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Abstract 

Background 

Despite efforts in eradication and control, malaria remains a global challenge, particularly 
affecting vulnerable groups. Despite the recession in malaria cases, previously malaria free 
areas are increasingly confronted with epidemics as a result of changing environmental and 
socioeconomic conditions. Next to modeling transmission intensities and probabilities, 
integrated spatial methods targeting the complex interplay of factors that contribute to social 
vulnerability are required to effectively reduce malaria burden. We propose an integrative 
method for mapping relative levels of social vulnerability in a spatially explicit manner to 
support the identification of intervention measures. 

Methods 

Based on a literature review, a holistic risk and vulnerability framework has been developed 
to guide the assessment of social vulnerability to water-related vector-borne diseases (VBDs) 
in the context of changing environmental and societal conditions. Building on the framework, 
this paper applies spatially explicit modeling for delineating homogeneous regions of social 
vulnerability to malaria in eastern Africa, while taking into account expert knowledge for 
weighting the single vulnerability indicators. To assess the influence of the selected 
indicators on the final index a local sensitivity analysis is carried out. 

Results 

Results indicate that high levels of malaria vulnerability are concentrated in the highlands, 
where immunity within the population is currently low. Additionally, regions with a lack of 
access to education and health services aggravate vulnerability. Lower values can be found in 
regions with relatively low poverty, low population pressure, low conflict density and 
reduced contributions from the biological susceptibility domain. Overall, the factors 
characterizing vulnerability vary spatially in the region. The vulnerability index reveals a 



high level of robustness in regard to the final choice of input datasets, with the exception of 
the immunity indicator which has a marked impact on the composite vulnerability index. 

Conclusions 

We introduce a conceptual framework for modeling risk and vulnerability to VBDs. Drawing 
on the framework we modeled social vulnerability to malaria in the context of global change 
using a spatially explicit approach. The results provide decision makers with place-specific 
options for targeting interventions that aim at reducing the burden of the disease amongst the 
different vulnerable population groups. 
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Background 

Mosquito-borne infectious diseases, such as malaria or dengue fever, impose a heavy burden 
on human health, and vulnerable populations in particular. In spite of the tremendous 
progress that has been made in reducing malaria endemicity over the past decade [1,2] there 
were still an estimated 207 million cases and approximately 627,000 malaria-related deaths in 
2012 [2]. According to recent estimates by the World Health Organization (WHO) 
approximately half of the world’s population was at risk of malaria in 2012, with the 
countries of sub-Saharan Africa facing the highest risk [2]. In line with the global recession in 
malaria cases and deaths, malaria incidences have reduced over much of East Africa [3], but 
have resurged in eastern African highland locations with increased variability in disease rates 
[4-10], increasingly affecting areas with significant population numbers and densities. The 
causes of the resurge are controversially discussed in literature. Several papers have been 
published attributing this resurge to changes in environmental and climatic conditions in 
general [7] and climate variability in particular [9,10]. For example, it is widely accepted that 
increasing temperatures have direct impacts on both life-cycle stages of the Anopheles vector 
and the Plasmodium parasite [11]. Although subject to large model uncertainties [12], the 
projected changes in regional climate conditions [13] and the resulting increase in 
temperature and precipitation above the minimum temperature and precipitation thresholds of 
malaria transmission [14] might thus result in further spread and distribution of the disease 
[15,16]. 

Other studies, however, suggest that these effects do not act in isolation, and that other non-
climatic factors, such as increase in resistance of the malaria parasite to drugs, or the decrease 
in control activities are more likely to be the driving forces behind the malaria resurge in this 
region [1,5,6]. Evidence has shown that the socioeconomic status (e.g., age, poverty, 
education, etc.) and development status are also fundamental determinants of malaria risk 
[17-19]. Huldén et al. [20], for example, point out that malaria being a tropical disease is a 
common misperception. They highlight that, although these are areas where the disease 
remains prevalent, it used to occur throughout all climate zones. According to their findings 
temperature has only a minor impact on malaria prevalence, while they found social factors, 
such as household size to be more important. This is also underpinned by Carter and Mendis 
[21], who declare that the malaria recession in Europe and North America in the 20th century 



is primarily attributable to a decline in human-vector contact as a result of changing living 
conditions and rising prosperity as well as changes in land use. 

Independent of the controversial debate whether highland populations are immunologically at 
particular risk [22] or not [23], it is essential for the planning of targeted interventions to have 
up-to-date information on both (i) the spatial distribution of the disease and current 
endemicity levels, and (ii) the prevailing social vulnerabilities of the population. Thus, next to 
environmental (including climatic) factors that influence the spatial distribution of malaria, it 
is important to also take into consideration the range of socioeconomic, demographic, 
political, and behavioral factors that impact people’s susceptibility and (lack of) resilience to 
the disease [17-19]. Several papers have been published on factors that influence the spread 
and spatial distribution of the disease [21,24], including eastern Africa [25], and there are a 
few papers assessing malaria risk, that, besides environmental factors, also integrate 
socioeconomic and demographic factors [9,26-29]. To date, however, only few studies have 
been published on vulnerability to vector-borne diseases [17,18,30-32], and malaria in 
particular [9]. Wandiga et al. [9] carried out surveys in three communities in the Lake 
Victoria Basin (eastern Africa) to assess the role of climate change and its variability, 
hydrology and socioeconomic factors for malaria vulnerability on a local level. A spatially 
explicit approach for modeling, exploring and visualizing homogeneous units of social 
malaria vulnerability on a policy level for districts, countries or regions is, to the best of our 
knowledge, not existent yet. 

This paper presents a conceptual and methodological framework for modeling social 
vulnerability to malaria in a spatially explicit manner for the regional scale. Based on a 
holistic conceptual risk and vulnerability framework that was developed to guide risk and 
vulnerability assessments for water-related vector-borne diseases, and a set of malaria-
specific spatial indicators and indicator weights, we delineate homogeneous regions of social 
vulnerability to malaria for the eastern African region. The aim of the proposed approach is to 
provide information for the place-specific targeting and prioritization of interventions. 

Materials and methods 

Study area 

The study area comprises the five countries that form the East African Community (EAC), 
i.e., the Republic of Kenya, the Republic of Uganda, the Republic of Rwanda, the Republic 
of Burundi and the United Republic of Tanzania. It covers an area of approximately 1,817.7 
thousand square kilometers, including water bodies. As shown in Figure 1, the size and 
population density of the five countries varies tremendously. Rwanda (26,300 km2) and 
Burundi (27,800 km2) are the smallest countries, while Tanzania (939,300 km2) is by far the 
largest country, accounting for more than 50% of the total area of the entire EAC region [33]. 
As well as the country size itself, the average size of sub-national administrative units also 
varies significantly across the countries, which causes difficulties when comparing these units 
spatially. According to recent population projections, the five EAC countries have an 
estimated population of 134.5 million inhabitants [33], and account at certain locations 
(Rwanda, Burundi, Uganda) for one of the most densely populated regions on the continent 
[7]. This holds particularly true for the areas surrounding Lake Victoria and the southwestern 
part of Kenya, which are also areas of high malaria endemicity (see Figure 1). As a result of 
its relatively high overall population growth rate of 2.6 % and enduring conflicts in the 



region, the population of the area is expected to further increase in the coming decades, thus 
forcing more people to resettle into areas that favor malaria transmission [32]. The region 
faces great spatial and temporal variability in terms of climate [7,10] and eco-regions. As a 
result of the generally high altitude in these regions, temperatures are relatively modest 
compared to other equatorial regions, with lower temperatures in the highlands (maxima of 
around 25 °C, and minima of 15 °C at an altitude of 1,500 m) and higher temperatures in the 
humid coastal areas. As a result of global and regional climate change, the entire region has 
been confronted with rising temperatures and increased frequency and magnitude of extreme 
weather events [13]. In combination with increasing resistance of the malaria parasite to 
drugs, and a decrease in funding for vector control, this has resulted in a spread of malaria 
into areas that had not previously been exposed to the disease [4,5,10,34]. Figure 1 shows the 
spatial distribution of Plasmodium falciparum (Pf) malaria stratified by endemicity class for 
2010 [24]. It highlights that malaria has already expanded into the highland areas, presenting 
epidemics beyond the lowland limits where the mosquito vectors are usually found [5-10]. 

