Detection of traffic participants and their interactions at urban intersections

Wissen für Morgen

The 5th Sino-German Symposium on Road Traffic Safety Bundesanstalt für Straßenwesen (BASt) Bergisch-Gladbach 03.09.2015

Dr. Marek Junghans

DLR.de • Slide 2 > Detection of traffic participants and their interactions at urban intersections> Dr. Marek Junghans > 03.09.2015

Content

Motivation

Object recognition, classification and tracking

Detection of critical and atypical situations

Conclusions & Future Prospects

DLR.de • Slide 3 > Detection of traffic participants and their interactions at urban intersections> Dr. Marek Junghans > 03.09.2015

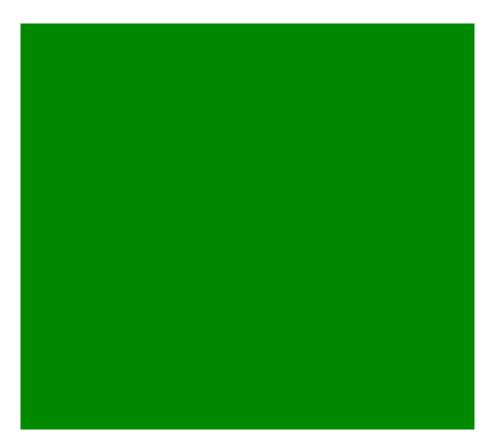
Content

Motivation

Object recognition, classification and tracking

Detection of critical and atypical situations

Conclusions & Future Prospects


OptiSiLK – What is it?

- OptiSiLK (Optimierung der Verkehrssicherheit und -Leistung an Kreuzungen verschiedener Verkehre) = (Optimization of traffic safety and performance at intersections of different transport)
- "The project promotes the installation of the major research facility AIM (Application platform Intelligent Mobility) and enables their scientific use and to answer ambitious scientific questions."
- Research project
 - Funding authority: Ministry for Science and Culture of Lower Saxony
 - Project period: 2011 2015
 - Funding volume: 1.25 Mio. Euro
 - Connection of all scientific areas of the DLR Institute of Transportation Systems, i.e. Traffic and transportation management, Railway systems, Automotive)
 - Project structure
 - TP 1000: object and situation detection \rightarrow today!
 - TP 2000: intersection assistance
 - TP 3000: level-crossing assistance

Initial situation and primary objectives

Left-turning leads to **18 severe injuries per day** in Germany, **every second day someone dies.**

In 2014 about **3,600 people** were killed and more than **60,000 were seriously injured.**

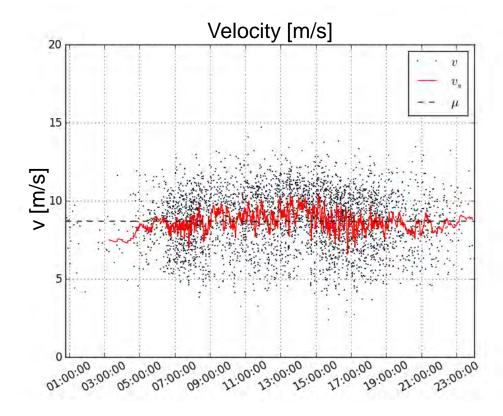
At 45,000 level crossings in Germany, yearly about **200 accidents occur. 25% of them are fatal**.

Objectives:

- understand traffic situations at intersections of different traffic modes
- find out the fundamentals to avoid fatalities and severe accidents

Motivation

- A fully-automated traffic detection system is necessary to get and analyze functional correlations between critical situations and accidents.
- Problem: heavily occluding objects merge optically, which requires an increasing technical effort (e.g. redundancy by others sensors, etc.).
- Thus, we focused on the development of an algorithm to detect traffic in a wide-area manner to compensate occlusions.
- Further, we determined atypical and critical situations
- Tested at the AIM research level-crossing in Bienrode (Brunswick)

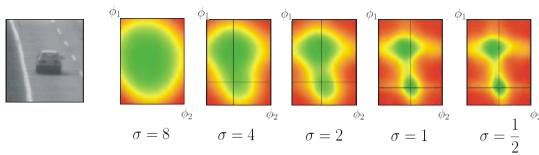


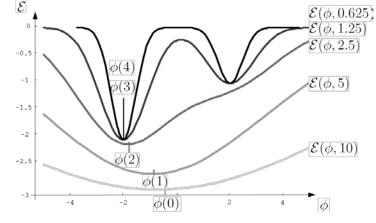
Some traffic characteristics of the research level-crossing

- Average daily traffic
 - →Wenden: 4500 Veh/24h
 - →Brunswick: 4580 Veh/24
- Average net timegap
 - →Wenden: ∆t = 19 s
 - \rightarrow Brunswick: $\Delta t = 21 \text{ s}$
- Average speed
 - \rightarrow Wenden: v = 32 km/h
 - \rightarrow Brunswick: v = 34 km/h

