IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Competition and Collaboration in Cooperative
Coevolution of Elman Recurrent Neural
Networks for Time-Series Prediction

Rohitash Chandra

Abstract— Collaboration enables weak species to survive in
an environment where different species compete for limited
resources. Cooperative coevolution (CC) is a nature-inspired
optimization method that divides a problem into subcomponents
and evolves them while genetically isolating them. Problem
decomposition is an important aspect in using CC for
neuroevolution. CC employs different problem decomposition
methods to decompose the neural network training problem into
subcomponents. Different problem decomposition methods have
features that are helpful at different stages in the evolutionary
process. Adaptation, collaboration, and competition are needed
for CC, as multiple subpopulations are used to represent the
problem. It is important to add collaboration and competition
in CC. This paper presents a competitive CC method for training
recurrent neural networks for chaotic time-series prediction.
Two different instances of the competitive method are proposed
that employs different problem decomposition methods to
enforce island-based competition. The results show improvement
in the performance of the proposed methods in most cases when
compared with standalone CC and other methods from the
literature.

Index Terms— Chaotic time series, cooperative
coevolution (CC), genetic algorithms, neuroevolution, recurrent
neural networks.

I. INTRODUCTION

N NATURE, competition and collaboration play crucial

roles of survival for different species given limited
resources. Collaboration enables weak species to survive in
an environment where different species compete for limited
resources. Different species compete among themselves, and
at times, collaborate with other species to exchange resources.
Different species have different levels of strengths according
to their genes, population diversity, and the environmental
conditions. Cooperative coevolution (CC) is a nature-inspired
optimization method that divides a problem into subcompo-
nents that are analogous to the different groups of species in
nature [1]. Problem decomposition is an important procedure
of CC that determines how the subcomponents are decom-
posed in terms of their size and the portion of the problem
that the subcomponents represent.

Manuscript received January 22, 2014; revised July 20, 2014,
November 19, 2014, and February 11, 2015; accepted February 13, 2015.

The author is with the School of Computing, Information and Mathematical
Sciences, University of the South Pacific, Suva, Fiji, and also with the
Artificial Intelligence and Cybernetics Research Group, Software Foundation,
Nausori, Fiji (e-mail: c.rohitash@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2404823

The original CC method decomposed problems by having
a separate subcomponent for each variable [1] and it was later
found that the strategy was mostly effective for fully separable
problems [2]. CC naturally appeals to separable problems as
there is little interaction among the subcomponents during
evolution [3]. In the case of using CC for training neural
networks, the problem decomposition method is dependent on
the neural network architecture and the type of the training
problem in terms of the level of interdependencies among the
neural network weights [4].

The two major problem decomposition methods are
those at the synapse level (SL) [5] and at the neuron
level (NL) [6], [7]. Different problem decomposition methods
have shown different level of strengths and weaknesses in
different types of problems and neural network architectures.
Neural level problem decomposition methods have shown
good performance in pattern classification problems [6]-[9],
while SL problem decomposition methods have shown
good performance in control and time-series prediction
problems [5], [10], [11].

Competition is a major feature in biological evolution.
The initial motivations for using competition in evolutionary
algorithms have been given in [12]. They presented a com-
petitive coevolution method, where a population called host
and another called parasite compete with each other, with
different mechanisms that enable fitness sharing, elitism, and
selection. In CC, competition has been used for multiobjective
optimization [13] that exploited correlation and interdepen-
dencies between the components of the problem. Competition
has also been used in CC-based multiobjective optimization in
dynamic environments where problem decomposition method
adapts according to the change of environment rather than
being static from the beginning of the evolution [14].

Adaptation of problem decomposition in different phases
of evolution has been effective for training feedforward
networks on pattern recognition problems [15] and recurrent
networks on grammatical inference problems [16]. Adaptation
of problem decomposition method at different stages of
evolution is costly as it is difficult to establish optimal
parameters that indicate when to switch from one problem
decomposition to another and how long to use them [16].
Extensive experiments are needed when adaptation of
problem decomposition is applied to different neural network
architectures and problems [16].

The strengths for using competition in evolutionary
algorithms [12] have given the motivation to incorporate

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

it in CC, which can be beneficial as different problem
decomposition methods can be evolved. Competition can
ensure that the different problem decomposition methods are
given an opportunity during the entire evolution as opposed
to adaptive problem decomposition method as in our previous
work [16], [17] where the problem decomposition method is
adapted over time. In this way, there is no problem in finding
the right problem decomposition method at a particular time
according to the degree of separability [4].

This paper presents a new method to neuroevolution
of Elman recurrent networks [18] using CC that enforces
competition using different problem decomposition methods.
Elman recurrent networks employs the context weights that
feature information of the past state of the network in order
to make future decisions, which is needed for time-series
prediction [18]. We present a competitive two-island and
three-island CC method for training recurrent neural networks
for chaotic time-series problems where a one-step ahead
prediction is used. The proposed method takes advantage
of different problem decomposition methods that evolve and
compete with each other and at the same time collaborate
with each other with the exchange of the strongest genetic
materials during evolution. NL and SL problem decomposition
is used in each of the islands of the respective competitive
methods. In the three-island method, network level (NetL)
of problem decomposition is used as well. The performance
of the proposed approach is compared with established prob-
lem decomposition methods from literature along with other
computational intelligence methods. This paper extends our
previous work [19] where a competitive two-island CC method
was proposed. The proposed competitive three-island CC
method is used along with the two-island method, and the
results are further compared and evaluated.

The rest of this paper is organized as follows. A brief back-
ground on time-series prediction, CC, and recurrent neural net-
works is presented in Section II, and Section III gives details
of the competitive and collaborative CC method for training
recurrent networks. Section IV presents a background on the
given chaotic time-series problems, experimental results, and
discussion. Finally, the conclusion is drawn in Section V.

II. BACKGROUND AND RELATED WORK

A. Computational Intelligence and Neuroevolution
for Time-Series Prediction

Time-series prediction involves the use of past and present
time-series data to make future predictions [20], [21]. The
applications for time-series prediction are wide that range from
weather prediction [22] to financial prediction [23]-[27].

Computational intelligence methods have been popular in
time-series prediction that includes multilayer perceptron [28],
Elman recurrent networks [28], radial basis networks, and
locally linear neurofuzzy methods [29]. Real-time recur-
rent learning algorithm and recursive Bayesian network with
Levenberg—Marquardt algorithm [30] have also been used
and shown promising results. Hybrid Elman-NARX neural
networks have been used for chaotic time-series prediction that
produced exceptional results with the benchmark datasets [31].
Similar method was also used for backpropagation network

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

with residual analysis that showed competitive results [32].
Type-2 fuzzy neural networks [33] have also been recently
proposed for time-series prediction that employs weight update
using backpropagation.

Evolutionary computation methods have been used with
neural networks and other soft computing methods for time-
series prediction [10], [11], [34]. Hybrid of cultural algorithms
and cooperative particle swarm optimization (CCPSO) have
been proposed for time-series prediction [10]. In real-world
applications, evolutionary radial-basis networks have been
used for financial time-series prediction on data from the
Taiwan Stock Index [25]. Furthermore, the performance
of a fuzzy evolutionary and neuroevolutionary feedforward
neural networks has been compared for financial time-series
problems [27].

The importance for the time lag in time-series problems
has been explored where a simple deterministic method was
proposed for the selection of optimal time lags for nonuniform
embedding [35]. The method is able to handle optimization
problems in a multiparameter space of arguments, while
improving time-series prediction. Quantum-inspired hybrid
methods have been used in order to determine the best possible
time-lag to represent the original time series [36]. A hybrid
method that combined neural networks with a modified genetic
algorithm was proposed to perform an evolutionary search
for the minimum necessary time-lags for determining the
phase space that generates the time series [37]. A morpho-
logical rank linear time-lag added evolutionary forecasting
method was also proposed that carries out an evolutionary
search for the lowest number of relevant time lags necessary
to efficiently represent the patterns and characteristics of
a complex time series [38]. A metaevolutionary algorithm
simultaneously evolved both the neural networks and the set of
time-series data that are needed to predict the time series [39].
The approach showed good results on a number of time-
series problems where it was able to reconstruct the data set
efficiently and accurately.

Multiobjective evolutionary algorithms have been used
to optimize radial-basis networks for time-series prediction,
which incorporated heuristics that were able to detect and
remove networks which did not contribute much to the
network output, while preserving those that produced good
results [40]. The use of multiobjective evolutionary neural
networks for time-series prediction employed training and
validation accuracy as the two different objectives [34].
Multiple error measures have also been used as the different
objectives in training evolutionary neural networks with multi-
objective optimization [41]. Hybrid fuzzy model has been pro-
posed for predicting nonlinear time-series data in which their
two objectives were to improve prediction accuracy and min-
imize the number of required fuzzy rules [42]. A knee-point
strategy multiobjective approach has shown promising results
for evolving feedforward neural networks when compared
with established multiobjective evolutionary algorithms [43].
Hybrid multiobjective evolutionary method has been used
for evolution of recurrent neural network weights and
structure with ensembles where a set of Pareto solutions are
obtained [44] and has shown promising results.

