this way, the adversary might be able to, say, change the amount of

money in our order. It does not know the new amount but it surely has changed

our original order. Therefore, upon receiving an order, the bank’s goal should be to

check two things. First, did the order really comes from us? And second, is it the

exact order that we issued? These goals are called message integrity (or message

authentication). And message authentication code (MAC) is a mechanism to achieve

it.

Here we consider symmetric message authentication. Formally, a message authenti-

cation scheme MA = (K, T ,V) consists of three algorithms. The randomised key

generation algorithm K takes no input and output a key K. The tagging algorithm

T , which may be randomised or stateful, takes a key K ∈ K and an arbitrary length

message m from the message space M as input, and returns a tag τ ∈ {0, 1}∗. The

deterministic verification algorithm V takes as input the secret key K, the message

m, and a candidate tag τ ′, and returns a bit v. For completeness, we require that

for any key K ∈ K and any message m ∈M
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Pr [τ ← TK (m) : VK (m, τ) = 1] = 1 . (4.32)

We merely consider message authentication schemes whose tagging algorithm is

deterministic and stateless such as MAC. A generally accepted security definition for

MACs is called existential unforgeability under an adaptive chosen message attack.

That is, an adversary using reasonable resources should not be able to create a valid

tag for a new message that was not previously tagged (or authenticated) by honest

parties. In this security model, the adversary is given access to a MAC oracle which

it can query on any message to see the corresponding tag. A message authentication

scheme is considered broken if the adversary can produce a valid tag τ for a message

m where VK (m, τ) = 1 and the message m was not queried to MAC oracle before.

Boneh and Zhandry [30] give a security definition for quantum-secure MACs. That

is, an adaptation of the existential unforgeability notion where a quantum adversary

is given quantum superposition access to the MAC oracle, but it submits classical

pairs of (m, τ) to the challenger. A MAC is said to be quantum-secure if after q

queries to the MAC oracle, the adversary cannot submit q + 1 valid and distinct

classical pairs of (m, τ) to the challenger.

In general, a MAC can be constructed from a PRF where the PRF takes the role

of the tagging algorithm. In practice, this approach leads to constructions such as

HMAC [11] and CBC-MAC [2].

4.4 Authenticated Encryption

We discussed how to separately achieve the cryptographic goals of privacy and

integrity. But there are scenarios where we need both simultaneously. For instance,

the example that we discussed in the previous section about communicating with

our bank is one scenario where both confidentiality and authenticity of data is

required. Encryption schemes include authenticity assurances are called authenticated

encryption. In practice, there are many protocols, such as SSL/TLS [49] and

IPSec [73], that use authenticated encryption to provide secure private communication.

Many attacks on these protocols are due to misuse of authenticated encryption
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schemes or lack of it [45].

A simple way to construct an authenticated encryption scheme is to combine an

encryption scheme with a MAC. Bellare and Namprempre [17] formally analyse the

security of three generic compositions of a given symmetric encryption and a given

MAC. The compositions are: Encrypt-and-MAC (EaM), MAC-then-Encrypt (MtE),

and Encrypt-then-MAC (EtM).

In EaM, the sender produces a MAC tag for the message and sends it along with the

ciphertext of the message to the receiver. The receiver first decrypts the ciphertext

and then checks whether the tag verifies correctly on the resulting message. If so,

it returns the message. Otherwise it returns ⊥. In MtE, the sender produces a

MAC tag of the message, then concatenates the tag and the message together and

encrypts the result. The receiver decrypts the ciphertext to recover the message and

its tag. If the tag verifies correctly on the message, then the receiver outputs the

message. Otherwise it outputs ⊥. In EtM, the sender first encrypts the message,

then produces a MAC tag on the ciphertext. The receiver checks whether the tag

verifies correctly on the ciphertext. If so, it decrypts the ciphertext and outputs the

resulting message. Otherwise it returns ⊥. Bellare and Namprempre [17] show that

EtM provides LoR-CCA security, given that both the encryption and authentication

schemes meet the required security properties.
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Chapter 5

Quantum Superposition Attacks on
the Even-Mansour Scheme
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In this chapter, we show how powerful a quantum adversary might get when it is

given quantum superposition access to its oracles. While block ciphers are considered

to be secure against quantum computation attacks, we illustrate that a class of them

will not provide any security whatsoever if the quantum adversary is given quantum

superposition access to them. We first discuss an extremely simple block cipher and

a known classical attack on it. Then we show how we can exploit this attack in a

quantum setting. Finally, we discuss an extension of our attack to apply to other

variants of block ciphers.

5.1 The Even-Mansour Scheme

Block ciphers, such as AES (see Subsection 4.1.1), mostly have an iterated structure.

Their structure consists of XORing a secret key with their internal state, and then

applying some publicly known permutation that is chosen randomly. The number of
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m ⊕

K1

F c⊕

K2

Figure 5.1: The Even-Mansour scheme

iterations varies depending on each specific block cipher and the security properties

they offer.

Even and Mansour [57] defined and analysed the simplest possible construction of

a block cipher. In the Even-Mansour scheme (EM), depicted in Figure 5.1, the

ciphertext is obtained by first XORing the plaintext with an n-bit key K1, then

applying a publicly known random permutation F and XORing the output with a

second n-bit key K2, i.e.,

E (m) = F (m⊕K1)⊕K2 . (5.1)

Even and Mansour assumed that the adversary is allowed to perform two types of

queries: (i) queries to a full encryption/decryption oracle that computes either E (m)

or E−1 (m); and (ii) queries to a permutation oracle that computes either F (m) or

F−1 (m). Given this assumption, they proved that in order to attack the scheme with

a given probability of success, one must have DT = O (2n), where D is the number

of queries to the encryption/decryption oracle and T is the number of queries to the

F -oracle. Even and Mansour gave a lower bound for the number of queries needed

to break their scheme, thus providing a formal security proof. Moreover, Dunkelman

et al. [54] showed that EM can even be further simplified into a single-key variant

with half as many key bits, while still having exactly the same provable security.

Despite its simplicity, the EM scheme is not merely a theoretical construct, but is

implicit in other ciphers. For instance, there are other works that study the security

of iterated EM with more than one round [78, 50, 25]. These works, in their security

analysis, consider different numbers of rounds and keys. A similar construction is

also used to construct tweakable block ciphers [79]. Moreover, a generalised variant of

EM known as key-alternating cipher is given by Daemen and Rijmen [43]. A general
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m ⊕

K1

F1 ⊕

K2

F2 Fr ⊕

Kr+1

c

Figure 5.2: An r-round key-alternating cipher

r-round key-alternating cipher, depicted in Figure 5.2, consists of F1, . . . , Fr public

random permutations and r + 1 distinct secret n-bit keys K1, . . . ,Kr+1,

E(m) = Fr(Fr−1(· · ·F2(F1(m⊕K1)⊕K2) · · · )⊕Kr)⊕Kr+1 . (5.2)

Bogdanov et al. [28] give a formal security proof for the latter scheme, demonstrating

that an adversary needs to make at least 22n/3 queries to the underlying permutations

to be able to distinguish this scheme from random.

5.2 Slide with a Twist Attack

Biryukov and Wagner [26] introduce a cryptanalytic attack, called slide attack, to

break iterated cryptosystems with an arbitrary number of rounds by exploiting their

self similarity under small shift. They then extend the basic slide attack to make

it applicable to larger classes of ciphers. One of the extended methods introduced

by Biryukov and Wagner [27] is called the slide with a twist attack. They describe

the slide with a twist attack on the EM scheme, and show that it achieves the lower

bound up to a factor of
√

2. Here we explain the main idea of the slide with a twist

attack on the EM scheme, which is also discussed in work of Dunkelman et al. [54].

Assume that two plaintexts m,m′ satisfy

m⊕m′ = K1 . (5.3)

Therefore we can write their encryptions as,
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E (m) = F (m⊕K1)⊕K2 = F
(
m′
)
⊕K2 , and (5.4)

E
(
m′
)

= F
(
m′ ⊕K1

)
⊕K2 = F (m)⊕K2 . (5.5)

By XORing the above equations (see also Figure 5.3) we get

E (m)⊕ E
(
m′
)

= F (m)⊕ F
(
m′
)
, (5.6)

or equivalently,

E (m)⊕ F (m) = E
(
m′
)
⊕ F

(
m′
)
. (5.7)

Given these relations, an adversary can query the E-oracle and F -oracle on the same

2(n+1)/2 values of known plaintexts m1,m2, . . .. The adversary then stores the results

of E (mi)⊕ F (mi) in a table sorted by this value. The adversary looks for collisions

E (mi)⊕F (mi) = E (mj)⊕F (mj). When found, it checks the guess K1 = mi⊕mj

and K2 = E (mi)⊕ F (mj).

Each pair of plaintexts (mi,mj) that satisfies mi ⊕mj = K1 is called a slid pair.

The probability that the collision happens for a random pair of plaintexts is 2−n.

Therefore the table is expected to contain only a few collisions such that with regards

to the birthday paradox at least one of them with high probability is induced by

the slid pair which yields the correct values of K1 and K2. The data complexity of

the attack is DT = 2n+1 where D = 2(n+1)/2 is the number of known plaintexts and

T = 2(n+1)/2 is the number of queries to the F -oracle.

5.3 Quantum Superposition Attack

Assuming the existence of a scalable quantum computer, Shor’s algorithm [103]

breaks the most widely used public key encryption schemes, including RSA [94].
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m m′⊕

K1

F c⊕

K2

m′ m⊕

K1

F c′⊕

K2

Figure 5.3: The slide with a twist attack on the EM scheme

On the other hand, quantum computing appears to have very little impact on

symmetric cryptography. The generic quantum attack on block ciphers using Grover’s

algorithm [65] requires O(2n/2) queries for key length n and thus can be countered

by doubling the key length.

To mount a generic Grover attack on a block cipher, an adversary does not need

access to an encryption oracle, but only to (i) a single valid plaintext/ciphertext pair,

and (ii) an implementation of the encryption algorithm on a quantum computer.

Since any classical algorithm can be converted efficiently into a quantum algorithm

(see Subsection 3.1.1), an adversary in possession of a scalable quantum computer

can satisfy requirement (ii) as long as the encryption algorithm is publicly known.

In contrast to the above, here we assume a security model where the adversary is

given quantum superposition access to an encryption oracle. See Section 3.4 for the

definition of quantum adversary. So far there has been little discussion, however, of

the security of existing symmetric schemes in this security model. Our work is a

contribution to this question. We show that some specific symmetric constructions

offer no security at all against an adversary with superposition access to an encryption

oracle.

A prerequisite for superposition access is that the encryption oracle must be imple-

mented on a quantum computer. Our result therefore poses no threat to existing

classical implementations of block ciphers. More generally, the security model on

which our result is based is of no practical relevance for present-day security en-
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vironments. It is conceivable that this could change in a future environment (the

‘quantum internet’) in which communication channels between quantum computers

need to be secured. Or, classical encryption schemes running on a quantum computer

might need to be secured against, say, quantum malwares running on the same

quantum computer. At present, the main interest of our result is that it establishes

that some specific symmetric schemes are vulnerable against quantum adversaries

independently of the generic attack using Grover’s algorithm.

Our attack against the Even-Mansour scheme makes use of a slight generalisation of

Simon’s algorithm [104]. Simon’s algorithm is also at the heart of the quantum related

key attack against a general block cipher discovered by Rötteler and Steinwandt [98].

They show that the cipher’s secret key can be extracted efficiently if the quantum

adversary is allowed to query superposition of related keys. In contrast, in our

attack, the quantum adversary queries superposition of messages, but the attack

works only against specific schemes. Our work is done independently from work

of Kuwakado and Morii [77] which also discusses security of the EM scheme if run

on a quantum computer. Both works exploit Simon’s algorithm to break the EM

scheme. However, Kuwakado and Morii do not question the assumption that Simon’s

algorithm can be used, while we calculate the precise probability of getting a slid

pair (see Subsection 5.3.2), showing that Simon’s problem is only partially satisfied.

We also extend our results to two variants of iterated EM with more than one round.

5.3.1 Quantum Oracle for the Even-Mansour Scheme

The aim of our quantum attack will be to recover the secret key K1. Since K2 =

E(m)⊕ F (m⊕K1) and E and F are known, finding K2 is trivial once K1 is known.

We assume that the quantum adversary is allowed to make superposition queries to

both the encryption oracle E(m) and the permutation oracle F (m). Formally this

means that the two oracles act as unitary transformations satisfying

|m〉 ⊗ |0〉 −→ |m〉 ⊗ |E(m)〉 and |m〉 ⊗ |0〉 −→ |m〉 ⊗ |F (m)〉 (5.8)

for all computational basis states |m〉. The action of the encryption oracle on an
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arbitrary superposition with coefficients cm is then

∑
m

cm|m〉 ⊗ |0〉 −→
∑
m

cm|m〉 ⊗ |E(m)〉 (5.9)

and similarly for the permutation oracle.

