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Abstract

Background
Dengue is the secondmost importantvector-borne disease of humans globally after

malaria. Incidence of dengue infections has dramatically increased recently, potentially due

to changing climate. Climate projectionsmodels predict increases in average annual tem-

perature, precipitation and extreme events in the future. The objective of this study was to

assess the effect of changing climate on distribution of dengue vectors in relation to epi-

demic risk areas in Tanzania.

Methods/Findings
We used ecological niche models that incorporatedpresence-only infected Aedes aegypti
data co-occurrencewith dengue virus to estimate potential distribution of epidemic risk

areas. Model input data on infected Ae. aegyptiwas collected during the May to June 2014
epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were

also used as model inputs. Model predictions indicated that habitat suitability for infected

Ae. aegypti co-occurrencewith dengue virus in current scenarios is highly localized in the
coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models

indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at

risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara

regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 cli-

mate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrencewith
dengue shifted towards the central and north-easternpartswith intensification in areas
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around all major lakes. Generally, model findings indicated that the coastal regions would

remain at high risk for dengue epidemic through 2050.

Conclusion/Significance
Models incorporating climate change scenarios to predict emerging risk areas for dengue

epidemics in Tanzania show that the anticipated risk is immense and results help guiding

public health policy decisions on surveillance and control of dengue epidemics. A collabora-

tive approach is recommended to develop and adapt control and prevention strategies.

Introduction
Dengue is the most important arboviral infection in the world [1,2]. The disease is endemic in
more than 100 countries [3,4] and continue to spread worldwide due to emerging ecological
distribution areas of disease vectors and the global movement of humans [5]. Climate has a sig-
nificant role in mosquito distribution due to emerging favourable conditions especially rising
temperatures [6–8]. Globally, climate change projections indicate an increase in mean temper-
atures ranging between 1.8°C and 4°C by the end of the 21st century [9]. In Tanzania, tempera-
tures are expected to rise between 1°C to 3°C above baseline, and precipitation and extreme
events are expected to increase in frequency by the 2050s [10]. Climate change is likely to affect
human health from impacting food insecurity and malnutrition to increasing in risk areas for
vector-borne diseases [11,12]. Climatic change creates new ecological niches for vectors hence
altering temporal and spatial distribution of vector-borne disease [13–18]. Climate change has
been implicated as a contributing factor in dengue globally [18–21] and the first outbreak of
Chikungunya virus in temperate climate [8]. Studies indicate that climate change and variabil-
ity influence dynamics and potential spatio-temporal distribution of dengue vectors and hence
potential of disease endemicity [22–27].

In Tanzania, dengue outbreaks have been reported repeatedly in 2010, 2012 [28–30], 2013
and 2014 [31]. The most important vector in Tanzania is Ae. aegyptiwhich is found in urban
environments and prefers feeding on humans and the virus circulation is maintained through
transovarial transmission [24,32].Ae. aegypti usually bites in shady areas during the day or
when the weather is cloudy, but biting is significantly high two hours after sunrise and before
sunset [33]. Transmission of DENV to humans by mosquitoes involves complex processes
influencedby mosquito genetics, viral genetics and bioclimatic factors [34]. The climatic condi-
tions in which the immature mosquito larvae develop have a particularly large influence on the
viral susceptibility and transmission capability of adult female mosquitoes [35–37].

EcologicalNiche Models (ENMs) use environmental-climatic factors such as temperature,
precipitation, elevation and derived-normalized difference vegetation index to predict climate
change effects on disease vectors distribution [38,39]. There is inadequate information on link-
ages of current environmental conditions with dengue epidemics and the role of future climatic
conditions in determination of potential epidemic risk areas in Tanzania. Hence, we use ENMs
such as Maximum Entropy Species DistributionModelling (MaxEnt) [40] for Ae. aegypti dis-
tribution to explore the geographic distribution of Ae. aegypti in relation to dengue fever epi-
demics.We also aim to identify bioclimatic conditions correlated with dengue fever epidemics
in Tanzania.