DLR.de • Slide 8 > Detection of traffic participants and their interactions at urban intersections> Dr. Marek Junghans > 03.09.2015

Content


Object detection, classification and tracking

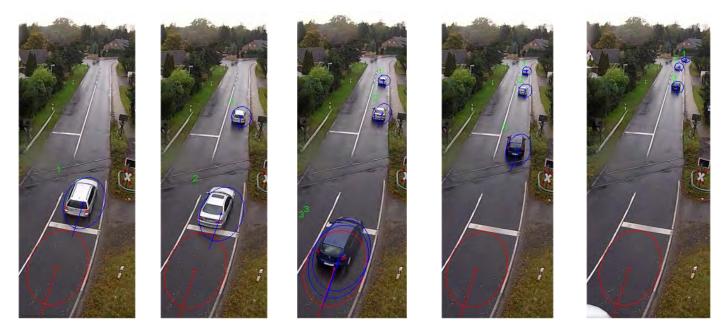

Motivation

• Compensation of occlusions for traffic safety related investigations and analyses

Approach: Robust regression

- Transformation of an image sequence in a cost function. Its minima represent the motion hypotheses of the traffic objects
- Determination and tracking of the minima, even if the motion hypothesis is not dominant.

Principle of the determination of motion hypotheses



Tracking of motion hypotheses in parameter domain

Object detection, classification and tracking

Results

- Tracking of traffic participants at the AIM research level-crossing up to 120m in comparison to about 80m of a state-of-the-art system
- Coping of occlusions of up to 90%

Tracking sequence at AIM research level-crossing in Bienrode

Object detection, classification and tracking

Comparison of the accuracy of the trajectories of the implemented systems algorithms at the level-crossing

State-of-the-art implementation

Novel implementation

	Image: constrained of the second of the se	State-of-the-art implementation	Movel implementation
	Average value standard deviation median (evaluation of the "common" areas)	3.37 m 1.69 m 3.12 m	2.36 m 2.46 m 1.70 m
7	Average value standard deviation median (Total evaluation)	3.50 m 2.31 m 3.03 m	3.45 m 3.18 m 2.44 m

DLR.de • Slide 12> Detection of traffic participants and their interactions at urban intersections> Dr. Marek Junghans > 03.09.2015

Content

Object recognition, classification and tracking

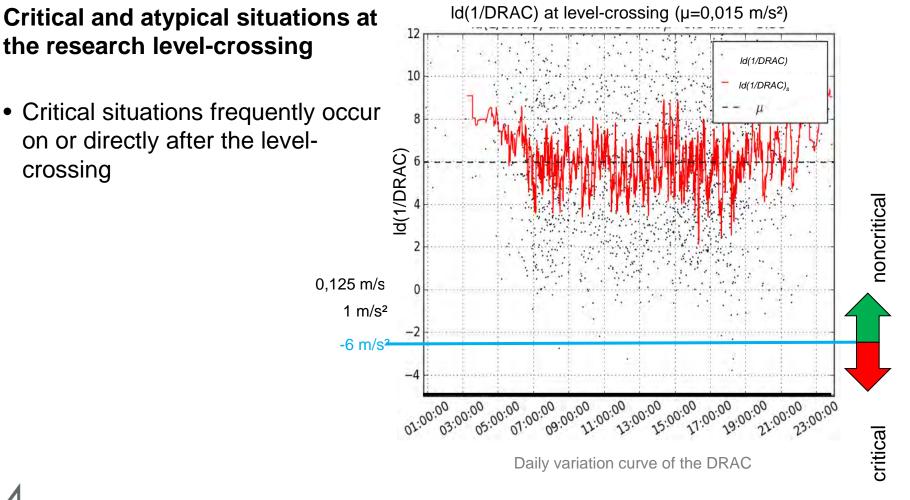
Detection of critical and atypical situations

Conclusions & Future Prospects

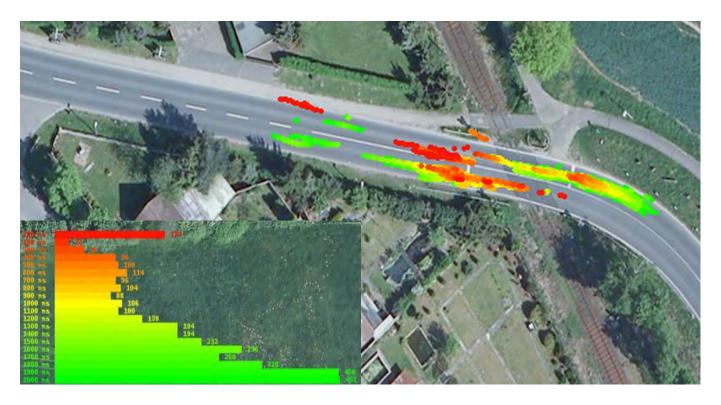
Atypical are situations that diverge from normal situations and are normally uncritical (U-turns, wiggly lines, etc.).