CHANDRA: COMPETITION AND COLLABORATION IN CC OF ELMAN RECURRENT NEURAL NETWORKS 3

B. Cooperative Coevolution for Neuroevolution

CC divides a large problem into smaller subcomponents,
which are implemented as subpopulations that are evolved in
isolation and cooperation takes place for fitness evaluation [1].
The subcomponents are also referred as modules. Problem
decomposition determines how the problem is broken down
into subcomponents. The size of a subcomponent and the
way it is encoded depends on the problem. The original CC
framework has been used for general function optimization
and the problems were decomposed to its lowest level, where a
separate subcomponent was used to represent each dimension
of the problem [1]. It was later found that this strategy
is effective only for problems that are fully separable [2].
Much work has been done in the use of CC in large-scale
function optimization, and the focus has been on nonseparable
problems [2], [45]-[47].

A function of n variables is separable if it can be written
as a sum of n functions with just one variable [48].
Nonseparable problems have interdependencies between vari-
ables as opposed to separable ones. Real-world problems
mostly fall between fully separable and fully nonseparable.
CC has been effective for separable problems. Evolutionary
algorithms without any decomposition strategy appeal to fully
nonseparable problems [4].

The subpopulations in CC are evolved in a round-robin
fashion for a given number of generations known as the
depth of search. The depth of search has to be predetermined
according to the nature of the problem. The depth of search
can reflect whether the problem decomposition method has
been able to group the interacting variables into separate sub-
components [7]. If the interacting variables have been grouped
efficiently, then a deep greedy search for the subpopulation is
possible, implying that the problem has been efficiently broken
down into subcomponents that have fewer interactions among
themselves [4].

CC methods have been used for neuroevolution of recurrent
neural networks for time-series problems [11], [17], and it
has been shown that they perform better when compared with
several methods from literature.

C. Diversity in Cooperative Coevolution

Population diversity is a key issue in the performance of
evolutionary algorithms. The diversity of a population affects
the convergence of a evolutionary algorithm. A population,
which consists of similar candidate solutions in the initial
stages of the search, is prone to convergence in a
local minimum. The selection pressure and recombination
operations mainly affect the diversity of the population.
Evolutionary operators, such as crossover and mutation, must
ensure that the population is diverse enough in order to avoid
local convergence. Diverse candidate solutions can ensure
the algorithm to escape a local minimum. In evolutionary
algorithms, diversity has been improved using techniques, such
as: 1) complex population structures [49], [50]; 2) the use
of specialized operators to control and assist the selection
pressure [51]; 3) reintroduction of genetic materials in the
population [52], [53]; and 4) diversity measures, such as the

hamming distance [54], gene frequencies [70], and diversity
measures to explore and exploit search [55].

CC naturally retains diversity through the use of
subpopulations, where mating is restricted to the subpopu-
lations and cooperation, is mainly by collaborative fitness
evaluation [1], [56]. Since selection and recombination are
restricted to a subpopulation, the new solution will not
have features from the rest of the subpopulations; there-
fore, CC produces more diverse population when com-
pared with a standard evolutionary algorithm with a single
population.

D. Recurrent Neural Networks for
Time-Series Prediction

Recurrent neural networks have been an important focus of
research as they can be applied to difficult problems involving
time-varying patterns. They are suitable for modeling temporal
sequences. First-order recurrent neural networks use context
units to store the output of the state neurons from computation
of the previous time steps. The context layer is used for
computation of present states as they contain information
about the previous states. The Elman architecture [18] employs
a context layer, which makes a copy of the hidden layer
outputs in the previous time steps. The dynamics of the change
of hidden state neuron activation’s in Elman style recurrent
networks are given by

K J
ity =f zvik)’k(f—l)-i-zwij xj(t—1) (D
k=1 j=1
where yr(¢) and x;(¢) represent the output of the context state
neuron and input neurons, respectively. v;; and w;; repre-
sent their corresponding weights. f(.) is a sigmoid transfer
function.

In order to use neural networks for time-series prediction,
the time-series data need to be preprocessed and recon-
structed into a state space vector [57]. Given an observed
time series x(f), an embedded phase space Y(r) =
[(x(t),x(t —=T),...,x(t(D — 1)T)] can be generated, where
T is the time delay, D is the embedding dimension, t = 0, 1,
2,...,N—DT — 1, and N is the length of the original time
series [57]. Taken’s theorem expresses that the vector series
reproduces many important characteristics of the original time
series. The right values for D and T must be chosen in order
to efficiently apply Taken’s theorem [58]. Taken’s proved that
if the original attractor is of dimension d, then D = 2d + 1
will be sufficient to reconstruct the attractor [57].

The reconstructed vector is used to train the recurrent
network for one-step-ahead prediction where one neuron is
used in the input and the output layer. The recurrent network
unfolds k steps in time, which is equal to the embedding
dimension D [11], [28], [30].

Either the root-mean-squared error (RMSE) or the normal-
ized mean-squared error (NMSE) can be used to measure the
prediction performance of the given recurrent neural network.

a.) Elman Recurrent Meural Network

Hidden
layer

Output
layer :
(Prediction) }

Context
layer

Fig. 1.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Hidden
layer

Output
layer
(Prediction)

Unfolded
in time

Context
layer e,

b.) Elman Recurrent Meural Network
unfolded in time as per dimension (D)

Elman recurrent neural network used for time-series prediction. Note that only one neuron is used in the input and output layer. The number of

hidden neurons varies as per application. The network unfolds in time according to the size of the dimension (D) from using Taken’s theorem in obtaining
state space vector from the time series. Solid lines (synapses): trainable weights that are evolved using the proposed competitive coevolution algorithm.

These are given in

1 N
RMSE = | > (i —5)? @)

i=1

N 532
Zi:1 (i — i)

N -
im0 = 3i)?
where y;, ¥;, and y; are the observed data, predicted data, and
average of observed data, respectively. N is the length of the
observed data.

Elman recurrent neural networks given in (1) are shown
in Fig. 1, where the network is given along with how it is
unfolded through time according to the dimension (D). This
approach has been used in our previous work [11]. We use a
fixed dimension size; however, the architecture can also use
the dimension size that varies for different points in the time
series.

NMSE = 3)

E. Problem Decomposition for Recurrent Networks

Problem decomposition is an important procedure in using
CC for neuroevolution. The problem decomposition method
will determine which set of weights from the neural network
will be encoded into a particular subpopulation of CC. In the
case of recurrent neural networks, special consideration needs
to be made for the weights that are associated with the
feedback connections.

There are two major problem decomposition methods
for neuroevolution that decompose the network on the
NL and SL. In SL problem decomposition, the neural
network is decomposed to its lowest level, where each
weight connection (synapse) forms a subcomponent.
Examples include cooperatively coevolved synapse
neuroevolution [5] and neural fuzzy network with cultural
cooperative particle swarm optimization (CPSO) [10].

In NL problem decomposition, the neurons in the network
act as the reference point for the decomposition. Examples
include enforced subpopulations [8], [9] and neuron-based
subpopulation [6], [7].

III. COMPETITION AND COLLABORATION
IN COOPERATIVE COEVOLUTION

Collaboration in an environment of limited resources is
an important feature used for survival in nature. Collabora-
tion helps in the sharing of resources between the different
species that have different characteristics for adaption when
given with environmental changes and other challenges.
In CC, the species are implemented as subpopulations that
do not exchange genetic material with other subpopulations.
Collaborations and exchange of genetic material or infor-
mation between the subpopulations can be helpful in the
evolutionary process. Competition and collaboration are vital
component of evolution where different groups of species
compete for resources in the same environment. Different
types of problem decomposition methods in CC represent
different groups of species (neural and SL [5]-[7]) in an envi-
ronment that features collaboration through fitness evaluation
during evolution.

In this section, we propose a CC method that incorporates
competition and collaboration with species that is motivated
by evolution in nature. The proposed method employs the
strength of a different problem decomposition method that
reflects on the different degree of nonseparability (interaction
of variables) and diversity (number of subpopulations) during
evolution [4].

The proposed method is called competitive island-based
CC (CICC), which employs different problem decomposition
methods that compete with different features they have in
terms of diversity and degree of nonseparability. In the rest

CHANDRA: COMPETITION AND COLLABORATION IN CC OF ELMAN RECURRENT NEURAL NETWORKS 5

Algorithm 1 Competitive Two-Island CC for Training
Recurrent Neural Networks

Algorithm 2 Competitive Three-Island CC for Recurrent
Networks

Stage 1: Initialisation:

i. Cooperatively evaluate Neuron level
ii. Evaluate Network level

Stage 2: Evolution:

while FuncEval < GlobalEvolutionTime do
while FuncEval < Island-Evolution-Time do
foreach Sub-population at Synapse level do
foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation

end
end
end
while FuncEval < Island-Evolution-Time do
foreach Sub-population at Neuron level do
foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation

end
end
end
Stage 3: Competition: Compare and mark the island with best
fitness.

