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Abstract
Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon

dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree

leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM,

UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials.

Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of

lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such struc-

tures was outlined.
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Introduction
In the last twenty years, carbon based nanomaterials have

received much research attention not only from a basic perspec-

tive but also from a practical point of view due to their use in a

range of applications such as energy storage, tribology, elec-

tronics, medicine, catalysis and sensors. The more popular and

extensively investigated carbon-based nanomaterials include

carbon dots (C-dots), fullerenes, nanotubes and graphene, while

others, such as nanodiamonds and carbon onions, stayed

forgotten for a long time, in spite of the fact that these carbon

nanoparticles (C-NPs) were discovered before the former [1].

C-dots are a special class of carbon nanoparticles that have

interesting practical advantages such as low toxicity, relatively

small size (≤10 nm), chemical stability, high solubility in water

and easy synthesis. Besides, owing to their remarkable photolu-

minescence (PL) properties, such as broad excitation spectra,
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Figure 1: HRTEM images of C-dots obtained by carbonization in aqueous environment, using as carbon source a) tomatoes, b) carrots and c) tree
leaves.

tunable emission wavelength and stable PL, high stability

against photobleaching, C-dots are attracting considerable atten-

tion in analytical sensing, bioimaging, photo-reduction of

metals and biomedical applications [2-6].

C-dots may be straightforwardly synthetized via two ap-

proaches: a) from fine carbon structures (such as multi-wall

nanotubes and graphene) by top-down methods and b) by

bottom-up approaches from chemical precursors (such as

glucose, citrate, ethylenediaminetetraacetic acid) or from

natural products (usually vegetables). Recently, using the

bottom-up approach, we prepared C-dots based on the thermal

carbonization of a mixture of nitrogen-containing organic com-

pounds, ethyleneglycol bis(2-aminoethyl ether)-N,N,N′,N′-

tetraacetic acid (EGTA) and Tris, thus providing them not only

with surface hydroxy but also with amino groups. These C-dots

were successfully employed for sensitive detecting 4-nitro-

phenol in water [7]. In another work, with the aim to provide

surface boronic groups, we prepared C-dots by hydrothermal

treatment of a mixture of 6-bromohexylboronic acid, polyethyl-

eneglycol bis(3-aminopropyl)-terminated (PEGA) and 1,2-

aminopropane (DPA) at 180 °C. We could observe that during

the thermal reaction, the boronic groups were unstable and

tended to leave the surface of the C-dots. Using these C-dots,

reliable determination of tannic acid in wines was achieved with

a detection limit of 0.018 mg·L−1 [8].

Carbon nano-onions (C-onions) are another kind of carbon

nanoparticles that exhibit outstanding chemical and physical

properties. C-onions are spherical carbon shells enclosed within

one another (multi-layered fullerenes) with diameters ranging

from 3 to 50 nm [9], depending on the method of synthesis.

C-onions have found applications as materials for tribology due

to their low friction [10]. Polymers doped with C-onions exhib-

it increased thermal resistance and can be used as microwave

absorbing filters due to the C-onions ability to absorb electro-

magnetic radiation in the 26–37 GHz range [11]. Also,

C-onions have attracted attention for batteries and supercapaci-

tors, as active materials and/or dispersible conductive additives

[12,13]. Usually C-onions are obtained by using sophisticated

technologies, such as vacuum annealing of nano-diamond pre-

cursors [14,15], nano-diamond annealing in inert gases [16], arc

discharge in presence of metal nanoparticles [17], high-energy

laser excitation of ethylene at high temperatures [18] and chem-

ical vapor deposition using catalysts [19]. There are some excel-

lent reviews devoted to C-onions and their chemistry and appli-

cations [20,21]. Due to the intricate processes, the running costs

and high investment for their synthesis, the use of C-onions for

analytical applications is still unexplored. Here, we describe the

synthesis and characterization of C-nanoparticles obtained by

thermal carbonization at 240 °C of tomatoes, carrots and tree

leaves samples as C-source in absence and in presence of 30%

(w/v) NaOH. We discovered that the use of NaOH as catalyst

favored the formation of C-onions when tomatoes were used as

C-source and that intermediate carbon nanostructures were

formed when carrots or tree leaves were used. On the basis of

the morphologies and spectral characteristics of these structures

the formation mechanism of C-onions is proposed. Finally, a

preliminary test on the use of such C-onions as sensing materi-

als for metal ions is outlined.