Figure 1 Location of the study area. The map shows the population density in the study 
area (in shades of red), overlaid with Plasmodium falciparum (Pf) endemicity levels Gething 
et al. [24] grouped in three different categories (as indicated by the solid lines). 

Framing risk and vulnerability to water-related VBD s 

The concept of risk and specifically vulnerability is promising for linking malaria prevention 
and response with development agendas, as it helps to identify potential intervention options 
for reducing overall risk and strengthening resilience to VBDs independent of current disease 
prevalence. It provides valuable and necessary information for the malaria prevention and 
control community which often has to rely solely on information on current transmission or 
endemicity levels based on environmental factors, thus pursuing a reactive approach to 
reducing the malaria burden. 

Concepts and terminologies of risk, vulnerability and related terms such as resilience or 
adaptive capacity are manifold and vary between different schools of thought. Within the 
climate change research arena, the previous IPCC (Intergovernmental Panel on Climate 
Change) approach [35,36] conceptualized vulnerability as a function of exposure, sensitivity, 
and adaptive capacity [37]. Contrarily, the disaster risk reduction (DRR) community defined 
risk as an integrative concept defined by vulnerability, exposure and hazard. Studies in the 
context of public health either use (the previous) IPCC-based concepts [9,32,38-40], or 
understand risk simply as the likelihood of disease occurrence [41,42]. 

With the latest IPCC assessment reports [43,44] a significant change in the understanding of 
risk and vulnerability in the context of climate change adaptation has been achieved. They 
stress that risk management, adaptation and action on climate change should be placed in the 
context of a planning and analysis framework that considers societal issues along with 
environmental factors. Understanding disease risk management as a social process allows for 
a shift in focus from responding to disease prevalence alone, towards an understanding of 
disease risk. This requires knowledge about how human interactions with the natural 
environment lead to the spread and prevalence of diseases, and how society is vulnerable to 
the potential burden of these diseases. Such an approach requires an understanding of the 
vulnerability of the population, including the allocation and distribution of social and 
economic resources that can work for, or against, the achievement of reduced diseases 
impacts [43]. 



Against this background we developed a holistic conceptual risk and vulnerability framework 
which (i) considers the notion of multiple inter-related factors contributing to disease risk, (ii) 
provides a clear framing of risk and vulnerability in-line with current IPCC 
recommendations, (iii) establishes a clear link to risk governance, climate change adaptation 
and related intervention measures, (iv) allows the identification of possible development 
pathways, and finally, (v) provides a holistic view of disease risk considering spatial and 
temporal scales. 

In the framework (Figure 2.1), risk is defined as the potential occurrence of harmful 
consequences or losses (i.e., the potential burden of diseases) resulting from interactions 
between VBDs and vulnerable conditions of differential population groups. In line with the 
MOVE framework [45], the proposed framework reflects the multi-faceted nature of 
vulnerability, accounting for key causal factors such as susceptibility and lack of resilience. 

Figure 2 Conceptual risk and vulnerability framework. Risk framework and its 
integration within risk governance, climate change adaptation and associated intervention 
measures (2.1) and domains of social vulnerability (2.2) with illustrative examples 

A ‘hazard’ in the context of water-related VBDs is defined as the potentiality of disease 
occurrence which may have a negative impact on social assets in a given area and over a 
given period of time. Hazards include latent conditions that can represent future threats and 
are characterized by their location, magnitude, frequency and probability. An example for 
malaria is the probability of an infective bite, which can be represented through the 
Entomological Inoculation Rate (EIR). 

Vulnerability is defined as the predisposition of the society and its population to the burden 
of water-related VBDs, considering spatial and temporal differences in susceptibility and lack 
of resilience [30,46]. Vulnerability largely rests within the conditions and dynamics of the 
coupled socio-ecological system exposed to VBDs. However, due to its multi-faceted nature 
it is mainly linked to societal conditions and processes. In our framework, vulnerability is 
seen as a dynamic process which represents the conditions set by the environment and the 
characteristics and actions of the vulnerable populations themselves. Dynamic is understood 
as the change of factors of vulnerability (and risk) over time. 

The framework (Figure 2) was designed to be holistic in a sense that it can be applied to 
guide the assessment of risk and vulnerability to several water-related vector-borne diseases, 
such as malaria, dengue fever, schistosomiasis, Rift Valley fever, etc. at different spatial or 
temporal scales. Depending on the disease that is addressed, different indicators (and 
indicator weights) for modeling disease risk and/or vulnerability might be relevant. Here, the 
framework was used to guide the assessment of vulnerability to malaria on a regional scale. 
In this framework, vulnerability rests largely within the social dimension, which, to our 
understanding, encompasses various socioeconomic and demographic factors, and could be 
extended to institutional, ecological or cultural dimensions; and vulnerability is defined by 
susceptibility and lack of resilience. Susceptibility represents the propensity of societies or 
humans to be negatively affected by a VBD. Thereby we distinguish between generic 
susceptibility (SUS) and biological susceptibility (BIO). Generic susceptibility encompasses 
general underlying factors and the general predisposition of societies to malaria (e.g. poverty, 
population change, conflicts, etc.). Biological susceptibility relates to the clinical 
manifestation of malaria, which depends for instance on malnutrition, disease co-infection 
and/or immunity [30]. 



Lack of resilience refers to the lacking capacity of societies and population groups to respond 
and absorb negative impacts as a result of the lacking capacity to anticipate, respond to and 
recover from diseases [30]. Compared to adaptation processes and adaptive capacities, these 
capacities focus mainly on the ability to maintain the system’s functionality in light of VBDs 
impacting the society or system [45]. Adaptation (see Figure 2.1) deals with the ability of a 
community or a system to learn from present and past disease outbreaks and to change 
existing practices for potential future changes in environmental and societal conditions. 
Anticipation (C2A) itself entails a coherent set of strategies or programs and social capital 
available before the disease hazard arises and deals mainly with the reduction of biting 
exposure (e.g. use of bed nets, awareness, early warning systems etc.). Coping (C2C) refers 
to the ability of people, organizations, systems and/or communities to use available skills and 
resources to face and manage adverse conditions arising from endemic and epidemic diseases 
(such as distance to clinics). Whereas, recovery (C2R) refers to the capacity to restore 
adequate and sustainable living conditions, as well as having the capacities to overcome or 
manage the disease in a way that allows living in a physically healthy way (e.g. the 
availability of adequate treatment and health insurance). 

While the proposed framework can be adapted to various disease contexts, we assume a step-
wise dependence of the different domains of social vulnerability to malaria, as indicated by 
the grey arrows in Figure 2.2. This is also reflected in the workflow outlined in Figure 3. 

Figure 3 Modeling workflow.  The workflow shows the individual modeling stages from the 
conceptualization to the visualization of vulnerability to malaria. 

Through the frameworks’ integrative, while at the same time decomposable nature, it serves 
as a ‘guidance tool’ for the identification and development of systems of indicators of risk 
and vulnerability relevant for assessments at different spatial and temporal scales. Depending 
on the VBD that is addressed, a different set of indicators and indicator weights could be used 
to assess risk and vulnerability to the disease. 

Additionally it helps to identify targeted intervention measures – at the hazard and 
vulnerability level – with the ultimate aim to reduce risk to VBDs. 

Vulnerability indicators and related datasets 

Based on the outcomes of a systematic review of literature, the consultation of several 
domain experts at a series of expert consultations, and data availability, a preliminary set of 
15 vulnerability indicators representing the social dimension of vulnerability to malaria was 
identified to reflect present day conditions (Table 1). All of them vary spatially in the study 
area. 

