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Sickle cell disease and H3Africa: enhancing genomic 
research on cardiovascular diseases in African patients
Ambroise Wonkam, Julie Makani, Solomon Ofori-Aquah, Obiageli E Nnodu, Marsha Treadwell, 
Charmaine Royal, Kwaku Ohene-Frempong, as members of the H3Africa Consortium

Abstract 
Background: Sickle cell disease (SCD) has a high prevalence in 
sub-Saharan Africa. There are several cardiovascular pheno-
types in SCD that contribute to its morbidity and mortality. 
Discussion: SCD is characterised by marked clinical vari-
ability, with genetic factors playing key modulating roles. 
Studies in Tanzania and Cameroon have reported that single-
nucleotide polymorphisms in BCL11A and HBS1L-MYB loci 
and co-inheritance of alpha-thalassaemia impact on foetal 
haemoglobin levels and clinical severity. The prevalence of 
overt stroke among SCD patients in Cameroon (6.7%) and 
Nigeria (8.7%) suggests a higher burden than in high-income 
countries. There is also some evidence of high burden of 
kidney disease and pulmonary hypertension in SCD; however, 
the burden and genetics of these cardiovascular conditions 
have seldom been investigated in Africa.
Conclusions: Several H3Africa projects are focused on cardio-
vascular diseases and present major opportunities to build 
genome-based research on existing SCD platforms in Africa 
to transform the health outcomes of patients.
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Sickle cell disease (SCD) is a genetic disorder of public health 
significance with high prevalence, high mortality rate and limited 
interventions. An estimated 305 800 births are affected annually 
worldwide by homozygous SCD (SCD-SS), nearly two-thirds of 
this incidence occurs in Africa.1 This estimate does not include 
SCD-SC, which is more prevalent than SCD-SS in some West 
African countries.

Although the first clinical description of SCD occurred over 
100 years ago and this condition was described in 1949 as the 
first molecular disease, to date only one drug, hydroxyurea, is 
available for its specific treatment.2 Furthermore, despite the 
evidence from high-income countries that new-born screening 
(NBS) and comprehensive care are associated with a 70% 
reduction in early childhood deaths,3 and can have a significant 
impact on reducing morbidity,4,5 few African countries have 
programmes dedicated to NBS, follow-up care, family and 
patient education and counselling, and prevention and treatment 
of disease complications. As a consequence, in sub-Saharan 
Africa, mortality rates are high before the age of five years 
and estimates suggest that without intervention, up to 90% of 
affected infants may die in childhood.6,7

The role of genomic research to improve 
health of SCD patients: preliminary data from 
Cameroon and Tanzania
Genomics of foetal haemoglobin-promoting loci
Advancement in genomic research offers an unprecedented 
opportunity to address the health challenges of SCD in an 
integrated manner. As a Mendelian disorder caused by a single 
gene mutation on the β-globin gene (βGlu6Val) on chromosome 11, 
there is considerable phenotypic diversity in SCD, due largely to 
the influence of genetic and environmental factors.8-10 

Although there are several key phenotypes (anaemia, stroke, 
infections), foetal haemoglobin (HbF) has emerged as a central 
disease modifier; importantly, the expression of this modifier 
is amenable to therapeutic manipulation.11,12 Genetic variants 
at three principal loci, BCL11A, HBS1L-MYB and the HBB 
cluster account for 10–20% of HbF variation among SCD 
patients in the USA, Brazil and the UK.8,9 

Initial studies in Tanzania13 and recently in Cameroon14,15 
have shown that single-nucleotide polymorphisms (SNPs) in the 
BCL11A loci are prevalent in both Tanzanian and Cameroonian 
patients [minor allele frequency (MAF) of rs4671393 = 0.30], 
with significant association of these SNPs with HbF (Table 
1). These studies have also shown that rs9399137, which acts 
as a tagging SNP for the HMIP-2 sub-locus in European 
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populations,10 occurred at a low frequency in both Cameroonian14 
and Tanzanian patients.13 Nevertheless, in the HMIP-2 sub-locus, 
there was a much higher MAF of rs9389269 in Cameroonian 
(0.18)14 compared to the Tanzanian SCD patients (0.03).13 This 
observation could indicate a high degree of variation in the 
MAF of this SNP among SCD patients in African population 
groups.16

Furthermore, studies in Cameroon and Tanzania lacked 
power to replicate the association of a sub-locus (rs7482144) in 
HBG2 (Table 1), which explained 2.2% of the variation in HbF 
levels in African American patients.8 This is likely to be due 
to the absence of Senegal and Indian–Arab beta-globin locus 
haplotypes that contain the rs7482144 in most Cameroonian 
patients.17 