Distribution of Dengue Epidemics Risk Area and ClimateChange in Tanzania
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Materials andMethods

Dengue fever epidemic in Tanzania
Following 2014 dengue epidemic in Tanzania, epidemiological and entomological investiga-
tions was carried out fromMay to June 2014 in Dar es Salaam [31] (Fig 1). Data on health facil-
ity-based confirmedhuman cases of dengue were recorded from January 2014 until end of
May 2014. During that period, the disease continued spreading to different regions in the coun-
try. According to the unofficial report by the Ministry of Health and SocialWelfare, a total of
961 confirmed cases were recorded in nine districts, of the seven regions in Tanzania mainland.
99% (N = 951) of the cases were from Dar es Salaam and the remaining 1% (N = 10) were
reported fromMbeya (N = 2), Kigoma (N = 3), Mwanza (N = 2), Dodoma (N = 1), Kilimanjaro
(N = 1) and Njombe (N = 1) regions but all with travel history to Dar es Salaam (Fig 2).

Occurrence data for infected Ae. aegypti
Ae. aegyptimosquitoes occurrence data (S1 File) for both infected and uninfectedwith DENV
was collected during a cross-sectional study conducted in Dar es Salaam fromMay to June

Fig 1. Map of Dar es Salaam indicatingsiteswhere infectedAedes aegyptimosquitoeswith dengue viruswere detectedduring entomological
investigation following 2014 dengue epidemic.

doi:10.1371/journal.pone.0162649.g001
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2014 [31]. During this study, adult Aedes mosquitoes were trapped using Mosquito Magnets
(Mosquito Magnet Cordless Liberty Plus) [41] fixed in a total of twenty seven sentinel sites for
three consecutive days in each site (Fig 1). Pre-mature stages of Aedes mosquitoes were col-
lected from water containers using standard plastic dipper and then reared to adult stage.
Adult mosquitoes were identified to genus or species using morphological keys [42,43]. All
sampling sites were geo-referenced for the purpose of this study. Both field collected and
emerged adults were killed and stored in liquid nitrogen for later screening for DENV using
quantitative real time reverse transcription polymerase chain reaction (qRT-PCR).

A total of 368 mosquito pools containing ten Ae. aegypti each separated due to site of collec-
tion were ground for extraction of ribonucleic acid (RNA) using PureLink1 viral RNA kit
(Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. A qRT-PCR for the uni-
versal detection of DENV-1 to DENV-4 serotypes was performed using RealStar1 Dengue
qRT-PCR kit version 1.0 (Altona Diagnostics GmbH, Hamburg, Germany), developed based
on previous reports [44]. Of these, 330 pools were subjected to qRT-PCR for DENV detection.
An overall 8.18% (N = 27) of the Ae. aegyptimosquito pools were infected with DENV [31].

Fig 2. Predicted risk areas for dengue epidemics in Tanzania for the current climate scenario.Themap also indicates distribution of
number of dengue cases during 2014 epidemic. Colour intensification indicates increased probability of risk for dengue epidemic to occur in the
area.

doi:10.1371/journal.pone.0162649.g002
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Due to nature of spread of the disease, limited resources and time to conduct research to whole
country, this data on infectedAe. aegyptiwas extrapolated to other un-sampled areas in whole
country in order to identify other high risk areas under the current and predicted future climate
scenarios.

Bioclimatic variables
Environmental conditions such as temperature and rainfall influence distribution of mosqui-
toes and affect the ecological niche for infectiousAe. aegyptimosquitoes. Three datasets of
nineteen bioclimatic variables at a spatial resolution of about 1 square kilometer were down-
loaded from http://www.worldclim.org/. For the current scenario, bioclimatic conditions were
interpolated from observeddata representative of 1950–2000. For 2020 and 2050 scenarios,
downscaled global climate model (GCM) data from CoupledModel Inter-comparison Project
Phase 5 (CMIP5) was used [45].

19 bioclimatic variables tested (S1 File)were annual mean temperature (BIO-1), mean diur-
nal range (BIO-2), isothermality (BIO-3), temperature seasonality (BIO-4), max temperature
of warmest month (BIO-5), min temperature of coldest month (BIO-6), temperature annual
range (BIO-7), mean temperature of wettest quarter (BIO-8), mean temperature of driest quar-
ter (BIO-9), mean temperature of warmest quarter (BIO-10), mean temperature of coldest
quarter (BIO-11), annual precipitation (BIO-12), precipitation of wettest month (BIO-13), pre-
cipitation of driest month (BIO-14), precipitation seasonality (BIO-15), precipitation of wettest
quarter (BIO-16), precipitation of driest quarter (BIO-17), precipitation of warmest quarter
(BIO-18) and precipitation of coldest quarter (BIO-19). In order to avoid the collinearity prob-
lem for MaxEnt, variables were chosen using several Jackknife procedures to identify their per-
centage contribution, permutation importance and relevance to infectedAe. aegyptimosquito
vectors distributions as previously described [46–48]. Similar variables were also used to associ-
ate distribution of potential vectors with Rift valley fever risk areas [38,47] as well as to predict
geographic distribution of triatomines infected by Triatoma virus in South America [49].

