

Automating the Generation of Enticing Text Content for High-Interaction
Honeyfiles

Ben Whitham

University of New South Wales
ben@whitham.net.au

Abstract

While advanced defenders have successfully used

honeyfiles to detect unauthorized intruders and insider
threats for more than 30 years, the complexity
associated with adaptively devising enticing content
has limited their diffusion. This paper presents four
new designs for automating the construction of
honeyfile content. The new designs select a document
from the target directory as a template and employ
word transposition and substitution based on parts of
speech tagging and n-grams collected from both the
target directory and the surrounding file system. These
designs were compared to previous methods using a
new theory to quantitatively evaluate honeyfile
enticement. The new designs were able to successfully
mimic the content from the target directory, whilst
minimizing the introduction of material from other
sources. The designs may also hold potential to match
many of the characteristics of nearby documents,
whilst minimizing the replication of copyrighted or
classified material from documents they are protecting.

1. Introduction

1.1. Honeyfiles

Honeyfiles [35], also referred to as honeytokens
[26], digital decoys [15], decoy files [9], and canary
files [31], is a cyber deception approach that has the
potential to assist in the detection of data exfiltration
and unauthorised access. Honeyfiles perform this role
by emulating ‘real’ documents in order to lure and bait
data thieves.

Honeyfiles have several advantages over honeypots
and traditional security approaches. When correctly
positioned and configured, honeyfiles have been
proven to generate a negligible quantity of important
alerts [6]. Ordinarily, honeyfiles should not be
accessed, as their fake content provides zero benefit for
legitimate users. Any user or process attempting to
open, copy or delete a honeyfile provides a warning,

analogous to a canary in a coalmine. By concentrating
on the alerts generated by honeyfiles, intrusion
detection teams can reduce the volume of documents
requiring constant observation.

Honeyfiles, like other forms of deception, can
create uncertainty regarding the disposition of critical
information [27] and increase the effort required to
distinguish between real and fake data [30]. The data
thief does not know where the traps are placed and
risks detection each time they open a document [35].

Unlike honeypots, honeyfiles do not need dedicated
hardware, nor expose additional software
vulnerabilities to exploitation [31]. Honeyfiles can also
be placed directly within document repositories,
amongst the files that require protection, rather than
isolated on different network hosts, collision domains,
and/or network segments [28].

Figure 1. Low and High Interaction Honeyfiles

1.2. High-interaction Honeyfiles

Honeypot technologies have been previously
classified as either low-interaction or high-interaction
[19]. Low-interaction honeypots trade the depth of
mimicry for lower risk of sensor compromise,
implementation cost and management overhead [36].
High-interaction honeypots employ greater realism,
which provides more potential to sustain a deception,
allowing the system owner to gather additional
intelligence on the source and intentions of the
intruder/insider [19]. This comes at a greater cost of
design and management overhead.

6069

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41897
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/77240199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper proposes that honeyfiles can be
similarly categorized (see Figure 1). Low-interaction
honeyfiles simulate only the existence of a file. They
may mimic basic file features, such as size and time
stamps, but lack the complexity to sustain the illusion.
Low-interaction honeyfiles are unlikely to contain
words, sentences, video or any meaningful
information. These low-interaction options may be
useful to create initial confusion and detection of
simple document harvesting programs.

High-interaction honeyfiles replicate the local
environment with greater accuracy. One key advantage
is that their content can entice external threat actors
(who typically scan newly accessed file systems to
identify valuable documents) [30][29]. High-
interaction honeyfiles are also effective against
malicious insiders masquerading as legitimate users;
the attacker’s lack of knowledge of the victim’s access
profile (files, locations of important directories,
available applications, etc.) means that they are likely
to engage in information gathering and search activities
before initiating specific actions [6]. Both these threat
actors could employ direct searches of the content or
employ extant knowledge management systems that
centralize or index the critical data [14] (see Figure 2).

Figure 2. Threat actors target file system content

Like their honeypot namesakes, high-interaction
honeyfiles are more suited to assist in determining the
patterns and behaviors, objectives, tactics, techniques
and procedures of the data thieves. Honeyfiles can be
built with a range of properties, including the choice of
content, format, complexity, quantity and location [30].
For instance, consider if honeyfiles that contain text
associated with nuclear fusion are accessed, but those
containing information relating to location of nuclear
facilities are not. This intelligence may be valuable in
understanding the data thief’s intended target(s) and/or
priorities, especially when fused with other traditional
information sources. Employment of more complex
content can also allow a system owner to detect subtle

and partial data exfiltration. For instance, signatures
can be generated using individual honeyfile paragraphs
to detect partial or slow theft of document data hidden
amongst other seemingly benign email or web traffic.

