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Abstract

Background: We adapted Bayesian statistical learning strategies to the prognosis field to investigate if genome-wide
common SNP improve the prediction ability of clinico-pathological prognosticators and applied it to non-muscle
invasive bladder cancer (NMIBC) patients.

Methods: Adapted Bayesian sequential threshold models in combination with LASSO were applied to consider the
time-to-event and the censoring nature of data. We studied 822 NMIBC patients followed-up >10 years. The study
outcomes were time-to-first-recurrence and time-to-progression. The predictive ability of the models including up
to 171,304 SNP and/or 6 clinico-pathological prognosticators was evaluated using AUC-ROC and determination
coefficient.

Results: Clinico-pathological prognosticators explained a larger proportion of the time-to-first-recurrence (3.1 %)
and time-to-progression (5.4 %) phenotypic variances than SNPs (1 and 0.01 %, respectively). Adding SNPs to the
clinico-pathological-parameters model slightly improved the prediction of time-to-first-recurrence (up to 4 %).
The prediction of time-to-progression using both clinico-pathological prognosticators and SNP did not improve.
Heritability (ĥ2) of both outcomes was <1 % in NMIBC.

Conclusions: We adapted a Bayesian statistical learning method to deal with a large number of parameters in
prognostic studies. Common SNPs showed a limited role in predicting NMIBC outcomes yielding a very low
heritability for both outcomes. We report for the first time a heritability estimate for a disease outcome. Our
method can be extended to other disease models.

Keywords: Multimarker models, Bayesian statistical learning method, Bayesian regression, Bayesian LASSO,
AUC-ROC, Determination coefficient, heritability, Bladder cancer outcome, Prognosis, Recurrence, Progression,
Genome-wide common SNP, Illumina Infinium HumanHap 1 M array, Predictive ability

Background
Urothelial bladder cancer (UBC) is among the most
common malignant tumors of the urological system and
one of the most prevalent cancers due to its chronic na-
ture [1]. As a consequence, it poses an enormous burden
on health care systems [2].

UBC also represents a paradigm of heterogeneous
diseases with respect to its phenotype and prognosis.
Approximately, 75 % of newly diagnosed UBCs do
not invade the muscle (non-muscle invasive bladder
cancer, NMIBC) at the time of diagnosis. Most of
these cancers remain stable over the time after a
transurethral resection (TUR); a high proportion re-
lapse without invading the muscle (recurrence) while
a lower proportion progress as a muscle invasive
bladder cancer (MIBC). Based on tumor characteris-
tics, mainly stage and grade, NMIBC are subsequently
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classified as “low risk” (LR) and “high risk” (HiR) of
progression [3].
Current prognostic tools for NMIBC are based on

well-known clinico-pathological prognosticators such
as pathological grade and stage, number and size of
tumours, and presence of carcinoma in situ [3, 4].
However, these factors do not have enough discrim-
inative ability to predict, at the patient level, the risk
of recurrence and progression [5]. An accurate esti-
mation of the outcome risk in the individual patient
would help identifying the most appropriate therapy
to avoid tumor progression and, hopefully reducing
the number of follow-up cystoscopies in patients at
low risk [6].
There is a growing evidence for a role of germline gen-

etic polymorphisms in cancer risk and prognosis, UBC
being a paradigm [7, 8]. However, the individual effect of
the genetic variants is expected to be small and they
may not be medically actionable. Multimarker analyses
have been shown to capture a much higher percentage
of the genetic variance than individual markers which
passed the significant threshold in GWAS [9–11].
Our objective was to investigate whether genome-

wide common SNP profiles are able to predict the
risk of recurrence and progression in NMIBC patients
and to estimate how much they contribute to these
predictions when combined with clinico-pathological
prognosticators. To this end, we adapted Bayesian
statistical learning strategies to be applied to the hu-
man prognosis field for the first time.

Methods
Study population
This study was performed in patients with primary UBC
included in the Spanish Bladder cancer (SBC)/EPICURO
Study. Cases were recruited in 18 hospitals and followed
up >10 years after diagnosis. A total of 1,105 patients
had their diagnosis confirmed through a pathological re-
view conducted by a panel of experts. Trained monitors
collected detailed data on clinico-pathological prognosti-
cators from clinical charts and followed the patients up
prospectively through the participating hospitals and
direct telephone interviews.
In this study, we focused on patients with a primary

diagnosis of NMIBC (N = 995). Two endpoints were of
interest: 1) Time-to-first-recurrence (TFR), defined as
the reappearance of a NMIBC tumor following a previ-
ous negative follow-up cystoscopy, and 2) time-to-
progression (TP), defined as the development of a
muscle invasive tumor or a metastatic disease, or death
because of UCB, after a previous diagnosis of NMIBC.
Patients who did not present any event until the end of
study, those lost of follow up and those who died from

other causes were considered as censored either at last
medical visit or at death.
Patients who underwent to a cystectomy were not

considered in the analyses of TFR. A final number of
810 and 822 cases with NMIBC were available for the
analyses of TFR and TP, respectively: 284 were HiR tu-
mors (Ta high grade, T1 high grade, carcinoma in situ
(CIS) and T1 low grade tumors) and 538 LR tumors
(those presenting papillary UBC of low malignant poten-
tial or Ta low-grade papillary UBC according to the
2004 WHO classification).