  



Table 1 List of vulnerability indicators a 
Indicator name Date Resolutionb Signc Weight Data source 
Generic susceptibility (SUS)    0.2744  
Number of women 2010 1 km + 0.0272 AfriPop:demography 
Population change 1970-2010 2.5-arc minutes + 0.0314 GPWv3, UNEP-APD 
Travel time to closest urban center 2000 30 arc-seconds + 0.0229 JRC/WorldBank 
Distance to roads 2010 Line layer + 0.0286 OSM, ESA GlobCover, SRTMv4 
Conflict density (km2) 1997-2009 Point layer + 0.0429 ACLED 
Number of people living on less than 2 USD per day 2010 2.5 arc-minutes + 0.1214 CGIAR CSI 
Capacity to anticipate (C2A)    0.2671  
Secondary/higher education (%) 2007/08 Point layer - 0.0571 DHS 
Child did not sleep under net last night (%) 2007/08 Point layer + 0.2100 DHS 
Biological susceptibility (BIO)    0.3728  
Number of children under the age of 5 d 2010 1 km + N/A AfriPop:demography 
Number of women of childbearing age 2010 1 km + 0.0414 AfriPop:demography 
Prevalence of stunting children under the age of 5 2010 5 arc-minutes + 0.0843 FAO 
Immunity 2010 1 km - 0.1614 Malaria Atlas Project 
HIV prevalence among 15-49 year olds (%) 2010 Polygon layer + 0.0857 USAID 
Capacity to cope (C2C)    0.0857  
Distance to closest hospital 2010 Point layer + 0.0671 OSM, ESA GlobCover, SRTMv4 
Number of dependents 2010 1 km + 0.0186 AfriPop:demography 

a Based on the outcomes of the literature survey, expert consultation and data availability; b 
Refers to the spatial resolution of the original datasets (i.e., before the data was resampled to 
10x10 km2 grids); c Sign indicates if high indicator values increase (+) or decrease (-) 
vulnerability; d This indicator was removed from the analysis to reduce existing 
multicollinearities in the data. 

In their comprehensive reviews on risk and vulnerability to malaria, Bates et al. [17,18], 
Protopopoff et al. [27] and Sutherst [32] identify an entire set of (i) biological and disease-
related (e.g., immunity, age, pregnancy, etc.), (ii) socioeconomic (e.g., socioeconomic status, 
poverty, nutritional status, education, etc.), as well as (iii) accessibility factors (e.g., access to 
health care, etc.), that impact people’s social vulnerability to malaria. In our paper, we 
consider these three groups of factors that determine malaria vulnerability in East Africa. 

Many papers have been published on the mutual links between poverty and malaria 
[9,26,47,48]. There is strong evidence that poverty, or the lack of key capital assets, increases 
vulnerability to malaria through a number of factors. Bates et al. [17,18] highlight that there 
is a strong link between wealth and treatment-seeking behavior and access to malaria 
prevention services, such as ownership of nets, etc. We therefore used a dataset showing the 
spatial distribution of people living on less than two US$ per day, as provided by CGIAR CSI 
[49], as a proxy for poverty. Although several studies suggest that urbanization can result in a 
reduction of (i) places that could serve as potential Anopheles breeding sites, as well as (ii) 
transmission intensity [50], the initial process of rapid urbanization is often characterized by 
fast developing unplanned settlements and lacking basic infrastructure, and therefore often 
accompanied by increases in Anopheles larval habitats [27,50]. Lindsay and Martens [8] 
found that increased population density in the East African highlands resulted in an inevitable 
increase in human-vector contact, and thus increased the vulnerability to malaria. Thus, we 
have used increases in population densities from 1970 to 2010 as a proxy for urbanization. 
Civil and economic disturbances caused by violent conflicts or riots not only initiate the 
migration of people between different malaria transmission zones, and thus make them more 



susceptible (e.g. non-immune populations moving into endemic areas), but also impact 
people’s capacities to cope with, and recover from infection, as it hampers economic growth 
and destroys basic health and social service infrastructure [17,50]. We used time series from 
1997 to 2009 derived from the Armed Conflict Location and Event Dataset (ACLED) to 
calculate a density layer (km2) of violent political conflict. As both the use of protection 
measures and treatment seeking behavior are influenced by perceptions, beliefs and 
knowledge about the disease [17,26,51-53], we integrated information on education levels 
derived from recent Demographic and Health (DHS) surveys into the analysis. For the geo-
referenced DHS survey data gridded prevalence surfaces were created in R statistical 
software using the prevR package based on a workflow published by Lamarange et al. [54]. 
The use of mosquito nets, particularly by children under the age of five and pregnant women, 
is considered a key vulnerability indicator [9,17,26,27,29,47,48,55] as it has a tremendous 
impact on biting and infection rates. A variable from recent DHS surveys, indicating whether 
or not a child slept under a net the night before the survey, was integrated into the analysis to 
estimate the use of mosquito nets. Another key indicator is access to health care 
[9,18,27,47,48,56]. As the demand side (i.e., lack of available resources to cover costs, etc.) 
is partly covered by the poverty indicator, we have integrated distance to hospitals as a factor 
on the supply side, and as a key coping mechanism, into the analysis. The distance to health 
facilities is calculated as a cost distance depending on specific cost values for different land 
use/land cover (LULC) properties and considering topographical barriers (such as slope) 
using the path distance tool in ArcGIS. The tool calculates, for each grid cell, the least 
accumulative cost distance to the nearest source, while accounting for surface distance and 
horizontal (here: LULC) and vertical (here: elevation) cost factors. Thereby, LULC 
information was obtained from the GlobCover 2009 dataset, while the SRTMv4 dataset [57] 
was used to obtain elevation information. According to Bates et al. [17], evidence about the 
prevalence of malaria in male or female populations is still inconsistent. There is, however, 
evidence that gender has an influence on vulnerability in terms of different behavior, roles, 
expectations, and responsibilities, tending to make women more vulnerable to the disease 
[17]. We used gridded demographic population datasets provided by AfriPop:demography 
[58] to obtain information on the spatial distribution of the female population. 
Schneiderbauer [59] and Cutter et al. [60] indicate that a high dependency ratio (DR) in a 
given area can impact people’s susceptibility in several ways. Although their findings 
primarily relate to vulnerability to natural hazards in a DRR framework, a high DR also 
impacts malaria vulnerability by imposing a higher economic burden on the working 
population, thus leaving fewer resources for coping with the disease in case of infection or 
severe illness. We have therefore integrated DR into the analysis, as measured by the number 
of dependents (below 15, and above 65 years) as a percentage of the working-age group 
between 15 and 64 years of age, based on the population datasets provided by AfriPop. 

We also integrated distance to road networks, using data provided by OpenStreetMap, and 
travel time to local markets into the analysis. For the latter we used a gridded accessibility 
surface provided by the World Bank and JRC 
(http://bioval.jrc.ec.europa.eu/products/gam/index.htm) as a proxy [61]. Accessibility to road 
networks and transport is often perceived as a relevant development indicator covering 
generic access to a variety of services [62,63]. As local markets and urban centers are 
important central places, which links to the central place theory of Christaller [64], these have 
been included to reflect the availability of alternative livelihoods as well as the access to sales 
market [65]. 



Several studies have shown that, due to lowered immunity and impaired efficacy of 
antimalarial drugs during pregnancy, both pregnant women and children under five, are 
particularly susceptible [17,27,47,66,67]. As up-to-date data on current pregnancy status was 
not available for the entire study area, the number of women of childbearing age (15-49 
years), as provided by AfriPop, was used as a proxy for biological susceptibility (BIO). Aside 
from pregnant women and young children, it is particularly the communities in the highlands 
that are vulnerable. Their immunity is lower compared to their counterparts in the lowlands 
[9]. As immunity generally develops with increasing malaria transmission, we used the age-
standardized P. falciparum parasite rate, which describes the estimated proportion of 2-10 
year olds in the general population that are infected with P. falciparum at any one time, 
averaged over the 12 months of 2010 [24] as a proxy for immunity. In the absence of data on 
immunity status of the population it was considered a reasonable proxy for biological 
susceptibility. The current scientific debate on the relationship between malnutrition and 
susceptibility to malaria is still blurred. While some studies suggest that poor nutritional 
status increases susceptibility [17,68], others found that nutritional stress might even be 
protective against malaria [69,70]. Ultimately, there are also studies that revealed no clear 
link between nutritional status and susceptibility [71]. However, evidence is accumulating 
that poor nutritional status has an impact on people’s susceptibility [27]. Thus, in the absence 
of reliable data for the entire region, the authors have used the number of stunting children 
under the age of five, as provided by the Food and Agriculture Organization (FAO), as a 
proxy for poor nutritional status in children. According to Bates et al. [17] there is increasing 
evidence that HIV co-infection leaves people more vulnerable to malaria. We therefore 
included HIV-prevalence among 15-49 year olds in the analysis; as acquired from UNAIDS. 
As HIV-prevalence was reported on district level, we disaggregated this information using 
population information provided by AfriPop. 