Stage 4: Collaboration: Inject the best individual from the island
with better fitness into the other island.

if SL< NL then

| Copy NL best into chosen SL Individual.

end

else

| Copy SL best into chosen NL Individual.

end

end

of the discussion, we refer to the different types of problem
decomposition as islands. The proposed method features com-
petition where the different islands compare their solutions
after a fixed time (number of fitness evaluations) and exchange
the best solution between the islands. In this model, for the
case of neuroevolution, only two or three islands are used
as given by the established problem decomposition methods.
The details of the different problem decomposition methods
that are called islands are given as follows.

1) SL Problem Decomposition: Decomposes the
network into its lowest level to form a single
subcomponent [5], [10]. The number of connections in
the network determines the number of subcomponents.

2) NL Problem Decomposition: Decomposes the network
into NL. The number of neurons in the hidden, state,
and output layer determines the number of subcompo-
nents [7].

3) NetL: The standard neuroevolution where only one
population represents the entire network. There is no
decomposition present at this level of encoding.

The proposed CICC methods for two and three islands are
given in Algorithms 1 and 2, respectively. In Algorithm 1,

Stage 1: Initialisation:

i. Cooperatively evaluate Synapse
ii. Cooperatively evaluate Neural level
iii. Evaluate Network level

Stage 2: Evolution:

while FuncEval < GlobalEvolutionTime do

while FuncEval < Island-Evolution-Time do

foreach Sub-population at Synapse level do

foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end
end
while FuncEval < Island-Evolution-Time do
foreach Sub-population at Neuron level do
foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation

end
end
end
while FuncEval < Island-Evolution-Time do
while n Generations do
Create new individuals using genetic operators

end

end

end

Stage 3: Competition

Stage 4: Collaboration: Inject the best individual from the island
with better fitness into the other islands.
if (SL< NL) and (SL< NetL) then

i. Copy SL best into chosen NL Individual
‘ ii. Copy SL best into chosen NetL Individual
end
else if (NL < SL) and (NL< NetL) then

i. Copy NL best into chosen SL Individual
‘ ii. Copy NL best into chosen NetL Individual
end
else

i. Copy NetL best into chosen NL Individual
‘ ii. Copy NetL best into chosen SL Individual
end
end

initially, all the subpopulations of the SL and NL islands
shown in Fig. 2 are initialized and evaluated using the
framework shown in Fig. 4. In Stage 1, the subpopulations
at SL and NL problem decomposition are cooperatively
evaluated.

State 2 proceeds with evolution in an island-based round-
robin fashion, where each island is evolved for a predefined
time based on the number of fitness evaluations. This is
called island evolution time, which is given by the number of
cycles that makes the required number of function evaluations
in the respective islands. A cycle in CC is when all the
subpopulations have been evolved for n number of generations
in a round-robin fashion.

Competition and Collaboration

A

Synapse Level
Island

Neural Level
Island

Fig. 2. Two-island CICC method that employs NL and SL islands.

Competition and Collaboration

Hod

Network Level
Island

D

Synapse Level
Island

Fig. 3. Three-island CICC method that employs neural level, SL, and NetL
islands that compete and collaborate by sharing the best solutions during
evolution.

Once a particular island has been evolved for the island
evolution time, the algorithm proceeds and checks if the best
solution of the particular island is better than that of the rest
of the islands. If the solution is the best, then the collaboration
procedure takes place where the solution is copied to the rest of
the islands. In this way, the best solution is used to help the rest
of the islands. Afterward, when the particular island changes,
the best solution competes within the rest of the solutions
from the same island until the local evolution time has been
reached. In the collaboration procedure, the algorithm needs to
consider how the solution from one island will be transferred
to the rest of the islands.

In Algorithm 2, the three-island method follows the same
approach as Algorithm 1, the difference being that there is an
additional island (NetL) in this method, as shown in Fig. 3.
The algorithm initializes and evaluates the respective islands
before evolution begins in Stage 2, where all of the islands
are evolved for the specified island evolution time. The island
with the best fitness is then marked as shown in Stage 3.
Stage 4 of both algorithms describes how the collaboration
feature transfers the strongest individuals from the best island
into the rest of the islands.

A. Cooperative Evaluation

Cooperative evaluation of individuals in the respective sub-
populations is done by concatenating the chosen individual
from a given subpopulation with the best individuals from the
rest of the subpopulations [1], [6], [7], [11]. The concatenated

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Recurrent Neural Network

Time Series Data

ENCODE WEIGHTS

RMSE (FITNESS)

Competitive Island
Cooperative Coevolution

Fig. 4. Overall framework. The time-series data are reconstructed into state
space vector using Taken’s theorem. Each of the islands encodes the weights
into the recurrent neural network in order to obtain the fitness given by the
RMSE.

individual is encoded into the recurrent neural network and the
fitness is calculated. The goal of the evolutionary process is to
increase the fitness, which tends to decrease the network error.
In this way, the fitness of each subcomponent in the network
is evaluated until the cycle is completed.

B. Competition

Each island employs a different problem decomposition
method. In the SL island, a much higher number of function
evaluation is required for a single cycle when compared with
the NL island. The number of function evaluation depends
on the number of subpopulations used in the island. SL island
employs the highest number of subpopulations, as each weight
link is represented as a subpopulation, whereas NL subpopu-
lations have more than one weight variables.

The respective islands need to be given the same time
for evolution; therefore, the number of function evaluations
required needs to be the same or similar. We can only evolve
the particular island for complete cycles; therefore, the number
of function evaluations cannot be exactly the same for each
island. In the competitive framework, both islands are given
similar approximate time in terms of the number of function
evaluations.

C. Collaboration

After the competition, the island that contains an individual
with better solution is then injected (copied) into the other
islands, as shown in Stage 4 of Algorithms 1 and 2. A number
of factors need to be considered when making a transfer as
the size and number of subcomponents vary for each island
due to their difference in problem decomposition method. The
best individuals from each of the subcomponents need to be
carefully concatenated into an individual and transferred with-
out losing any genotype (subcomponents in CC) to phenotype
(recurrent neural network) mapping.

The winner island is used to inject the best solution to
the other island. The island in which the best individual is

CHANDRA: COMPETITION AND COLLABORATION IN CC OF ELMAN RECURRENT NEURAL NETWORKS 7

Best individuals from Synapse Level (SL)

O LD

N

O »

O Lt
: 3)
Best individual from

Network Level (Netl)

Fig. 5. Individuals shown as square box is copied from SL island into
NetL island. A single fitness from the individuals (shown as circles) is copied.
Note that only the fitness of the last individual is copied from SL island
to NetL island. This fitness is the main fitness of the SL island.

Best individuals from Synapse Level (5L)

OLIOLLO

Best individuals from
Neuron Level (NL)

Fig. 6. Individuals shown as square box are copied from the SL island into
the NL island. A single fitness from the individuals shown as circles is copied.
Note that only the fitness of the last individual is copied from the SL island
to the NL. This fitness is the main fitness of the SL island.

injected is evaluated to ensure that the injected individual
has a fitness. In order to save evaluation time, the fitness
can also be transferred along with the solution. This depends
on the way the subpopulations are implemented and the
approach taken in ensuring that the fitness value is updated
at the right position that corresponds with the individual that
has been transferred. The evaluation depends on the type of
the evolutionary algorithm used in the subpopulation. The
fitness of the injected individual and the best individual in the
subpopulation needs to be marked. Evaluation of the entire
subpopulation is costly in terms of function evaluations.

Since each subpopulation contains individuals that have
fitness, we need to note that there will be a number of different
fitness values from the best individual in each subpopulation.
We only take the best fitness value and use it to replace the best
individuals from all the subpopulations in the other islands,
as shown in Figs. 5-7. Since the number of subpopulations
is different, only the best fitness replaces the old best fitness,
as it carries a stronger solution.

In Fig. 5, best individuals from the SL island are transferred
to NetL. Similar approach will be used in the reverse case
where NetL is transferred to SL; however, the NetL fitness will
replace each of the best individuals corresponding fitness in the
SL. In Fig. 6, best individuals from SL island is transferred
to NL. In the reverse case, the fitness of the last individual
of the NetL will be copied to each of the best individuals
of the SL. In Fig. 7, NL island is transferred to the NetL.