Ecological-nichemodelling
Presence record for infectedAe. aegypti co-occurrencewith dengue were used together with
bioclimatic data layers to develop ecological niche models.We usedMaxEnt (version 3.3.1) to
develop models for potential distribution of infectedmosquito species in relation to reported
disease cases. The dataset for all scenarios was split in the ratio of 3:1 for the training and test-
ing respectively as previously done [40,50,51].We used default settings for MaxEnt except that
we specified a random seedwith 50% of points set aside for model evaluation together with the
regularizationmultiplier factor to reduce over-fitting due to many bioclimatic variables. Modi-
fying the regularizationmultiplier helped to generate risk maps that can be extrapolated to a
larger countrywide scale.

Because presence-only infectedAe. aegypti data originated from Dar es Saalam where most
dengue cases were recorded, we adjusted the regularizationmultiplier such that predictedmod-
els results could be extrapolated to the whole country to identify other high risk un-sampled
area as to the main purpose of ENMs.We used a minimum training threshold to convert raw
model outputs into actual distributional estimates. The predicted distributions of risk areas are
assessed by estimating the probability at maximum entropy based on assumption of uniform
probability [40,52]. Twenty-seven single time occurrence records for infectedAe. aegypti tested
by site of collectionwere used. These points were few compared to the number of total human
cases records in the whole country. Despite records of few points, MaxEnt has shown to be suc-
cessful in generating biologicallymeaningfulmodels with occurrence records as few as six [48].

Distribution of Dengue Epidemics Risk Area and ClimateChange in Tanzania
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Predicted areas were identified as high risk due to probability estimates on potential occurrence
of infectedAe. aegypti in the area.

Model performanceevaluation
Partial receiver operating characteristic/area under the curve (ROC/AUC) approach was used
to test model predictive performance [53]. This approach does not require absence data to
characterize commission errors (sensitivity). Previous models used ROC approaches that
require both absence and presence data but present numerous problems [53,54]. During each
prediction in this procedure, infectedAe. aegypti occurrence data was re-sampled with replace-
ment by bootstrappingmethod to determine AUC ratios generated from proportion area pre-
dicted present and sensitivity. AUC ratios were calculated from observeddata and random
prediction. It was assumed that a goodmodel would give AUC ratio above 1. Significance test-
ing of model performance was done by plotting the AUC ratios replicates that would indicate a
normal distribution.

Results

Variable importance
Of the nineteen-bioclimatic variables tested, twelve generally contributed importantly to the
best model and were used as predictors for infectedAe. aegypti distributions for all climatic sce-
narios. Relative contributions of each variable to our prediction results by iteration of the algo-
rithm during regularization and by random permutation in the jackknifing procedure showed
that precipitation of driest month (BIO-14) and temperature annual range (BIO-7) contributed
more to the model output for the current scenario whereas precipitation of warmest quarter
(BIO-18) and precipitation of driest month (BIO-14) had higher permutation significance for
the current scenario. For 2020 climate scenario, precipitation of driest month (BIO-14) and
mean diurnal range (BIO-2) contributed more whereas precipitation of driest month (BIO-14)
and precipitation of warmest quarter (BIO-18) had higher percentage on permutation impor-
tance. For 2050 climate scenario, precipitation of driest month (BIO-14) and mean diurnal
range (BIO-2) contributed more whereas permutation importance was only contributed by
precipitation of driest month (BIO-14), precipitation of coldest quarter (BIO-19) and precipi-
tation seasonality (BIO-15) only. Temperature annual range (BIO-7), mean temperature of
warmest quarter (BIO-10) and temperature seasonality (BIO-4) did not indicate any contribu-
tion to model output in 2050 climate scenario (Table 1).