Modeling homogeneous regions of social vulnerability 

Based on a concept and methodology for modeling multi-dimensional, latent spatial 
phenomena, we modeled relative levels of social malaria vulnerability on a regional scale. 
Our approach builds on the concept of geons which was introduced by Lang et al. [72]. 
Recently, Lang et al. [73] defined geons as spatial objects, which are homogenous in terms of 
varying spatial phenomena under the influence of policy intervention and are generated by 
scale-specific spatial regionalization of a complex, multidimensional geographical reality 
incorporating expert knowledge. In this paper we follow the concept of integrated geons [73], 
which addresses abstract, yet policy-relevant phenomena such as societal vulnerability to 
hazards. 

The methodology to delineate integrated geons was initially developed by Kienberger et al. 
[74] and has been successfully applied to model vulnerability to floods at different spatial 
scales [75], as well as to identify hotspots of cumulative climate change impact in Western 
Africa [76]. This paper presents an expanded methodology to represent integrated geons 
incorporating methods for indicator preprocessing and sensitivity analysis. Integrated geons, 
i.e. homogenous regions of social vulnerability to malaria, are delineated using a workflow 
that comprises five major stages (Figure 3). 

First, the conceptual framework is defined (see Figure 2) to provide guidance on how to best 
represent and operationalize the phenomenon of concern. This step also includes the 
identification and first selection of possible indicators and datasets relevant for the specific 
VBD that is addressed. These indicators should fulfill three specific criteria to be considered 



suitable: salience, credibility and legitimacy [77]. Additionally, it is important that data are 
suitable to represent the indicators in a spatially-disaggregated manner. 

Within the second stage, different pre-processing routines are carried out to prepare datasets 
for modeling, and to test the statistical soundness of the indicator framework. This includes 
creating gridded surfaces (here: 10x10 km2), cropping them to the extent of the modeling 
region, as well as the identification and treatment of outliers, missing data and 
multicollinearities in the data. To create the 10 × 10 km2 grids, some of the indicators, 
including number of women, population change, travel time to closest urban center, etc., were 
resampled from smaller cell sizes, while HIV prevalence – which was reported on sub-
national administrative units – was disaggregated using a gridded population dataset acquired 
from WorldPop. Outliers were identified using box plots, and treated by applying a 3 × 3 
customized low pass filter which reduces extreme values by replacing them with the mean 
values of the eight neighboring pixel values. Outliers were treated for the following datasets: 
children under the age of 5, women of childbearing age, stunting children under the age of 5, 
number of HIV-infected persons. Multicollinearities were assessed using the Pearson 
correlation coefficient r, and considering the variance inflation factor (VIF); with r > 0.9 or 
VIF > 5 indicating a multicollinearity problem [78]. Based on these statistics the variable 
children under the age of 5 was removed from the analysis, as it was highly collinear with 
stunting children under the age of 5 (see Table 1). As a final step in stage 2, all indicators 
were normalized to an 8-bit interval [0, 255] using linear min-max normalization (Equation 
1). 
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where vi refers to the raw pixel value, and vmin and vmax represent the minimum and maximum 
values of the raw pixel value respectively. During normalization, the indicators were adjusted 
for their sign, which indicates whether the indicator contributes positively (+) or negatively (-
) to vulnerability (Table 1). This was done by multiplying the respective indicators by minus 
one, and then adding their minimum value. This results in datasets where high values increase 
vulnerability and low values decrease vulnerability. 

A set of integrated geons was delineated in the third stage. This was achieved by 
regionalizing the weighted indicators in an n-dimensional indicator space using the multi-
resolution segmentation algorithm [79] implemented in the TRIMBLE eCognition Developer 
software environment. To evaluate the relevance of each indicator for malaria vulnerability in 
the study area a weight for each indicator was obtained from an expert-based weighting 
exercise. In total, seven regional domain experts of varying backgrounds (such as 
epidemiologists, health ministries, climate, and health specialists) with long-term malaria 
expertise in the region participated in the survey. Making use of an online survey the experts 
were asked to allocate 100 points to the final set of vulnerability indicators. By taking the 
mean value of the seven expert ratings, and standardizing them to sum up to one, we came up 
with a weight for each of the 14 indicators, as listed in Table 1. The size of the regions 
depends on the parameterization of the segmentation algorithm, which can be adjusted by the 
user. We used the ‘Estimation of Scale Parameter’ (ESP2) tool [80] to identify the 
statistically most suitable scale parameterization of the algorithm. Following the conceptual 
framework (Figure 2) and its sequential relationship between the four vulnerability domains 
we delineated regions of social vulnerability using a step-wise approach: A first set of 



integrated geons was delineated based on the six weighted ‘generic susceptibility’ indicators. 
Based on these units, we used the two weighted ‘lack of capacity to anticipate’ indicators to 
refine the regions. Then, the four weighted ‘biological susceptibility’ and the two weighted 
‘lack of capacity to cope’ indicators were sequentially integrated into the analysis. The 
resulting fine-scaled units or geons were ‘merged’ considering all indicators; again applying 
the multi-resolution segmentation algorithm. For each regionalization step, the scale 
parameter – which determines the size of the unit based on homogeneity criteria – was 
identified using the ESP2 tool [80]. Following this step-wise approach we are able to 
represent relationships between the different vulnerability domains; as indicated in the 
conceptual vulnerability framework. 

A final vulnerability index value is calculated for each geon using the weighted vector 
magnitude according to the following equation [73,74]: 

2 2 2 2
2 2  2   2  VU sus c a bio c cI w SUS w C A w BIO w C C…= + + +  (2) 

where IVU refers to the social vulnerability index for each integrated geon, SUS, C2A, BIO 
and C2C to the indices for the four vulnerability domains, and w to the aggregated weights 
for each domain. The index values for each of the four domains are also calculated using the 
weighted vector magnitude (Equation 3): 
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where IDOM refers to the index for each of the four vulnerability domains (SUS, C2A. BIO 
and C2C), vDOMi-n to the normalized indicators identified for each domain (Table 1) and wi-n 
to the expert-based indicator weights. 

To ease the interpretation of the results, the resulting vulnerability index values for each unit 
were normalized to the zero to one interval [0,1], where zero represents no, and one very high 
vulnerability to malaria on a relative scale within the case study region. 

To assess the robustness of the modeling approach in regard to the choice of indicators we 
performed a local sensitivity analysis. Therefore, following an approach described in Lung et 
al. [81] we calculated a set of alternative vulnerability indices by discarding one indicator at a 
time while keeping all other settings (normalization, weighting, aggregation) equal. The 
outputs of this approach are presented in the results section. 

In a final step, the index values are mapped and visualized using a blue (low value) to red 
(high value) color scheme to avoid difficulties for the color blind. We refrained from a 
classification of the index values into categories and visualized each unit based on its index 
value using a continuous color scheme instead. 