Results and Discussion
In Figure 1a the HRTEM image reveals that the tomato C-dots

synthetized by conventional carbonization are mostly spherical,

with diameters well below 1 nm as also can be observed for

C-dots from tree leaves (Figure 1c). In Figure 1b, the HRTEM

image shows that C-dots from carrots are also spherical but with

diameters around 5 nm.

When using a NaOH 30% (w/v) media the C-NPs exhibited a

different morphology, as can be observed in Figure 2a,b for

carrots and tree leaves, respectively. C-dots with no well-
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Figure 2: HRTEM images of C-dots obtained by carbonization in NaOH 30% (w/v), using as carbon source a) carrots, b) tree leaves.

Figure 3: a) HRTEM image of C-onions obtained by carbonization in NaOH 30% (w/v), using tomatoes as carbon source; b) intensity profile (arbi-
trary units) measured over the white arrow marked in a).

defined structure were obtained, in which a crystal order could

be observed.

In the case of tomatoes as carbon source, C-NPs clearly show

an onion-like structure (Figure 3a) for which the interlayer

spacings were determined to be about 0.3 nm by EDX (area

highlighted in Figure 3b). This spacing is slightly smaller than

the interlayer spacing of (002) planes of graphite [22]. It is

worth to mention that along with the C-onions some buckled

structures can be observed. Assuming that C-onions grow from

the inside to the outside, the buckled sheets can be attributed to

carbon layers that do not fit during the growing process of the

C-onions. In other words, the layers may not remain spherical

during the growth. Continuum mechanical shell models have

been applied to investigate the growth limit and buckling

patterns of C-onions [23]. To the best of our knowledge, the

results shown here, demonstrate for the first time, the possibili-

ty of obtaining C-onions from green C-sources just by modi-

fying the carbonization conditions using sodium hydroxide as

catalyst.

Figure 4 represents the XRD pattern of the C-NPs produced by

the one-step thermal carbonization of tomatoes. For C-dots, a

featureless reflection band centered at 2θ = 21.68° corresponds

to the diffraction of graphite [002] crystal planes and a weak

broad peak at about 2θ = 43° corresponds to the {100/101} set

of crystal planes [24] of graphite.

The interlayer spacing was determined by using Bragg’s equa-

tion and was found to be 4.32 Å. The mean crystallite size, Lc,

was determined for the [002] band using Scherrer's equation

(Equation 1):

(1)

where λ is the X-ray wavelength (1.5405 Å), β is the broad-

ening of the diffraction peak measured at half its maximum in-

tensity (in radians), θ is the scattering angle and K is the

Scherrer’s constant, which varies with the shape of the crystal-
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Figure 4: XRD patterns of C-NPs obtained from tomatoes through carbonization in aqueous (C-dots) and NaOH 30% (w/v) (C-onions) media.

Figure 5: FTIR spectra of C-dots and C-onions obtained by carbonization of tomatoes in aqueous solution and NaOH 30% (w/v), respectively.

lites, from 0.89 for spherical to 0.94 for cubic particles [25].

Considering that this constant is set to 0.9 for particles of

unknown size, the Lc was estimated to be 7.4 Å for the C-dots.

There is a comparatively large difference to the values reported

for graphite (3.34 Å), the reason behind which may be poor

crystallization and/or formation of misoriented (turbostratic)

carbon structures [26]. The XRD spectra of C-dots from carrots

and tree leaves showed a similar pattern (Figure S1, Supporting

Information File 1).

In the case of C-onions, the diffraction pattern clearly showed

that the [2] graphite peak disappeared while new peaks

appeared. We ascribed the peak at 33° to the cubic phase of

K2O [JCPDS card no. 23-493], taking into account the high

concentrations of potassium in these vegetable samples [27].