Best individuals from
Neuron Lewvel (ML)

\\V7A

R

Best individual from Network Level (NetL)

Fig. 7. Individuals shown as square box are copied from the NL island
into the NetL island. A single fitness from the individuals shown as circles is
copied.

The same trend as in the previous cases will be applied for
reverse transfer.

D. Evolution Algorithm in the Subpopulations

The type of evolutionary algorithm used in the
subpopulation will have certain requirements for such a
transfer of solution to take place. In our implementation,
we used the generalized generation gap with parent-centric
crossover (G3-PCX) evolutionary algorithm [59] in the
subpopulations.

The details of the G3-PCX are given as follows. The
generalized generation gap differs from a standard genetic
algorithm in terms of selection and creation of new individuals.
In G3-PCX, the whole population is randomly initialized
and evaluated similarly to the standard genetic algorithm.
The difference lies in the optimization phase, where a small
subpopulation is chosen. At each generation, n best fit and
m random individuals are chosen from the main population
to make up a subpopulation. The subpopulation is evaluated
at each generation, and the evaluated individuals are added to
the main population. In this way, over time, the individuals of
the main populations are evaluated.

The best individual in the population is retained at each
generation. The parent-centric crossover operator is used in
creating an offspring based on orthogonal distance between
the parents [59]. The parents are made of female and male
components. The offspring is created in the neighborhood
of the female parent. The male parent defines the range
of the neighborhood. The neighborhood is the distance of
the search space from the female parent, which is used to
create the offspring. The genes of the offspring extract values
from intervals associated with the neighborhood of the female
and the male using a probability distribution. The range of
this probability distribution depends on the distances among
the genes of the male and the female parent. The parent-
centric crossover operator assigns more probability to create
the offspring near the female than anywhere else in the search
space.

E. Diversity Through Competition and Collaboration

CC naturally retains diversity through the use of
subpopulations, where mating is restricted to the
subpopulations and cooperation is mainly by collaborative
fitness evaluation [1], [56].

The proposed method employs competition through the
islands, and the collaborative features ensure that the diversity
of the islands is improved. Each island ensures a certain
level of diversity due to the different problem decomposition
methods and the number of subpopulations. Diversity can
help in escaping from a local minimum through interisland
competition and collaboration.

IV. SIMULATION AND ANALYSIS

This section presents an experimental study of CICC for
training recurrent neural networks on chaotic time-series
problems. The NL [11] and SL [11] problem decomposition
methods are used in each of the islands, and standalone
versions of these methods are used for comparison.

The Mackey-Glass time series [60] and Lorenz time
series [20] are the two simulated time series, while the
real-world problems are the Sunspot time series [61] and
the financial time series from ACI Worldwide Inc. given in
NASDAQ stock exchange [62].

The behavior of the respective methods is evaluated on
different recurrent network topologies that are given by
different numbers of hidden neurons. The size and description
of the respective data set are taken from our previous work
for a fair comparison [11]. The results are further compared
with that of other computational intelligence methods in the
literature.

A. Problem Description

The Mackay-Glass time series has been used in the literature
as a benchmark problem due to its chaotic nature [60]. The
differential equation used to generate the Mackey-Glass time
series is given in

dx ax(t — 1) b 4
i Otxa—n O X

In (4), the delay parameter 7 determines the characteristic
of the time series, where ¢ > 16.8 produces chaos. The
selected parameters for generating the time series is taken
from [29], [31], [63], and [64], where the constants a = 0.2,
b = 0.1, and ¢ = 10. The chaotic time series is generated
using time delay 7 = 17 and initial value x(0) = 1.2.

The experiments use the chaotic time series with the
length of 1000 generated by (4). The first 500 samples are
used for training the Elman network, whereas the rest of
the 500 samples are used for testing. The time series is
scaled in the range [0, 1]. The phase space of the original
time series is reconstructed with the embedding dimensions
D=3and T =2.

The Lorenz time series was introduced by Lorenz who
has extensively contributed to the establishment of Chaos
theory [20]. The Lorenz set of equations is given in (5), where
o, r, and b are dimensionless parameters

dx(t)
D oty xto
YO v 20—y
EW v b0,)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The typical values of these parameters are ¢ = 10, r = 28,
and b = 8/3 [29], [31], [65]-[67]. The x-coordinate of the
Lorenz time series is chosen for prediction and 1000 samples
are generated. The time series is scaled in the range [—1, 1].
The first 500 samples are used for training and the remaining
500 is used for testing. The phase space of the original
time series is reconstructed with the embedding dimensions
D=3and T =2.

The Sunspot time series is a good indication of the solar
activities for solar cycles, which impacts the earth’s climate,
weather patterns, satellite, and space missions [68]. The
prediction of solar cycles is difficult due to its complexity. The
monthly smoothed Sunspot time series has been obtained from
the World Data Center for the Sunspot Index [61]. The Sunspot
time series from November 1834 to June 2001 is selected,
which consists of 2000 points. This interval has been selected
in order to compare the performance of the proposed methods
with those of the methods in [29] and [31]. The time series is
scaled in the range [—1, 1]. The first 500 samples are used for
training, and the remaining 500 samples are used for testing.
The phase space of the original time series is reconstructed
with the embedding dimensions D = 5 and T = 2. Note
that the scaling of the three time series in the range
of [0, 1] and [—1, 1] is done as in the literature in order
to provide a fair comparison.

The financial time series data set is taken from the NASDAQ
stock exchange [62]. It contains daily closing prices of ACI
Worldwide Inc. time series, which is one of the companies
listed on the NASDAQ stock exchange. The data set contains
closing stock prices from December 2006 to February 2010,
which is equivalent to ~800 data points. We used embedding
dimension D = 5 and time 7 = 2 to reconstruct the time-
series data using Taken’s theorem in order to get the training
and testing data sets and obtain 200 for each set. The closing
stock prices were normalized between O and 1. The data set
also overlaps with the recession that hit the U.S. market. The
given data points were divided into training and testing using
a 50-50 split.

B. Experimental Setup

The Elman recurrent network employs sigmoid units in the
hidden layer of the three different problems. In the output
layer, a sigmoid unit is used for the Mackey-Glass and
financial time series, while hyperbolic tangent unit is used for
Lorenz and Sunspot time series. The experimental setup is the
same as our previous works [11]. The RMSE and NMSE given
in (2) and (3) are used as the main performance measures of
the recurrent network.

In the proposed CICC shown in Algorithms 1 and 2, each
subpopulation is evolved for a fixed number of generations in a
round-robin fashion. This is considered as the depth of search.
Our previous work has shown that the depth of search of one
generation gives optimal performance for both NL and SL
decomposition [7]. Hence, one is used as the depth of search
in all the experiments. Note that all subpopulations evolve for
the same depth of search.

The termination condition of the all the problems
and recurrent network training methods is when a total

TABLE I

TRAINING AND GENERALIZATION PREDICTION PERFORMANCE
FOR THE MACKEY-GLASS TIME SERIES GIVEN IN (xE-02)

CHANDRA: COMPETITION AND COLLABORATION IN CC OF ELMAN RECURRENT NEURAL NETWORKS

TABLE III

TRAINING AND GENERALIZATION PREDICTION PERFORMANCE

FOR THE SUNSPOT TIME SERIES GIVEN IN (X E-02)

Method H Training General. Best
CC-NL 3 1.138 + 0.104 1.143 £0.105 0.557
5 1.600 &+ 0.111 4374 + 1.113 1.239
7 1.680 £ 0.121 4339 £+ 1.132 1.522
9 1.776 + 0.106 6.886 + 1.792 1.466
CC-SL 3 1.811+£ 0.208 1.820 +0.209 0.976
5 1.636 £0.192 1.643 £+0.193 0.822
7 1.906 +0.414 1.911£0.415 0.902
9 2.964 1+0.685 2.967+ 0.685 1.056
NetL 3 0.894 + 0.073 0.898 +0.074 0.504
5 0.874 £ 0.065 0.878 & 0.066 0.577
7 1.160+£ 0.087 1.172 + 0.089 0.860
9 1.897+0.239 1.904 + 0.239 1.089
CICC 3 1.053 +0.063 1.059 + 0.064 0.572
(SL-NL 5 0.847 £0.062 0.847 £ 0.063 0.460
Two-Island) 7 0.846 £0.063 0.847 + 0.064 0.470
9 0.856 +0.074 0.858 +0.074 0.400
CICC 3 0.786 £ 0.0528 0.789 &+ 0.0536 0.327
(SL-NL-NetL 5 0.791%£ 0.0453 0.792+ 0.0458 0.520
Three-Island) 7 1.076 £ 0.0591 1.081 4+ 0.059 0.589
9 1.210 + 0.101 1.216 + 0.102 0.574
TABLE II

TRAINING AND GENERALIZATION PREDICTION PERFORMANCE

FOR THE LORENZ TIME SERIES GIVEN IN (xE-02)