Results 

Social vulnerability to malaria 

Figure 4 shows the spatial distribution of social vulnerability to malaria for the EAC region. 
In the map, areas of high vulnerability are displayed in red (max value = 1), while areas of 



low vulnerability (min value = 0) are displayed in blue using the continuous classification 
scheme. Regions of very high vulnerability are found in the northeastern part of the study 
area, particularly in the areas surrounding Lake Turkana, Kenya, at the Kenyan-Ugandan and 
Kenyan-Tanzanian border, as well as in the central part of Burundi. Medium to high levels 
are found in Rwanda with very high levels in Kigali, as well as in the northeastern and 
southwestern part of Tanzania. The pie charts for three selected vulnerability regions in 
Figure 4 indicate the relative share and contribution of the underlying vulnerability indicators 
to the overall vulnerability index; thus enabling an evaluation of different characteristics for 
each integrated geon. 

Figure 4 Social vulnerability to malaria in eastern Africa. Figure 4 shows current levels of 
social vulnerability to malaria in East Africa. The pie-charts show the varying contribution of 
the single vulnerability indicators for different selected geons. Such pie-charts can be 
visualized for each geon, thus guiding the identification of targeted intervention options 

Although high levels of vulnerability in areas that are currently malaria free, or only affected 
by epidemic outbreaks, such as the East African highlands (see Figure 1), seem surprising at 
first glance, this is primarily a result of the lowered immunity of the populations in these 
regions. As vulnerability is seen as of two key components of risk, it represents the societal 
predisposition which is independent from the current distribution of infected vectors. The 
decomposition of risk into its underlying components of hazard (i.e., probability of an 
infective bite) and vulnerability is useful, as it helps to identify potential future areas at-risk, 
as well as targeting relevant societal drivers. 

As an additional output, Figure 5 (5.1 to 5.4) displays the spatial heterogeneity of generic 
susceptibility (Figure 5.1), the lack of capacity to anticipate the disease (Figure 5.2), 
biological susceptibilities (Figure 5.3), and the lack of capacity to cope with the disease 
(Figure 5.4) in the study area. While generic susceptibility is rather low in the region, 
biological susceptibility is generally high, especially in areas where Pf endemicity is low (see 
Figure 1); due to a lack of immunity. 

Figure 5 Domains of social vulnerability to malaria in east Africa. Figure 5 shows the 
domains of social vulnerability to malaria based on centile classification. Generic 
susceptibility (5.1), lack of capacity to anticipate (5.2), biological susceptibility (5.3), and the 
lack of capacity to cope (5.4) 

Influence of input indicators on the composite vulnerability index 

As outlined above, the modeling of homogeneous vulnerability units comprises several stages 
where the analyst is confronted with choices between different plausible alternatives that 
impact the modeling outcome [82]; in our case the size and shape of the integrated geons as 
well as the vulnerability index. It is therefore important to analyze the impact of these choices 
by assessing the sensitivity of the modeling approach, as well as related uncertainties [82,83]. 
Sensitivity analysis evaluates the contribution of individual sources of uncertainty to the 
output variance [84,85]. In contrast to global sensitivity analysis, which enables a 
simultaneous assessment of multiple construction stages, local sensitivity analysis targets one 
construction stage at a time, while all other stages are held constant [82]. As no framework 
(so far) exists for assessing the global sensitivity and uncertainty for geons [73], we assessed 
the influence of the input vulnerability indicators on the vulnerability index by means of a 
local sensitivity analysis. This was achieved by discarding one of the indicators at a time, 



while keeping all other settings (normalization, weighting, regionalization, and aggregation) 
equal [81], and resulted in a series of alternative vulnerability indices. For each geon the 
alternative index was compared with the reference vulnerability index (i.e., the index based 
on all indicators). The results are displayed in the box plots in Figure 6, which, for each of the 
alternative vulnerability indices (x-axis), show the interquartile range (IQR), the minimum 
and maximum values as well as the correlation (r) with the reference index (y-axis). The 
higher the IQR, the higher the influence of the respective indicator on the vulnerability index 
[81]. 

Figure 6 Box plots showing the influence of the single indicators on the composite 
vulnerability index.  

The box plots and the correlation coefficients (Pearson’s r) displayed in Figure 6 clearly 
show that children not sleeping under a net (r = 0.95), travel time to the closest urban center 
(r = 0.98), education (r = 0.99) and conflict density (r = 0.98) have a minor impact, while 
immunity (r = 0.62) has a marked impact on the vulnerability index. With the exception of 
the indicator ‘immunity’, which has an excessive influence on the composite vulnerability 
index, the strong correlation between the modified vulnerability indices and the reference 
vulnerability index (r never smaller than 0.95) emphasizes the robustness of the vulnerability 
index in regard to the final choice of input datasets; again with the exception of the indicator 
related to immunity which has a marked impact on the composite vulnerability index. 

Discussion 

As shown in Figures 4 and 5, vulnerability – and its decomposed domains – varies 
significantly in space. This is a result of a spatial variation of the underlying vulnerability 
indicators. Figure 4 allows the identification of social vulnerability hot spots for malaria on a 
relative scale for East Africa. The results are useful for decisions regarding the entire eastern 
African scale level, as it supports the rough identification of intervention areas. The answer to 
the question “what needs to be done where?” can be derived by exploring the relative share of 
contributing vulnerability indicators as depicted in the pie-charts in Figure 4. For instance, 
region 2 – representing the urban region of Nairobi – has a stronger contribution of biological 
susceptibility than the neighboring region 1, or region 3. The pie-charts in Figure 4 also show 
that a lack of immunity is a major contribution to malaria vulnerability in the study area, 
which is also a result of the relatively high weight that was assigned to this indicator by the 
experts. However, at the same time, it also becomes evident that a lack of immunity is only 
one of several important factors contributing to malaria vulnerability in the study area, which 
is also reflected by the weights that were assigned to the single indicators by the experts (see 
Table 1). Aside from immunity, other relevant indicators include the lack in use of protection 
measures (i.e., the lack in use of bed nets), poverty, distance to hospitals, and lack of 
education, amongst others. This has important policy making implications, since 
interventions that aim at reducing the burden of the disease should not only be spatially 
targeted, but also take into account the relevance of each of these factors for malaria 
vulnerability for the respective regions. Furthermore, it is also interesting that for instance 
Nairobi (Figure 4, region 1) is delineated as a homogenous region. Although the presented 
approach does not include any information on administrative boundaries, it well reflects a 
homogeneous urban region which differs from its surrounding area in terms of its 
socioeconomic and demographic characteristics. 



Figure 5 presents the different indices for the four domains of vulnerability. Care has to be 
taken with the interpretation, as the generic susceptibility (SUS) domain has a significantly 
higher value in Kigali in regard to female population. To allow a comparison of the four 
domains the values have been classified with centile classifications. 

The benefit of the geon approach as presented in this paper is that it delineates homogenous 
regions which are independent of a-priori geographies [86], such as administrative 
boundaries, and therefore facilitates a place-specific identification of possible interventions. 
As administrative boundaries are artificially drawn and may change over time, they can have 
a direct influence on the aggregated index value. For further details we refer to the 
Modifiable Areal Unit Problem (MAUP) as discussed by Openshaw [87]. A discussion on 
MAUP for geons is provided by Lang et al. [73]. Additionally, the size and shape of 
administrative boundaries varies significantly within the study area (e.g. district boundaries in 
Rwanda vs. district boundaries in Tanzania), and are not an objective measure or suitable for 
a relative, spatial evaluation of vulnerability across the region. We do, however, not neglect 
the importance of administrative boundaries as reporting units for the implementation of 
malaria policies and interventions [30]. 

From the methodological point of view this paper advances beyond the initial workflow 
discussed by Kienberger et al. [74] through the application of pre-processing methods and an 
advanced delineation of the vulnerability regions. Now, it includes methods for (i) pre-
processing of indicators and statistical testing of the soundness of the indicator framework 
(based on OECD [78] and Hagenlocher et al. [46]), (ii) the identification of a statistical valid 
scale parameter, as well as for (iii) local sensitivity analysis. In the absence of causal models 
that evaluate the contribution of the indicators considered for social vulnerability in the study 
area, indicator weights were identified based on expert opinions. An alternative modeling 
exercise could be based on statistical weighting procedures, e.g. using weights based on 
principal component analysis (PCA) or regression analysis. In a previous study, we compared 
both statistical and expert-based weighting schemes, evaluated their impact on a vulnerability 
index in Cali, Colombia, and found that both modeling approaches revealed similar outputs, 
both globally and spatially [46]. 