5.3.2 Partially Satisfying the Assumptions of Simon’s Problem

Our quantum attack is based on Simon’s problem which we explained in Subsec-

tion 3.2.1. In order for Simon’s algorithm to give us the desired answer for K1, we

exclude K1 = 0n from the set of possible values for K1. We make use of the following

fact, that is given by the slide with a twist attack on the Even-Mansour scheme.

Define the function

X(m) = F (m)⊕ E(m) . (5.10)

Since

X(m) = F (m)⊕ F (m⊕K1)⊕K2 , (5.11)

we have that, for all m ∈ {0, 1}n,

X(m⊕K1) = X(m) . (5.12)

The function X thus satisfies part of the assumptions made in Simon’s problem. To

fully satisfy the assumptions of Simon’s problem, one also needs that X(m) = X(m′)

implies m′ ∈ {m,m⊕K1}. This is not true in our case because, for any given string

l, there can be more than two solutions to
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X (m) = l . (5.13)

The solutions to Equation 5.13 do come in pairs {m,m⊕K1}, however. Let M be a

subset of {0, 1}n of size 2n−1 such that

{0, 1}n =
⋃
m∈M

{m,m⊕K1} . (5.14)

Equation 5.11 and the fact that the permutation F is chosen randomly imply that

the probability that X (m) = l for given m ∈ M and l ∈ {0, 1}n is equal to 2−n.

Assuming that X (m) can be approximated by a random function (see [88] for a

justification), the probability p1 that Equation 5.13 has exactly one solution m ∈M
is therefore given by

p1 = 2n−1 2−n
(

1− 2−n
)2n−1−1

' 1

2
√
e
. (5.15)

This equation holds for any K1 6= 0n. Similarly, the probability pr that Equation 5.13

has exactly r solutions m ∈M can be found [88] to be approximately

pr '
1

2r r!
√
e
. (5.16)

We have p1 > 0.3 for any value of n. This means that, for given l, the probability

that Equation 5.13 has exactly two solutions m and m⊕K1 is greater than 0.3. It

turns out that the existence of this bound allows us to apply Simon’s algorithm to

the problem of extracting the key K1.

5.3.3 The Quantum Attack

The quantum adversary begins by preparing four n-qubit registers in the state
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|ψ1〉 =
1√
2n

∑
m∈{0,1}n

|m〉 ⊗ |0n〉 ⊗ |0n〉 ⊗ |0n〉 . (5.17)

Applying first the permutation oracle and then the encryption oracle to the appro-

priate registers results in the state

|ψ2〉 =
1√
2n

∑
m∈{0,1}n

|m〉 ⊗ |F (m)〉 ⊗ |E (m)〉 ⊗ |0n〉 . (5.18)

Applying XOR to the second and third register and placing the result in the fourth

register gives

|ψ3〉 =
1√
2n

∑
m∈{0,1}n

|m〉 ⊗ |F (m)〉 ⊗ |E(m)〉 ⊗ |X(m)〉 . (5.19)

Now let rl denote the number of solutions m ∈M to Equation 5.13 and define

Lr = {l ∈ {0, 1}n : rl = r}. (5.20)

The expected value of |Lr| is given by

E (|Lr|) = pr 2n , (5.21)

which decreases rapidly as r increases, and is effectively zero for r ≥ n. We can

rewrite the state in terms of the set Lr as follows:

|ψ3〉 =
1√
2n

∑
r>0

∑
l∈Lr

r∑
i=1

(
|ml

i〉+ |ml
i ⊕K1〉

)
⊗ |F (ml

i)〉 ⊗ |E(ml
i)〉 ⊗ |l〉 , (5.22)

where ml
i ∈M and X(ml

i) = X(ml
i ⊕K1) = l for all l and i = 1, . . . , rl.
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The next step is a measurement of the fourth register in the computational basis.

We denote the measurement outcome by l∗. The state of the first register after the

measurement is

|ψ4〉 =
1√
2r∗

r∗∑
i=1

(|m∗i 〉+ |m∗i ⊕K1〉) , (5.23)

where we have used the abbreviated notation r∗ = rl∗ and m∗i = ml∗
i . For any r ≥ 1,

the probability Pr(r∗ = r) of getting an outcome l∗ such that r∗ = r is equal to 2−n

times the expectation value of the number of terms in the sum (see Equation 5.22)

for the given value of r. We have thus

Pr(r∗ = r) = 2−n E(|Lr|)× 2r = 2rpr '
1

2r−1 (r − 1)!
√
e
. (5.24)

In particular, Pr(r∗ = 1) = 2p1 ≥ 0.6. Now the adversary applies the n-qubit

Hadamard transformation to the first register, resulting in the state

|ψ5〉 =
1√

2r∗ 2n

r∗∑
i=1

( ∑
a∈{0,1}n

(−1)m
∗
i ·a|a〉+

∑
a∈{0,1}n

(−1)(m∗i⊕K1)·a|a〉
)

(5.25)

=
1√

r∗ 2n+1

r∗∑
i=1

∑
a∈{0,1}n

(−1)m
∗
i ·a
(

1 + (−1)K1·a
)
|a〉 (5.26)

=
1√

r∗ 2n−1

r∗∑
i=1

∑
a:K1·a=0

(−1)m
∗
i ·a|a〉 . (5.27)

The last step is a measurement of the first register in the computational basis. As in

the standard Simon algorithm, we are guaranteed to obtain a bit string a such that

K1 · a = 0 mod 2 . (5.28)

In the standard version of Simon’s problem, we always have that r∗ = 1. This means

that the string a resulting from the measurement is random, subject to the constraint

107



5.3 Quantum Superposition Attack

m ⊕

K

F (1) ⊕

K

F (2) F (r) ⊕

K

c

Figure 5.4: The r-round EM scheme with a single permutation and identical round
keys

given by Equation 5.28. The algorithm is run repeatedly until among the strings

a so obtained, there are n− 1 linearly independent ones. The key K1 can then be

extracted from the system of linear Equations 5.28 using Gaussian elimination. Given

a set of strings a which span a subspace of dimension less than n− 1, the probability

that the next (random) string is outside that subspace is at least 1/2. This means

that O(n) repetitions of Simon’s algorithm will, with probability exponentially close

to 1, result in a set of equations that determines K1.

In the Even-Mansour case, for every run of the algorithm, we also get a string a

such that Equation 5.28 is satisfied. Whenever r∗ turns out to be equal to 1, which

happens with probability greater than 0.6, the string a will be random. This means

that the analysis of the previous paragraph still applies: given a set of strings which

span a subspace of dimension less than n− 1, the probability that the next string

returned by the algorithm is outside that subspace is now bounded below by 0.3.

After O(n) repetitions of the algorithm we will, with probability exponentially close

to one, have a set of equations that determines K1.

5.3.4 Generalisation to Multiple Rounds

A natural question is whether our O(n) attack extends to more general ciphers with

multiple rounds. Although the answer appears to be ‘no’ in general, it turns out that

our attack can be applied to two special cases of the multiple-round Even-Mansour

scheme. These are the case of arbitrarily many rounds using a single permutation

and identical round keys, and the case of two rounds using a single permutation

and round keys derived from a very basic key schedule. Chen et al. [36] recently

described slide with a twist attacks against these schemes.

Consider first the r-round Even-Mansour scheme with a single permutation F and
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identical round keys as shown in Figure 5.4. The encryption of an arbitrary message

m is

E(m) = F (r)(F (r−1)(· · ·F (2)(F (1)(m⊕K)⊕K) · · · )⊕K)⊕K , (5.29)

where K denotes the common key, and

F (1) = F (2) = . . . = F (r) = F (5.30)

denote identical permutations, labelled to distinguish between rounds for clarity. We

have

F (E(m)) = F (F (r)(F (r−1)(· · ·F (2)(F (1)(m⊕K)⊕K) · · · )⊕K)⊕K)

= F (r)(F (r−1)(· · ·F (1)(F (m⊕K)⊕K) · · · )⊕K)⊕K)

= E(F (m⊕K))⊕K , (5.31)

where we have relabelled the permutations using Equation 5.30. Now define

X(m) = E(F (m))⊕ F (E(m)) . (5.32)

Given access to both E and F oracles, X(m) can be evaluated by the adversary.

Using Equation 5.31, this gives

X(m) = E(F (m))⊕ E(F (m⊕K))⊕K . (5.33)

Therefore X(m) = X(m⊕K). The rest of the analysis and the details of the quantum

attack are almost identical to the single round case above. As before, the key K can

be recovered with constant probability using O(n) queries.
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We now move on to the single-permutation two-round Even-Mansour scheme with a

key-schedule where the round keys K0,K1,K2 are derived from a secret n-bit master

key K and public n-bit constants t0, t1, t2 via a simple XOR, Ki = K ⊕ ti. This is

depicted in Figure 5.5.

The encryption of an arbitrary message m is

E(m) = F (F (m⊕K0)⊕K1)⊕K2 . (5.34)

We have

E(F (m)⊕ t0 ⊕ t1) = F (F (F (m)⊕ t0 ⊕ t1 ⊕K0)⊕K1)⊕K2

= F (F (F (m)⊕ t1 ⊕K)⊕K1)⊕K2

= F (F (F (m)⊕K1)⊕K1)⊕K2 , (5.35)

and

F (E(m)⊕ t1 ⊕ t2) = F (F (F (m⊕K0)⊕K1)⊕K2 ⊕ t1 ⊕ t2)

= F (F (F (m⊕K0)⊕K1)⊕K ⊕ t1)

= F (F (F (m⊕K0)⊕K1)⊕K1) . (5.36)

Hence

E(F (m⊕K0)⊕ t0 ⊕ t1) = F (E(m)⊕ t1 ⊕ t2)⊕K2 . (5.37)

Now define

X(m) = E(F (m)⊕ t0 ⊕ t1)⊕ F (E(m)⊕ t1 ⊕ t2) . (5.38)
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m ⊕

K0

F ⊕

K1

F ⊕

K2

c

K

⊕ ⊕ ⊕t0 t1 t2

Figure 5.5: The 2-round EM scheme with a single permutation and a simple key-
schedule

Given access to the constants t0, t1, t2 as well as both E and F oracles, X(m) can be

evaluated by the adversary. Using Equation 5.37, the function can be rewritten as

X(m) = E(F (m)⊕ t0 ⊕ t1)⊕ E(F (m⊕K0)⊕ t0 ⊕ t1)⊕K2 . (5.39)

It follows that X(m) = X(m ⊕ K0). Again, the analysis and the details of the

quantum attack are almost identical to the single round case above, and the key

K = K0 ⊕ t0 can be recovered with constant probability using O(n) queries.

Our attack depends crucially on Simon’s algorithm, and to apply it, a property

equivalent to Equation 5.12 needs to hold for a function X that can be evaluated

by the adversary. This is no longer the case in more general ciphers such as key-

alternating schemes with more than one permutation [43, 28]. Already when the

publicly known permutation in the single-round Even-Mansour scheme is replaced by

a keyed permutation as in DESX [74], the adversary loses the ability to evaluate F (m)

and therefore X(m) in Equation 5.10 and Equations 5.32 or 5.38. This means that

additional techniques would be required in order to extend the methods described

here to more general encryption schemes.

Quantum superposition attacks are very powerful, but in the next chapter we show

a number of notions of confidentiality that are achievable against them.
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Notions of Confidentiality in a Quan-
tum Setting
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In this chapter, we address the security of symmetric encryption schemes against

quantum superposition attacks. We will consider both quantum superposition chosen

plaintext attack (qsCPA), where a quantum adversary is given superposition access to

an encryption oracle, and quantum superposition chosen ciphertext attack (qsCCA),

where the adversary in addition has superposition access to a decryption oracle. We

will discuss achievability of different confidentiality notions in this setting. We prove

that RoP-qsCPA and RoP-qsCCA are achievable by showing two generic symmetric

schemes that satisfy these notions. We also discuss semantic security in this setting

and prove a reduction from RoP to SEM. Our security analysis is in a concrete security

framework. Here we only discuss symmetric cryptosystems, but the discussion for

asymmetric schemes is similar and our results apply.
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6.1 Introduction

We studied notions of confidentiality in the quantum computation setting in Chapter 4.

In this chapter we study notions of confidentiality in the quantum superposition

setting where quantum queries are allowed. There has not been a systematic

exploration of how existing classical security notions translate into this quantum

world. A natural question in this setting is to see whether notions of confidentiality

arise from their classical counterparts, or whether they are needed to be rethought

from scratch.

We explore two routes to define notions of confidentiality in the quantum superposition

setting. One route is to start from a generalisation of semantic security to this setting.

To have a meaningful semantic security notion, it is required to properly define the

message space in the quantum superposition setting. And also it is essential to take

necessary restrictions into account to prevent the quantum adversary from winning

trivially. In Section 6.3 we give our definition of semantic security against a quantum

adversary.

Another route is to start from a generalisation of indistinguishability notions to the

quantum superposition setting.