PD H Training General. Best
CC-NL 3 1775 £0.153 1.839 £ 0.161 0.728
5 1321 £0.143 1.3554+0.147 0.319
7 1425+ 0.153 1470 £0.156 0.514
9 1489 +0.159 1553 +£0.167 0.514
CC-SL 3 2085 £0242 2136+ 0246 0.787
5 1.678+ 0.199 1.748 £ 0.210 0.433
7 1643 £0282 1.715+£ 0296 0.591
9 1444 £0.191 1.513 £0.205 0.642
NetL 3 1215+£0.172 1244 £0.178 0.468
5 1.102 £ 0.088 1.127 £ 0.091 0.516
7 1.831 £0.177 1.896 £ 0.183 0.771
9 2613+£0.242 2.695 + 0.248 1.360
CICC 3 1.390 £0.155 1.431 £0.158 0.583
(SL-NL 5 1026 £0.136 1.054 £0.140 0.355
Two-Island) 7 0938 £0.150 0.965 £0.149 0.372
9 0.888 £0.097 0.915 £0.101 0.442
CICC 3 1.739+ 0.186 1.785 £ 0.194 0.567
(SL-NL-NetL 5 1.707 £ 0.174 1.779£0.182 0.527
Three-Island) 7 2.113 £0.193 2201 £ 0.196 0.878
9 235240256 2475+ 0.267 0.864

PD H Training General. Best
CC-NL 3 2.066 £ 0.217 5.119 £+ 1.233 1.693
5 1.794 £+ 0.187 5.369 £ 1.277 1.662
7 1.648 + 0.100 5.656 + 1.553 1.510
11 1.705 £ 0.159 6.513 £+ 1.890 1.507
CC-SL 3 2.066 £ 0.217 5.119 £ 1.233 1.693
5 1.794 + 0.187 5.369 £+ 1.277 1.662
7 1.648 + 0.100 5.656 + 1.553 1.510
11 1.705 £ 0.159 6.513 £+ 1.890 1.507
NetL 3 1.485 £ 0.146 5.150 £+ 1.868 1.579
5 1.430 & 0.102 4283 + 0917 1.552
7 1.924 + 0.174 5.764 £+ 1.564 1.663
9 2.300 £ 0.124 8.801 £ 2.044 2.633
CICC 3 1.589 £0.090 4.068 £0.594 1.572
(SL-NL 5 1.479 + 0.108 4.5444 1.229 1.342
Two-Island) 7 1.348 4 0.0745 7.606 + 2.219 1.663
9 1.485 £+ 0.071 6.657 + 1.771 1.778
CICC 3 1.830 £ 0.115 5.954 £+ 1.629 1.902
(SL-NL-NetL 5 1.873 £ 0.113 6.509 + 2.717 1.777
Three-Island) 7 2.0904 0.157 8.900 + 2.975 2.347
9 2.448 £+ 0.157 10.646 + 3.67163 3.429
TABLE IV

TRAINING AND GENERALIZATION PREDICTION PERFORMANCE
FOR THE FINANCE (ACI WORLDWIDE INC.) TIME SERIES
GIVEN IN (XxE-02)

PD H Training General. Best
CC-NL 3 2074 £0.041 2117 £ 0.132 1.934
5 2.027 £0.030 2.041 £ 0.024 1.931
5 2010 £ 0.019 2.043 4+ 0.044 1.932
5 2028 £0.019 2.049 £ 0.066 1.930
CC-SL 32262 +£0.072 2.186 + 0.078 1.908
5 2200 £ 0.074 2.105 £ 0.047 1.930
5 2108 £ 0.051 2.108 + 0.058 1.931
5 2106 £0.041 2.170 £ 0.065 1.947
NetL 3 2.001 £0.023 2.070 £0.142 1.927
5 2.004 £0.044 2.017 £0.029 1916
7 2.054 £0.027 2.031 £0.029 1910
9 2.155 £0.042 2.126 £0.052 1917
CICC 3 2.008 £ 0.027 2.039 + 0.028 1.920
(SL-NL 5 1974 £0.022 2.031 £ 0.019 1.942
Two-Island) 7 1941 £0.018 2.027 £ 0.030 1.935
9 1932 £0.019 2.005+ 0015 1.942
CICC 3 1974 £ 0011 2.043 £ 0.098 1.921
(SL-NL-NetL 5 1.989 £ 0.046 1.994+ 0.012 1.927
Three-Island) 7 2.013 + 0.020 2.014 4+ 0.021 1.935
9 2070 £ 0.059 2.067 £ 0.050 1.934

of 50000 function evaluations has
the respective cooperative coevolutionary methods
(CC-NL and CC-SL). The proposed CICC-two-island
method employs a total of 100000 function evaluation, where
each island (SL and NL) employs 50 000 function evaluations.
The proposed CICC-three-island method employs a total
of 150000 function evaluations.

been reached by

C. Results and Discussion

This section reports the performance of CICC for train-
ing the Elman recurrent network on the chaotic time-series
problems.

The results are given for different numbers of hidden
neurons for Elman style recurrent networks using the
respective coevolutionary algorithms given in Tables I-IV.
The CC-NL and CC-SL represent standalone CC NL and SL

methods, respectively. They are used to compare with the
proposed CICC (SL-NL two island) and (SL-NL-NetL three
island) methods using the same setup for the recurrent net-
work architecture and optimization time in terms of function
evaluations as given in Section IV-B.

The results report the RMSE with mean and 95% confidence
interval along with the best run from 50 experimental
runs.

We evaluate the results by comparing the different methods
with the number of hidden neurons (H). Note that the least
values of RMSE show the best results. We first compare
the results of the CICC-two-island method with standalone
methods (NL and SL), as the proposed method involves the
competition and collaboration between the two standalone
methods. Later, we compare the three-island CICC method
with the rest of the methods.

In Table I, the results of the Mackey-Glass time series show
that the CICC-two-island method has given better performance
than CC-NL and CC-SL. This is clear for all the cases,
i.e., for three to nine hidden neurons. In Table II, similar
trend is seen for the Lorenz problem, where CICC-two-island
method outperforms standalone CC-SL and CC-NL. This is
seen for the training, generalization, and the best runs. The
performance has improved as the number of neurons increases,
which indicates that CICC-two-island method scales better
than SL and NL.

In the Mackey-Glass problem, we observe that the three-
island approach shows the best performance for three and five
neurons. It outperforms the two-island method and the rest
of the standalone methods. The improvement in performance
is due to the third island (NetL), which has been added
to the competition and the collaborative features helped in
improving the results. In the case of seven and nine neurons,
it deteriorates in performance when compared with two-island
method, but performs better than standalone methods.

In the Lorenz time series, the three-island method is not
able to outperform the two-island method and the standalone
methods. It also shows that the three-island method does not
scale as well as the two-island and rest of the methods. The
collaboration of the NetL island seems to influence and hence
deteriorate its performance, as the size of the problem in
terms of hidden neurons increases. The third island (NetL)
has deteriorated the performance by injecting its best solution
to the rest of the islands.

We note that both of these problems are stimulated time
series that do not contain noise; hence, there was no problem
faced in overfitting that is common for poor generalization
performance.

The results in Tables III and IV reveal the performance of
the proposed method for real-world time series where noise
is present, and therefore we only consider the training perfor-
mance, as the generalization performance is also dependent
on overfitting during training. In the Sunspot time series,
CICC-two-island method performs better than the other
methods (NL and SL) for all the cases. It also scales better
as the number of hidden neurons increases. The three-island
method shows better performance than the standalone methods
only for the case of three hidden neurons. The three-island
method did not outperform the two-island approach. The
three-island method seems to have deteriorated in the
performance given by the two-island method by collaboration
from the NetL island.

The same trend is seen for the finance time series
(ACI Worldwide Inc.) problem. The two-island method has
been able to outperform the standalone method (SL and NL).
The three-island method has performed better than all the
methods for three neurons only. The performance deteriorates
as the number of hidden neurons increased due to collaboration
from the NetL island.