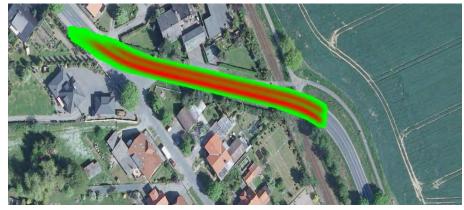
In OptiSiLK two methods developed and compared

- Self Organizing Feature Map (SOFM)
- Probability Density Map (PDMap)


Critical situations are situations, in which interacting traffic participants are timely and spatially near to each other (e.g. rear-end approaching at high speeds, intensive braking, etc.).

In OptiSiLK critical situations were quantified by determining parameters of the traffic conflict technique (TCT)




Critical situations at the AIM research level-crossing in Bienrode

Critical and atypical situations at the research level-crossing

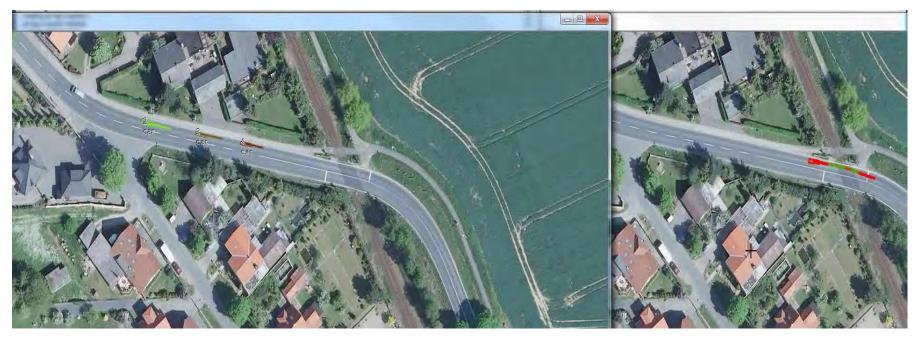
 Critical situations frequently occur on or directly after the levelcrossing

PDMap of the positions for both directions

PDMap of the velocities for both directions

- Atypical situations were automatically classified as follows
 - stopping
 - overtaking
 - Intensive braking and accelerating
 - Inadequate speed
 - (channels and trenches in the road)

Example of an automatically detected atypical situation at the research levelcrossing


- Overtaking situation
- Computation of normal values of
 - position
 - velocity
 - direction of travel
 - acceleration
- These values are combined to a total normality value within [0;1]

Overtaking situation

Example of an automatically detected atypical situation at the research levelcrossing

Automatic determination of atypical situations at the AIM research level-crossing in Bienrode (normal Situations: green, atypical situations: red)

DLR.de • Slide 19> Detection of traffic participants and their interactions at urban intersections> Dr. Marek Junghans > 03.09.2015

Content

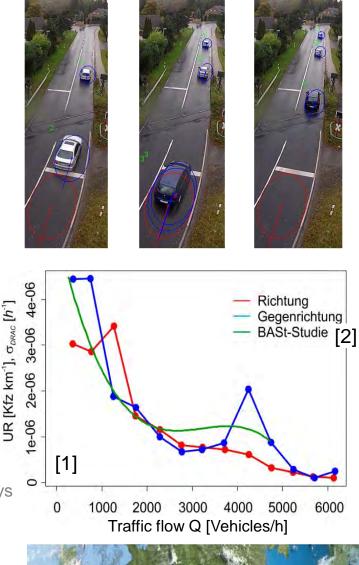
Motivation

Object recognition, classification and tracking

Detection of critical and atypical situations

Conclusions & Future Prospects

Conclusions & Future Prospects


Conclusions

- Development of a robust method for wide-area traffic detection, classification and tracking of up to 120m
- Development and testing of several methods to measure atypical and critical traffic situations

Future Prospects

- Further development and extension of the robust method for wide-area traffic detection, classification and tracking at the AIM research intersection in Brunswick
- Analysis of the correlation between accidents and near accidents

[1] Biemann et al. 2014. Traffic safety versus traffic flow on freeways
– an empirical analysis. 27th ICTCT Workshop in Karlsruhe, 2014
[2] Pöppel-Decker et al. 2003. Basics of line-based traffic accident
analysis on Germany's freeways, reports of the Bundesanstalt für
Straßenwesen, Band M 153, Bergisch-Gladbach. (In German)

Contact details

German Aerospace Center (DLR) Institute of Transportation Systems Rutherfordstraße 2 12489 Berlin, Germany

Phone: +49 30 67055 – 214 Fax: +49 30 67055 – 291 E-Mail: <u>marek.junghans@dlr.de</u>