Boneh and Zhandry [29] discuss a notion of CPA security where quantum encryption

queries are allowed. They define a quantum analogue of LoR-CPA arisen from its

classical counterpart (Definition 4.1 in [29]) where the adversary is allowed to make

chosen message queries on superpositions of message pairs. For a given symmetric

encryption scheme SE = (K, E ,D) and a chosen bit b ←$ {0, 1}, the encryption

queries are in the form of:

∑
m0,m1,c

αm0,m1,c |m0,m1, c〉 −→
∑

m0,m1,c

αm0,m1,c |m0,m1, c⊕ EK (mb)〉 . (6.1)

Boneh and Zhandry go on to prove that this notion of CPA security is not achievable.
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Result 15 ([29] Theorem 4.2) No symmetric encryption scheme SE satisfies the

quantum analogue of the LoR-CPA notion defined in [29].

The nature of their proof for Result 15 is that depending on which message gets

encrypted, the register containing that message is entangled with the ciphertext

response. Therefore, the quantum adversary can exploit this entanglement to dis-

tinguish between encrypted messages. Based on the same intuition, it turns out

that quantum analogues of RoR-CPA and FtG-CPA, if arisen from their classical

counterparts, are also not achievable in the quantum superposition setting. For

instance, in RoR-CPA, for a given symmetric encryption scheme SE = (K, E ,D) and

a chosen bit b←$ {0, 1}, the encryption queries are either in the form of:

∑
m,c

αm,c |m, c〉 −→
∑
m,c

αm,c |m, c⊕ EK (m)〉 , (6.2)

if b = 1; or in the form of:

∑
m,c

αm,c |m, c〉 −→
∑
m,c

αm,c |m, c⊕ EK (r)〉 , (6.3)

if b = 0; where r ←$ {0, 1}|m|.

Therefore, in RoR-CPA, the message queried by the adversary is either encrypted

or not. In either case, the quantum adversary can distinguish between encrypted

messages by just checking whether the ciphertext response is entangled with the

register or not. Hence, we can conclude that LoR-CPA, RoR-CPA, and FtG-CPA

need to be rethought from scratch in the quantum superposition setting. This is as

opposed to the RoP notion of confidentiality in this setting which arises from its

classical counterpart as we prove in the next section.

In this chapter, we define indistinguishability notions as well as a semantic security

notion where all queries, including challenge queries, allow quantum superpositions.

We show that our notions are achievable both under a quantum superposition chosen
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plaintext attack (qsCPA) and a quantum superposition chosen ciphertext attack

(qsCCA), and our semantic security notion implies our indistinguishability notion.

6.2 Real-or-Permutation Indistinguishability in a Quantum
Setting

We introduced the classical version of RoP in Subsection 4.2.1.5. We also proved

that RoP and RoR are equivalent in a classical setting (see Theorems 9 and 10 in

Subsection 4.2.1.6). It follows that RoP also implies semantic security SEM. We now

introduce the quantum analogue of RoP, and we prove that it is achievable even

against a quantum superposition adversary.

6.2.1 Quantum Superposition Chosen Plaintext Attack

Assume a quantum adversary that plays the experiment RoP-qsCPA shown in

Figure 6.1. The experiment begins with choosing a key K ← K and a bit b ∈ {0, 1}.
The quantum adversary is given quantum superposition access to an encryption

oracle. The quantum adversary adaptively requests encryptions of quantum queries

of its choice. The encryption oracle responds to each encryption query by applying

a unitary transformation to the first (2n+ nr) qubits of the adversary’s quantum

register, where n is the length of the encryption query and nr is the length of the

randomness used by the oracle to encrypt this query. The transformation depends

on the bit b. If b = 1, the encryption oracle applies the unitary EK (·):

∑
m,x

λm,x |m,x〉
UEK (·)

−−−−−−→
∑
m,x

λm,x |m,x⊕ EK (m)〉 . (6.4)

Otherwise, the challenger chooses a permutation Π uniformly at random from the

set of all permutations of {0, 1}n, and then the encryption oracle applies the unitary

EK (Π (·)):
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∑
m,x

λm,x |m,x〉
UEK (·) UΠ(·)

−−−−−−−→
∑
m,x

λm,x |m,x⊕ EK (Π (m))〉 . (6.5)

We call the ciphertext returned by the encryption oracle the challenge ciphertext. At

some point, the quantum adversary outputs a bit b′.

The goal of the quantum adversary is to distinguish between the encryption of its

query and the encryption of its permuted query. This can also be interpreted as

the goal of the quantum adversary being to find out whether the ciphertext is the

encryption of its query directly or whether a unitary transformation was applied to

its query before encryption.

Definition 10 [RoP-qsCPA] Let SE = (K, E ,D) be a symmetric encryption

scheme. Define experiment Exprop−qscpa−bSE (A) for a quantum adversary A and

a bit b as depicted in Figure 6.1. In the experiment, the adversary A is given

quantum superposition access to a real-or-permutation encryption oracle RoPQA ().

The encryption oracle responds to each query by applying a unitary transformation

to the first (2n+ nr) qubits of the adversary’s quantum register QA.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantage of a quantum adversary

A is given by:

Advrop−qscpaSE (A) = Pr
[
Exprop−qscpa−1

SE (A) = 1
]
− Pr

[
Exprop−qscpa−0

SE (A) = 1
]
.

This advantage refers to a specific quantum adversary using resources as discussed

in Section 3.4.

We now give a symmetric encryption construction, and we prove that it can achieve

RoP-qsCPA.

116



6.2 Real-or-Permutation Indistinguishability in a Quantum Setting

Exprop−qscpa−1
SE (A)

K ← K
b′ ← ARoPQA ()

return b′

Exprop−qscpa−0
SE (A)

K ← K
b′ ← ARoPQA ()

return b′

RoPQA ()

if b = 1 then
Apply UEK(·) to QA

else
Π←$ Perm (n)
Apply UΠ(·) to QA
Apply UEK(·) to QA

end if
return

Figure 6.1: The RoP-qsCPA confidentiality notion

Construction 3 Let F be a family of pseudorandom functions. We construct the

following symmetric encryption scheme SE = (E ,D) where:

E (K,m) : r ←$ {0, 1}n

c← FK (r)⊕m

output (r, c)

D (K, r, c) :m← FK (r)⊕ c

output (m)

In Construction 3, the encryption algorithm is randomised. Moreover, if it is

implemented on a quantum computer, then the encryption algorithm uses a single

fresh randomness for the entire superposition query, see Section 3.4.

The following theorem establishes that RoP-qsCPA security is achievable. In the

concrete security framework adopted here this means the following. The theorem

provides a straightforward reduction: if our Construction 3 can be broken by a

specific quantum adversary, the reduction establishes the existence of a quantum

117



6.2 Real-or-Permutation Indistinguishability in a Quantum Setting

adversary using similar resources that can break the underlying QPRF. But as we

discuss in Subsection 4.1.2, a QPRF based on a suitably chosen block cipher is

currently thought to be secure against quantum attacks.

Theorem 16 (RoP-qsCPA security is achievable) Consider the scheme SE in

Construction 3 based on a family of pseudorandom functions F . Assume A is a

quantum adversary attacking SE in RoP-qsCPA sense, with a running time of at

most t, making at most q queries to the encryption oracle, and having advantage

Advrop−qscpaSE (A) ≥ ε .

Then there exists a quantum adversary B attacking F with a running time of at

most t′ = t+ q · TΠ, making at most q queries to the encryption oracle, and having

advantage

AdvqprfF (B) ≥ 1

2

(
ε− q2

2nr

)
.

Here, TΠ is the maximum required time to apply a permutation Π.

Proof We first prove the security of the scheme when F is replaced by a truly

random function f . Next, we claim that if the scheme is insecure when F was used,

then there exists a quantum adversary which can distinguish F from a truly random

function f .

We use S̃E =
(
Ẽ , D̃

)
to denote an encryption scheme that is the same as SE in

Construction 3, except that a truly random function f is used instead of F . Consider

the following RoP-qsCPA experiment that the quantum adversary A plays.

The challenger maintains an encryption oracle to which the quantum adversary is

given quantum superposition access.

A adaptively requests encryption of quantum queries of its choice. The encryption
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oracle responds to each encryption query by choosing a random r ←$ {0, 1}nr and

then applying a unitary transformation to the first (2n+ nr) qubits of the adversary’s

quantum register. If b = 1, then the encryption oracle applies

∑
m

αm |m, 0, 0〉
Uf(r)

−−−−−−→
∑
m

αm |m, f (r)⊕m, r〉 . (6.6)

Otherwise the encryption oracle chooses a permutation Π ←$ Perm (n), and then

applies UΠ(m) on the first 2n qubits of the adversary’s quantum register, followed by

applying Uf(r) on the first (2n+ nr) qubits of the quantum register:

∑
m

αm |m, 0, 0〉
Uf(r) UΠ(m)

−−−−−−−−−→
∑
m

αm |m, f (r)⊕Π (m) , r〉 . (6.7)

Note that each encryption query receives a single r for the entire query superposition,

meaning that the encryption oracle uses the same randomness r for every message in

the superposition. Hence the encryption oracle can answer any encryption query by

making a single query to f on r. At some point, A outputs a guess b′ for b.

We claim that the advantage of the quantum adversary A is:

Advrop−qscpa
S̃E

(A) ≤ q2

2nr
. (6.8)

To justify Equation 6.8, see that

Advrop−qscpa
S̃E

(A) = Pr
[
Exprop−qscpa−1

S̃E
(A) = 1

]
− Pr

[
Exprop−qscpa−0

S̃E
(A) = 1

]
.

(6.9)

A random r∗ might be used more than once by the encryption oracle, giving the

quantum adversary partial information about the encrypted message. To denote this

event, we define Repeat. Therefore we have
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Pr
[
Exprop−qscpa−1

S̃E
(A) = 1

]
= Pr

[
Exprop−qscpa−1

S̃E
(A) = 1 ∧ Repeat

]
(6.10)

+ Pr
[
Exprop−qscpa−1

S̃E
(A) = 1 ∧ ¬Repeat

]
.

Similarly,

Pr
[
Exprop−qscpa−0

S̃E
(A) = 1

]
= Pr

[
Exprop−qscpa−0

S̃E
(A) = 1 ∧ Repeat

]
(6.11)

+ Pr
[
Exprop−qscpa−0

S̃E
(A) = 1 ∧ ¬Repeat

]
.

Therefore,

Advrop−qscpa
S̃E

(A) =
(

Pr
[
Exprop−qscpa−1

S̃E
(A) = 1 ∧ Repeat

]
−Pr

[
Exprop−qscpa−0

S̃E
(A) = 1 ∧ Repeat

])
+
(

Pr
[
Exprop−qscpa−1

S̃E
(A) = 1 ∧ ¬Repeat

]
−Pr

[
Exprop−qscpa−0

S̃E
(A) = 1 ∧ ¬Repeat

])
. (6.12)

The first difference is at most the probability of the event Repeat happening. Since

r∗ is chosen uniformly at random from {0, 1}nr , it follows by the birthday bound

that the probability of the event Repeat is bounded by q2/2nr where q is the number

of encryption queries made by the quantum adversary. The second difference, on

the other hand, is zero, because with a true random function there is a one-to-

one mapping between every random choice, which makes the value of f (r) ⊕ m
or f (r)⊕Π (m) completely random, and hence indistinguishable for the quantum

adversary. Note that the encryption acts the same as a one-time pad, and is thus

information theoretically secure (see Section 2.2), even against a quantum adversary,

as long as the value of f (r) is not repeated for the other superposition queries during

the encryption.

Now, assume A is attacking SE of Construction 3 in the RoP-qsCPA sense. We

construct a quantum adversary B, using A, to attack the QPRF security of F . The
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quantum adversary B uses its oracles to provide a simulation of A’s oracles. B runs

A.

The challenger maintains QPRF experiment. The quantum adversary B chooses a bit

d←$ {0, 1}. When A adaptively makes quantum encryption queries, B will respond

with the output from its oracle. B does this by choosing an r ←$ {0, 1}nr and then

queries its oracle on r. The oracle responds by either s = FK (r) if b = 1, or, s = f (r)

otherwise, where f ←$ Func (n, n). If d = 1, then B applies a unitary transformation

to the first (2n+ nr) qubits of A’s quantum register to prepare
∑

m αm |m, s⊕m, r〉.
Otherwise B chooses a permutation Π←$ Perm (n), and applies the unitary UΠ(·) to

the first 2n qubits of A’s quantum register. This is followed by applying a unitary

transformation to the first (2n+ nr) qubits of A’s quantum register to prepare∑
m αm |m, s⊕Π (m) , r〉.

Eventually A outputs a bit d′ for d. If d = d′, then B outputs 1. Otherwise it outputs

0.