Similar to honeypots, high and low interaction
honeyfiles could also work in unison as a compromise
among sensor coverage, detection and management
cost. For instance, low-interaction honeyfiles could be
deployed across the file system or operating system
environments to detect automated intrusions. These
could be paired with high-interaction honeyfiles in
locations containing high value sets of documents,
where the ‘why’ and ‘how’ are more important (and
more cost effective).

2. Generating High-Interaction Honeyfiles

2.1. Honeyfile Diffusion

While high-interaction honeyfiles have been
employed in computer security for more than 30 years
their success in the hands of advanced defenders has
not translated into mainstream use. Comparatively, the
concepts of usage control, encryption and content
tagging (watermarking), have evolved to commercial
products. The lack of diffusion appears related to the
difficulty of constructing deceptive content across the
spectrum of potential data formats [33]. Rowe [24], a
prolific author on cyber deception, stated that honeyfile
content could never be automated. His position appears
justified. When building fake data for 11 fixed
database fields White and Thompson [30] noted, “It
takes a lot of effort to produce realistic decoys... It took
several months of research to locate all of the data that
was needed to produce each field. This information
also had to be processed into a usable form in order to
incorporate it into the program. This is a very labor
intensive task”. Even a recent solution proposed by
Wang et al [29] requires a new software module to be
developed for each topic. This approach is not scalable
[25] and is at odds with the ‘ease of use’ security
product design principle [2].

2.2. Attempts to Generate Honeyfile Content

Most of the previous work on honeyfiles has

focused on the placement and monitoring of baits, and
has rarely paid attention to content or automatic
creation of files [13]. Discussions on fake content have
been centered on specific data types and formats, such
as database fields [30][17], passwords and account
details [8][21][16] and file attributes [24][35]
[9][6][28][29].

6070

There have been several attempts to automate the
generation of fake content. This paper groups these
current designs into four categories: Type I - IV.

Type I constructs produce low-interaction
honeyfiles and simple deceptions that populate fake
files with random data. Rowe [24] built a prototype
fake file generator (NFDir) that is capable of
populating documents with random characters. A
similar approach has been adopted in free online
resources. Fake File Generator and File Destructor 2.0
are tools to generate corrupted files so that students can
gain more time to complete their assignments. Both
software solutions create non-working files using
random binary data and adopting common extensions.

Type II high-interaction honeyfile processes
populate documents with content from an external
source. NFDir is also able to generate files comprising
of images, captions, and page names extracted from
publicly accessible military web pages. Bowen et al [9]
also considered using words that were frequently
searched on the Internet as the constituent words in
fake documents. The Impressions software program
[1], while not used to make honeyfiles, creates content
using word popularity models of the English language.

Type III approaches attempt to reduce the content
generation problem for high-interaction honeyfiles to a
manageable size by employing templates and fixed
data fields. In 2005, Stribling and his colleagues
developed an automatic computer-science paper
generator, called SCIGen [3]. SCIGen constructed
entire academic publications, including text, graphs,
figures, and citations. The program relies on hand-
written rules and a set template. Infamously, the
authors used the software to generate a confusing and
partially illegible paper, which was successfully
accepted by the World Multi-conference on Systemics,
Cybernetics and Informatics, albeit without peer
review. White and Thompson [30] built fake content
for an 11-field database containing personal records.
Three years later, Bowen et al [9] produced the Decoy
Document Distributor (D3) System, a tool for
automatically generating and monitoring fake
documents. The initial D3 prototype was limited to
Microsoft Word and PDF documents from a set of
fixed templates, including tax returns, medical records,
credit card statements, and e-Bay receipts.

Type IV honeyfile methods comprise those designs
that (1) use existing production files as bait, or (2)
reproduce part or all of an existing document using
another format, language or synonyms. Yuill et al [35]
designed a system to allow a user to nominate a
production file to become a honeyfile. Similarly,
‘Honeydocs’ is a free deception solution. Users
provide Honeydocs with a file, and the program
embeds a beacon to track its location on the Internet.

Park and Stolfo [22] built a system to generate fake
Java programs. Their design obfuscates the original
source code, creating compilable but syntactically
dissimilar software. Shortly after, Voris et al [28]
proposed a method of translating existing documents
into a language foreign to the file system. They
sequentially processed selected paragraphs through
five different language translations.