Similarly, a strong signal adjacent to the HBB cluster 
recently detected in African-American patients at rs5006884 
in OR51B5/618 was not found to have significant association 
in either Tanzanian14 or Cameroonian SCD patients.13 These 
findings suggest that studies of multiple SCD populations in 
Africa are warranted to improve our understanding of the 
impact of human diversity on HbF expression in SCD.19 

The co-inheritance of alpha-thalassaemia and SCD
The co-inheritance of α-thalassaemia is associated with a milder 
phenotype in patients with HbSS and Sβ0 thalassaemia, e.g. 
higher haemoglobin level and lower stroke rate.20 However, the 
effect of α-thalassaemia is not all positive; pain and aseptic 
necrosis may be higher.21 

In Cameroon, the co-inheritance of α-thalassaemia and 
SCD was associated with late onset of clinical manifestations 
and potentially increased survival in Cameroonian patients; 
this could explain the much higher allele frequency of 3.7kb 
α-globin gene deletion among SCD patients than in controls.22,23 
In Tanzania, the co-inheritance of α-thalassaemia and SCD was 
associated with a lower stroke risk.24 

These preliminary data indicate an urgent need to replicate 
and expand genetic studies in many other African SCD 
populations, including studies focused on loci that are linked to 

stroke25 and other cardiovascular conditions, to fully measure 
the opportunities of their implementation to improve the care of 
patients with SCD.

Addressing the burden of cardiovascular diseases in 
SCD in Africa

Cardiovascular phenotypes in SCD include complications 
involving the heart (e.g. heart failure), brain (e.g. stroke), lung 
(e.g. pulmonary hypertension) and kidney (e.g. proteinuria). 
Cerebrovascular disease is perhaps the most devastating 
complication for children with SCD, including overt stroke, 
transient ischaemic attacks, silent infarcts and neurocognitive 
dysfunction. Longitudinal cohort data from the USA have 
shown that between five and 10% of patients with SCD will 
experience a clinically overt stroke during childhood.26 The 
prevalence of overt stroke in SCD in Africa may be higher than 
that reported in high-income countries. 

Overt stroke is a clinical diagnosis and should be easily 
detected in any cohort of closely monitored SCD patients. 
Brain computerised tomography (CT) and magnetic resonance 
imaging (MRI) are used to rule out haemorrhage or localise the 
tissue/vascular pathological basis for the stroke event. Clinical 
examination and CT scans identified a stroke prevalence of 6.7% 
in Cameroon.27,28 A study of children with SCD in Nigeria found 
a stroke prevalence of 8.7%.29

The prevalence of silent cerebral infarcts (SCI) and cerebral 
vasculopathies has been shown to be even greater than overt 
stroke risk: SCI occurs in 27% of this population before their 
sixth, and 37% by their 14th birthdays.30 SCI is diagnosed by 
MRI, but has not been studied in Africa because of the limited 
availability of MRI equipment. In fact SCI is not really silent, 
as falling school performance and other signs of neurocognitive 
dysfunction and change in personality/behaviour may all raise 
suspicion for increased risk of overt stroke, and suspicion of 
stroke with absence of motor or speech defect. SCI could be 
better called covert cerebral infarction. 

The lack of longitudinally monitored SCD cohorts in Africa 
weakens incidence and prevalence estimates. Indeed, the cognitive 

Table 1. Foetal haemoglobin association results for SNPs at the BCL11A, HBS1L-MYB and beta-globin loci in the  
Cameroonian and Tanzanian sickle cell anaemia cohort

Locus Genomic variations HbSS Cameroon (n = 596)14 HbSS Tanzania (n = 1 124)13

SNP
Position on the 
chromosome*

Allele 
change MAF Effect size p-value MAF Effect size p-value

Chromosome 2
BCL11A rs11886868 60720246 T>C 0.31 0.167 0.0129 0.26 –0.406 3.00E-30

BCL11A rs4671393 60720951 G>A 0.3 0.201 0.0062 0.3 –0.412 3.90E-28
Chromosome 6
HBS1L-MYB rs28384513 135376209 A>C 0.2 –0.3002 0.0002 0.21 –0.146 1.90E-04