Additionally, moving from a local sensitivity analysis approach towards a global sensitivity 
analysis, which considers the influence of indicators, normalization, weighting and 
aggregation, will be part of future research. This is particularly challenging when using 
geons, as not only the vulnerability index for each geon changes when altering input 
parameters, but also the geometry of the geons might change. To overcome this challenge we 
are currently developing metrics to quantify these impacts, and ultimately provide 
information on the stability of the delineated geons. Future research will also consider 
spatially explicit approaches for indicator pre-processing. 

Critical for such assessments is the quality and availability of input data. An increasing 
number of disaggregated and spatially explicit data is publically available. However, due to 
its multi-source characteristic, data quality and accuracy varies between regions and datasets. 
As the data used for this study includes uncertainties, the results of such modeling exercises 
as presented here are mainly for (i) indicative purposes, and (ii) valid only for a regional scale 
level. Information on vulnerability not yet covered by the proposed set of indicators includes 
data on the quality of health services or interventions such as indoor residual spraying (IRS). 
Once such data are available for the entire study area, this could additionally reduce existing 
uncertainties in the spatial assessment of social vulnerability. 



To achieve the ultimate aim of spatially explicit risk assessment, the outcomes of the 
presented vulnerability analysis should be combined with information on the probability of an 
infective malaria bite (e.g. represented through the EIR). This would allow a validation of the 
results based on field measurements of malaria prevalence, using for example the results of 
rapid diagnostic tests (RDTs). As shown in Figure 4, the presented approach provides the 
opportunity to integrate the modeling outcomes as well as the underlying indicator 
framework into an interactive web-environment [88], which can serve as a simple spatial 
decision support tool. 

Conclusions 

An expert-based, spatially explicit approach was utilized for modeling and visualizing 
relative levels of prevailing social vulnerability to malaria in the Eastern African Community 
(EAC) region. Taking into account a set of socioeconomic, demographic, access and 
biological/disease-related indicators, vulnerability to malaria was modeled independent of the 
current spatial distribution of the disease. In the context of a changing environment it is of 
utmost importance not only to target areas that are currently malaria endemic, but also to 
focus on areas that might be affected by the disease in the near future due to a changing 
climate and its societal drivers. A holistic risk and vulnerability framework was developed 
and used as a heuristic guidance tool for the identification and development of a sound 
indicator framework, thus enabling a reproducibility or transferability of results. The results 
of our research provide relevant information for policy makers to identify place-specific 
interventions that decrease people’s susceptibility to the disease and help to strengthen their 
resilience. Combined with information on disease prevalence, this is one important step 
towards a more integrative and systemic view of malaria risk. 

Competing interests 

The authors declare that they have no competing interests. 

Authors’ contributions 

SK and MH developed the study design and were responsible for the conceptualization of the 
study. MH and SK did the literature review and data collection. MH was responsible for data 
pre-processing, the analysis, and the design and implementation of the expert survey, where 
SK provided supervision. Both interpreted the results and wrote the paper. The authors read 
and approved the final version of the manuscript. 

Acknowledgements 

The research leading to these results has received funding from the European Union’s 
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 266327 
(HEALTHY FUTURES, http://www.healthyfutures.eu/) and from the Austrian Science Fund 
(FWF) through the Doctoral College GIScience (DK W 1237-N23). The authors would like 
to thank Peter Zeil, Dr Adrian Tompkins, Tim Markmiller, Janina Bäumler and Dr Dirk 
Tiede for their support. 



References 

1. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI: Climate change and the 
global malaria recession. Nature 2010, 2010(465):343–346. 

2. World Health Organization: World Malaria Report 2013; 2013. 
http://apps.who.int/iris/bitstream/10665/97008/1/9789241564694_eng.pdf. 

3. Stern DI, Gething PW, Kabaria CW, Temperley WH, Noor AM, Okiro EA, Shanks GD, 
Snow RW, Hay SI: Temperature and malaria trends in highland East Africa. PLoS One 
2011, 6(9):e24524. 

4. Chaves LF, Satake A, Hashizume M, Minakawa N: Indian Ocean dipole and rainfall 
drive a Moran effect in East Africa malaria transmission. J Infect Dis 2012, 
205(12):1885–1891. 

5. Hay SI, Rogers DJ, Randolph SE, Stern DI, Cox J, Shanks D, Snow RW: Hot topic of hot 
air? Climate change and malaria resurgence in East African highlands. Trends Parasitol 
2002, 18(12):530–534. 

6. Hay SI, Shanks GD, Stern DI, Snow RW, Randolph SE, Rogers DJ: Climate variability 
and malaria epidemics in the highlands of East Africa. Trends Parasitol 2005, 21(2):52–
53. 

7. Himeidan YE, Kweka EJ: Malaria in East African highlands during the past 30 years: 
impact of environmental changes. Front Physiol 2012, 3:1–11. 

8. Lindsay SW, Martens WJM: Malaria in the African highlands: past, present and 
future. Bull World Health Organ 1998, 76(1):33–45. 

9. Wandiga SO, Opondo M, Olago D, Githeko A, Githui F, Marshall M, Downs T, Opere A, 
Oludhe C, Ouma GO, Yanda PZ, Kangalawe R, Kabumbuli R, Kathuri J, Apindi E, Olaka L, 
Ogallo L, Mugambi P, Sigalla R, Nanyunja R, Baguma T, Achola P: Vulnerability to 
epidemic malaria in the highlands of Lake Victoria basin: the role of climate 
change/variability, hydrology and socio-economic factors. Clim Change 2010, 99:473–
497. 

10. Zhou G, Minakawa N, Githeko AW, Yan G: Association between climate variability 
and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A 2004, 
101:2375–2380. 

11. Martens WJM, Jetten TH, Focks DA: Sensitivity of malaria, schistosomiasis and 
dengue to global warming. Clim Change 1997, 35:145–156. 

12. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, 
Stenlund H, Martens P, Lloyd SJ: Global climate impacts: a cross-sector. Multi Model 
Assess PNAS 2014, 111(9):3286–3291. 



13. IPCC: Summary for Policymakers. In Climate Change 2013: The Physical Science 
Basis, Contribution of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. Edited by Stocker TF, Qin D, Plattner G-K, 
Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Xia Y, Bex V, Bex V, Midgley PM. 
Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013. 

14. Smith KR, Woodward A, Campbell-Lendrum D, Chadee D, Honda Y, Liu Q, Olwoch J, 
Revich B, Sauerborn R: Human Health: Impacts, Adaptation, and Co-Benefits. In 
Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working 
Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 
Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2014. 

15. Edlund S, Davis M, Douglas JV, Kershenbaum A, Waraporn N, Lessler J, Kaufman JH: 
A global model of malaria climate sensitivity: comparing malaria response to historic 
climate data based on simulation and officially reported malaria incidence. Malar J 
2012, 11:331. 

16. Ermert V, Fink AH, Morse AP, Paeth H: The impact of regional climate change on 
malaria risk due to greenhouse forcing and land-use changes in tropical Africa.  Environ 
Health Perspect 2012, 120(1):77–84. 

17. Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, Theobald S, Thomson R, 
Tolhurst R: Vulnerability to malaria, tuberculosis, and HIV/AIDS infection  and disease. 
Part 1: determinants operating at individual and household level. Lancet Infect Dis 2004, 
4:267–277. 

18. Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, Theobald S, Thomson R, 
Tolhurst R: Vulnerability to malaria, tuberculosis, and HIV/AIDS infection  and disease. 
Part II: determinants operating at environmental and institutional level. Lancet Infect 
Dis 2004, 4:368–375. 

19. Stratton LM, O’Neill S, Kruk ME, Bell ML: The persistence of malaria: addressing the 
fundamental causes of a global killer. Soc Sci Med 2008, 67:854–862. 