For the advantage of B, we have:

AdvqprfF (B) = Pr
[
Expqprf−1

F (B) = 1
]
− Pr

[
Expqprf−0

F (B) = 1
]
. (6.13)

When b = 0 it is easy to see that B simulates the RoP-qsCPA experiment for A when

it is attacking S̃E . Therefore:

Pr
[
Expqprf−0

F (B) = 1
]

=
1

2
+

1

2
·Advrop−qscpa

S̃E
(A) . (6.14)

Moreover, when b = 1 we can see that B simulates the RoP-qsCPA experiment for A
when it is attacking SE . Therefore:

Pr
[
Expqprf−1

F (B) = 1
]

=
1

2
+

1

2
·Advrop−qscpaSE (A) . (6.15)

Hence,
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AdvqprfF (B) =
1

2
·Advrop−qscpaSE (A)− 1

2
·Advrop−qscpa

S̃E
(A)

2 ·AdvqprfF (B) ≥ Advrop−qscpaSE (A)− q2

2nr

2 ·AdvqprfF (B) +
q2

2nr
≥ Advrop−qscpaSE (A) . (6.16)

Since it is assumed that

Advrop−qscpaSE (A) ≥ ε , (6.17)

then

AdvqprfF (B) ≥ 1

2

(
ε− q2

2nr

)
. (6.18)

B runs in time at most t′ = t+ q · TΠ where t is the upper bound for the running

time of A and TΠ is the maximum required time to apply a permutation Π by B. A
and B make at most q oracle queries. This concludes the proof.

6.2.2 Quantum Superposition Chosen Ciphertext Attack

For indistinguishability under chosen ciphertext attack definitions in the classical

setting, one could assume that the adversary does not query the decryption oracle

on ciphertexts that it receives from the encryption oracle. In the other words, the

probability that the adversary makes the challenge decryption query is 0. However,

this assumption is not enough to prevent an adversary from trivially winning in the

quantum setting. This is because a quantum adversary can make a decryption query

(a quantum superposition query) that is different from the challenge ciphertext (that

received from the encryption oracle) but still very close to it, helping the quantum

adversary to win the game with high probability.
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In order to define indistinguishability under a quantum superposition chosen cipher-

text attack (IND-qsCCA), we restrict the quantum adversary to make sure that it

cannot query the decryption oracle with any of the challenge ciphertexts. Given that

the quantum challenge ciphertexts are of the form

∑
c

λc |mc, c〉 , (6.19)

then for each challenge ciphertext we define the projector as:

Projc =
∑
x

|x, c〉〈x, c| . (6.20)

We also use ρ to denote the state of the adversary’s quantum register, Q, before

any decryption query. We assume the following condition holds for any quantum

adversary:

Tr (Projc ρ) = 0 ∀c such that λc 6= 0 . (6.21)

We first present the notion of RoP-qsCCA security. Then we prove that it is

achievable.

Assume a quantum adversary that plays the experiment RoP-qsCCA shown in

Figure 6.2. The experiment begins with choosing a key K ← K and a bit b ∈ {0, 1}.
The quantum adversary is given quantum superposition access to an encryption

oracle. The quantum adversary adaptively requests encryptions of quantum queries

of its choice. The encryption oracle responds to each encryption query by applying

a unitary transformation to the first (2n+ nr) qubits of the quantum adversary’s

quantum register, where n is the length of the encryption query and nr is the

length of the randomness used by the encryption oracle to encrypt the query. The

transformation depends on the bit b. If b = 1, then the encryption oracle applies the

unitary EK (·):
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∑
m,x

λm,x |m,x〉
UEK (·)

−−−−−−→
∑
m,x

λm,x |m,x⊕ EK (m)〉 . (6.22)

Otherwise, the challenger chooses a permutation Π uniformly at random from the

set of all permutations of {0, 1}n, and then the encryption oracle applies the unitary

EK (Π (·)):

∑
m,x

λm,x |m,x〉
UEK (·) UΠ(·)

−−−−−−−→
∑
m,x

λm,x |m,x⊕ EK (Π (m))〉 . (6.23)

We call the ciphertext returned by the encryption oracle the challenge ciphertext.

Additionally, the quantum adversary is given quantum superposition access to a

decryption oracle. The quantum adversary can query the decryption oracle on any

ciphertext as long as the condition given in Equation 6.21 is satisfied. At some point

the quantum adversary outputs a bit b′.

Definition 11 [RoP-qsCCA] Let SE = (K, E ,D) be a symmetric encryption

scheme. Define experiment Exprop−qscca−bSE (A) for a quantum adversary A and

a bit b as depicted in Figure 6.2. In the experiment, the adversary A is given quan-

tum superposition access to a real-or-permutation encryption oracle RoPQA (). The

encryption oracle responds to each query by applying a unitary transformation to the

first (2n+ nr) qubits of the adversary’s quantum register QA. The adversary A is

additionally given quantum superposition access to a decryption oracle, DecQA (). For

any challenge ciphertext
∑

c λc |mc, c〉 we define the projector Projc =
∑

x |x, c〉〈x, c|.
No restriction is imposed on the quantum adversary’s queries, rather than it is

assumed that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,

where ρ is the state of QA before making any decryption query.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The advantage of a quantum adversary A is given by:
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Exprop−qscca−1
SE (A)

K ← K
b′ ← ARoPQA (),DecQA ()

return b′

Exprop−qscca−0
SE (A)

K ← K
b′ ← ARoPQA (),DecQA ()

return b′

RoPQA ()

if b = 1 then
Apply UEK(·) to QA

else
Π←$ Perm (n)
Apply UΠ(·) to QA
Apply UEK(·) to QA

end if
return

DecQA ()

Apply UDK(·) to QA
return

Figure 6.2: The RoP-qsCCA confidentiality notion

Advrop−qsccaSE (A) = Pr
[
Exprop−qscca−1

SE (A) = 1
]
− Pr

[
Exprop−qscca−0

SE (A) = 1
]
.

This advantage refers to a specific quantum adversary using resources as discussed

in Section 3.4.

We now give a symmetric encryption construction, and prove that it can achieve

RoP-qsCCA security. Here we construct an RoP-qsCCA secure symmetric encryption

scheme using the Encrypt-then-MAC (EtM) paradigm.

Construction 4 Let SE = (E ,D) be a symmetric encryption scheme and let F be

a family of pseudorandom functions. We construct the following encryption scheme

SE ′ = (E ′,D′) where:
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E ′ ((K1,K2) ,m) : c← EK1 (m) , τ ← FK2 (c)

output (c, τ)

D′ ((K1,K2) , c, τ) : τ ′ ← FK2 (c) , m← DK1 (c)

if τ = τ ′, output (m)

otherwise, output ⊥

In Construction 4, the encryption algorithm is randomised. Moreover, if it is

implemented on a quantum computer, then the encryption algorithm uses a single

fresh randomness for the entire superposition query.

Theorem 17 (RoP-qsCCA security is achievable) Consider the scheme SE ′

in Construction 4 based on a family of pseudorandom functions F and an encryption

scheme SE. Assume A is a quantum adversary attacking SE ′ in the RoP-qsCCA sense

with a running time of at most t, making at most qe encryption and qd decryption

queries to the oracle, and having advantage

Advrop−qsccaSE ′ (A) ≥ ε .

Then there exist quantum adversaries B and J attacking SE and F respectively, as

follows. B has running time of at most t and makes at most qe encryption oracle

queries. J has running time of at most t and makes at most qd oracle queries. The

advantages satisfy:

Advrop−qscpaSE (B) + 2 ·AdvqprfF (J ) ≥ ε− 2
(
1 + 2q2

d

)
2−nτ/4 ,

where nτ is the length of tag τ as defined in Construction 4.

Proof To prove Theorem 17, we first modify Construction 4 by replacing F with

f which is a true random function. Next we show that the modified construction
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is indistinguishable from the original construction. If the quantum adversary can

distinguish between these two constructions, then it can break QPRF security of F .

We first construct a new scheme S̃E which is similar to SE ′ in Construction 4 except

that FK2 is replaced by f , where f ←$ Func (n, n) is a true random function. Hence

the S̃E =
(
Ẽ , D̃

)
where:

Ẽ ((K1) ,m) : c← EK1 (m) , τ ← f (c)

output (c, τ)

D̃ ((K1) , c, τ) : τ ′ ← f (c) , m← DK1 (c)

if τ = τ ′, output (m)

otherwise, output ⊥

Consider the following RoP-qsCCA experiment that the quantum adversary A plays

with regards to S̃E .

The challenger maintains the experiment. The quantum adversary, A, makes adaptive

quantum queries of its choice. The queries can be either encryption or decryption

queries. The oracles respond to each query by applying a unitary transformation to

the adversary’s quantum register.

In the case of encryption queries, the unitary transformation depends on the bit b.

If b = 1, then the encryption oracle applies the unitary UEK1
, followed by Uf .

∑
m

αm |m, 0, 0〉
Uf(·) UEK1

(·)

−−−−−−−−−→
∑
m

αm |m, EK1 (m) , f (EK1 (m))〉 , (6.24)

where c = EK1 (m) and τ = f (EK1 (m)).

If b = 0, the encryption oracle chooses a permutation Π ←$ Perm (n), and applies

the unitary UEK1
(Π(·)), followed by Uf .
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∑
m

αm |m, 0, 0〉
Uf(·) UEK1

(Π(·))

−−−−−−−−−→
∑
m

αm |m, EK1 (Π (m)) , f (EK1 (Π (m)))〉 , (6.25)

where c = EK1 (Π (m)) and τ = f (EK1 (Π (m))).

In the case of decryption queries, the decryption oracle applies the unitary UD̃K1
(·,·)

to the adversary’s quantum register

∑
c,τ

αc,τ |c, τ, 0〉
UD̃K1

(·,·)

−−−−−−−−−→
∑
c,τ

αc,τ

∣∣∣c, τ, D̃K1 (c, τ)
〉
, (6.26)

where

D̃K1 (c, τ) =

{
m← DK1 (c) if f (c) = τ
⊥ otherwise

.

Eventually the quantum adversary A outputs a guess b′ for b.

Claim 1 The advantage of A in the RoP-qsCCA experiment with regards to S̃E is:

Advrop−qscca
S̃E

(A) ≤ Advrop−qscpaSE (B) + 2
(
1 + 2 q2

d

)
2−nτ/4 . (6.27)

Proof of Claim 1. In the classical setting, since f is a true random function, the

probability that an adversary forges a valid tag for a ciphertext, which it has not been

given by the encryption oracle before, is qd/2
nτ . Hence, the classical adversary, with

high probability, gets ⊥ most of the time in response to its decryption queries. In this

case, the decryption oracle is not useful for the classical adversary and the security

of the construction reduces to RoP-CPA security of the SE = (E ,D). However this

is not the case in the quantum setting, where quantum superposition queries are

allowed. For instance, the quantum adversary could query all the possible tags for

a ciphertext, by just one superposition query. Then it might be able to somehow
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extract the valid tag from the encryption oracle’s response. This leads the quantum

adversary to be able to decrypt a ciphertext that helps it to win the game.

We use two scenarios, denoted by Q0 and Q1, to see the advantage of A in the

RoP-qsCCA experiment with regards to S̃E . For every ciphertext c, the tag τ = f (c)

is a string randomly chosen from the set {0, 1}nτ , i.e., the tag is a random nτ -bit

string. Assume the quantum adversary makes qe encryption queries and qd decryption

queries.

Q0: In this scenario, we first assume the decryption oracle of the construction S̃E
always returns ⊥ in response to the quantum adversary’s decryption queries. Let

the unitary Ṽi denote the decryption oracle’s action on the adversary’s quantum

register in the i-th decryption query, where i = 1, . . . , qd. The action of the quantum

adversary can be written as:

UqdṼqd . . .U2Ṽ2U1Ṽ1U0 |s〉 . (6.28)

This is followed by a binary measurement whose outcome is the guess b′. The input

state |s〉 is the result of some initialisation. The unitaries Ui describe the evolution

of the quantum adversary between decryption queries and include the actions of the

encryption oracle.

The quantum register state consists of three sections, the first one for the message,

the second one for the ciphertext, and the third one for the tag. The action of the

decryption oracle Ṽi on a register state |m, c, τ〉 is:

Ṽi |m, c, τ〉 = |m⊕⊥, c, τ〉 . (6.29)

Note that ⊥ is some fixed string that is outside the message space.

Since the decryption oracle always return ⊥, it is not useful for A. Therefore, the

security of the construction in scenario Q0 is reduced to RoP-qsCPA security of SE .
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Assume A attacks RoP-qsCCA security of S̃E . We construct another adversary B,

using A, to attack RoP-qsCPA security of SE .