Model performanceevaluation
Model performance evaluation using commission and omission error rates based on infec-
tious Ae. aegypti vectors occurrence points showed that it was statistically significant better
than random prediction (p< 0.05) for the current and future climate scenarios. The partial
ROC/AUC program generated AUC ratios ranging from 1.046 to 1.741 at the given 1- omis-
sion threshold of 0.95 using accepted omission error of 5% to the AUC at 50% for random
prediction to specify the percentage of testing points which included in each of the random
subsets. The models showed that the probability of the presence of infectiousAe. aegypti in
relation to disease appears to be localized in the coastal areas while spreading towards the
central areas of the country at high success rate according to the dengue epidemic records of
2014 (Fig 2).

Distribution of Dengue Epidemics Risk Area and ClimateChange in Tanzania
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Predicted current risk areas
Model prediction results for the current scenario indicate high habitat suitability for infectious
Ae. aegypti in relation to dengue epidemic to be highly localized in the coastal areas such as
Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Risk areas also appear in Lindi and
Ruvuma regions. Other areas with low probability of dengue epidemics are indicated to appear
in areas around major lakes such as Lake Victoria (Mwanza and Musoma), Lake Tanganyika
(Kigoma) and Lake Nyasa (Iringa and Njombe) (Fig 2). The models indicate high risk in areas
previously recorded disease [28,30,55–58]. Despite records of dengue cases in Mbeya, Dodoma
and Kilimanjaro, our models could not identify the area being suitable habitat for infectedAe.
aegypti co-occurrencewith dengue virus given that input bioclimatic variables. Prediction of
low probability risk areas in Kigoma and Mwanza suggests the possibility that the disease could
have occurred in the areas during the same periodwhen epidemic was recorded in Dar es
Salaam but the disease was not detected to a large scale due to lack of proper diagnosis.

Predicted distribution of risk area at future climate scenarios
Predicted risk maps for 2020 and 2050 climate scenarios show risk intensification in dengue
epidemic risks areas as previously identified in the current scenario. However, for 2020, the
risk seems to disappear in parts of Iringa near Lake Nyasa and Ruvuma. Dengue risk indicated
broad-scale potential for change and shift in the distribution towards the central part of the
country especially for 2050 projections (Figs 3 and 4). Models show anticipated high-risk areas
southern parts of Lake Victoria spreading to eastern parts of Lake Tanganyika while leaving
higher emerging risks in many parts of the country. Predicted suitability probability for 2050
indicated risk intensification nearly in all parts of the country (Fig 4). In general, findings indi-
cated Dar es Salaam, Tanga, Pwani and Zanzibar would remain at high risk through 2050.

Discussion
Despite the fact that dengue epidemics being driven by many factors including rapid urbaniza-
tion and lack of adequate sanitary or mosquito control measures, climate change is a major
driver of vector-borne diseases epidemics [18]. In this study, we used ecological niche models
to develop risk maps of the current distribution of suitable infectedAe. aegypti habitat in Tan-
zania. We then use climate change predictions to determine how the change in bioclimatic

Table 1. Percent contribution and permutation importanceof bioclimatic variables used in the species ecological nichemodel.

Current 2020 2050

Bioclimatic variable Contribution Permutation Contribution Permutation Contribution Permutation

Precipitation of driestmonth (BIO-14) 56.6 21 61.4 50.3 59.8 53.5

Temperature annual range (BIO-7) 8.3 18.3 1.9 8.1 0 0

Mean temperature of warmest quarter (BIO-10) 5.3 0 1.1 0 0 0

Temperature seasonality (BIO-4) 5.2 3 1.4 1.5 0 0

Precipitation of warmest quarter (BIO-18) 5 53.4 6.6 21.8 9.6 0

Precipitation of coldest quarter (BIO-19) 4.4 2.4 4.7 10.8 1.1 14.9

Precipitation seasonality (BIO-15) 4.3 0.1 1.3 0 2.1 31.6

Min temperature of coldest month (BIO-6) 3.1 0 0.3 0.1 0 0

Isothermality (BIO-3) 3.0 1.7 1.7 0.6 0 0

Precipitation of driest quarter (BIO-17) 2.6 0 5.1 6.6 4 0

Max temperature of warmestmonth (BIO-5) 1.8 0 0.2 0.2 2 0

Mean diurnal range (BIO-2) 0.3 0 14.4 0 21.4 0

doi:10.1371/journal.pone.0162649.t001
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factors influence potential distribution of infectedAe. aegypti, the distribution of the principal
vector of dengue in relation to disease epidemic risk areas. Our results show that changing cli-
mate will expand the range of Ae. aegypti and potentially intensify risks and expand current
distributions of dengue. Previous study show that climate change is happening and it is likely
to expand the geographical distribution of several mosquito-borne diseases [59]. There is suffi-
ciency evidence incriminating dengue epidemics with variations in temperature and rainfall
[19,59,60]. In Tanzania, no previous studies have been conducted to predict the role of these
climatic conditions towards contribution in accelerated emergence of high-risk areas for den-
gue epidemics.