The results show that the generalization performance is
dependent on the neural network topology according to the
number of hidden neurons. In the Sunspot time series, we
observe that the training performance improves, as the number
of hidden neurons increases; however, the generalization

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

1 Three-Island]
. Two-Island
s Original -
5
E
£ 05|y
g il i
2 | i |
PN |
EREE = % -y
= R i \ | \
z | H | A /
CON | T I N A A :
I IR VO (N ANV N W W S LN Fi, A
% T v ' | \ [4
® | " / \ 7
5 [\ I R A R N L \
S [V [\ ["/
2) \/ \ \ "/ W Lo/ \/

e N s
-1
o] 50 100 150 200 250 300 350 400 450 500
Time
(@)

1 Three-lsland -]
_ wo-Island
s /\ Original -
5
s |
. — -
s A [W [
2 A | \ |
& | | i
5 R A B
< 1! \ \ !
2 o i [R Moy [|
E 5 T L O A B
= \ ! | o \ /I |
g LN 7 N R N N I Y B P O Vo
3 g / | [(I Vo \ (.
3 \ ‘ | | | \ \ | | \
¢ o5 \ i | i { f x\\ , \ 1 i |
= Wb / | | | \
S IRV R/ B VA RV I VI VIR N Y|
IS \ Y

-1

o] 50 100 150 200 250 300 350 400 450 500

"Two-lsland-Error -
Three-Island-Error

Error

Fig. 8. Typical prediction given by two- and three-island CICC methods
for Sunspot time series. The RMSE for the two-island method on the
data is 1.572E-02. The RMSE for the three-island method on the test data
is 1.777E-02. (a) Performance on the training data set. (b) Performance on
the test data set. (c) Error on the test data set.

performance deteriorates possibly due to overfitting. The
financial time series does not show major difference of
the generalization performance. Although these problems are
both real-world time series, both are from different domains
and have different properties in the time series and, therefore,
the performance has shown to be different.

Figs. 8 and 9 show the best experimental run with the
training and test prediction performance of the Sunspot and
finance time series, respectively. The two-island approach and
three-island approach show competitive performance, which is
given by their error plot from the test prediction.

Tables V, VI and VII compare the best results from the pre-
vious tables with some of the established methods in the litera-
ture. The RMSE from the best experimental is used to compare

CHANDRA: COMPETITION AND COLLABORATION IN CC OF ELMAN RECURRENT NEURAL NETWORKS 11

Three-lsland -
wo-Island
Original ----------

Original vs Prediction (Two-Island and Three-Island)

0.3

o 20 40 60 80 100 120 140 160 180 200
Time

(a)

Three-Island -
Two-Island
1 Original - 4

0.9

0.8

0.7

TABLE VI
COMPARISON WITH THE RESULTS FROM THE LITERATURE
ON THE MACKEY-GLASS TIME SERIES

Prediction Method RMSE NMSE
Neural fuzzy network and PSO (2009) [10] 2.10E-02

Neural fuzzy - cooperative PSO (2009) [10] 1.76E-02

Neural fuzzy network and DE (2009) [10] 1.62E-02

Neural fuzzy network and GA (2009)[10] 1.63E-02

BPNN GA Residual Analysis (2011) [32] 1.30E-03
NARX-Elman - Residual Analysis (2010) [31] 3.72E-05 2.70E-08
CCRNN-Synapse Level (2012) [11] 6.33E-03 2.79E-04
CCRNN-Neuron Level (2012) [11] 8.28E-03 4.77E-04
AMCC-RNN [17] 7.53E-03 3.90E-04
Type-2 Fuzzy Neural Networks [33] 3.90E-02
Multi-objective RNN Ensembles [44] 7.53E-03 1.11E-03
CICC (Two Island) -RNN 4.00E-03 1.11E-04
CICC (Three Island) -RNN 3.27E-03 5.28E-04

TABLE VII
COMPARISON WITH THE RESULTS FROM THE LITERATURE
ON THE SUNSPOT TIME SERIES

0.6

0.5 |

0.4

0.3

Original vs Prediction (Two-Island and Three-Island)

0.2

o 20 40 60 80 100 120 140 160 180 200
Time
0.18 T T T
Two-Island-Error
Three-Island-Error
0.16
0.14 i

Error

Time

()

Fig. 9. Typical prediction given by two- and three-island CICC methods
for Finance-ACI time series. The RMSE for the two-island method on the
data is 1.920E-02. The RMSE for the three-island method on the test data is
1.921E-02. (a) Performance on the training data set. (b) Performance on the
test data set. (c) Error on the test data set.

TABLE V
COMPARISON WITH THE RESULTS FROM THE LITERATURE
ON THE LORENZ TIME SERIES

Prediction Method RMSE NMSE
Backpropagation-through-time (2010) [30] 1.85E-03
Real time recurrent learning (2010) [30] 1.72E-03
Recursive Bayesian LM Alg. (2010) [30] 9.0E-04
NARX-Elman-Residual Analysis (2010) [31] 1.08E-04 1.98E-10
BP-NN residual analysis (2011) [32] 2.96E-02
CCRNN-Synapse Level (2012) [11] 6.36E-03 7.72E-04
CCRNN-Neuron Level (2012) [11] 8.20E-03 1.28E-03
AMCC-RNN [17] 5.06E-03 4.88E-04
CICC (Two Island) -RNN 3.55E-03 241E-04
CICC (Three Island) -RNN 5.27E-03 7.45E-05

along with the NMSE that was obtained particularly for
comparison of results with literature. In the literature, in some
cases, the mean result is given, which can be compared with

Prediction Method RMSE NMSE

Multi-layer perceptron (1996) [28] 9.79E-02
Elman RNN (1996) [28] 9.79E-02
FIR Network (MLP) (1996) [28] 2.57E-01
Wavelet packet MLP (2001)[69] 1.25E-01
Radial basis network (RBF-OLS)(2006) [29] 4.60E-02
Locally linear neuro-fuzzy (2006) [29] 3.20E-02
NARX-Elman -Residual Analysis (2010) [31] 1.19E-02 5.90E-04
CCRNN-Synapse Level (2012) [11] 1.66E-02 1.47E-03
CCRNN-Neuron Level (2012) [11] 2.60E-02 3.62E-03
AMCC-RNN [17] 241E-02 3.11E-03
Multi-objective RNN Ensembles [44] 1.56E-02 1.24E-03
CICC (Two Island) -RNN 1.34E-02 1.31E-03
CICC (Three Island) -RNN 1.77E-02 1.67E-03

the results given in Tables I, II and III, respectively. We are
interested in comparison of the results with our previous works
as they have used the same data and experimental setup and,
therefore, a fair comparison can be done with them [11], [17].
We note particular financial time-series data set was used an
application, and we did not find any work done in the literature
for comparison.

D. Discussion

The proposed CICC methods have given better performance
when compared with similar evolutionary approaches, such
as training neural fuzzy networks with hybrid of CCPSO,
CPSO, genetic algorithms, and differential evolution [10]. The
only exception is being the results from Hybrid NARX-Elman
networks [31] as it has additional enhancements, such as the
optimization of the embedding dimensions and strength of
architectural properties of hybrid neural networks with residual
analysis [31].

The results have also been compared with our past work,
where CC of recurrent neural networks was used for the first
time for time-series prediction. SL and NL problem decom-
position methods were used and compared, and it was shown
that the NL gave better performance for two out of the three
problems [11]. Adaptation of problem decomposition method
during evolution was done for recurrent neural networks for
grammatical systems problems [16]. We applied the same
method for chaotic time-series prediction [17] and got further
improvements of the results when compared with our previous

work [11]; however, the adaptive problem decomposition
method has limitations due to parameter settings, which makes
it time-consuming. The adaptive problem decomposition was
based on the experimental results given in our earlier works [4]
that showed that the interdependence between the variables
changes over time.

CICC-two- and three-island methods perform better than
standalone CC in literature for Lorenz and Mackey-Glass
problems problems using cooperative coevolutionary recur-
rent neural networks (CCRNN-SL and CCRNN-NL). In the
Sunspot problem, the two-island method performed better
than previous methods; however, the three island method
did not outperform the CCRNN-SL, as shown in Table VII.
The proposed methods perform better when compared with
adaptive modularity CC where the motivation was to change
the problem decomposition method with time, i.e., begin with
SL and then move to NL and NetL, where only a standard
evolutionary algorithm is used. This approach intended to give
the appropriate problem decomposition method at different
stages of evolution. This approach had limitations due to
parameter setting and heuristics required to determine when
to change from one problem decomposition to another level
and there is no established measure of the interacting variables
as given by the degree of nonseparability [4].

SL island would be most useful in separable problems
that have lower degree of nonseparability—it provides more
flexibility and enforces global search through the subpopu-
lations. CICC fulfills the limitations faced by fixed problem
decomposition methods using the best solutions after each
round of competition of the islands. In this way, the search
can escape from local minimum from the solution from the
other island.

The test of scalability in the experiments has been observed
through the behavior of the algorithms when the problem size
in terms of hidden neurons increases. The two-island method
has shown to have properties that give high level of scalability
when compared with SL and NL standalone methods. The
three-island method has shown to deteriorate in performance
for larger number of hidden neurons in the case of both
the simulated time-series problems. This can be due to the
collaborative features where the best solution is shared with
the rest of the islands. Due to several islands and competition,
elitism is not fully ensured. This can be improved by have a
separate population that keeps in track of the best results and
provides elitism.

We have used two- and three-island methods that employed
established problem decomposition methods. CICC can be
further improved by different type of islands—which will
depend on different problem decomposition methods. We need
to replace the NetL island with an island that uses new type
of problem decomposition as the NetL island has shown to
deteriorate performance of the three-island method. The new
island can be composed by problem decomposition where
the number of subpopulation and its composition can be
determined or chosen arbitrarily.