The peak at 46° can be ascribed to a rhombohedral phase of

graphite corresponding to a [101] reflection, probably due to the

introduction of stacking faults in the crystallites with hexagonal

stacking upon the NaOH treatment. The XRD for the C-NPs ob-

tained for tomatoes, carrots and tree leaves by carbonization in

NaOH 30% (w/v) media are shown for comparison (Figure S2,

Supporting Information File 1). As can be seen, a similar

pattern XRD pattern was observed for the three systems, which

indicated that similar crystal phases were obtained.

The functional groups of the C-dots were determined by FTIR

analysis. In Figure 5, it can be observed that C-onions exhib-

ited very sharp bands at 2926 and 2850 cm−1 due to C–H
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Figure 6: Effect of some metals on the photoluminescence spectra of C-NPs at pH 6. a) C-onions measured at λex = 328 nm. Slit width of emission
and excitation was 10 and 20, respectively. b) C-dots measured at λex = 362 nm. The slit widths of emission and excitation were both 20 nm. The con-
centration of metals was 10 ppm in all cases.

stretch (methylene/methyl) vibrations and aldehyde C–H

stretching, respectively, while these bands were very weak for

C-dots.

The presence of a weak shoulder band at 1720 cm−1 in the

C-dots spectrum suggested the presence of saturated aldehyde

C=O stretching, while this band was not observed in C-onions.

On the other hand, the bands at 1170–1600 cm−1 assigned to

C=C stretching and the peak at 1410 cm−1 attributed to O–H

bending vibrations (carboxylic acid) can be observed in both

types of nanoparticles. The medium-intensity band at

1342 cm−1 observed in C-onions, but not in C-dots, was

ascribed to δS C–O–H absorption [28,29]. The peak at

1570 cm−1 observed for C-onions can be ascribed to the phenol

C=C phenol ring stretching. The intense bands observed at 2926

and 2851 cm−1 are characteristics of saturated asymmetric

stretching vibrations CHstr (sp3) and symmetric stretching

vibrations of –R–CH2=O (aldehyde group), respectively. These

two peaks can be hardly observed in the C-dots spectra. The

peaks at 1010–1070 cm−1 are from characteristic C–O stretch-

ings of primary alcohols. The peaks at 700 and 780 cm−1 ob-

served in C-onions, but not in C-dots, are ascribed to –OH out-

of-plane bending vibrations of alcohols. Again, these results

demonstrated the possibility of obtaining water-soluble

C-onions (due to the presence of carboxy and hydroxy groups)

by carbonization in basic media.

The FTIR spectra of the C-NPs obtained when carrots and tree

leaves were carbonized in a NaOH 30% (w/v) media are shown

in comparison (Figure S3, Supporting Information File 1). As

can be observed, the functional groups of all nanoparticles

seemed to be the same, being the only difference the higher in-

tensity of the 2926 and 2850 cm−1 bands for C-onions from

tomatoes compared with those of carrots and tree leaves. This

may suggest that also C-onions were formed when carrots and

tree leaves were carbonized in a NaOH 30% (w/v) media.

Taking into account that with respect to the starting mass of

tomatoes, the C-onions average yield was only (2 ± 0.5)% and

that no C-onions could be observed in the HR-TEM images of

tree leaves and carrots, it was reasonable to assume that the

C-onions yield from carrots and tree leaves was less than 2%.

The PL spectra of C-dots obtained in aqueous media from toma-

toes, at different excitation wavelengths, are shown in Figure S4

of Supporting Information File 1. The maximum emission

wavelength depends on the excitation wavelength and is shifted

from 438 to 456 nm (Δλem = 18 nm) by changing the excitation

wavelength from 300 to 370 nm (Δλex = 70 nm). It was found

that also C-onions obtained in basic media exhibited excitation-

dependent PL (Figure S4, Supporting Information File 1): The

emission maxima shifted from 427 to 440 nm (Δλem = 13 nm)

as the excitation wavelength moved from 300 to 350 nm

(Δλex = 50 nm). PL quantum yield of C-dots excited at 362 nm

resulted to be 1.32% while that of C-onions excited at 328 nm

was 1.63%. These values were similar or even higher than those

obtained for carbon dots prepared by the same route of synthe-

sis using different starting materials (Table S1, Supporting

Information File 1).