B runs A, and uses its oracles to provide a simulation of A’s oracles in the RoP-

qsCCA experiment. The game is straight forward and it is easy to see the advantage

of the quantum adversary in the scenario Q0:

AdvQ0

S̃E
(A) = Pr

[
Exprop−qscca−1

S̃E
(A) = 1

]
− Pr

[
Exprop−qscca−0

S̃E
(A) = 1

]
= Pr

[
Exprop−qscpa−1

SE (B) = 1
]
− Pr

[
Exprop−qscpa−0

SE (B) = 1
]

≤ Advrop−qscpaSE (B) . (6.30)

Q1: Now assume the decryption oracle of the construction S̃E works as it is supposed

to, meaning, it checks the tag for each ciphertext and decrypts if the tag was valid.

Let the unitary Vi denote the decryption oracle’s action on the quantum adversary’s

quantum register in the i-th decryption query, where i = 1, . . . , qd. The action of the

quantum adversary can be written as:

UqdVqd . . .U2V2U1V1U0 |s〉 . (6.31)

This is followed by a binary measurement whose outcome is the guess b′. The input

state |s〉 is the result of some initialisation. The unitaries Ui describe the evolution

of the adversary between decryption queries and include the actions of the encryption

oracle.

The quantum register state consists of three sections, the first one for the message,

the second one for the ciphertext, and the third one for the tag. The action of the

decryption oracle Vi on a register state |m, c, τ〉 is:

Vi |m, c, τ〉 = |m⊕DK1 (c) , c, τ〉 if f (c) = τ , (6.32)

Vi |m, c, τ〉 = |m⊕⊥, c, τ〉 . (6.33)
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Here DK1 (c) is the decryption of the ciphertext c, and ⊥ is some fixed string that is

outside the message space.

Since, in general, the unitaries Ui entangle the adversary’s quantum register with

its internal registers, one cannot assume that the quantum register is in a pure

state during decryption queries. Denote by C the set of all ciphertexts c. For any

ciphertext c ∈ C, define the projector

Projc =
∑
m,τ

|m, c, τ〉〈m, c, τ | = I ⊗ |c〉〈c| ⊗ I . (6.34)

Denote by ρei the state of the quantum register after the i-th encryption query in

scenario Q1. Let C′ be the set of all ciphertexts that do not result from any encryption

query. That is, ciphertexts that have zero weight in all encryption queries. Formally,

C′ = {c ∈ C : Tr (Projcρ
e
i ) = 0 , i = 1, . . . , qe} . (6.35)

We can now define the set Cvalid as the set of pairs (c, τ) that do not result from any

encryption query,

Cvalid =
{

(c, τ) : c ∈ C′
}
. (6.36)

Given a ciphertext c ∈ C′, trying to guess τ = f (c) leads to a valid pair with very

small probability:

|Cvalid| = 2−nτ
∣∣C′ × {0, 1}nτ ∣∣ . (6.37)

The results of the qe encryption queries contain no information about the set Cvalid.

Now let ρdi be the state of the quantum register before the i-th decryption query in

scenario Q1, and define
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Projvalid =
∑

(c,τ)∈Cvalid

|c, τ〉〈c, τ | . (6.38)

We can now define Wval,i as the total weight of terms belonging to Cvalid in the i-th

decryption query (i = 1, . . . , qd),

Wval,i = Tr
(
ρdi Projvalid

)
. (6.39)

Equivalently, let
∣∣ψdi 〉 be the state of the totality of the adversary’s quantum registers

immediately before the i-th decryption query in scenario Q1,

∣∣∣ψdi 〉 = Ui−1Vi−1 . . .U1V1U0 |s〉 (6.40)

=
∑
j,m,c,τ

λj,m,c,τ |j,m, c, τ〉 , (6.41)

where j labels the computational basis states of all internal registers (i.e., all registers

in addition to the quantum register). We then have

Wval,i =
〈
ψdi

∣∣∣Projvalid

∣∣∣ψdi 〉 =
∑
j,m,c

∣∣λj,m,c,f(c)

∣∣2 = 1−
∑

j,m,c,τ 6=f(c)

|λj,m,c,τ |2 . (6.42)

The probability that a direct measurement after the i-th decryption query gives a

string (c, τ) ∈ Cvalid is then given by the expectation value E (Wval,i).

Now the optimal way of searching for a string (c, τ) ∈ Cvalid is Grover’s algorithm. As

long as i is less than the minimum number of queries required for Grover’s algorithm

to succeed with certainty (which is approximately π
4

√
2nτ ), the best probability with

which any quantum algorithm can find a string (c, τ) ∈ Cvalid using i queries is exactly

the probability PrGrover achieved by running Grover’s algorithm with i queries [113, 6]

(also see Subsection 3.2.2). That probability is equal to PrGrover = sin2
((
i+ 1

2

)
θ
)
,

where sin θ
2 =
√

2−nτ [89]. To a very good approximation,
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PrGrover = 4i2 2−nτ . (6.43)

By measuring the quantum register after the i-th query and then stopping, the quan-

tum adversary can find a string (c, τ) ∈ Cvalid with probability E (Wval,i). Therefore

we must have

E (Wval,i) ≤ 4i2 2−nτ (6.44)

for i = 1, . . . , qd. What we actually need is a bound on the probabilities for
√

Wval,i.

For any random variable X ≥ 0, it holds that E
(√

X
)
≤
√

E (X). This follows from

E (X)−
(

E
(√

X
))2

= Var
(√

X
)
≥ 0. Hence,

E
(√

Wval,i

)
≤ 2i 2−nτ/2 . (6.45)

Now we want to compare the probability of outputting the guess b′ = 1 in scenario

Q0 and the probability of outputting the guess b′ = 1 in scenario Q1. Let
∣∣ψdi 〉 denote

the state immediately before the i-th decryption query in scenario Q1 as before and,

similarly, let

∣∣∣ψ̃di 〉 = Ui−1Ṽi−1 . . .U1Ṽ1U0 |s〉 (6.46)

denote the state immediately before the i-th decryption query in scenario Q0. We

have

Vi

∣∣∣ψdi 〉 =
∑

j,m,c,τ 6=f(c)

λj,m,c,τVi |j,m, c, τ〉+
∑

j,m,c,τ=f(c)

λj,m,c,τVi |j,m, c, τ〉

=
∑

j,m,c,τ 6=f(c)

λj,m,c,τ |j,m⊕⊥, c, τ〉

+
∑

j,m,c,τ=f(c)

λj,m,c,τ |j,m⊕DK1 (c) , c, τ〉 , (6.47)
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and

Ṽi

∣∣∣ψdi 〉 =
∑

j,m,c,τ 6=f(c)

λj,m,c,τṼi |j,m, c, τ〉+
∑

j,m,c,τ=f(c)

λj,m,c,τṼi |j,m, c, τ〉

=
∑

j,m,c,τ 6=f(c)

λj,m,c,τ |j,m⊕⊥, c, τ〉

+
∑

j,m,c,τ=f(c)

λj,m,c,τ |j,m⊕⊥, c, τ〉 . (6.48)

Putting these together and using Equation 6.42 twice, we get the following for the

fidelity of these two states:

∣∣∣〈ψdi ∣∣∣ Ṽ†iVi

∣∣∣ψdi 〉∣∣∣ =

∣∣∣∣∣∣
∑

j,m,c,τ 6=f(c)

|λj,m,c,τ |2

+
∑

j,m,m′,c

λ∗j,m′,c,f(c)λj,m,c,f(c)

〈
m′ ⊕⊥|m⊕DK1 (c)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j,m,c,τ 6=f(c)

|λj,m,c,τ |2 +
∑
j,m,c

λ∗j,m⊕DK1
(c)⊕⊥,c,f(c)λj,m,c,f(c)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

j,m,c,τ 6=f(c)

|λj,m,c,τ |2
∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
j,m,c

λ∗j,m⊕DK1
(c)⊕⊥,c,f(c)λj,m,c,f(c)

∣∣∣∣∣∣
= 1−Wval,i −

∣∣∣∣∣∣
∑
j,m,c

λ∗j,m⊕DK1
(c)⊕⊥,c,f(c)λj,m,c,f(c)

∣∣∣∣∣∣
≥ 1−Wval,i −

√∑
j,m,c

∣∣∣λj,m⊕DK1
(c)⊕⊥,c,f(c)

∣∣∣2√∑
j,m,c

∣∣λj,m,c,f(c)

∣∣2
= 1−Wval,i −

√
Wval,i

√
Wval,i

= 1− 2 Wval,i . (6.49)

This implies that the trace distance (see Subsection 2.3.6) of these two states is

bounded as
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D
(
Vi

∣∣∣ψdi 〉 , Ṽi

∣∣∣ψdi 〉) ≤√1− (1− 2 Wval,i)
2 ≤ 2

√
Wval,i . (6.50)

Before the first decryption query, the states of the adversary in both scenario Q0

and Q1 is identical,
∣∣ψd1〉 = U0 |s〉. Before the second decryption query, the states

are
∣∣∣ψ̃d2〉 = U1Ṽ1

∣∣ψd1〉 and
∣∣ψd2〉 = U1V1

∣∣ψd1〉, respectively. Therefore, for the trace

distance we have

D
(∣∣∣ψd2〉 , ∣∣∣ψ̃d2〉) = D

(
V1

∣∣∣ψd1〉 , Ṽ1

∣∣∣ψd1〉) ≤ 2
√

Wval,1 . (6.51)

For arbitrary i > 0, the triangle inequality gives us

D
(
|ψi+1〉 ,

∣∣∣ψ̃i+1

〉)
= D

(
UiVi |ψi〉 ,UiṼi

∣∣∣ψ̃i〉)
= D

(
Vi |ψi〉 , Ṽi

∣∣∣ψ̃i〉)
≤ D

(
Vi |ψi〉 , Ṽi |ψi〉

)
+ D

(
Ṽi |ψi〉 , Ṽi

∣∣∣ψ̃i〉)
= D

(
Vi |ψi〉 , Ṽi |ψi〉

)
+ D

(
|ψi〉 ,

∣∣∣ψ̃i〉)
≤ 2
√

Wval,i + D
(
|ψi〉 ,

∣∣∣ψ̃i〉) . (6.52)

By induction, it follows that

D
(
|ψqd〉 ,

∣∣∣ψ̃qd〉) ≤ 2

qd−1∑
i=1

√
Wval,i . (6.53)

This implies that, for any measurement, the probabilities for b′ = 1 in both scenario

can not differ by more than 2
∑qd−1

i=1

√
Wval,i.

Pr
[
ExpQ1

S̃E
(A) = 1

]
≤ Pr

[
ExpQ0

S̃E
(A) = 1

]
+ 2

qd−1∑
i=1

√
Wval,i . (6.54)

Now the expectation of that quantity is
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E

(
2

qd−1∑
i=1

√
Wval,i

)
= 2

qd−1∑
i=1

E
(√

Wval,i

)
≤ 2−nτ/24

qd−1∑
i=1

i

≤ 2q2
d 2−nτ/2 . (6.55)

Using the Markov inequality, this implies

Pr

(
2

qd−1∑
i=1

√
Wval,i ≥ ξ

)
≤ 1

ξ
E

(
2

qd−1∑
i=1

√
Wval,i

)

≤ 2

ξ
q2
d 2−nτ/2 . (6.56)

That is, with probability at least 1− 2
ξ q

2
d 2−nτ/2, we have that

Pr
[
ExpQ1

S̃E
(A) = 1

]
=

(
Pr

[
ExpQ1

S̃E
(A) = 1

∣∣∣∣∣2
qd−1∑
i=1

√
Wval,i ≥ ξ

]

·Pr

[
2

qd−1∑
i=1

√
Wval,i ≥ ξ

])

+

(
Pr

[
ExpQ1

S̃E
(A) = 1

∣∣∣∣∣2
qd−1∑
i=1

√
Wval,i < ξ

]

·Pr

[
2

qd−1∑
i=1

√
Wval,i < ξ

])

≤ 1 · 2

ξ
q2
d 2−nτ/2 +

(
Pr
[
ExpQ0

S̃E
(A) = 1

]
+ ξ
)
· 1 . (6.57)

Hence

Pr
[
ExpQ1

S̃E
(A) = 1

]
≤ Pr

[
ExpQ0

S̃E
(A) = 1

]
+ ξ +

2

ξ
q2
d 2−nτ/2 . (6.58)

136



6.2 Real-or-Permutation Indistinguishability in a Quantum Setting

We can now choose ξ so that this has the best form. One possibility is ξ = 2−nτ/4,

which leads to

Pr
[
ExpQ1

S̃E
(A) = 1

]
≤ Pr

[
ExpQ0

S̃E
(A) = 1

]
+
(
1 + 2 q2

d

)
2−nτ/4 . (6.59)

This bound holds irrespective of the chosen bit b in the experiment. Since the

advantages are defined as

AdvQ1

S̃E
(A) = 2 Pr

[
ExpQ1

S̃E
(A) = 1

]
− 1 , (6.60)

and similarly

AdvQ0

S̃E
(A) = 2 Pr

[
ExpQ0

S̃E
(A) = 1

]
− 1 . (6.61)

Therefore

AdvQ1

S̃E
(A) ≤ AdvQ0

S̃E
(A) + 2

(
1 + 2 q2

d

)
2−nτ/4 . (6.62)

From Equation 6.30 we get

Advrop−qscca
S̃E

(A) ≤ Advrop−qscpaSE (B) + 2
(
1 + 2 q2

d

)
2−nτ/4 (6.63)

which concludes the proof of the claim.