The solutions in each island are evolved with a fixed degree
of nonseparability, which remains the same when a solution
is injected or taken from another island. The quality of the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

solution helps other solutions within the island, as it competes
and also shares its genetic material through operators, such
as selection and crossover within the island. The transfer
of the solution from one island to another also affects the
diversity. Theoretical and experimental studies on how the
degree of nonseparability is affected or how the global-local
search benefits from the injection of solution can be done in
future studies.

A major advantage of the proposed method is that it can be
implemented in a multithreaded environment that will speed
up the computation time that is a limitation of CC for training
neural network when compared with gradient-based methods.
In a multithreaded implementation, each island can run on a
separate thread. In a multithreaded implementation, the overall
training time can be lowered, which is a major limitation of the
proposed competitive island-based method where the training
time will increase as the number of islands increases.

V. CONCLUSION

Competition and collaboration are vital components in
natural evolution. This paper presented CICC of recurrent
neural networks for chaotic time-series prediction. The pro-
posed approach employed two- and three-island competitive
methods that were defined by different problem decomposition
methods. The results have shown that the two-island method
outperforms the standalone CC methods in terms of prediction
performance and scalability. The three-island method has
shown to perform better in few cases. The proposed methods
perform better than several other methods from the literature.
The proposed method takes advantage of problem decompo-
sition methods with different degree of nonseparability and
diversity. In a conventional CC method, the problem decom-
position method is fixed throughout the evolutionary process,
whereas in the proposed approach, two methods compete and
collaborate through the islands. In the case when the search is
trapped in a local minimum in a particular island, the search
takes advantage of the solution that is produced in the other
island through the collaborative features that employs diverse
solutions from the rest of the islands.

In future work, the proposed method can be improved
by exploring other problem decomposition methods that can
provide more competition. A study of how the degree of
nonseparability and its relationship to global-local search
is affected when solutions are injected via the collaborate
platform of the island can also be explored. A multithreaded
version of the algorithm can be developed to reduce the
computation time. The method can be used to evolve other
neural network architectures for similar problems and those
that involve pattern classification and control. The proposed
method can also be used for large-scale global optimization
problems. Convergence proof of the CC-based training of
recurrent networks can also be explored in future work.

REFERENCES

[1] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving from Nature—
PPSN III (Lecture Notes in Computer Science), vol. 866, Y. Davidor,
H.-P. Schwefel, and R. Minner, Eds. Berlin, Germany: Springer-Verlag,
1994, pp. 249-257.

CHANDRA: COMPETITION AND COLLABORATION IN CC OF ELMAN RECURRENT NEURAL NETWORKS 13

[2]

[3]

[4]

[5

[t}

[6]

[7

—

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. Congr. Evol.
Comput., San Diego, CA, USA, Jun. 2001, pp. 1101-1108.

R. Salomon, “Re-evaluating genetic algorithm performance under coor-
dinate rotation of benchmark functions. A survey of some theoretical
and practical aspects of genetic algorithms,” Biosystems, vol. 39, no. 3,
pp. 263-278, 1996.

R. Chandra, M. Frean, and M. Zhang, “On the issue of sepa-
rability for problem decomposition in cooperative neuro-evolution,”
Neurocomputing, vol. 87, pp. 33-40, Jun. 2012.

F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” J. Mach. Learn.
Res., vol. 9, pp. 937-965, Jun. 2008.

R. Chandra, M. Frean, and M. Zhang, “An encoding scheme for
cooperative coevolutionary feedforward neural networks,” in Proc. 23rd
Austral. Joint Conf. Artif. Intell., 2010, pp. 253-262.

R. Chandra, M. Frean, M. Zhang, and C. W. Omlin, “Encoding
subcomponents in cooperative co-evolutionary recurrent neural
networks,” Neurocomputing, vol. 74, no. 17, pp. 3223-3234, 2011.

F. Gomez and R. Miikkulainen, “Incremental evolution of complex
general behavior,” Adapt. Behavior, vol. 5, nos. 3—4, pp. 317-342, 1997.
F. J. Gomez, “Robust non-linear control through neuroevolution,”
Dept. Comput. Sci.,, Univ. Texas Austin, Austin, TX, USA,
Tech. Rep. AI-TR-03-303, 2003.

C.-J. Lin, C.-H. Chen, and C.-T. Lin, “A hybrid of cooperative particle
swarm optimization and cultural algorithm for neural fuzzy networks
and its prediction applications,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 39, no. 1, pp. 55-68, Jan. 2009.

R. Chandra and M. Zhang, “Cooperative coevolution of Elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 86, pp. 116-123, Jun. 2012.

C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evol. Comput., vol. 5, no. 1, pp. 1-29, Mar. 1997.

C. K. Goh, K. C. Tan, D. S. Liu, and S. C. Chiam, “A competitive and
cooperative co-evolutionary approach to multi-objective particle swarm
optimization algorithm design,” Eur. J. Oper. Res., vol. 202, no. 1,
pp. 42-54, 2010.

C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 13, no. 1, pp. 103-127, Feb. 2009.

R. Chandra, M. Frean, and M. Zhang, “Modularity adaptation in
cooperative coevolution of feedforward neural networks,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), San Jose, CA, USA, Jul. 2011,
pp. 681-688.

R. Chandra, M. Frean, and M. Zhang, “Adapting modularity during
learning in cooperative co-evolutionary recurrent neural networks,” Soft
Comput.-Fusion Found., Methodol., Appl., vol. 16, no. 6, pp. 1009-1020,
2012.

R. Chandra, “Adaptive problem decomposition in cooperative coevolu-
tion of recurrent networks for time series prediction,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Dallas, TX, USA, Aug. 2013, pp. 1-8.

J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179-211, 1990.

R. Chandra, “Competitive two-island cooperative coevolution for train-
ing Elman recurrent networks for time series prediction,” in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Beijing, China, Jul. 2014,
pp. 565-572.

E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20,
no. 2, pp. 130-141, 1963.

S. H. Kellert, In the Wake of Chaos: Unpredictable Order in Dynamical
Systems. Chicago, IL, USA: Univ. Chicago Press, 1993.
E. N. Lorenz, The Essence of Chaos. Seattle,
Univ. Washington Press, 1993.

H. Jiang and W. He, “Grey relational grade in local support vector
regression for financial time series prediction,” Expert Syst. Appl.,
vol. 39, no. 3, pp. 22562262, 2012.

B. Wang, H. Huang, and X. Wang, “A novel text mining approach to
financial time series forecasting,” Neurocomputing, vol. 83, pp. 136-145,
Apr. 2012.

H.-M. Feng and H.-C. Chou, “Evolutional RBFNs prediction systems
generation in the applications of financial time series data,” Expert Syst.
Appl., vol. 38, no. 7, pp. 8285-8292, 2011.

X. Liang, R.-C. Chen, Y. He, and Y. Chen, “Associating stock prices
with web financial information time series based on support vector
regression,” Neurocomputing, vol. 115, pp. 142-149, Sep. 2013.

WA, USA:

(271

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

A. Azzini, C. da Costa Pereira, and A. G. B. Tettamanzi, “Predicting
turning points in financial markets with fuzzy-evolutionary and
neuro-evolutionary modeling,” in Applications of Evolutionary
Computing (Lecture Notes in Computer Science), vol. 5484,
M. Giacobini et al., Eds. Berlin, Germany: Springer-Verlag, 2009,
pp. 213-222.

T. Koskela, M. Lehtokangas, J. Saarinen, and K. Kaski, “Time series
prediction with multilayer perceptron, FIR and Elman neural networks,”
in Proc. World Congr. Neural Netw., San Diego, CA, USA, 1996,
pp. 491-496.

A. Gholipour, B. N. Araabi, and C. Lucas, ‘“Predicting chaotic time series
using neural and neurofuzzy models: A comparative study,” Neural
Process. Lett., vol. 24, no. 3, pp. 217-239, 2006.

D. T. Mirikitani and N. Nikolaev, “Recursive Bayesian recurrent neural
networks for time-series modeling,” IEEE Trans. Neural Netw., vol. 21,
no. 2, pp. 262-274, Feb. 2010.

M. Ardalani-Farsa and S. Zolfaghari, “Chaotic time series prediction
with residual analysis method using hybrid Elman-NARX neural net-
works,” Neurocomputing, vol. 73, nos. 13-15, pp. 2540-2553, 2010.
M. Ardalani-Farsa and S. Zolfaghari, “Residual analysis and combina-
tion of embedding theorem and artificial intelligence in chaotic time
series forecasting,” Appl. Artif. Intell., Int. J., vol. 25, no. 1, pp. 45-73,
2011.