According to the history of dengue epidemics or dengue infections in Tanzania have been
reported in Dar es Salaam and Zanzibar [29,57,58]. But our models were able to indicate that
during the current climate scenario, most of the eastern coastal areas were at high risk during
the same period. These results suggest that dengue epidemic might have occurred in other
coastal areas such as Tanga, Pwani and Morogoro but the disease was not noticed due to lack
of rapid diagnostic tools and due to feverish clinical symptom of the disease that can clinically

Fig 3. Predicted risk areas for dengue epidemics in Tanzania for the year’s 2020 climate scenario.Colour intensification indicates increased
probability of risk for dengue epidemic to occur in the area.

doi:10.1371/journal.pone.0162649.g003
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bemisdiagnosedwith malaria. Records of misdiagnosis of fevers associated with arboviral
infections to malaria cannot be under-estimated in Tanzania [55,61].

Incorporating 2020 and 2050 climate change predictions in the niche models of infectedA.
aegypti, we estimate an intensification and shift of risk areas estimated from probability of
occurrence of infectedmosquitoes. Despite minor risk detected at the current scenario, Lake
Victoria zone and northern areas of Tanzania have recorded detection of arboviruses such as
Chikungunya virus and Rift Valley Fever among hospital based patients [30,62,63]. The arbovi-
ruses use nearly similar climatic drivers similar to the ones causing dengue epidemics. Trends
in change for temperature, rainfall and other environmental conditions influence the length of
the immature stages by providing necessary resources within the larval habitats. Model projec-
tions into 2050 conditions predict increases in intensification and distribution of high risks
area nearly in all parts of the country. Future climate models scenarios show spread of disease
risk from coastal areas to towards the central zones of the country while intensification in areas
surrounding lake zones continues. Therefore, the identified areas should be considered when
monitoring for potential future epidemics.

Fig 4. Predicted risk areas for dengue epidemics in Tanzania for the year 2050 climate scenario.Colour intensification indicate increased
probability of risk for dengue epidemic to occur in the area.

doi:10.1371/journal.pone.0162649.g004
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Despite that fewer bioclimatic variables were important predictors of the information gener-
ated by our models, their predictive performance and accuracy allows for inherited certain
level of uncertainty from the modelled climate dataset that was used since the climatic condi-
tions for the future are themselves predictions from the models [45]. Also, our ecological niche
modeling approach use only one time infectedmosquito occurrence records without consider-
ing other entomological parameters such as container index, Breteau index, house index and
pupal index.We urge for a careful interpretation and use of results as our finding are only lim-
ited to climate change as the main driver of dengue epidemics, while other factors also present
potential increase for future disease risk areas such as ecological imbalanced state as a result of
habitat fragmentation, urbanization, land-use changes, and human-imposed species disequili-
bria, making some other areas especially susceptible to the uncertain effects of global change.
These activities create favourable environmental conditions for survival of mosquito vectors
hence may worsen the situation in the future. Despite these limitations, recommend surveil-
lance for dengue fever epidemics originating in these predicted areas in the upcoming decades
especially in the new suitable habitat surrounding the major lakes.

Conclusion
Climate change represents a threat to emergence of more risk areas for dengue epidemics in
Tanzania. Predicted distributions of risk areas present a cause of concern among diseaseman-
agers. Results show that the influence of future climate scenarios on anticipated potential distri-
bution of risk areas for dengue epidemic risk areas is immense and results will help in guiding
future public health policy decisions on surveillance and control of dengue epidemics. A collab-
orative approach is recommended to develop and adapt control and prevention strategies that
will help manage the anticipated risk. Concerted efforts are required towards adaptation to
impact of climate change on vector-borne infectious diseases.

Supporting Information
S1 File. File containing dengue occurrence and bioclimatic data therein attached dengue-
bioclimatic-data.
(ZIP)
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