2.3. Limitations of Current Solutions

Random data produced by Type I honeyfiles are
likely to be unrealistic, foreign to the file system and
directory, and appear suspicious. These types of
processes do not typically generate sentences, words or
other standard content that would be expected to reside
within a document or match keywords searched by
data thieves. These files merely present the illusion that
the file contains, or once contained useful data. The
only key advantages of these types of files are that they
are simple to produce, and they will not contain
classified, sensitive or copyright material.

Type II honeyfile content is likely to be more
realistic and enticing than Type I, because it contains
indexable words. Type II files, however, are unlikely to
match the topics, word frequency and author
stylometry. They may not necessarily contain
sentences or paragraphs, or similar embedded artifacts.

There is no doubt that templates can be developed
that will produce realistic and enticing text. The main
challenge with Type III approaches is that templates
and hand-written rules are neither scalable nor
adaptable to the range of content that is likely to be
encountered in a real world application.

While current approaches still largely rely on hand
written rules, Type IV methods of construction hold
potential to produce realistic and enticing decoys that
match the local content that they are attempting to
protect. The primary challenge with employing a
production document as a honeyfile is that this process
is likely to risk classified, sensitive or copyrighted
material. Type IV processes typically retain the core
meaning of the original text or functionality of the
software. This limitation is consistent throughout the
entire set of Type IV honeyfiles. For example,
although content containment was tested to limit the
retention of original code artifacts, Park and Stolfo’s
[22] process appeared to generate a functioning replica
of the original software. It is unclear, therefore, if this
modified code is just as valuable as the original
intellectual property and should not be risked with
deception activities. Similarly, the solution proposed
by Voris et al [28] simply transforms sensitive material
into another language. It is still likely to retain
sensitive artifacts from the source documents thereby

6071

creating a protection paradox. Finally, any approach
that uses production documents that are no longer,
relevant, critical or sensitive, by definition, will be less
enticing to a data thief, and therefore unsatisfactory
honeyfile candidates.

2.4. Type V - NLP-based Designs

Section 4 of this paper presents four new designs
based on Natural Language Processing (NLP). NLP is
a field of computer science, artificial intelligence, and
linguistics concerned with automating the
understanding and creation of human readable text.
NLP may help to widen the approachability and
convenience of honeyfiles. Like other fields,
automation could (1) reduce the labor cost associated
with the process, (2) improve their reliability and
consistency, (3) speed up the generation process, and
(4) allow the process to happen more frequently [23].
The main advantage of automation, however, would
appear to lie in its ability to address complexity
barriers, by allowing the honeyfile generation process
to be undertaken by staff with less skill [23].
Automated solutions may also adjust and adapt to new
content and scale to large and complex environments.

3. Assessment of NLP-based Designs

3.1. Scenario

The scenario developed for this research is that the

system owner seeks to place a honeyfile within a
directory in their digital file system. The role of the
honeyfile is to act as an early warning for the theft of
any or all of the files residing within the file repository,
but in particular, those files within that file directory.

There are a number of assumptions and limitations
associated with the scenario. The honeyfiles are
protecting directories within a file system, rather than
databases and other information management systems.
While other information storage systems are becoming
increasingly popular for big data, file systems remain a
fundamental mechanism for storing digital information
[20]. This research only considered English text
content. Diagrams, figures and images were not
included. Despite the number of multimedia documents
rising, most of the interesting information in digital
format is still numeric or textual [17]. The study
assumes that all files contained within the directory are
equally sensitive. It could be possible to encounter
folders that contain a mixture of document
sensitivities. In practice, however, most human users
organize folders by common topics and authors [4].

This grouping provides a theme for each honeyfile to
defend and mimic.

3.2. Test Data

Two test data sets were used. The first data set
contained 1000 test directories populated with
academic papers (in PDF format) harvested from the
Internet, using a similar manner to [11]. The majority
of papers were downloaded from SIGCOMM
Conference web sites. The remaining papers were
harvested using Google Scholar. All papers were
manually inspected to confirm the contents were not
scanned images or fake files. All of the harvested PDF
documents were reduced to text files using the open
source Apache Tika software [17]. Each directory was
populated with a uniform distribution of between 2 and
13 documents, chosen at random, based on the
observations of previous file system surveys [32]

This synthetic data set was deliberately chosen to
align with an existing honeyfile template. This
eliminated the requirement to create a new Type III
honeyfile template to match the dataset.