To the best of our knowledge, this is the first report on the syn-

thesis of water-soluble fluorescent C-onions. In order to check

the analytical potential of these C-onions as sensing material,

their PL response was determined upon exposure to different

metal ions and the results were compared with those obtained

using C-dots. In Figure 6a, the quenching effect, expressed as

ΔF = F0 − F, where F0 and F are the PL of the C-onions in

absence and presence of a given metal ion, respectively, is

shown. As can be seen, Cu(II), Fe(III) and Hg(II) quenched the

PL of the C-onions, Fe(III) being the strongest quencher. In the

case of C-dots (Figure 6b), Fe(III) was the main quencher and
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Figure 7: Hypothetical growth of carbon onions from lycopene.

Hg(II) also quenched to a lesser extent. Consequently, the selec-

tivity against metal ions of the C-onions seemed to be lower

than that of C-dots. These results may be explained on the basis

of the C-onions structure, with many concentric surfaces

exposed for binding, which enhanced the probability for

quenching.

Results obtained from the characterization of C-onions sug-

gested that a possible mechanism for the formation of C-onions

may be related to the presence of polyene molecules in toma-

toes, carrots and leaves, particularly in the case of tomatoes

with a high content of lycopene. Under elevated temperatures,

oxygen and/or extremes in pH, lycopene molecules may

undergo isomerization and oxidation [30,31] and/or break down

into small fractions [32]. These products may form fullerene-

like embryos which then reorganized into spherical particles

composed of concentric graphitic layers (Figure 7), in order to

minimize the surface energy of the newly formed edge planes of

graphite [9]. Although similar open/closed geodesic structures

have been used as models for quantum chemical modelling the

growth and the molecular and electronic structures of fuller-

enes and carbon onions [33,34], the atomic arrangements induc-

ing curvature are still not fully understood. In the case of carrots

and tree leaves, the reorganization into onions was not so clear

as in the case of tomatoes, although it may be related to the low

content of lycopene in these vegetables. We suggest that further

investigation of the factors affecting such reorganization must

be performed, such as the time of heating, the amount of NaOH

or the temperature used, which also will help to improve the

yield of the synthesis.

Conclusion
C-onions obtained by conventional synthetic methods such as

arc-discharge and chemical vapor deposition are insoluble in

water, which restricts their use in analytical, biological and bio-

medical applications. Our results showed that water-soluble

C-onions could be prepared by a simple carbonization method

using tomatoes as carbon source and 30% (w/v) NaOH as cata-

lyst. We are aware of the danger of drawing conclusions from

preliminary data. However, we sense that this synthetic proce-

dure has the necessary characteristics for further studies and de-

velopment of tailor-made water-soluble C-onions from polyene

molecules with different functionalities in basic media. Given

their closed structure, water soluble C-onions could be loaded

with specific molecules or drugs in bio-medical applications

while the delivery process could be monitored thanks to their

exceptional PL properties. The field is open.

Experimental
Chemicals and reagents
All the reagents used were highly pure analytical grade

chemicals and used without further purification. NaOH 30%

(Prolabo, http://www.vwr.com) was used in the synthesis step.

In subsequent steps the following reagents were used: quinine

http://www.vwr.com
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sulfate, H2SO4, and Cu(NO3)2·3H2O were purchased from

Prolabo, FeCl3, ZnCl2, Na2HPO4 and citric acid were pur-

chased from Sigma-Aldrich, AlCl3·6H2O and Pb(Ac)2·3H2O

were purchased from Montplet & Esteban S.A., Barcelona

(http://www.montplet.es/), Ce(NO3)3·6H2O was purchased

from Fluka, Switzerland, HgCl2 was purchased from Porus

(http://poruslabs.com/), and CdCl2 was purchased from The

British Drug Houses Ltd., England. Stock solutions containing

100 ppm of the metal were prepared by dissolving the appro-

priate amount of each salt in distilled/deionized water. Toma-

toes (type “Rama”) and carrots were purchased from a local

market. Tree leaves (acer saccharum) were taken from the

faculty garden.

