Durability Testing of Polymer Electrolyte Fuel Cells Under Stationary and Automotive Conditions

P. Gazdzicki, M. Schulze, K. A. Friedrich

German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

229th ECS MEETING May 29 - June 2, 2016 | San Diego, CA Knowledge for Tomorrow

AERONAUTICS SPACE TRANSPORT ENERGY SECURITY

SPACE ADMINISTRATION

Contents

- Motivation
- Evaluation of irreversible degradation
- Evaluation of reversible degradation
- Recovery of reversible degradation
- Summary

Motivation

Performance targets clearly defined and well verifiable, BUT

→How to determine if durability goals are achieved?

Discrimination between **reversible** and **irreversible** degradation needed

Motivation

Performance targets clearly defined and well verifiable, BUT

→How to determine if durability goals are achieved?

Discrimination between **reversible** and **irreversible** degradation needed

Questions:

- 1. How to describe reversible degradation?
- 2. How to determine irreversible degradation?
- 3. Does refresh procedure lead to full recovery of reversible losses?

Durability tests consist of several test blocks of an **operation period** and a **recovery procedure**

FC dynamic load cycle (FC-DLC) according to FCH-JU StackTest project → Automotive conditions

Step	[sec]	[sec]	[%]
1	0	15	0.0
2	15	13	12.5
3	28	33	5.0
4	61	35	26.7
5	96	47	5.0
6	143	20	41.7
7	163	25	29.2
8	188	22	5.0
9	210	13	12.5
10	223	33	5.0
11	256	35	26.7
12	291	47	5.0
13	338	20	41.7
14	358	25	29.2
15	383	22	5.0
16	405	13	12.5
17	418	33	5.0
18	451	35	26.7
19	486	47	5.0
20	533	20	41.7
21	553	25	29.2
22	578	22	5.0
23	600	13	12.5
24	613	33	5.0
25	646	35	26.7
26	681	47	5.0
27	728	20	41.7
28	748	25	29.2
29	773	68	5.0
30	841	58	58.3
31	899	82	41.7
32	981	85	58.3
33	1066	50	83.3
34	1116	44	100.0
35	1160	21	0.0

FC dynamic load cycle (FC-DLC) according to FCH-JU
StackTest project
→ Pseudo I-V curve obtained from each cycle

FC dynamic load cycle (FC-DLC) according to FCH-JU StackTest project

FC dynamic load cycle (FC-DLC) according to FCH-JU StackTest project

FC dynamic load cycle (FC-DLC) according to FCH-JU StackTest project

Constant and non-constant reversible degradation

Systematic FC dynamic load cycle (FC-DLC) for accurate determination of reversible degradation

Gazdzicki et al. (2016) <u>J. Power Sources</u>, doi: 10.1016/j.jpowsour.2016.07.049

1.07

Mathematical description of reversible degradation

Reversible degradation can be described by a linear-exponential function

Gazdzicki et al. (2016) <u>J. Power Sources</u>, doi: 10.1016/j.jpowsour.2016.07.049

Gazdzicki et al. (2016) <u>J. Power</u> <u>Sources</u>, doi: 10.1016/j.jpowsour.2016.07.049

Mathematical description of reversible degradation

a linear-exponential function

Gazdzicki et al. (2016) <u>J. Power</u> <u>Sources</u>, doi: 10.1016/j.jpowsour.2016.07.049

Mathematical description of reversible degradation

Reversible degradation under stationary conditions

const. load 80%RH

- Irreversibe degradation not sensitive to slight changes of operation conditions
- Reversible degradation depends on operation conditions

Reversible degradation under stationary conditions

- Irreversibe degradation not sensitive to slight changes of operation conditions
- Reversible degradation depends on operation conditions

Reversible degradation reduced by ~70% by applying OCV transient

Test of conditions that occur during **shutdown recovery procedure** and could be the reason for recovery

Recovery by shutdown could not be exceeded by any other procedure → It is assumed that shutdown leads to **full recovery** of reversible losses

Gazdzicki et al. (2016) J. Power Sources, doi: 10.1016/j.jpowsour.2016.07.049

1. Astop

Recovery test	Intention	Recovered voltage @ 0.2 A cm ⁻²	Recovered voltage @ 0.8 A cm ⁻²
Purging anode with dry H ₂	Remove water from anode	-28 %	-20 %
Purging cathode with dry air	Remove water from cathode	19 %	-10 %
Reduction of cell temperature	Increase humidity and decrease mechanical membrane stress	38 %	68 %
OCV-Test	Drying of MEA and increase of cathode potential	0 %	0 %
Purging anode with air	Increase anode potential to remove contaminants	19 %	20 %
Stopping gas flow	Increase anode potential to remove contaminants	0 %	10 %
Purging cathode with N_2	Decrease cathode potential to reduce platinum oxide	14 %	21 %

Recovery by shutdown could not be exceeded by any other procedure
→ It is assumed that shutdown leads to full recovery of reversible losses

Gazdzicki et al. (2016) J. Power Sources, doi: 10.1016/j.jpowsour.2016.07.049

1. Astop

Recovery test	Intention	Recovered voltage @ 0.2 A cm ⁻²	Recovered voltage @ 0.8 A cm ⁻²
Purging anode with dry H ₂	Remove water from anode	-28 %	-20 %
Purging cathode with dry air	Remove water from cathode	19 %	-10 %
Reduction of cell temperature	Increase humidity and decrease mechanical membrane stress	38 %	68 %
OCV-Test	Drying of MEA and increase of cathode potential	0 %	0 %
Purging anode with air	Increase anode potential to remove contaminants	19 %	20 %
Stopping gas flow	Increase anode potential to remove contaminants	0 %	10 %
Purging cathode with N_2	Decrease cathode potential to reduce platinum oxide	14 %	21 %

- Water management plays major role in recovery
- Reason for recovery at low loads unclear

Gazdzicki et al. (2016) J. Power Sources, doi: 10.1016/j.jpowsour.2016.07.049

MART

and with the

Conclusions

- Irreversible degradation rate corresponds to linear regression of voltage values after refresh
- Propose to use voltage loss diagrams instead of single value if possible
- Reversible degradation can be described by linearexponential function
 - parameter c_i responsible for acceleration of reversible degradation with time
- Reason for voltage recovery:
 - Water management plays a role in voltage recovery, especially at high loads
 - Recovery at low load not yet explained

Acknowledgements

Thank you for your attention.

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology Initiative under Grant No. 621216 (**SecondAct**) and Grant nº 303452 (**Impact**).