Now we look at the original experiment. Assume that A is attacking RoP-qsCCA

security of SE ′ in Construction 4. The challenger maintains the experiment.

The quantum adversary, A, makes adaptive quantum queries of its choice. The

queries can be either encryption or decryption queries. The oracles responds to each

query by applying a unitary transformation to the adversary’s quantum register.
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In the case of encryption queries, the unitary transformation depends on the bit b.

If b = 1, then the encryption oracle applies the unitary UEK1
, followed by UFK2

:

∑
m

αm |m, 0, 0〉
UFK2

(·)UEK1
(·)

−−−−−−−−−→
∑
m

αm |m, EK1 (m) , FK2 (EK1 (m))〉 , (6.64)

where c = EK1 (m) and τ = FK2 (EK1 (m)).

If b = 0, the encryption oracle chooses a permutation Π ←$ Perm (n), and applies

the unitary UEK1
(Π(·)), followed by UFK2

:

∑
m

αm |m, 0, 0〉
UFK2

(·)UEK1
(Π(·))

−−−−−−−−−→
∑
m

αm |m, EK1 (Π (m)) , FK2 (EK1 (Π (m)))〉 ,

(6.65)

where c = EK1 (Π (m)) and τ = FK2 (EK1 (Π (m))).

In the case of decryption queries, the decryption oracle applies the unitary UD′K1,K2
(·,·)

to the adversary’s quantum register:

∑
c,τ

αc,τ |c, τ, 0〉
UD′K1,K2

(·,·)

−−−−−−−−−→
∑
c,τ

αc,τ
∣∣c, τ,D′K1,K2 (c, τ)

〉
, (6.66)

where

D′K1,K2 (c, τ) =

{
m← DK1 (c) if FK2 (c) = τ
⊥ otherwise

.

Eventually the quantum adversary A outputs a guess b′ for b. The advantage of the

adversary is
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Advrop−qsccaSE ′ (A) = Pr
[
Exprop−qscca−1

SE ′ (A) = 1
]
− Pr

[
Exprop−qscca−0

SE ′ (A) = 1
]
.

(6.67)

Assume that A is attacking RoP-qsCCA security of SE ′ in Construction 4. We

construct a new quantum adversary J , using A, to attack QPRF security of F . J
runs A, and uses its oracle to provide a simulation of A’s oracles in RoP-qsCCA

experiment.

The challenger maintains the QPRF experiment. The quantum adversary J chooses

a bit d←$ {0, 1} and a key K1 ←$K. It is also assumed that J simulates E and D
of Construction 4 perfectly. A adaptively makes encryption or decryption quantum

queries.

In the case of encryption queries, if d = 1 then J applies UEK1
on the first 2n

qubits of A’s quantum register. Otherwise, when d = 0, J applies UEK1
(Π(·)) to A’s

quantum register, where Π←$ Perm (n) is chosen by J . Then J sends the quantum

register to its oracle. The oracle applies the unitary UFK2
or Uf to the last 2n bits

of the quantum register when b = 1 or b = 0 respectively.

In the case of decryption queries, J sends A’s quantum register to the oracle where

it applies UFK2
or Uf to the register when b = 1 or b = 0 respectively,

∑
c

αc |0, c, τ, 0〉
Uf(c) or UFK2

(c)

−−−−−−−−−→
∑
c

αc
∣∣0, c, τ, τ ′〉 . (6.68)

Then J applies UD̃K1
(c)

to the quantum register:

∑
c

αc
∣∣0, c, τ, τ ′〉 UD̃K1

(c)

−−−−−−−−−→
∑
c

αc

∣∣∣D̃K1 (c) , c, τ, τ ′
〉
, (6.69)

where

139



6.2 Real-or-Permutation Indistinguishability in a Quantum Setting

D̃K1 (c) =

{
m← DK1 (c) if τ = τ ′

⊥ otherwise
.

Eventually A outputs a bit d′ for d. If d = d′, J outputs 1. Otherwise it outputs 0.

For the advantage of J we have:

AdvqprfF (J ) = Pr
[
Expqprf−1

F (J ) = 1
]
− Pr

[
Expqprf−0

F (J ) = 1
]
. (6.70)

When b = 0, we can see that J simulates the RoP-qsCCA experiment for A when A
is attacking S̃E . Then

Pr
[
Expqprf−0

F (J ) = 1
]

=
1

2
+

1

2
·Advrop−qscca

S̃E
(A) . (6.71)

When b = 1, we can see that J simulates the RoP-qsCCA experiment for A when A
is attacking SE ′. Then,

Pr
[
Expqprf−1

F (A) = 1
]

=
1

2
+

1

2
·Advrop−qsccaSE ′ (A) . (6.72)

Hence,

AdvqprfF (J ) =
1

2
·Advrop−qsccaSE ′ (A)− 1

2
·Advrop−qscca

S̃E
(A)

2 ·AdvqprfF (J ) ≥ Advrop−qsccaSE ′ (A)−Advrop−qscca
S̃E

(A)

Advrop−qsccaSE ′ (A) ≤ 2 ·AdvqprfF (J ) + Advrop−qscpaSE (B) + 2
(
1 + 2q2

d

)
2−nτ/4 .

(6.73)

Finally we get

Advrop−qscpaSE (B)+2·AdvqprfF (J ) ≥ Advrop−qsccaSE ′ (A)−2
(
1 + 2q2

d

)
2−nτ/4 , (6.74)
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which concludes the proof.

6.3 Semantic Security in a Quantum Setting

The idea of semantic security (see Subsection 4.2.1.4) is that having access to a

ciphertext should not provide any advantage to an adversary A who is trying to obtain

information about the plaintext. This is formalised in a game where the adversary

chooses a function f and tries to predict the value f(m) for a message m chosen at

random from a set M, where M is also chosen by the adversary. The adversary’s

advantage is defined by comparing its success probability in two experiments, one

in which A is provided with the encryption of m, and one in which A is provided

instead with the encryption of a message m′ which is also chosen randomly, and

independently of m, from the set M. For this definition to be meaningful, the set

M must be valid in the sense that all messages in M must have the same length.

We now give a closely analogous definition of semantic security against a quantum

adversary. The main difference from the original definition is that we allow the set

M to contain quantum superpositions of messages. As in the classical definition, it

will be necessary to restrict the set M in order to arrive at a meaningful definition.

Definition 12 Let M be a set of superpositions of n-bit messages of the form

|ψ〉 =
2n−1∑
m=0

αm |m〉 , (6.75)

and let Perm (n) be the set of all permutations of {0, 1}n. The set M is called valid

if there is a state |ψ〉 and a subset P ⊆ Perm (n) such that

M = {UΠ |ψ〉 : Π ∈ P} , (6.76)

where UΠ is a unitary transformation. In other words, M is valid if all its elements

are permutations of a given quantum state |ψ〉.
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Our definition of valid sets is just one of many possibilities. It is strictly larger

than the set of classical messages, which here would correspond to choosing a

computational basis state for |ψ〉. It is probably not the largest possible set that

leads to an achievable notion. Which choices of message space lead to an achievable

notion of semantic security remains an open question.

Here is an example that shows why there must be some restriction on the allowed

sets M. Let m0 be some message, and let |ψ+〉 = 2−n/2
∑

m |m〉 be the equal

superposition of all 2n messages. Then, for a permutation Π←$ Perm (n), we have

UΠ |ψ+〉 = |ψ+〉 , (6.77)

i.e., |ψ+〉 is invariant under any permutation. On the other hand,

〈m0|UΠ|m0〉 = 0 (6.78)

with probability close to 1. Thus, a quantum adversary can easily tell which of the

two states |m0〉 and |ψ+〉 was encrypted. This example is similar to the proof of

Theorem 4.2 in [29].

Before explaining the definition, we define a number of notations. In Subsection 3.1.1,

we explained that a quantum circuit is a quantum gate sequence. The size of a

quantum circuit is the number of the elementary quantum gates in the circuit, where

the elementary quantum gates are chosen from a universal set of gates. We stipulate

that a quantum circuit is executed by a particular universal quantum circuit evaluator,

or UQE. The action of our UQE consists of applying a quantum operation specified

by a string x ∈ {0, 1}∗ to a quantum register Q. We will denote this action by

UQE (x,Q). Optionally, the universal quantum circuit evaluator returns an output

string y, which we will indicate by y ← UQE (x,Q). The output y depends on the

input quantum circuit, but in general, y will be randomised, simply because in order

to get the output from a quantum computation, one has to make a measurement.

Assume a quantum adversary that plays the experiments SEM-qsCPA and SEM-
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qsCCA shown in Figure 6.3. Both experiments begin by choosing a bit b ∈ {0, 1}
that parametrises the experiments, and a key K ← K. The quantum adversary runs

in two phases, select and predict, where it is given quantum superposition access to

its oracles.

During the select phase, the quantum adversary adaptively requests encryptions of

quantum queries of its choice. The encryption oracle responds to each encryption

query by applying the unitary UEK(·) to the first (2n+ nr) qubits of the quantum

adversary’s quantum register, where n is the length of the encryption query and

nr is the length of the randomness used by the encryption oracle to encrypt the

query. Additionally, the quantum adversary is given quantum superposition access

to a decryption oracle in the SEM-qsCCA experiment. The quantum adversary can

query the decryption oracle on any ciphertext. At the end of the select phase, the

quantum adversary outputs a classical description of a set P of permutations as well

as a quantum circuit description R of a state |ψ〉.

At the beginning of the predict phase, the challenger executes UQE (R,QA), prepar-

ing the state |ψ〉 in the adversary’s quantum register QA. The challenger then chooses

two permutations Π0 and Π1 at random from the set P , executes UQE (Π0, QA),

thus applying the unitary UΠ0 to QA, and finally applies the encryption oracle EK to

QA. Note that Π0 and Π1 are in the form of quantum circuit descriptions. The adver-

sary’s quantum register now contains the state UEK |ψ0〉, where |ψb〉 = UΠb |ψ〉 ∈ M
and b ∈ {0, 1}. We call this the challenge ciphertext. During the predict phase,

the quantum adversary is again given superposition access to the encryption oracle.

Additionally, the quantum adversary is given quantum superposition access to a

decryption oracle in the SEM-qsCCA experiment. The quantum adversary can

query the decryption oracle on any ciphertext as long as the condition given in

Equation 6.21 is satisfied. At the end of this phase, the quantum adversary outputs

the description of a quantum circuit V , and a bit z.

The challenger now executes UQE (R,QA), again preparing the state |ψ〉 in the

register QA. The challenger then runs UQE (Πb, QA), thus applying the unitary

UΠb to QA, which means that QA now contains the state |ψb〉 ∈ M. Finally, the

challenger runs z′ ← UQE (V,QA), thus generating an output bit z′. The experiment

then returns 1 (‘success’) if z′ = z, i.e., if the adversary guessed z′ correctly, and 0
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otherwise.

Definition 13 [SEM-qsCPA and SEM-qsCCA] Let SE = (K, E ,D) be a sym-

metric encryption scheme. Define experiment Expsem−qscpa−bSE (A) and experiment

Expsem−qscca−bSE (A) for a quantum adversary A and a bit b as depicted in Figure 6.3.

In the experiments, the adversary A is given quantum superposition access to an en-

cryption oracle. The encryption oracle responds to each query by applying a unitary

transformation to the first (2n+ nr) qubits of the adversary’s quantum register QA.

The adversary A is additionally given quantum superposition access to a decryption

oracle in the latter experiment. For any challenge ciphertext
∑

c λc |mc, c〉, we define

the projector Projc =
∑

x |x, c〉〈x, c|. No restriction is imposed on the quantum

adversary’s queries, except, it is assumed that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,

where ρ is the state of QA before making any decryption query.

The corresponding advantages of a quantum adversary A are given by:

Advsem−qscpaSE (A) = Pr
[
Expsem−qscpa−1

SE (A) = 1
]
− Pr

[
Expsem−qscpa−0

SE (A) = 1
]
,

Advsem−qsccaSE (A) = Pr
[
Expsem−qscca−1

SE (A) = 1
]
− Pr

[
Expsem−qscca−0

SE (A) = 1
]
.

These advantages refer to a specific quantum adversary using resources as discussed

in Section 3.4.