Synthesis of carbon nanoparticles
C-nanoparticles were synthesized by a thermal carbonization

method using tomatoes, carrots and tree leaves as green carbon

sources. Typically, after thoroughly cleaning, the starting

material was grinded in small pieces and about 30–50 g was

put into dried and cleaned crucibles. In order to prepare

C-dots, the homogenized sample was carbonized in a muffle

furnace directly at 240 °C in atmospheric oxygen for 2 h. The

residue was then dissolved in about 25 mL Milli-Q water,

filtered through 0.45 μm nylon filter and the solution was puri-

fied by dialysis through a dialyzer tube (MWCO, 3.5 KDa) for

3 days.

For the synthesis of C-onions 5 mL NaOH 30% (w/v) was

added to the crucible containing the homogenized sample and

then transferred into a muffle furnace and heated to 240 °C in

atmospheric oxygen for 2 h. A yellow-brown solid was ob-

tained when carbonizing the samples in the presence of NaOH

30%. The color is probably due to the partial oxidation of

graphene to graphene oxide during the process [35]. The water-

soluble part of the residue was extracted by dissolution in

100 mL deionized water, then filtrated through normal filter

papers and followed by nylon filters (0.45 μm). The filtered

solution was then purified through dialyzer tube (MWCO,

3.5 kDa) for 3 days. Each purified solution was divided into two

aliquots, the first one was dried completely for characterization

analysis (dark-brown solid), while the second was used for the

analysis experiments.

Photoluminescence measurements
In a typical procedure, the photoluminescence properties of the

C-nanoparticles were evaluated by diluting 200 μL of the corre-

sponding C-nanoparticle solution with a pH 6 universal buffer

solution (0.2 M Na2HPO4/0.1 M citric acid) to a final volume of

5 mL. The PL spectra were recorded at 456 nm with excitation

at 362 nm for C-dots. For C-onions the PL measurements were

taken at 428 nm with excitation at 328 nm. For the detection of

metal ions, the reaction mixture was prepared by mixing 200 μL

of the corresponding C-nanoparticle solution and 100 μL of

metal ion solution (so that the total concentration of metal was

10 ppm) and then adjusting the volume to 5 mL with a universal

buffer solution pH 6 (0.2 M Na2HPO4/0.1 M citric acid). The

PL was measured as mentioned above with the same instru-

mental settings. A 1 cm quartz cuvette was used.

PL quantum yield measurement
The PL quantum yield was calculated through the well-estab-

lished comparative method using quinine sulfate as a reference.

The following equations were used in the quantum yield mea-

surement:

(2)

(3)

where  is the quantum yield, F is the calculated integrated lu-

minescence intensity, n is the refractive index, A is the optical

density (measured with a UV–vis spectrophotometer, Perkin

Elmer, Lambda 900), and G is the gradient of a linear plot of F

as a function of A. The subscripts “C” and “st” refer to C-dots

(or C-onions) and the reference fluorophore, respectively.

Quinine sulphate dissolved in 0.1 M H2SO4 (n = 1.33) with a

quantum yield of 0.54 at λex = 350 nm was used as a reference.

C-dots and C-onions were dissolved in Milli-Q water (n = 1.33).

Instrumentation
HRTEM (JEOL JEM-2100F, 200 kV) was used to determine

the size and morphology of the synthesized carbon materials.

Powder X-ray diffraction studies were performed on a Bruker

D8 Discover instrument with Cu Kα radiation. A Varian 620-IR

instrument was used to analyse FTIR spectra on KBr pellets in

the range from 600 to 4000 cm−1. PL spectra were measured

using a Cary Eclipse Varian spectrofluorimeter. UV–vis spec-

trophotometric analysis was measured with Perkin Elmer,

Lambda 900 instrument.

Supporting Information
Supporting Information File 1
Additional experimental data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-7-67-S1.pdf]

http://www.montplet.es/
http://poruslabs.com/
http://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-7-67-S1.pdf
http://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-7-67-S1.pdf
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