The second dataset used a copy of a small
business’s production file system. The real-world data
set evaluated the honeyfile design’s ability to navigate
duplications, data errors and expose the designs to
realistic human organizational patterns. 1000
directories were selected at random. The files were also
converted to text using Apache Tika.

3.3. Current Honeyfile Design Representatives

An exemplar design was chosen to represent each
of the current honeyfile content generation approaches
(Type I-IV). The chosen Type I exemplar process
creates honeyfile content using a subset of ASCII
characters, selected at random. The sub-set included all
members of the upper and lower case English alphabet,
numbers and the blank space character. Each of the
characters in the sub-set was given an equal chance of
selection.

The Type II exemplar process selected words at
random from the Brown Corpus (a popular dataset
used by the NLP community) [10], based on the
underlying word frequency distribution.

Type III constructions were represented by the
SCIGen [3] fake academic paper generation tool
(previously discussed). The SCIGen PDF documents
were converted to text using Apache Tika, matching
the process used to create the test data sets.

A method similar to Voris, et al [28] was chosen to
represent Type IV honeyfiles. In this example process,
a file is chosen at random from the target directory and

6072

then translated from English to Spanish, to French and
then back to English. The selection of languages was
made to support an offline conversion process.

3.4 Comparing Honeyfiles and Defining
‘Enticing’ Assessment Criteria

This paper compared the enticement produced by
the individual honeyfile designs. Whitham [32]
identified seven criteria for honeyfile content
generation. Of these, the most essential requirement of
a honeyfile content generation process is to spawn
enticing material [6]. Bowen et al [9] associated a fake
file’s ability to entice with the desirability of the data
thief to access and/or exfiltrate its contents. For
instance, a fake file that suggested or contained a list of
passwords might be more desirable than a document
containing the monthly office social calendar.

There is currently no existing theory on defining or
evaluating the enticement of a honeyfile. This paper
presents an initial theory and evaluation method that
matches the chosen scenario.

One of the principal aims of high-interaction
honeyfiles is to present themselves as genuine targets
to indexing technologies, baiting external threat actors
and insiders who are searching for valuable
information within the file system (see Figure 2). The
ability of the honeyfile to entice these threat actors can
be improved with selective attribute choices [6].

Creating honeyfiles that mimic this content
achieves two primary goals. First and foremost, like
angling, it is important for the lure to match the typical
diet of the fish. Honeyfiles can only detect data theft if
the fake file is accessed [12]. The more enticing the
deceptive content, the more likely that an intruder will
access the fake file and trigger the alarm. The scenario
assumes that the content in the test directories is
sufficiently valuable to warrant protection. Matching
the material found within the local directory populates
the honeyfile with (equally) desirable content.

Moreover, one of the advantages of cyber deception
is the ability for the system owner to obtain
information about the data thief, their motivations and
targets. For instance, the system owner might gain a
valuable insight into the goals of the perpetrator if a set
of honeyfiles containing engineering and research
content was accessed, but honeyfiles mimicking
financial records were not. This knowledge is only
possible if the honeyfile content is deliberately tailored
to carry a subset of the critical data. The file
directories, by their nature, are likely to be associated
with a single topic, and provide a logical source of
content for an individual honeyfile.

The second reason for matching the content of the
honeyfile with the legitimate files in the directory is

associated with minimizing false positives. One of the
limitations of honeyfiles is their potential to disrupt
normal work activity and pollute genuine information.
By limiting the content of the honeyfile to strictly those
topics discussed in the target directory, the system
owner can minimize the impact on legitimate workers.
Consider a honeyfile that contained random content.
To a corporate information management system,
random content is likely to match a range of topics
across the file system, and not just those topics
discussed in the sensitive directory folders. These
honeyfiles containing random content are more likely
to be recommended when legitimate users employ
content searching / indexing technologies to locate
unrelated, less sensitive information in the file system.
This will increase the number of unintended
interactions with the honeyfile, creating additional
work for the incident responders, and lowering their
confidence in the deception system.

These two content enticement goals can be
summarized as:

1. Maximize the number of matches with topics
discussed in the files in the local directory.

2. Minimize the number of matches with topics that
are not discussed in the local directory.

In its simplest form, the above two enticement
goals can be described using standard set theory.
Consider the given scenario where a high-interaction
honeyfile is created to assist in the detection of
suspicious activity relating to a directory of critical
documents housed within a file system. Assuming that
the critical file is text based, the unique topics (T) in
the target directory can be represented as D = {T1, ...
,Tm}. Given a honeyfile content generation function,
ƒ(X), the unique topics (θ) contained in a honeyfile can
be represented as H = {θ1, ... ,θj}. Assuming that all of
the topics discussed within the document are of equal
sensitivity, the ultimate aim of developing enticing
content, therefore, is for ƒ(X) to build a honeyfile that
contains every topic in D, or H ⊆ D.