Genotyping and quality control
Genotyping was performed as described in 12 and provided
calls for 1,072,820 SNP genotypes. We excluded SNPs in
sex chromosomes, those with a low genotyping rate
(<95 %) and MAF < 0.02 in NMIBC.
Stringent LD pruning (r2 < 0.2) was applied to reduce

the number of markers, prioritizing those with less miss-
ing data. In addition, SNPs found significant in a previ-
ous prognostic study were considered here [11]. The
final numbers of assessed SNPs for TFR and TP were
171,295 and 171,304, respectively, providing a good
coverage of the genome. Missing genotypes were im-
puted using the package randomForest in R [12].

Statistical model
We used a sequential threshold model [13] to analyze
time-to-event data. This approach was previously ap-
plied in quantitative genetics [13–15], although till
present it has not been applied in a human genomic
study. This model assumes that for an observation of a
patient to be present at a given period of time, he/she
must have survived through all previous time periods.
Thus, the probability of not presenting the event of
interest until interval k, conditional on the event that
the k-th interval has been reached, is given by:

Pr yi ¼ kjyi≥k−1; γ;βð Þ ¼ Φ
γ l−X

0β
σe

� �
;

where γ corresponds to unordered cutoff points corre-
sponding to each time interval, X corresponds to the in-
cidence matrix of effects (β) affecting the liability to
survive to the next interval given that the present inter-
val has been reached. Residual variance (σe

2) was fixed to
1 to ensure identifiability of the parameters [16].
Patients were classified as censored or uncensored in

each time interval considered for each event as displayed
in Fig. 1. We divided the follow-up time for TFR and TP
in 9 and 4 intervals, respectively, according to the sur-
vival functions for each event (see Figs. 2a and 3a). The
analysis of TP was further stratified according to the

López de Maturana et al. BMC Cancer  (2016) 16:351 Page 2 of 9



tumor risk group (LR and HiR, see Fig. 3b). For these
subgroup analyses the number of intervals was lower.
Three models were used in the analyses of each out-

come: (1) Model including the clinico-pathological prog-
nosticators only, (2) model including the SNP data only,
and (3) model including both clinico-pathological prog-
nosticators &SNP data. As for the first model, a Bayesian
regression was used (see Additional file 1: Table S1).
Further information of the model building is in Additional
file 2: Supplementary methods. Regarding the second
model, a Bayesian LASSO [17] was applied to analyze the
predictive ability of common SNPs (see Additional file 2:
Supplementary methods for further details). Finally, for
the full model, a Bayesian regression coupled with LASSO
[18, 19] was used. Priors and fully conditional distribu-
tions for both SNP and clinico-pathological prognostica-
tors are described in Additional file 2: Supplementary
methods.

Evaluation of the predictive ability
The predictive ability of each model in the whole cohort
was evaluated through a 10 fold cross-validation (CV)
[20]. When patients were stratified as HiR/LR for the TP
analyses, a 2-fold CV procedure was performed instead,

due to the low number of events. We measured the pre-
dictive ability of each model using two statistics: 1) the
area under the ROC (AUC), generated with the ROCR
package for R (www.r-project.org), and the determin-
ation coefficient on the liability scale (Rprobit

2 ), which is
the proportion of the total variance explained by predic-
tors in the testing set on the probit liability scale [21]:

R2
probit ¼

var Xtestβ̂
� �

var Xtest β̂
� �

þ σ2e

Results
Additional file 1: Table S2 provides the number of cen-
sored patients and events in each time interval according
to the outcome of interest (TFR and TP).

Time to first recurrence
33 % of the patients with a primary NMIBC suffered a
recurrence of the primary tumor (first recurrence). Fifty
percent of patients presented the first recurrence during
the first year and in most cases (94 %), the first recur-
rence was diagnosed during the first 4 years of follow

Fig. 1 Data censoring in each defined interval according to the presence/absence of event when a sequential threshold model is applied
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up. Fifty-two percent of the NMIBC patients were cen-
sored at the end of the follow-up.
Table 1 and Additional file 1: Table S3 show the aver-

aged AUC and Rprobit
2 obtained after the 10 fold CV ana-

lyses with the three models. The model including
clinico-pathological prognosticators had an averaged
AUC of 0.62. Model including only SNPs classified
slightly better than random (AUC = 0.55). The joint
model did not perform better (AUC = 0.61).
When the predictive ability was evaluated using Rprobit

2 ,
the model combining clinico-pathological prognostica-
tors &SNPs performed the best, capturing 4 % of the
phenotypic variance on the liability scale. The predictive
abilities for the clinico-pathological prognosticators and

the SNP models were 3 and 1 %, respectively; the latter
being the first heritability estimate (ĥ2) for TFR in
NMIBC reported so far.