HBS1L-MYB rs9376090 135411228 T>C 0 NA NA 0.01 0.471 1.60E-02

HBS1L-MYB rs9399137 135419018 T>C 0.04 0.412 0.0086 0.01 0.668 8.30E-06

HBS1L-MYB rs9389269 135427159 T>C 0.18 0.09561 0.2468 0.03 0.4 1.40E-05

HBS1L-MYB rs9402686 135427817 G>A 0.03 0.1447 0.4437 0.06 0.342 1.60E-04

HBS1L-MYB rs9494142 135431640 T>C 0.11 0.3391 0.0023 0.13 0.085 6.00E-02
Chromosome 11
HBG2 rs7482144 5276169 G>A 0 –0.05843 0.9076 0.01 0.562 1.60E-04

OR51B5/6 rs5006884 5373251 C>T 0.08 0.04163 0.7385 0.05 0.164 2.40E-02
NA, not applicable; monomorphic T for the entire sample; MAF, minor allele frequency; SNP, single-nucleotide polymorphisms. 
*Chromosome, position on NCBI Build 36.1.
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performance of Cameroonian SCD children was evaluated using 
a neuropsychological test battery assessing four domains of 
cognitive functioning (executive function, attention, memory 
and sensory-motor skills). A high prevalence of cognitive deficits 
was found, increasing with age, and with a specific impairment 
of executive functions and attention.31 Up to 37.5% of the 96 
SCD patients aged six to 24 years (M = 13.5, SD = 4.9) had mild-
to-severe cognitive deficits, which tended to increase with age. 

Structural equation models showed a significant association 
between (1) severe anaemia and lower executive functioning, (2) 
low foetal haemoglobin levels and lower executive functioning 
and attention, (3) history of cerebrovascular accidents and lower 
performances on executive functioning, sensory-motor and 
memory tasks, (4) pathological electroencephalogram and lower 
attention span, and (5) abnormal transcranial Doppler and 
lower memory function.31 

The feasibility of  using transcranial Doppler (TCD) 
ultrasonography in Africa to determine risk of stroke in children 
with SCD has been demonstrated in studies in Tanzania,24 
Cameroon,31 Nigeria32 and Kenya.33 However, because of limited 
resources and inefficient transfusion services, TCD is seldom 
established as part of routine healthcare followed by transfusion 
therapy to prevent overt stroke in those found to have abnormal 
blood flow velocity.33

Pulmonary arterial hypertension (PAH) is common, with a 
prevalence of 30% in SCD patients, and all-cause mortality rates 
of 40% at 40 months after diagnosis in the USA.34 Studies in 
Nigeria indicate PAH could represent a significant complication 
of SCD on the African continent.35 

N-terminal (NT) pro-brain natriuretic peptide (proBNP) 
≥ 160 ng/l has a 78% positive predictive value for pulmonary 
hypertension. NT-proBNP elevation is common and is associated 
with markers of anaemia, inflammation and iron status and with 
severe functional impairment among sickle cell anaemia patients 
in Nigeria.36 

The prevalence of elevated tricuspid regurgitant velocity 
(TRV) measured by echocardiogram, which predicts risk for 
pulmonary hypertension and death in adult sickle cell anaemia, 
was similar among SCD patients in Tanzania and those from 
the USA.37 In addition, there is accumulating clinical evidence to 
suspect a high prevalence of kidney disease among African SCD 
patients in France,38 Nigeria,39,40 Ghana41 and the Congo.42 The 
data revealed and emphasised the need to draft a specific research 
agenda to include Africa in future comprehensive studies on the 
epidemiology and genetics of end-organ complications of SCD. 

Addressing the genomics of cardiovascular diseases 
in SCD in Africa
Despite the evidence of a high burden of cardiovascular events 
in SCD patients, the magnitude of this problem in Africa has not 
been defined. The clinical variability and environmental factors 
influencing these events have not been clearly and systematically 
studied, despite the availability of some encouraging data on 
the genetics of these cardiovascular phenotypes of SCD among 
African populations from the diaspora (Table 2). Previous 
studies of sibling pairs have demonstrated a genetic component 
to the development of cerebrovascular disease in SCD stroke.43 
In addition, a child with SCD had an increased risk for stroke if  
they had siblings who had experienced an overt stroke.44 

A few genetic modifiers have confirmed the association with 
stroke, such as α-thalassaemia trait being protective against 
stroke20 (Table 1), but these do not explain the entire genetic 
contribution to stroke risk. In addition, several retrospective 
studies, mostly among African Americans, have identified 
specific SNPs associated with stroke in patients with SCD, using 
candidate gene approaches, but failed to be replicated using 
independent validation cohorts.45 

Recent data that used genetic mapping and exome sequencing 
revealed that one mutation in GOLGB1 (Y1212C) and another 
mutation in ENPP1 (K173Q) were confirmed as having 
significant associations with a decreased risk for stroke among 
African Americans with SCD25 (Table 1). These studies need to 
be validated and extended in SCD patients in Africa. 