Partial enticement success can therefore be
achieved if the honeyfile contains at least one of the
topics discussed in the critical file (where H∩D is
inhabited), that is: ∃	H � D : ƒ(X) - the lower the set
difference between D and H (D\H), the better. These
goals are illustrated in Figure 3.

Assuming there is no ability to compress topics, the
process of including all of the topics contained in the
directory could, at worst, make the file size of the
honeyfile equal to the sum of the file lengths of the
legitimate documents in the directory:

It would appear that the most effective method of
meeting this goal would be to build large honeyfiles
that contain a replication of all of the topics in D. This
action, however, is at odds with the requirement for

6073

building realistic honeyfiles (the honeyfile is expected
to have a similar file size to the legitimate files in the
directory). That is, the honeyfile may only contain 1/n
of the topics found in the directory.

Figure 3. Maximize directory topic matches

Assuming that the legitimate files contain a similar
number of topics, then it follows that the greater the
number of files in the directory, the more difficult it
would be to achieve this enticement goal (without
sacrificing realism or compressing the topics).

The worst-case scenario is unlikely. Firstly, the
above assumes that there is topic repetition within a
document or within files in the target directory, which
is unlikely. Secondly, one of the scenario assumptions
is that files have been organized into a directory based
on topic and/or author. It is possible, therefore, that
there is a natural duplication and overlap of topics
between files in the same directory. Thirdly, this also
assumes that topic conversations are of equal length,
which is unlikely to be the case in natural language
[34]. Finally, the above assumes that all content in the
files is relevant and required to communicate the topic
and there is no redundant content, either through
structure, partly completed work or through
tautologies, verbosity and other discursive behavior.

Figure 4. Minimize file system topic matches

While optimization may address these challenges,
there remains the strong possibility that not all topics
contained within the directory can be represented by a
single honeyfile, particularly in directories with a large
number of documents. Prioritizing the selection of
topics is therefore critical to the content generation of
high-interaction honeyfiles. The ability of the honeyfile
generation process to successfully recognize and

prioritize these topics forms the basis of the first
enticing assessment criteria.

For the second enticement goal, the set of topics
that are included in the honeyfile, but are not discussed
in the critical file can be identified by the set difference
between H and D. The closer H\D tends to the empty
set (∅), the better. This includes the topics discussed in
H that are also present in elsewhere in the file system,
and those topics in H that are introduced from external
sources. This concept is illustrated in Figure 4, where
the smaller the percentage of blue area, the better,
regardless of the intersections with the yellow set (file
system).

4. New NLP-based Designs

This paper presents four new NLP-based designs.
These designs are based on the substitution and
transposition of words collected from the target
directory and file system. Each of the designs
employed the same three stages: (1) template selection,
(2) content extraction, and (3) document population
(see Figure 5).

Figure 5. The new designs employ a 3 stage process

In the first step, the median sized file is selected
from the target directory to use as a template for the
honeyfile. In the second step, the words are stripped
from the template and replaced with parts of speech
XML-like tags (see Figure 6). The original
punctuation, numbers and symbols are retained to
ensure that the sentence lengths and structure of the
document are mimicked.

Figure 6. Text is replaced by POS mark-ups

6074

Finally, the reduced template is used as a guide to
build the honeyfile. Once the honeyfile is constructed,
the signatures relating to the file and its content are
forwarded to the extant intrusion detection systems for
monitoring, and the honeyfile is deployed into the
target directory.

One of the more complex steps involves converting
the selected document into Parts Of Speech (POS)
XML-like tags. The designs employ the popular
Natural Language Tool Kit (NLTK) to classify the
words into 35 POS tags. Figure 7 provides an example
of a section of words prior to and after the conversion.
Note that the case of the original word is retained in the
POS marking.

Figure 7. Text from the template is replaced with
POS mark up language, retaining the case

4.1. Type Va

In Design Va all of the words from the target
directory are sorted into POS ‘word buckets’. The
frequency of the words is retained. Design Va replaces
each of the POS tags in the honeyfile template with a
random word drawn from one of the ‘word buckets’
collected from the target directory. Once a word is
selected from a ‘word bucket’ it is no longer available
for future selection.