20. Huldén L, McKitrick R, Huldén L: Average household size and the eradication of 
malaria. JR Stat Soc A 2014, 177(3):725–742. 

21. Carter R, Mendis KN: Evolutionary and historical aspects of the burden of malaria. 
Clin Microbiol Rev 2002, 15(4):564–594. 

22. Patz JA, Reisen WK: Immunology, climate change and vector-borne diseases. Trends 
Immunol 2001, 22:171–172. 

23. Hay SI, Noor AM, Simba M, Busolo M, Guyatt HL, Ochola SA, Snow RW: The clinical 
epidemiology of malaria in the highlands of Western Kenya. Emerg Infect Dis 2002, 
8:543–548. 

24. Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, Tatem AJ, Hay 
SI: A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 
2011, 10:378. 



25. Omumbo JA, Hay SI, Snow RW, Tatem AJ, Rogers DJ: Modelling malaria risk in East 
Africa at high-spatial resolution. Trop Med Int Health 2005, 10(6):557–566. 

26. Gahutu JB, Steiniger C, Shyirambere C, Zeile I, Cwinya-Ay N, Danquah I, Larsen CH, 
Eggelte TA, Uwimana A, Karema C, Musemakweri A, Harms G, Mockenhaupt FP: 
Prevalence and risk factors of malaria among children in southern highland Rwanda. 
Malar J 2011, 10:134. 

27. Protopopoff N, Van Bortel W, Speybroeck N, Van Geertruyden JP, Baza D, 
D’Alessandro U, Coosemans M: Ranking malaria risk factors to guide malaria control 
efforts in African highlands. PLoS One 2009, 4(11):e8022. 

28. Tatem AJ, Adamo S, Bharti N, Burgert CR, Castro M, Dorelien A, Fink G, Linard C, 
John M, Montana L, Montgomery MR, Nelson A, Noor AM, Pindolia D, Yetman G, Balk D: 
Mapping populations at risk: improving spatial demographic data for infectious disease 
modeling and metric derivation. Popul Health Metr 2012, 10(1):8. 

29. Winskill P, Rowland M, Mtove G, Malima RC, Kirby MJ: Malaria risk factors in 
north-east Tanzania. Malar J 2011, 10:98. 

30. Hagenlocher M, Kienberger S, Lang S, Blaschke T: Implications of Spatial Scales and 
Reporting Units for the Spatial Modelling of Vulnerability t o Vector-Borne Diseases. In 
GI_Forum 2014, Geospatial Innovation for Society. Edited by Vogler R, Car A, Strobl J, 
Griesebner G. Wichmann Verlag: VDE VERLAG GMBH, Berlin/Offenbach; 2014:197–206. 

31. Semenza JC, Suk JE, Estevez V, Ebi KL, Lindgren E: Mapping climate change 
vulnerabilities to infectious diseases in Europe. Environ Health Perspect 2012, 
120(3):385–392. 

32. Sutherst RW: Global change and human vulnerability to vector-borne diseases. Clin 
Microbiol Rev 2004, 17(1):136–173. 

33. EAC: East African Community Facts and Figures. ; 2012. 
http://www.statistics.eac.int/index.php?option=com_docman&task=doc_view&gid=142&tm
pl=component&format=raw&Itemid=153 (accessed 24 April, 2013). 

34. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA: Impact of regional climate 
change on human health. Nature 2005, 438:310–317. 

35. Intergovernmental Panel on Climate Change: Impacts, Adaptation, and Vulnerability. The 
Contribution of Working Group II to the Third Scientific Assessment of the Intergovernmental 
Panel on Climate Change. Cambridge: Cambridge University Press; 2001. 

36. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (Eds): Contribution 
of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change. Cambridge, United Kingdom and New York, NY, USS: Cambridge 
University Press; 2007. 

37. Füssel HM: Adaptation planning for climate change: concepts, assessment 
approaches and key lessons. Sustain Sci 2007, 2(2):265–275. 



38. McMichael AJ, Campbell-Lendrum DH, Corvalán CF, Ebi KL, Githeko A, Scheraga JD, 
Woodward A: Climate Change and Human Health - Risks and Responses. Geneva: WHO; 
2003. 

39. Kovats RS, Ebi KL, Menne B: Methods of Assessing Human Health Vulnerability and 
Public Health Adaptation to Climate Change. In �, Health and Global Environmental 
Change Series, Volume 1. Copenhagen: World Health Organization, Health Canada, United 
Nations Environment Programme, World Meteorological Organization; 2003. 

40. World Health Organisation: Protecting Health from Climate Change – Vulnerability and 
Adaptation Assessment. Geneva, Switzerland: World Health Organisation; 2012. 
www.who.int/globalchange/publications/Final_Climate_Change.pdf (accessed May 22, 
2014). 

41. Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow RW: The limits 
and intensity of plasmodium falciparum transmission: implications for malaria control 
and elimination worldwide. PLoS Med 2008, 5(2):e38. 

42. Schur N, Hürlimann E, Stensgaard A-S, Chimfwembe K, Mushinge G, Simoonga C, 
Kabatereine NB, Kristensen TK, Utzinger J, Vounatsou P: Spatially explicit Schistosoma 
infection risk in eastern Africa using Bayesian geostatistical modelling. Acta Trop 2013, 
128(2):365–377. 

43. Intergovernmental Panel on Climate Change: Managing the Risks of Extreme Events 
and Disasters to Advance Climate Change Adaptation. In A Special Report of Working 
Groups I and II of the Intergovernmental Panel on Climate Change. Edited by Field CB, 
Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, 
Allen SK, Tignor M, Midgley PM. Cambridge, UK, and New York, NY, USA: Cambridge 
University Press; 2012. 

44. IPCC: Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and 
Vulnerability, Contribution of Working Group II to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, 
NY, USA: Cambridge University Press; 2014. 

45. Birkmann J, Cardona OA, Carreño L, Barbat A, Pelling M, Schneiderbauer S, Kienberger 
S, Keiler M, Zeil P, Welle T: Framing vulnerability, risk and societal responses: the 
MOVE framework.  Nat Hazards 2013, 67(2):193–211. 

46. Hagenlocher M, Delmelle E, Casas I, Kienberger S: Assessing socioeconomic 
vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based modeling. Int 
J Health Geogr 2013, 12:36. 

47. MC De C, Fisher MG: Is malaria illness among young children a cause or a 
consequence of low socioeconomic status? Evidence from the united Republic of 
Tanzania. Malar J 2012, 11:161. 

48. Ingstad B, Munthali AC, Braathen SH, Grut L: The evil circle of poverty: a qualitative 
study of malaria and disability. Malar J 2012, 11(11):15. 



49. Wood S, Hyman G, Deichmann U, Barona E, Tenorio R, Guo Z, Castano S, Rivera O, 
Diaz E, Marin J: Sub-national Poverty Maps for the Developing World Using 
International Poverty Lines: Preliminary Data Release. Washington, DC: Harvest Choice 
and International Food Policy Research Institute; 2010. http://povertymap.info (accessed May 
22, 2014). 

50. Martens P, Hall L: Malaria on the move: human population movement and malaria 
transmission. Emerg Infect Dis 2000, 6(2):103–109. 

51. Legesse Y, Tegegn A, Belachew T, Tushune K: Knowledge, attitude and practice 
about malaria transmission and its preventive measures among households in Urban 
Areas of Assosa Zone, Western Ethiopia. Ethiop J Health Dev 2007, 21(2):157–165. 

52. Ndjinga JK, Minakawa N: The importance of education to increase the use of bed nets 
in villages outside of Kinshasa, Democratic Republic of the Congo. Malar J 2010, 9:279. 

53. Nuwaha F: Factors influencing the use of bed nets in Mbarara municipality of 
Uganda. Am J Trop Med Hyg 2001, 65(6):877–882. 

54. Lamarange J, Vallo R, Yaro S, Msellati P, Méda N: Methods for mapping regional 
trends of HIV prevalence from Demographic and Health Surveys (DHS). Cybergeo: Eur 
J Geogr 2011, 539:http://cybergeo.revues.org/24606. 