Like stroke, renal failure occurs in 5–18% of SCD patients 
and is associated with early mortality.46 At-risk SCD patients 
cannot be identified prior to the appearance of proteinuria. The 
myosin, heavy-chain 9, non-muscle (MYH9) and apolipoprotein 
L1 (APOL1) genes have been associated with risk for focal 
segmental glomerulosclerosis and end-stage renal disease in 
African Americans.47 

Seven SNPs in MYH9 and one in APOL1 were significantly 
associated with proteinuria among African American SCD 
patients. In addition, glomerular filtration rate was negatively 
correlated with proteinuria (p < 0.0001), and was significantly 
predicted by an interaction between MYH9 and APOL148 (Table 
2). Further studies with independent data sets from sub-Saharan 
Africa are now needed to confirm this association, to identify 
more of the genes involved, and the interaction with various 
African environments, in order to address preventative measures 
of SCD nephropathy. 

Moreover, an increased tricuspid regurgitation jet velocity 
(TRV > 2.5 m/s) and pulmonary hypertension defined by right 
heart catheterisation both independently conferred increased 
mortality in SCD.34 A preliminary genetic association study 
comparing patients with an elevated (n = 49) versus normal (n = 
63) TRV revealed significant association with five SNPs within 
GALNT13 (p < 0.005), and a quantitative trait locus upstream of 
the adenosine-A2B receptor gene (ADORA2B)49 (Table 2).

Limited genetic studies associated with these critical 
cardiovascular phenotypes in SCD (stroke, pulmonary 
hypertension, kidney disease) have not been reported in SCD 
patients who reside in Africa. This indicates an urgent need 
to perform these studies, which could inform the global SCD 
communities in a unique way, on the value of gene and 
environmental interactions in the pathogenesis and hopefully the 
care of SCD. 

Table 2. Selected genes associated with cardiovascular 
phenotypes among African American SCD patients

Cardiovascular 
phenotypes in SCD Associated genes References

Stroke HBA (3.7 alpha-
globin gene deletion)

Hsu et al. J Pediatr Hematol 
Oncol 2003; 25(8): 622–628

GOLGB1 (Y1212C) Flanagan et al. Blood 2013; 
121(16): 3237–3245ENPP1 (K173Q)

Kidney disease  
(proteinuria)

MYH9 
APOL1

Ashley-Koch et al. Br J Haema-
tol 2011; 155(3): 386–394

Pulmonary  
hypertension

GALNT13 Desai et al. Am J Respir Crit 
Care Med 2012; 186(4): 359–368ADORA2B

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hsu+LL%2C+Miller+ST%2C+Wright+E%2C+Kutlar+A%2C+McKie+V%2C+et+al.+(2003)
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hsu+LL%2C+Miller+ST%2C+Wright+E%2C+Kutlar+A%2C+McKie+V%2C+et+al.+(2003)
http://www.ncbi.nlm.nih.gov/pubmed/23422753
http://www.ncbi.nlm.nih.gov/pubmed/21910715
http://www.ncbi.nlm.nih.gov/pubmed/21910715
http://www.ncbi.nlm.nih.gov/pubmed/22679008
http://www.ncbi.nlm.nih.gov/pubmed/22679008
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Integrating outcomes of genetics research 
into new-born screening and interventions to 
reduce childhood mortality and survival in SCD
Major benefits in the health and survival of children with SCD 
have been attained through the implementation of a few simple, 
evidence-based interventions. The most striking achievements 
have resulted from early diagnosis of SCD through new-born 
screening and the subsequent enrolment of these patients into 
comprehensive care programmes. These programmes provide 
interventions that include prophylaxis against pneumococcal 
infection using penicillin, and early detection and treatment of 
acute clinical events such as anaemia, septicaemia, stroke and 
acute chest syndrome. These interventions have been introduced 
in a limited manner in Africa, despite the fact that they have been 
shown to be highly effective in developed countries. 

Hydroxyurea, an important therapeutic intervention for SCD 
in high-income settings, is beginning to be used more frequently in 
several African countries.50-53 There is no doubt that hydroxyurea 
will have a large public health impact in Africa.54 However 
there are questions regarding the effectiveness of hydroxyurea 
in some individuals possessing characteristics associated with 
poor response to treatment. This includes SCD populations with 
low levels of haemolysis,55 low HbF level and Central African 
Republic (CAR) haplotype,56 as well as children under five years 
of age with SCD, even though some data indicate that efficacy 
is just as good or better in younger children.57 These questions 
should not delay the use of hydroxyurea in Africa, but it is 
strongly recommended that research trials should be conducted 
to monitor and evaluate effectiveness in this setting. 