4.2. Type Vb

Design Vb is an extension of Design 1 except that

the honeyfile population process employs conditional
frequency to select a word from a ‘word bucket’.
Conditional frequency is a form of Markov process

that takes advantage of the fact that sentence
construction is not random. The process assumes that
the future behaviour of the system only depends on its
recent history [5]. Conditional frequency has
previously been applied to predictive text and spelling
corrections [18], where models guess the next word
based on the relative frequency and combination of
previous words. In these cases, the conditional
frequency model employs n-grams of prior context to
make the selection on the next word. In order to build
the cumulative frequency models, the target directory
text was organised into 2, 3 4 and 5 word n-grams. A
‘word bucket’ was created for each n-gram collection.

During the honeyfile population step, Design Vb
attempts to select a word that matches an n-gram from
one of its ‘word buckets’ and the honeyfile template’s
POS tag. Design Vb starts this process by attempting to
identify word options that could match known
quingrams. If no matching quingrams can be identified,
the process tries quadgrams. This continues until either
a bigram match is found or a word is chosen at random
from that particular POS ‘word bucket’.

4.3. Type Vc

Design Vc is an extension of Design Vb. In
addition to the POS tagging and cumulative frequency
model selection process, design Vc also collects
bigrams from across the entire file system as a final
option when a Markov Chain cannot recommend an
option from the target directory text alone.

4.4. Type Vd

Design Vd is an extension of Vc, but it captures all
of the 2, 3, 4 and 5 word n-grams across the target file
system and uses a logarithmic scaled Term Frequency -
Inverse Document Frequency (TF-IDF) to prioritize
the n-grams captured from the directory over those in
the corpus. TF-IDF is a popular product of two
statistical algorithms that have been commonly applied
in tandem to weight the value of documents in
information search processes.

A random weighting is applied to each option at the
time of word selection in order to ensure that: (1) the
most common term, for instance “in to the”, is not
continually selected; and (2) that a new honeyfile is
created each time the process runs. The weighting
value was randomly selected from values between the
lowest score and the highest score.

5. Results

5.1. Maximizing Matches - Directory Content

6075

Figure 8 presents the raw distribution of results
from processing the data set of 1000 directories
containing academic-paper extracts. Each value
represents the percentage of words (topics) that
appeared in both the honeyfile and the target directory.
The higher the score the better.

Figure 8. Probability Distribution of Maximizing

Content from Target Directory

By observation, designs Vb, Vc and Vd out
performed all of the previous approaches, while Va
scored similar results to the highest performing current
approach. As expected, the random data from Type I
constructions bear virtually no similarity to the file
content in the directories that they are attempting to
mimic. Type II and III have a small level of similarity,
as expected through sharing the natural properties of
English language. Type IV does not perform as well as
expected. This is most likely due to the fact that the
process mimics one file well, but not an entire file
directory.

Figure 9. Maximizing Content - Target Directory

Figure 9 presents the mean scores from each of the
academic and small business data sets. Contrast is
limited, except for Type IV. Additional investigation is
required, but it is likely that these constructions were
affected by a combination of the diversity of files
contained in the real-world file directories (e.g. partly
finished documents and different content types), and
the potential for random choice to make relatively poor

selections of files within these directories to use as a
representative honeyfile template.

A one-sided p-value test was conducted on the four
proposed designs against the current designs with a
significance of 5% to test the hypothesis that the new
Type V designs were a measurable improvement on
the current approaches. The Va comparison against
Type II constructions (using the academic data set) was
the only assessment that scored greater than 0.000%.

Figure 10. Probability Distribution of Minimizing

Content from Target File System

5.2. Minimizing Matches – File System Content

Figure 10 presents the raw distribution of results
from processing the data set of 1000 directories
containing academic-paper extracts. Each value
represents the percentage of words (topics) that
appeared in both the honeyfile and the entire target file
system but not the target directory. The lower the score
the better.

Figure 11. Minimizing Content - Target File System

Va, Vb, and Vd all produced near perfect scores,
out-performing all of the previous approaches. Vd
scored similar results to the highest performing current
approach (Type IV). Type I could not be properly
assessed as the text only produced ‘words’ by chance.
Type II and III contain large traces of content that does
not appear in the target directory, but appears across
the file system. The translation processes involved in
Type IV constructs also seem to introduce a small

6076

number of words that do not appear in the target
directory, but appear elsewhere in the file system.

Figure 11 presents the mean scores from each of
the academic and small business data sets. Once again,
the different data sets do not provide much contrast.