F. Gaxiola, P. Melin, F. Valdez, and O. Castillo, “Interval type-2 fuzzy
weight adjustment for backpropagation neural networks with application
in time series prediction,” Inf. Sci., vol. 260, pp. 1-14, Mar. 2014.

S. Chiam, K. Tan, and A. Mamun, “Multiobjective evolutionary
neural networks for time series forecasting,” in Evolutionary Multi-
Criterion Optimization (Lecture Notes in Computer Science), vol. 4403,
S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, Eds. Berlin,
Germany: Springer, 2007, pp. 346-360.

M. Ragulskis and K. Lukoseviciute, “Non-uniform attractor embedding
for time series forecasting by fuzzy inference systems,” Neurocomputing,
vol. 72, nos. 10-12, pp. 2618-2626, 2009.

R. de A. Araujo, A. L. I. de Oliveira, and S. C. B. Soares, “A quantum-
inspired hybrid methodology for financial time series prediction,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, Jul. 2010,
pp. 1-8.

T. Ferreira, G. C. Vasconcelos, and P. J. L. Adeodato, “A new evolution-
ary approach for time series forecasting,” in Proc. IEEE Symp. Comput.
Intell. Data Mining, Honolulu, HI, USA, Mar./Apr. 2007, pp. 616-623.
R. de A. Araujo, R. L. Aranildo, and T. Ferreira, “Morphological-rank-
linear time-lag added evolutionary forecasting method for financial time
series forecasting,” in Proc. IEEE Congr. Evol. Comput., Hong Kong,
Jun. 2008, pp. 1340-1347.

E. Parras-Gutierrez and V. M. Rivas, “Time series forecasting: Automatic
determination of lags and radial basis neural networks for a changing
horizon environment,” in Proc. Int. Joint Conf. Neural Netw., Barcelona,
Spain, Jul. 2010, pp. 1-7.

J. Gonzilez, 1. Rojas, H. Pomares, and J. Ortega, “RBF neural
networks, multiobjective optimization and time series forecasting,”
in Connectionist Models of Neurons, Learning Processes, and
Artificial Intelligence (Lecture Notes in Computer Science), vol. 2084,
J. Mira and A. Prieto, Eds. Berlin, Germany: Springer-Verlag, 2001,
pp. 498-505.

J. E. Fieldsend and S. Singh, “Pareto evolutionary neural networks,”
IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 338-354, Mar. 2005.

M. R. Hassan, B. Nath, M. Kirley, and J. Kamruzzaman, “A hybrid of
multiobjective evolutionary algorithm and HMM-fuzzy model for time
series prediction,” Neurocomputing, vol. 81, pp. 1-11, Apr. 2012.

W. Du, S. Y. S. Leung, and C. K. Kwong, “Time series forecasting
by neural networks: A knee point-based multiobjective evolutionary
algorithm approach,” Expert Syst. Appl., vol. 41, no. 18, pp. 8049-8061,
2014.

C. Smith and Y. Jin, “Evolutionary multi-objective generation of
recurrent neural network ensembles for time series prediction,”
Neurocomputing, vol. 143, pp. 302-311, Nov. 2014.

F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225-239, Jun. 2004.

Y.-J. Shi, H.-F. Teng, and Z.-Q. Li, “Cooperative co-evolutionary dif-
ferential evolution for function optimization,” in Advances in Natural
Computation (Lecture Notes in Computer Science), vol. 3611, L. Wang,
K. Chen, and Y. S. Ong, Eds. Berlin, Germany: Springer-Verlag, 2005,
pp. 1080-1088.

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]1

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp- 2985-2999, 2008.

D. Ortiz-Boyer, C. Hervd-Martinez, and N. Garcia-Pedrajas, “CIXL2:
A crossover operator for evolutionary algorithms based on population
features,” J. Artif. Intell. Res., vol. 24, no. 1, pp. 148, 2005.

R. K. Ursem, “Multinational evolutionary algorithms,” in Proc. Congr.
Evol. Comput., Trondheim, Norway, May 1999, pp. 1633-1640.

R. Thomsen, P. Rickers, and T. Krink, “A religion-based spatial model
for evolutionary algorithms,” in Proc. 6th Int. Conf. Parallel Problem
Solving Nature, 2000, pp. 817-826.

D. E. Goldberg and J. Richardson, “Genetic algorithms with shar-
ing for multimodal function optimization,” in Proc. 2nd Int. Conf.
Genet. Algorithms Genet. Algorithms Appl., Hillsdale, NJ, USA, 1987,
pp. 41-49.

H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” in Proc. 5th Int. Conf. Genet. Algorithms, 1993,
pp. 523-530.

G. W. Greewood, G. B. Fogel, and M. Ciobanu, “Emphasizing extinc-
tion in evolutionary programming,” in Proc. Congr. Evol. Comput.,
Trondheim, Norway, May 1999, pp. 666—671.

H. Shimodaira, “A diversity control oriented genetic algorithm (DCGA):
Development and experimental results,” in Proc. Genet. Evol. Comput.
Conf., 1999, pp. 603-611.

R. K. Ursem, “Diversity-guided evolutionary algorithms,” in Proc. 7th
Int. Conf. Parallel Problem Solving Nature, 2002, pp. 462-474.

M. A. Potter and K. A. De Jong, “Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents,” Evol. Comput., vol. 8,
no. 1, pp. 1-29, 2000.

F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980 (Lecture Notes in Mathematics).
Berlin, Germany: Springer-Verlag, 1981, pp. 366-381.

C. Frazier and K. M. Kockelman, “Chaos theory and transportation
systems: Instructive example,” Transp. Res. Rec., J. Transp. Res. Board,
vol. 1897, no. 1, pp. 9-17, 2004.

K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evol. Comput., vol. 10,
no. 4, pp. 371-395, 2002.

M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287-289, 1977.
SILSO World Data Center. The International Sunspot Number
(1834-2001), International Sunspot Number Monthly Bulletin and
Online Catalogue. Royal Observatory Belgium, Brussels, Belgium.
[Online]. Available: http://www.sidc.be/silso/, accessed Feb. 2, 2015.
NASDAQ Exchange Daily: 1970-2010 Open, Close, High, Low and
Volume. [Online]. Available: http://www.nasdaq.com/symbol/aciw/stock-
chart, accessed Feb. 2, 2015.

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tem,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685,
May/Jun. 1993.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[64]

[65]

[66]

[67]

[68]

[69]

[70]

I. Rojas et al., “Time series analysis using normalized PG-RBF net-
work with regression weights,” Neurocomputing, vol. 42, nos. 1-4,
pp- 267-285, 2002.

M. Assaad, R. Boné, and H. Cardot, “Predicting chaotic time series by
boosted recurrent neural networks,” in Neural Information Processing
(Lecture Notes in Computer Science), vol. 4233, I. King, J. Wang,
L.-W. Chan, and D. Wang, Eds. Berlin, Germany: Springer-Verlag, 2006,
pp. 831-840.

Q.-L. Ma, Q.-L. Zheng, H. Peng, T.-W. Zhong, and L.-Q. Xu, “Chaotic
time series prediction based on evolving recurrent neural networks,”
in Proc. Int. Conf. Mach. Learn. Cybern., Hong Kong, Aug. 2007,
pp. 3496-3500.

1. Rojas et al., “Soft-computing techniques and ARMA model for time
series prediction,” Neurocomputing, vol. 71, nos. 4-6, pp. 519-537,
2008.

S. Sello, “Solar cycle forecasting: A nonlinear dynamics approach,”
Astron. Astrophys., vol. 377, no. 1, pp. 312-320, 2001.

K. K. Teo, L. Wang, and Z. Lin, “Wavelet packet multi-layer perceptron
for chaotic time series prediction: Effects of weight initialization,” in
Proc. Int. Conf. Comput. Sci.-II, 2001, pp. 310-317.

M. M. Gouvéa, Jr., and A. FR. Aratjo, “A population dynamics model
to describe gene frequencies in evolutionary algorithms,” Appl. Soft
Comput., vol. 12, no. 5, pp. 1483-1492, May 2012.

Rohitash Chandra received the B.S. degree in
computer science and engineering technology from
the University of the South Pacific, Suva, Fiji, the
M.S. degree in computer science from the University
of Fiji, Lautoka, Fiji, and the Ph.D. degree in
computer science from the Victoria University of
Wellington, Wellington, New Zealand.

He is currently a Lecturer of Computer Science
with the School of Computing, Information
and Mathematical Sciences, University of the
South Pacific. His current research interests include

4
bl

methodologies and applications of artificial intelligence with an emphasis
on neural and evolutionary computation. He is the Founder and President
of Software Foundation, Nausori, Fiji, which is a nonprofit organization that
promotes the development of software and technology in Fiji. Apart from his
interest in science, he has been involved in literature and philosophy with an
emphasis on poetry. His third poetry collection entitled Being at Home was
published in 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