The second challenge regarding use of hydroxyurea in SCD in 
Africa is access due to limited supply and high cost. It has also 
been suggested that patients and families may resist adherence 
with this treatment. In Cameroon, only 3.4% of SCD patients 
had access to hydroxyurea.58 Sociological data on the barriers 
associated with prescription of and adherence with hydroxyurea 
is needed in order to plan effective strategies to address these 
issues in Africa. 

Despite the limited access to hydroxyurea and other care 
and therapies, about 3% of the 700 studied Cameroonian 
patients with SCD lived longer than 40 years.14 Specific survivor 
SCD populations in sub-Saharan Africa can offer new research 
opportunities to uncover possible variation that could improve the 
life of SCD patients. With more and more genomic data available, 
it is anticipated that new-born screening could also allow early 
identification of genetic factors (e.g. HbF-promoting SNPs or 
stroke-associated SNPs) to potentially assess each individual 
patient’s risks and plan appropriate anticipatory guidance.

Perspectives: H3Africa and opportunity for 
genomic research of cardiovascular diseases 
in SCD
Currently, H3Africa extends across African countries, comprising 
23 grants. It is anticipated that, together, H3Africa projects will 
analyse samples from 50 000 to 75 000 participants. Specifically, 
three projects have the objective to study stroke, kidney disease 
and other cardiovascular diseases (rheumatic heart disease) in 
various African countries where SCD is also prevalent59 (e.g. 
Cameroon, Tanzania, Nigeria, Ghana, Mali, Uganda). These 
projects offer the opportunity to extend the existing network 

of researchers in Cameroon, Ghana, Nigeria, South Africa and 
Tanzania, which have been assembled to conduct multicentre, 
Africa-based studies on the genetics and genomics of SCD. 

To strengthen the case for genomic studies in Africa, several 
genetic variations have been discovered through molecular studies 
on the African continent.60 There is enough evidence, including 
whole-genome data from African populations, that emphasises 
the high levels of genomic variation and the heterogeneity of 
African populations.61,62 

Some of the tremendous genetic variation in Africa is 
responsible for problems in clinical management of SCD, such 
as red blood cell transfusion, red blood cell Rh D polymorphism 
and allo-immunisation,63 and response to medications 
(cytochrome P450 polymorphisms and codeine/other opioids for 
pain therapy).64 Polymorphisms in ribonucleotide reductase, the 
target enzyme for hydroxyurea, may have variable effects on SCD 
patient response and deserves further investigation in Africa. 

One SCD project currently funded under the H3Africa 
umbrella is focused on research in Cameroon, Ghana and 
Tanzania (FOA: RM12-005, 1 U01 HG007459-01). The project 
aims to: (1) explore perspectives and attitudes regarding genomic 
research and its implementation and implications in Africa, 
and (2) assess perceptions about public health interventions to 
increase awareness, early detection and prevention of SCD-related 
complications. Beyond this project, the investigators are building 
on biological materials, preliminary clinical and genomics data 
from Cameroon, Tanzania, Nigeria and Ghana, and extending 
the experience to other African countries, with the goal to 
improve infrastructure for research and training. The ultimate 
goal is to conduct research to understand the relationship 
between genes, the environment and disease, in order to translate 
genome-based knowledge into health benefits for SCD patients 
and their families in Africa.

Role of the funding source: This report was funded by the National Institute 

of Health (NIH, NHLBI), USA, grant number 1U01HG007459–01.

Key messages
•	 SCD is characterised by marked clinical variability, with 

genetic factors playing key modulating roles. Studies in 
Tanzania and Cameroon have reported that SNPs in the 
BCL11A loci and HBS1L-MYB region (HMIP), and 
co-inheritance of alpha-thalassaemia impact on HbF 
level and clinical severity. 

•	 There are several cardiovascular phenotypes in SCD, 
such as stroke, heart failure, pulmonary hypertension 
and renal disease that contribute to its morbidity and 
mortality. 

•	 The prevalence of overt stroke among SCD patients in 
Cameroon (6.7%) and Nigeria (8.7%) suggests a higher 
burden than in high-income countries. 

•	 The genetics of stroke, kidney disease and pulmonary 
hypertension have seldom been investigated in SCD in 
Africa. 

•	 Several H3Africa projects are focused on cardiovascu-
lar phenotypes, which creates a major opportunity to 
build on existing SCD work in Africa, a genome-based 
research on key cardiovascular phenotypes to transform 
the health benefits of SCD patients.
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