A one-sided p-value test was conducted on the four
designs against the current designs with a significance
of 5% to test the hypothesis that the new Type V
designs were an improvement on the current
approaches. The Vd comparison against Type IV (both
data sets) was the only assessment that failed the
hypothesis evaluation.

6. Conclusions

Advanced defenders have successfully used
honeyfiles to detect unauthorized intruders and insider
threats for more than 30 years. Unfortunately, the
complexity of the content generation process has
prevented their wider diffusion.

This paper presents an NLP-based content
generation design for honeyfiles that select a document
from a target directory and employ transposition and
substitution of text using parts of speech tagging and n-
grams harvested from the target directory and
surrounding file system.

The level of enticement of these new designs was
compared to previous methods of high and low
interaction honeyfile generation. Two sets of 1000 test
directories containing text content were used to
evaluate the honeyfiles. A honeyfile from each design
was built to simulate the process of creating bait files
for each of the directories.

There is no previous published work on the
quantitative evaluation of honeyfile enticement. This
paper introduced a new approach, based on set theory,
using topic (word) comparisons. This study also found
that NLP-based designs could produce English text
content for honeyfiles that match file directories. This
process appears independent to the target content.

While the four new designs may not produce
completely legible text, there is potential for the
constructions to contain sufficient traces of enticing
material to deceive an automated search process or
malicious insider into accessing the document and
triggering an alarm. These designs may also match
many of the characteristics of the nearby documents,
including the sentence and paragraph lengths and
complexities, as well as the underlying format. The use
of randomisation in text selection may also minimise
the replication of classified, sensitive or copyrighted
material and reduce the chance that the honeyfile
creates a protection paradox by duplicating sections of

sensitive sections of text from the file system (that also
need protection).

7. Future Research

Further research is underway to improve the
realism of these new honeyfile designs, while
minimising the retention of sensitive content. Future
research could also consider alternative options for
building honeyfiles and testing their enticement.

10. References

[1] Agrawal N, Arpaci-Dusseau A C and Arpaci-
Dusseau R H (2009). Generating realistic impressions for
file-system benchmarking, ACM Transactions on Storage
(TOS) 5(4), 16.

[2] Axelsson S (2000). The base-rate fallacy and the
difficulty of intrusion detection, ACM Transactions on
Information and System Security (TISSEC) 3(3), 186–205.

[3] Ball P (2005). Computer conference welcomes
gobbledegook paper, Nature 434(7036), 946–946.

[4] Barreau D and Nardi B A (1995). Finding and
reminding: file organization from the desktop, ACM SigChi
Bulletin 27(3), 39–43.

[5] Baum L E, Petrie T, Soules G and Weiss N (1970).
A maximization technique occurring in the statistical analysis
of probabilistic functions of Markov chains, The annals of
mathematical statistics pp. 164–171.

[6] Ben Salem M and Stolfo S (2011). Combining a
baiting and a user search profiling techniques for masquerade
detection. JoWUA, 3(1/2), 13-29.

[7] Bercovitch M, Renford M, Hasson L, Shabtai A,
Rokach L and Elovici Y (2011). HoneyGen: An automated
honeytokens generator, in Intelligence and Security
Informatics (ISI), 2011 IEEE International Conference on,
IEEE, pp. 131–136.

[8] Bojinov, H., Bursztein, E., Boyen, X., & Boneh, D.
(2010, September). Kamouflage: Loss-resistant password
management. In European Symposium on Research in
Computer Security (pp. 286-302). Springer Berlin
Heidelberg.

[9] Bowen B, Hershkop S, Keromytis A and Stolfo S
(2009). Baiting Inside Attackers Using Decoy Documents. In
International Conference on Security and Privacy in
Communication Systems (pp. 51-70). Springer Berlin
Heidelberg.

[10] Francis W N and Kucera H (1979). Brown corpus
manual, Brown University.

6077

[11] Garfinkel S, Farrell P, Roussev V and Dinolt G
(2009). Bringing science to digital forensics with
standardized forensic corpora, digital investigation 6, S2–
S11.

[12] Joshi R and Sardana A (2011). Honeypots: A New
Paradigm to Information Security, Science Publishers.

[13] Kaghazgaran P and Takabi H (2015). Toward an
Insider Threat Detection Framework Using Honey
Permissions, Journal of Internet Services and Information
Security (JISIS) 5(3), 19–36.

[14] Kramer L A and Heuer Jr R J (2007). America’s
Increased Vulnerability to Insider Espionage, International
Journal of Intelligence and CounterIntelligence 20(1), 50–64.