55. Awang Hamat BJR, Osman M: A promising role of Insecticide Treated Bed-Nets 
(ITNs) against Malaria: A Way Forward.  J Nat Sci Res 2012, 2(3):91–101. 

56. van Lishout M: Malaria risk scenarios for Kisumu, Kenya: blending qualitative and 
quantitative information . In Environmental Change and Malaria Risk: Global and Local 
Implications. Edited by Takken W, Martens P, Bogers RJ. Springer, Dordrecht: Wageningem 
UR Frontis Series; 2005:79–99. 

57. Reuter HI, Nelson A, Jarvis A: An evaluation of void filling interpolation methods for 
SRTM data. Int J Geogr Infor Sci 2007, 21(9):983–1008. 

58. Tatem AJ, Noor AM, von Hagen C, Di Gregorio A, Hay SI: High resolution settlement 
and population maps for low income nations: combining land cover and national census 
in East Africa. PLoS One 2007, 2:e1298. 

59. Schneiderbauer S: Risk and Vulnerability to Natural Disasters – n from Broad View 
to Focused Perspective. In Theoretical Background and Applied Methods for the 
Identification of the Most Endangered Populations in two Case Studies at Different Scales, 
Unpublished Phd thesis. Germany: Freie Universität Berlin; 2007. 

60. Cutter SL, Boruff BJ, Shirley WL: Social vulnerability to environmental hazards. Soc 
Sci Q 2003, 84(2):242–261. 

61. Nelson A: Estimated Travel Time to the Nearest City of 50,000 or More People in Year 
2000. Ispra Italy: Global Environment Monitoring Unit - Joint Research Centre of the 
European Commission; 2008. accessed 22 May, 2014. 



62. Bardhan P: The impact of globalization on the world’s poor. World Dev 2006, 
34(8):1393–1404. 

63. Fedderke JW, Perkins P, Luiz JM: Infrastructural investment in long-run economic 
growth: South Africa 1875–2001. World Dev 2006, 34(6):1037–1059. 

64. Christaller W: Zentrale Orte in Süddeutschland. Jena: Gustav Fischer; 1933. 

65. Finan F, Sadoulet E, de Janvry A: Measuring the poverty reduction potential of land 
in rural Mexico.  J Dev Econ 2005, 77:27–51. 

66. Doolan DL, Dobaño C, Baird JK: Acquired immunity to malaria.  Clin Microbiol Rev 
2009, 22(1):13–36. 

67. Kiszewski AE, Teklehaimanot A: A review of the clinical and epidemiologic burdens 
of epidemic malaria. Am J Trop Med Hyg 2004, 71:128–135. 

68. el Samani FZ, Willett WC, Ware JH: Nutritional and socio-demographic risk 
indicators of malaria in children under five: a cross-sectional study in a Sudanese rural 
community. J Trop Med Hyg 1987, 90(2):69–78. 

69. Hendrickse RG, Hasan AH, Olumide LO, Akinkunmi A: Malaria in early childhood: an 
investigation of five hundred seriously ill children in whom a “clinical” diagnosis of 
malaria was made on admission to the children’s emergency room at University College 
Hospital, Ibadan. Ann Trop Med Parasitol 1971, 65:1–20. 

70. Ahmad SH, Moonis R, Shahab T, Khan HM, Jilani T: Effect of nutritional status on 
total parasite count in malaria. Indian J Pediatr 1985, 52(416):285–287. 

71. Snow RW, Byass P, Shenton FC, Greenwood BM: The relationship between 
anthropometric measurements and iron status and susceptibility to malaria in Gambian 
children. Trans R Soc Trop Med Hyg 1991, 85:584–589. 

72. Lang S, Zeil P, Kienberger S, Tiede D: Geons – Policy Relevant geo-Objects for 
Monitoring High-Level Indicators . In Geospatial Crossroads @ GI Forum’08. Edited by 
Car A, Griesebner G, Strobl J. ; 2008:180–185. 

73. Lang S, Kienberger S, Tiede D, Hagenlocher M, Pernkopf L: Geons - domain-specific 
regionalization of space. Cartogr Geogr Inf Sci 2014, 41(3):214–226. 

74. Kienberger S, Lang S, Zeil P: Spatial vulnerability units – expert-based spatial 
modelling of socio-economic vulnerability in the Salzach catchment, Austria. Nat 
Hazards Earth Syst Sci 2009, 9:767–778. 

75. Kienberger S: Spatial modelling of social and economic vulnerability to floods at the 
district level in Búzi, Mozambique. Nat Hazards 2012, 64(3):2001–2019. 

76. Hagenlocher M, Lang S, Hölbling D, Tiede D, Kienberger S: Modeling hotspots of 
climate change in the Sahel using object-based regionalization of multi-dimensional 
gridded datasets. IEEE J Sel Top Appl Earth Observations Rem Sens 2014, 7(1):229–234. 



77. Moldan B, Dahl AL: Challenges to Sustainability Indicators. In Sustainability 
Indicators, A Scientific Assessment. Edited by Hak T, Moldan B, Dahl AL. Washington, DC, 
USA: Island Press; 2007:1–26. 

78. Organisation for Economic Co-operation and Development: Handbook on Constructing 
Composite Indicators: Methodology and User Guide. ; 2008. 
http://www.oecd.org/std/42495745.pdf (accessed 22 May, 2014). 

79. Baatz M, Schäpe A: Multiresolution Segmentation: An Optimization Approach for 
High Quality Multi-scale Image Segmentation. In Angewandte Geographische 
Informationsverarbeitung XII. Edited by Strobl J, Blaschke T, Griesebner G. Heidelberg: 
Wichmann Verlag; 2000:12–21. 

80. Drăguţ L, Csillik O, Eisank C, Tiede D: Automated parameterisation for multi-scale 
image segmentation on multiple layers. ISPRS J Photogramm Remote Sens 2014, 88:119–
127. 

81. Lung T, Lavalle C, Hiederer R, Dosio A, Bouwer LM: A multi-hazard regional level 
impact assessment for Europe combining indicators of climatic and non-climatic 
change. Glob Environ Chang 2013, 23:522–536. 

82. Tate E: Social vulnerability indices: a comparative assessment using uncertainty and 
sensitivity analysis. Nat Hazards 2012, 63(2):325–347. 

83. Tate E: Uncertainty analysis for a social vulnerability index. Ann Assoc Am Geogr 
2013, 103(3):526–543. 

84. Saisana M, Saltelli A, Tarantola S: Uncertainty and sensitivity analysis techniques as 
tools for the quality assessment of composite indicators. J R Stat Soc 2005, 168(2):307–
323. 

85. Saltelli A, Tarantola S, Campolongo F, Ratto M: Sensitivity Analysis in Practice, a Guide 
to Assessing Scientific Models. New York, USA: Wiley; 2004. 232pp. 

86. Lang S, Hagenlocher M, Pernkopf L, Kienberger S: Object-based multi-indicator 
representation of complex spatial phenomena. South-Eastern Eur J Earth Observation 
Geomatics 2014, 3(No2S):625–628. 

87. Openshaw S: The modifiable areal unit problem. Concepts and Techniques in Modern 
Geography 38, Norwich: GeoBooks 1984. 

88. Kienberger S, Hagenlocher M, Delmelle E, Casas I: A WebGIS tool for visualizing and 
exploring socioeconomic vulnerability to dengue fever in Cali, Colombia. Geospat Health 
2013, 8(1):313–316. 



Figure 1



Figure 2



Figure 3





Figure 5



1,00
0,98

1,00 1,00 1,00 1,00

0,95

0,62

1,00 1,00
0,99

1,00
0,98

1,00

0,50

0,60

0,70

0,80

0,90

1,00

-0,7

-0,5

-0,3

-0,1

0,1

0,3

C
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

M
o

d
if

ie
d

 c
o

m
p

o
s
it

e
 i
n

d
ic

a
to

r-
re

fe
re

n
c
e
 i
n

d
e
x
 

Discarded Indicator

Minimum/Maximum

Correlation coefficient

Figure 6


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