The relevant resources for the quantum adversary A include the running time t,

which includes the maximum running time of V where the maximum is taken over

all states |ψ〉 inM, the numbers qe of encryption and qd of decryption oracle queries,

and the size of the classical output, µ = µV +µR +µP bits, where µV and µR are the

maximum number of bits required for the description of V and R respectively and

µP = 2 · µΠ, where µΠ is the maximum number of bits required for a permutation Π

output by P .
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Experiment Expsem−qscpa−bSE (A) Experiment Expsem−qscca−bSE (A)

K ← K

(R,P )← AEK,QA () (select) (R,P )← AEK,QA (),DK,QA () (select)

Π0 ←$P ; Π1 ←$P

Run UQE (R,QA)

Run UQE (Π0, QA)

Apply UEK to QA

(V, z)← AEK,QA () (predict) (V, z)← AEK,QA (),DK,QA () (predict)

Run UQE (R,QA)

Run UQE (Πb, QA)

z′ ← UQE (V,QA)

if z = z′ then
b′ ← 1

else
b′ ← 0

end if
return b′

EK,QA ()

Apply UEK(·) to QA
return

DK,QA ()

Apply UDK(·) to QA
return

Figure 6.3: The SEM-qsCPA and SEM-qsCCA confidentiality notions. The boxed
codes are excluded in SEM-qsCPA experiment, whereas they replace the codes
adjacent to them in SEM-qsCCA experiment.
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6.4 Relations Among Notions

In Subsection 4.2.1.6, we proved that classical RoP and RoR security notions are

equivalent. From this, we can deduce that classical RoP also implies SEM security.

Here we prove that the quantum analogue of RoP also implies our quantum analogue

of SEM security.

Theorem 18 (RoP-qsATK ⇒ SEM-qsATK) For any scheme SE = (K, E ,D),

assume that A2 is a quantum adversary attacking SE in the SEM-qsATK sense, with

a running time of at most t2, making at most qe encryption and (in the CCA case)

qd decryption queries to the oracle, and the size of the classical output of µ2 bits, and

having advantage

Advsem−qscpaSE (A2) ≥ ε2 ,

Advsem−qsccaSE (A2) ≥ ε2 .

Then there exists a quantum adversary A1 attacking SE in the RoP-qsATK sense,

with a running time t1 of at most t2 + qec
(

3
2µ2 + µΠ′

)
, making at most qe encryption

and (in the CCA case) qd decryption queries to the oracle, and the size of the classical

output of µ1 = µ2 + 2µΠ′ bits, and having advantage

Advrop−qscpaSE (A1) ≥ ε2
4
,

Advrop−qsccaSE (A1) ≥ ε2
4
.

Here, c is a constant, and µΠ′ is the maximum number of bits required for the

description of a permutation Π′.

Before proving Theorem 18, we propose two more notions that will help us in the

proof. We name these new notions ‘FtG’ and ‘LoR’.
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Assume a quantum adversary that plays the experiments FtG-qsCPA and FtG-

qsCCA shown in Figure 6.4. Both experiments begin with choosing a key K ← K
and a bit b ∈ {0, 1}. The quantum adversary runs in two phases, find and guess,

where it is given quantum superposition access to its oracles.

During the find phase the quantum adversary adaptively requests encryptions of

quantum queries of its choice. The encryption oracle responds to each encryption

query by applying the unitary UEK(·) to the first (2n+ nr) qubits of the quantum

adversary’s quantum register, where n is the length of the encryption query and

nr is the length of the randomness used by the encryption oracle to encrypt the

query. Additionally, the quantum adversary is given quantum superposition access

to a decryption oracle in the FtG-qsCCA experiment. The quantum adversary can

query the decryption oracle on any ciphertext. At the end of the find phase, the

quantum adversary outputs quantum circuit descriptions of two permutations Π0,

Π1 : {0, 1}n → {0, 1}n, and also it prepares an n qubit quantum query in its quantum

register.

At the beginning of the guess phase, the challenger executes UQE (Πb, QA) which

applies UΠb to the adversary’s quantum register. Then the challenger applies

the unitary UEK(·) to the adversary’s quantum register. We call the result the

challenge ciphertext. During the guess phase, the quantum adversary is again

given superposition access to the encryption oracle. Additionally, the quantum

adversary is given quantum superposition access to a decryption oracle in the FtG-

qsCCA experiment. The quantum adversary can query the decryption oracle on any

ciphertext as long as the condition given in Equation 6.21 is satisfied. At the end of

this phase, the quantum adversary outputs a bit b′.

Definition 14 [FtG-qsCPA and FtG-qsCCA] Let SE = (K, E ,D) be a sym-

metric encryption scheme. Define experiment Expftg−qscpa−bSE (A) and experiment

Expftg−qscca−bSE (A) for a quantum adversary A and a bit b as depicted in Figure 6.4.

In the experiments, the adversary A is given quantum superposition access to an en-

cryption oracle. The encryption oracle responds to each query by applying a unitary

transformation to the first (2n+ nr) qubits of the adversary’s quantum register QA.

A is additionally given quantum superposition access to a decryption oracle in the

latter experiment. For any challenge ciphertext
∑

c λc |mc, c〉, we define the projector
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Projc =
∑

x |x, c〉〈x, c|. No restriction is imposed on the quantum adversary’s queries,

except, it is assumed that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,

where ρ is the state of QA before making any decryption query.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantages of a quantum adversary

A are given by:

Advftg−qscpaSE (A) = Pr
[
Expftg−qscpa−1

SE (A) = 1
]
− Pr

[
Expftg−qscpa−0

SE (A) = 1
]
,

Advftg−qsccaSE (A) = Pr
[
Expftg−qscca−1

SE (A) = 1
]
− Pr

[
Expftg−qscca−0

SE (A) = 1
]
.

These advantages refer to a specific quantum adversary using resources as discussed

in Section 3.4.

We now give the LoR notion. Assume a quantum adversary that plays the experiments

LoR-qsCPA and LoR-qsCCA shown in Figure 6.5. Both experiments begin with

choosing a key K ← K and a bit b ∈ {0, 1}. The quantum adversary is given quantum

superposition access to an encryption oracle. The quantum adversary adaptively

requests encryptions of quantum queries of its choice. Also, for each query, the

quantum adversary outputs quantum circuit description of two permutations Π0,

Π1 : {0, 1}n → {0, 1}n. The challenger executes UQE (Πb, QA), which applies UΠb

to the adversary’s quantum register. Then the challenger applies the unitary UEK(·)

to the first (2n+ nr) qubits of the adversary’s quantum register. We call the result,

the challenge ciphertext.

Additionally, the quantum adversary is given quantum superposition access to a

decryption oracle in the LoR-qsCCA experiment. The quantum adversary can query

the decryption oracle on any ciphertext as long as the condition given in Equation 6.21

is satisfied. At some point the quantum adversary outputs a bit b′.
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Experiment Expftg−qscpa−bSE (A) Experiment Expftg−qscca−bSE (A)

K ← K

((Π0,Π1) , QA)← AEK,QA () (find)

((Π0,Π1) , QA)← AEK,QA (),DK,QA () (find)

Run UQE (Πb, QA)
Apply UEK(·) to QA

b′ ← AEK,QA () (guess) b′ ← AEK,QA (),DK,QA () (guess)

return b′

EK,QA ()

Apply UEK(·) to QA
return

DK,QA ()

Apply UDK(·) to QA
return

Figure 6.4: The FtG-qsCPA and FtG-qsCCA confidentiality notions. The boxed
codes are excluded in FtG-qsCPA experiment, whereas they replace the codes adjacent
to them in FtG-qsCCA experiment.

Definition 15 [LoR-qsCPA and LoR-qsCCA] Let SE = (K, E ,D) be a sym-

metric encryption scheme. Define experiment Explor−qscpa−bSE (A) and experiment

Explor−qscca−bSE (A) for an adversary A and a bit b as depicted in Figure 6.5. In the

experiments, A is given quantum superposition access to a left-or-right encryption

oracle LoRQA (·). The encryption oracle responds to each query by applying a unitary

transformation to the first (2n+ nr) bits of the adversary’s quantum register QA.

The adversary A is additionally given quantum superposition access to a decryption

oracle, DecQA (), in the latter experiment. For any challenge ciphertext
∑

c λc |mc, c〉,
we define the projector Projc =

∑
x |x, c〉〈x, c|. No restriction is imposed on the

quantum adversary’s queries except, it is assumed that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,

where ρ is the state of QA before making any decryption query.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantages of a quantum adversary

A are given by:
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Explor−qscpa−bSE (A) Explor−qscca−bSE (A)

K ← K
b′ ← ALoRQA (·) b′ ← ALoRQA (·),DecQA ()

return b′

LoRQA (Π0,Π1)

Run UQE (Πb, QA)
Apply UEK(·) to QA
return

DecQA ()

Apply UDK(·) to QA
return

Figure 6.5: The LoR-qsCPA and LoR-qsCCA confidentiality notions. The boxed
codes are excluded in LoR-CPA experiment, whereas they replace the codes adjacent
to them in LoR-CCA experiment.

Advlor−qscpaSE (A) = Pr
[
Explor−qscpa−1

SE (A) = 1
]
− Pr

[
Explor−qscpa−0

SE (A) = 1
]
,

Advlor−qsccaSE (A) = Pr
[
Explor−qscca−1

SE (A) = 1
]
− Pr

[
Explor−qscca−0

SE (A) = 1
]
.

These advantages refer to a specific quantum adversary using resources as discussed

in Section 3.4.

Proof of Theorem 18. We prove this theorem in four steps.

Step 1 (RoP-qsATK ⇒ LoR-qsATK): For any scheme SE = (K, E ,D), assume that

A4 is a quantum adversary attacking SE in the LoR-qsATK sense, with a running

time of at most t4, making at most qe encryption and (in the CCA case) qd decryption

queries to the oracle, and the size of the classical output of µ4 bits, and having

advantage
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Advlor−qscpaSE (A4) ≥ ε4 ,

Advlor−qsccaSE (A4) ≥ ε4 .

Then there exists a quantum adversary A1 attacking SE in the RoP-qsATK sense,

with a running time of at most t1 = t4 + qec
µ4

2 , making at most qe encryption and

(in the CCA case) qd decryption queries to the oracle, and the size of the classical

output of µ1 = µ4 bits, and having advantage

Advrop−qscpaSE (A1) ≥ ε4
2
,

Advrop−qsccaSE (A1) ≥ ε4
2
.

Assume A4 is a quantum adversary attacking SE in the LoR-qsATK sense. We

construct a new quantum adversary A1, using A4, that attacks SE in the RoP-qsATK

sense. A1 runs A4, using its oracles to provide a simulation of A4’s oracles. The

RoP challenger maintains the experiment.

A1 selects a bit b′ ←$ {0, 1}, independently from bit b. A4 adaptively requests

encryptions of quantum queries of its choice. Also for each query, it places quantum

circuit descriptions of two permutations Π′0, Π′1 : {0, 1}n → {0, 1}n in its classical

register. A1 reads A4’s classical register. Then it executes UQE
(
UΠ′

b′
, QA4

)
,

and invokes RoPQA4
(·). If b = 0, the encryption oracle chooses a permutation

Π←$ Perm (n). Then it applies UEK(Π(·)) to the first (2n+ nr) qubits of the given

quantum register. If b = 1, the encryption oracle applies the unitary UEK(·) to the

first (2n+ nr) qubits of the given quantum register. We call the result of this type

of query the challenge ciphertexts.

Moreover, A4 adaptively requests decryption of quantum queries of its choice. When

this happens, the decryption oracle Dec (·) applies the unitary UDK(·) to the quantum

register.

A4 eventually outputs a bit d. If b′ = d then A1 outputs 1. Otherwise it outputs

0. Note that, for any challenge ciphertext
∑

c λc |mc, c〉, we define the projector
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Projc =
∑

x |x, c〉〈x, c|. We use ρ to denote the state of A4’s quantum register before

making any decryption query. Then we assume that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,

for all quantum adversaries A4. For A1’s advantage we have:

Advrop−qsatkSE (A1) = Pr
[
Exprop−qsatk−1

SE (A1) = 1
]
−Pr

[
Exprop−qsatk−0

SE (A1) = 1
]
.