[15] Kushner D (2003). Digital decoys [fake MP3 song
files to deter music pirating], Spectrum, IEEE 40(5), 27.

[16] Liu B, Liu Z, Zhang J, Wei T and Zou W (2012).
How many eyes are spying on your shared folders?, in
Proceedings of the 2012 ACM workshop on Privacy in the
electronic society, ACM, pp. 109–116.

[17] Mattmann C and Zitting J (2011). Tika in Action,
Manning Publications Co.

[18] Mays E, Damerau F J and Mercer R L (1991).
Context based spelling correction, Information Processing &
Management 27(5), 517–522.

[19] Mokube I and Adams M (2007). Honeypots:
concepts, approaches, and challenges, in Proceedings of the
45th annual southeast regional conference, ACM, pp. 321–
326.

[20] Nguyen N T, Reiher P L and Kuenning G H
(2003). Detecting Insider Threats by Monitoring System Call
Activity., in IAW, Citeseer, pp. 45–52.

[21] Nikiforakis N, Balduzzi M, Van Acker S, Joosen
W and Balzarotti D (2011). Exposing the lack of privacy in
file hosting services, in Proceedings of the 4th USENIX
conference on Large-scale exploits and emergent threats,
LEET, Vol. 11.

[22] Park Y and Stolfo S J (2012). Software decoys for
insider threat, in Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security, ACM,
pp. 93–94.

[23] Pettichord B (1999). Seven steps to test automation
success, STAR West, San Jose, NV, USA.

[24] Rowe N C (2004). A model of deception during
cyber-attacks on information systems, in Multi-Agent
Security and Survivability, 2004 IEEE First Symposium on,
IEEE, pp. 21–30.

[25] Schilder F, Howald B and Kondadadi R (2013).
Gennext: A consolidated domain adaptable NLG system, in
Proceedings of the 14th European Workshop on Nat- ural
Language Generation, pp. 178–182.

[26] Spitzner L (2003). Honeypots: Catching the insider
threat, in Computer Security Applications Conference, 2003.
Proceedings. 19th Annual, IEEE, pp. 170–179.

[27] Tirenin W and Faatz D (1999). A Concept for
Strategic Cyber Defense, in Military Communications
Conference Proceedings, MILCOM, pp. 458–463.

[28] Voris J A, Jermyn J, Keromytis A D and Stolfo S J
(2013). Bait and Snitch: Defending Computer Systems with
Decoys, Cyber Infrastructure Protection Conference .

[29] Wang W, Bickford J, Murynets I, Subbaraman R,
Forte A G and Singaraju G (2012). Catching the wily hacker:
A multilayer deception system, in Sarnoff Symposium
(SARNOFF), 2012 35th IEEE, IEEE, pp. 1–6.

[30] White J and Thompson D (2006). Using Synthetic
Decoys to Digitally Watermark Personally-Identifying Data
and to Promote Data Security., in Security and Management,
pp. 91–99.

[31] Whitham B (2013). Canary Files: Generating Fake
Files to Detect Critical Data Loss From Complex Computer
Networks, in The Second International Conference on Cyber
Security, Cyber Wafare and Digital Forensic
(CyberSec2013), The Society of Digital Information and
Wireless Communication, pp. 170–179.

[32] Whitham B (2014). Towards a Set of Metrics to
Guide the Generation of Fake Computer File Systems, in
Proceedings of the 12th Australian Digital Forensics
Conference, Security Research Institute, Edith Cowan
University, Perth, Western Australia.

[33] Whitham B, Turner T and Brown L (2015).
Automated Processes for Evaluating the Realism of High-
Interaction Honeyfiles, in Proceedings of the 14th European
Conference on Cyber Warfare and Security 2015: ECCWS
2015, Academic Conferences Limited, p. 307.

[34] Wu Z and Palmer M (1994). Verbs semantics and
lexical selection, in Proceedings of the 32nd annual meeting
on Association for Computational Linguistics, Association
for Computational Linguistics, pp. 133–138.

[35] Yuill J, Zappe M, Denning D and Feer F (2004).
Honeyfiles: deceptive files for intrusion detection, in
Information Assurance Workshop, 2004. Proceedings from
the Fifth Annual IEEE SMC, IEEE, pp. 116–122.

[36] Zhuge, J., Holz, T., Han, X., Song, C., & Zou, W.
(2007, December). Collecting autonomous spreading
malware using high-interaction honeypots. In International
Conference on Information and Communications Security
(pp. 438-451). Springer Berlin Heidelberg.

6078