(6.79)

In the case that b = 1, A1 provides a perfect simulation for A4. Hence, A1 succeeds

with the same probability as A4. Therefore we have to calculate

Pr
[
Exprop−qsatk−1

SE (A1) = 1
]

(6.80)

which we can rewrite based on A4’s probability of success,

Pr
[
Exprop−qsatk−1

SE (A1) = 1
]

=
1

2
· Pr

[
Explor−qsatk−1

SE (A4) = 1
]

+
1

2
· Pr

[
Explor−qsatk−0

SE (A4) = 1
]
. (6.81)

On the other hand, in the case where b = 0, the encryption oracle first applies the

permutation Π to the given quantum register, which results in a random permutation

in the register regardless of whether it was maintained in the case b′ = 0 or b′ =

1. Therefore, A1 provides a simulation for A4 where A4’s encryption oracle in

Explor−qsatk−0 and in Explor−qsatk−1 returns identically distributed answers. Hence,

A1 outputs a random bit and succeeds with probability 1
2 . Therefore,

Pr
[
Exprop−qsatk−0

SE (A1) = 1
]

=
1

2
. (6.82)
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Then we have that,

Advrop−qsatkSE (A1) = Pr
[
Exprop−qsatk−1

SE (A1) = 1
]
− Pr

[
Exprop−qsatk−0

SE (A1) = 1
]

= Pr
[
Exprop−qsatk−1

SE (A1) = 1
]
− 1

2

=
1

2
· Pr

[
Explor−qsatk−1

SE (A4) = 1
]

+
1

2
· Pr

[
Explor−qsatk−0

SE (A4) = 0
]
− 1

2

=
1

2
· Pr

[
Explor−qsatk−1

SE (A4) = 1
]

+
1

2
·
(

1− Pr
[
Explor−qsatk−0

SE (A4) = 1
])
− 1

2

=
1

2
·
(

Pr
[
Explor−qsatk−1

SE (A4) = 1
]

− Pr
[
Explor−qsatk−0

SE (A4) = 1
])

=
1

2
·Advlor−qsatkSE (A4) . (6.83)

The running time of A1 is at most t1 = t4 + TΠ′ , where TΠ′ = qec
µ4

2 is the maximum

required time to apply a permutation Π′. A1 makes at most qe encryption and (in

the CCA case) qd decryption oracle queries, the size of the classical output is µ1 = µ4

bits where µ4 = 2 · µΠ′ .

Step 2 (LoR-qsATK ⇒ FtG-qsATK): For any scheme SE = (K, E ,D), assume that

A3 is a quantum adversary attacking SE in the FtG-qsATK sense, with a running

time of at most t3, making at most qe encryption and (in the CCA case) qd decryption

queries to the oracle, and the size of the classical output of µ3 bits, and having

advantage

Advftg−qscpaSE (A3) ≥ ε3 ,

Advftg−qsccaSE (A3) ≥ ε3 .

Then there exists a quantum adversary A4 attacking SE in the LoR-qsATK sense,

with a running time of at most t4 = t3, making at most qe encryption and (in the
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CCA case) qd decryption queries to the oracle, and the size of the classical output of

µ4 = µ3 + 2µΠ′ bits, and having advantage

Advlor−qscpaSE (A4) ≥ ε3 ,

Advlor−qsccaSE (A4) ≥ ε3 .

Assume A3 is a quantum adversary attacking SE in the FtG-qsATK sense. We

construct a new quantum adversary A4, using A3, that attacks SE in the LoR-qsATK

sense. A4 runs A3, using its oracles to provide a simulation of A3’s oracles. The

LoR challenger maintains the experiment.

A4 runs A3 in the find phase. A3 adaptively makes quantum queries of its choice.

These can be either encryption or decryption queries. In the case of encryption

queries, for each quantum query, A4 places quantum circuit descriptions of two

permutations Π′0 and Π′1 in its classical register. We assume these permutations are

identity functions. The encryption oracle LoRQA3
(·) is invoked. The encryption oracle

responds to each query by first executing UQE (Πb, QA3), and then applying the

unitary UEK(·) to the first (2n+ nr) qubits of the adversary’s quantum register. At

the end of the find phase, A3 requests encryption of a quantum query for which it also

places quantum circuit descriptions of two permutations Π0, Π1 : {0, 1}n → {0, 1}n in

its classical register. To respond, the encryption oracle executes UQE (Πb, QA3) and

then applies the unitary UEK(·) to the first (2n+ nr) qubits of the quantum register

QA3 . Without loss of generality, we call the results of all encryption queries made

by A3 the challenge ciphertexts. In the case of decryption queries, the decryption

oracle DecQA3
() applies the unitary UDK(·) to the quantum register. At some point,

A3 returns a bit d which A4 outputs as its guess.

Note that for any challenge ciphertext
∑

c λc |mc, c〉, we define the projector Projc =∑
x |x, c〉〈x, c|. We use ρ to denote the state of A3’s quantum register before making

any decryption query. Then we assume that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,
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6.4 Relations Among Notions

for all quantum adversaries A3. For either case of b = 0 or b = 1, A4 provides a

perfect simulation for A3. Therefore, A4 succeeds with the same probability as A3.

Hence, for A4’s advantage we have

Advlor−qsatkSE (A4) = Pr
[
Explor−qsatk−1

SE (A4) = 1
]
− Pr

[
Explor−qsatk−0

SE (A4) = 1
]

= Pr
[
Expftg−qsatk−1

SE (A3) = 1
]
− Pr

[
Expftg−qsatk−0

SE (A3) = 1
]

= Advftg−qsatkSE (A3) . (6.84)

A4 runs in time at most t4 = t3, and makes at most qe encryption and (in the CCA

case) qd decryption queries, and the size of the classical output is µ4 = µ3 + 2µΠ′

bits.

Step 3 (FtG-qsATK ⇒ SEM-qsATK): For any scheme SE = (K, E ,D), assume that

A2 is a quantum adversary attacking SE in the SEM-qsATK sense, with a running

time of at most t2, making at most qe encryption and (in the CCA case) qd decryption

queries to the oracle, and the size of the classical output of µ2 bits, and having

advantage

Advsem−qscpaSE (A2) ≥ ε2 ,

Advsem−qsccaSE (A2) ≥ ε2 .

Then there exists a quantum adversary A3 attacking SE in the FtG-qsATK sense,

with a running time t3 of at most t2 + qecµ2, making at most qe encryption and (in

the CCA case) qd decryption queries to the oracle, and the size of the classical output

of µ2 = µ3 bits, and having advantage

Advftg−qscpaSE (A3) ≥ ε2
2
,

Advftg−qsccaSE (A3) ≥ ε2
2
.
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Assume A2 is a quantum adversary attacking SE in the SEM-qsATK sense. We

construct a new quantum adversary A3, using A2, that attacks SE in the FtG-qsATK

sense. A3 runs A2, and uses its oracles to provide a simulation of A2’s oracles. The

FtG challenger maintains the experiment.

A3 runs A2 in its select phase. A2 adaptively makes quantum queries of its choice.

The queries can be either encryption or decryption queries. In the case of encryption

queries, the encryption oracle responds to each query by applying the unitary UEK(·)

to the first (2n+ nr) qubits of the adversary’s quantum register. At the end of

the select phase, A2 outputs a classical description of P , a set of permutations, as

well as R a quantum circuit description of a state |ψ〉. Together, R and P define a

distribution M of quantum queries. A3 reads A2’s classical register. It then samples

permutations Π0 ←$P and Π1 ←$P . Also, A3 executes UQE (R,QA2) to prepare

its quantum register in the state |ψ〉. A3 places the description of two permutations

Π0 and Π1 in its classical register. The encryption oracle executes UQE (Πb, QA2)

and then applies the unitary UEK(·) to the first (2n+ nr) bits of A2’s quantum

register. We call the result of this type of query, the challenge ciphertexts.

In the case of decryption queries, the decryption oracle applies the unitary UDK(·).

Note that for any challenge ciphertext
∑

c λc |mc, c〉, we define the projector Projc =∑
x |x, c〉〈x, c|. We use ρ to denote the state of A2’s quantum register before making

any decryption query. Then we assume that

Pr [∃c : λc 6= 0 and Tr (Projc ρ) 6= 0] = 0 ,

for all quantum adversaries A2. At some point, A3 runs A2 in its predict phase. A2

outputs a description of a quantum circuit V and a guess z. Then, A3 executes

UQE (R,QA2) to prepare the quantum register in the state |ψ〉, and executes

UQE (V,QA2) to obtain a value z′. If z = z′, A3 returns 0. Otherwise, it returns a

random bit.

When b = 0 we have
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Pr
[
Expsem−qsatkSE (A2) = 1

]
= Pr

[
Expsem−qsatk−0

SE (A2) = 1
]
. (6.85)

Then,

Pr
[
Expftg−qsatk−0

SE (A3) = 1
]

= Pr
[
Expsem−qsatk−0

SE (A2) = 1
]

+
1

2
·
(

1− Pr
[
Expsem−qsatk−0

SE (A2) = 1
])

=
1

2
· Pr

[
Expsem−qsatk−0

SE (A2) = 1
]

+
1

2
. (6.86)

When b = 1 we have

Pr
[
Expsem−qsatkSE (A2) = 1

]
= Pr

[
Expsem−qsatk−1

SE (A2) = 1
]
. (6.87)

Then,

Pr
[
Expftg−qsatk−1

SE (A3) = 1
]

= Pr
[
Expsem−qsatk−1

SE (A2) = 1
]

+
1

2
·
(

1− Pr
[
Expsem−qsatk−1

SE (A2) = 1
])

=
1

2
· Pr

[
Expsem−qsatk−1

SE (A2) = 1
]

+
1

2
. (6.88)

Hence, from the above equations, for the advantage of A3 we have,
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Advftg−qsatkSE (A3) = Pr
[
Expftg−qsatk−1

SE (A3) = 1
]
− Pr

[
Expftg−qsatk−0

SE (A3) = 1
]

=
1

2
− Pr

[
Expftg−qsatk−0

SE (A3) = 1
]

=
1

2
· Pr

[
Expsem−qsatk−1

SE (A2) = 1
]

+
1

2

− 1

2
· Pr

[
Expsem−qsatk−0

SE (A2) = 1
]

+
1

2

=
1

2
·
(

Pr
[
Expsem−qsatk−1

SE (A2) = 1
]

− Pr
[
Expsem−qsatk−0

SE (A2) = 1
])

=
1

2
·Advsem−qsatkSE (A2) . (6.89)

A3 runs in time at most t3 = t2 + TP + TR where TP = qec
µP
2 is the maximum time

required for a permutation Π output by P , and TR = qecµR is the maximum time

required to prepare a quantum register in the state |ψ〉. Also A3 makes at most qe

encryption and (in the CCA case) qd decryption oracle queries, and the size of the

classical output is µ3 = µ2 bits.

Step 4 (RoP-qsATK ⇒ SEM-qsATK): Assume A2 is a quantum adversary attacking

SE = (K, E ,D) in the SEM-qsATK sense. We construct a new quantum adversary

A1, using A2, that attacks SE in the RoP-qsATK sense.

From the previous three steps we can see that RoP-qsATK ⇒ SEM-qsATK. For the

advantage of A2 we have that,

Advsem−qsatkSE (A2) ≤ 2 ·Advftg−qsatkSE (A3)

≤ 2 ·Advlor−qsatkSE (A4)

≤ 4 ·Advrop−qsatkSE (A1) . (6.90)

Since it is assumed that

Advsem−qsatkSE (A2) ≥ ε2 , (6.91)
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then we can show that

Advrop−qsatkSE (A1) ≥ ε2
4
. (6.92)

A1 runs in time at most t1 = t2 + TP + TΠ′ + TR where

t1 = t2 + TP + TΠ′ + TR

≤ t2 + qec
(µ4

2
+ µ2

)
≤ t2 + qec

(µ2

2
+ µ2 + µΠ′

)
≤ t2 + qec

(
3

2
µ2 + µΠ′

)
. (6.93)

Moreover, A1 makes at most qe encryption and (in the CCA case) qd decryption

oracle queries, and the size of the classical output is µ1 = µ2 + 2µΠ′ . This concludes

the proof.
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Chapter 7

Conclusion

In the case of quantum computation, we explored how existing classical confidentiality

notions translate into this model. We showed that the security proofs of Counter

mode carry over to the quantum computation model. This serves two goals. First,

this means that existing security notions, such as LoR-CPA, are achievable in this

model. And second, the proofs are a showcase of a class of classical black-box security

proofs that can go through in the quantum computation model.

Our results of quantum superposition attacks show that some cryptographic schemes,

while secure even against generic quantum computation attacks, might fall apart

in this model. We discussed that block ciphers such as the Even-Mansour scheme

offer no security in the quantum superposition model. It would be interesting to

see if this were the case for other symmetric cryptosystems such as hash functions.

Therefore we stress that the security of modern cryptosystems need to be reassessed

in the quantum superposition model, given that one day we might use a ‘quantum

internet’ or run our cryptosystems on quantum computers.

To be able to formally assess the security of modern cryptosystems in the quantum

superposition model, meaningful notions of security are required. We discussed why

the existing classical confidentiality notions need to be modified in this model. Then

we defined a new notion of confidentiality, named Real-or-Permutation (RoP). We

showed the implication between RoP and the existing classical security notions to

prove that they are equivalent. But then we proved that the quantum analogues

of RoP, such as RoP-qsCPA and RoP-qsCCA, are achievable in the quantum su-

perposition model. Moreover, we defined a notion of semantic security (SEM) in

this model, and proved that RoP implies SEM in the quantum superposition model.
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These notions can serve us as tools to formally analyse the security of any cryptosys-

tem, symmetric or asymmetric, in this model. Therefore we can have a meaningful

understanding of the security of modern cryptosystems in the quantum superposition

model. It is also interesting to see whether other existing classical notions of security,

such as integrity, can be translated into the quantum superposition model. By having

notions of confidentiality and integrity in the quantum superposition model, one can

discuss how to construct quantum-secure secure channels in this model.
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