Time to first progression
Whole cohort
Nine percent of the patients with a primary NMIBC suf-
fered of a tumor progression during the follow-up. Fifty
percent of the patients were diagnosed during the first
two years and most of them (89 %) were diagnosed dur-
ing the first 5 years (see Additional file 1: Table S2). Sev-
enty five percent of the patients did not show any
progression at the end of the follow-up period (>10 year).
Table 1 and Additional file 1: Table S4 show the AUC

Fig. 2 Survival function (solid line) and 95 % CI (dotted lines) of the time to recurrence (TFR) for the whole series (A) and according to the group
of risk (B: HiR in red and LR in blue). Vertical lines separate the 9 time intervals considered for this outcome
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and Rprobit
2 after the 10 CV analyses for TP. The model

including clinico-pathological prognosticators had an
averaged AUC of 0.76, a much higher value than the
model with SNPs only (AUC = 0.58). Adding SNPs to
clinico-pathological prognosticators did not increase
their individual classification performance (AUC =
0.76). Clinico-pathological prognosticators explained
5.4 % of the phenotypic variance on the liability scale.
Surprisingly, SNP explained only 0.1 % of the vari-
ance. Adding SNPs to the clinico-pathological prog-
nosticators worsened the Rprobit

2 of the model
(Table 1).

Patients at HiR
The majority (~70 %) of patients showed a progression
during the first two years of follow-up and 75 % of them
finished the follow-up without any progression (Additional
file 1: Table S2). Table 1 and Additional file 1: Table S5
show the AUC and Rprobit

2 of the three models evaluated.
The model including only clinico-pathological prognostica-
tors classified the patients according to the TP similarly to
the model including only SNPs (0.57 vs. 0.56, respectively).
The model with the best Rprobit

2 for progression at HiR was
the one considering clinico-pathological prognostica-
tors (Rprobit

2 = 0.151). Including only common SNPs

Fig. 3 Survival function (solid line) and 95 % CI (dotted lines) of the time to progression (TP) for the whole series (a) and according to the group
of risk (b: HiR in red and LR in blue). Vertical lines separate the 9 time intervals considered for this outcome
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explained <1 % of the phenotypic variance of the co-
hort at HiR. Adding them to the clinico-pathological
prognosticators increased their predictive ability by
2.6 % (Rprobit

2 = 0.155).

Patients at LR
Only 24 patients showed a progression during the
follow-up (<5 %). Two thirds of those patients were di-
agnosed during the first 2 years of follow-up. Table 1
and Additional file 1: Table S6 present the AUC and
Rprobit
2 of the three models corresponding to the 2 fold-

CV procedure. The model including clinico-pathological
prognosticators poorly categorized LG-NMIBC patients
according to their progression status (AUC = 0.45). By
including age at diagnosis we obtained a better classi-
fication (AUC = 0.68). The SNP model classified the
patients slightly better than random (AUC = 0.55).
The best Rprobit

2 was found for the model including only
clinico-pathological prognosticators (0.0358). Adding
SNPs to latter model worsened its Rprobit

2 (0.0267).

Discussion
Here we present a high dimensional model considering
the time-to-event nature of the information and cen-
sored data enabling to accommodate a large number of
variables in a relatively small number of individuals. To
our knowledge, this is the first time that such a model is
applied in the clinical and genetic epidemiology fields.
More specifically, we have applied it to study the pre-
dictive ability of prognostic models for NMIBC patients.
The major goal in managing NMIBC patients is to

prevent tumor relapse, this including both the high
number of recurrences and the progression to MIBC. To
this end, treatment needs to be tailored according to the
aggressiveness of the disease. Therefore, accurate prog-
nostic models are crucial. Currently, there are no vali-
dated prognostic molecular biomarkers to guide the
clinical management of patients [22, 23] and the thera-
peutic decisions are still based on risk tables only includ-
ing clinico-pathological prognosticators [3]. Here we

have investigated the potential clinical utility of inherited
genetic markers (SNP profiles) based on their robustness
and precise measurements as well as on their time-
independent nature in comparison to serological and
histological markers. To this end we have assessed the
ability to improve TFR and TP risk stratification in
NMIBC patients of genome-wide common SNPs pro-
files. We have also evaluated the performance of well-
known clinico-pathological prognosticators and how
much the whole genome approach improved their per-
formance to better classify patients.
Regarding the classification performance of clinico-

pathological prognosticators alone, our sequential thresh-
old models for both TFR and TP got similar estimates to
those obtained previously by us with a Cox proportional
hazard regression analysis [11]. Discrimination of patients
according to the risk of TFR using clinico-pathological
prognosticators was poorer than previously reported by
Hernandez et al [24] (0.62 vs. 0.75), although better than
that reported by Vedder et al [25] in a large cohort includ-
ing ours. Nevertheless, it is worth noting that the definition
of the outcome differs (recurrence vs. first recurrence) be-
tween our and these studies [24, 25]. Regarding TP out-
come, our clinico-pathological prognosticators model
classified the patients better than in Hernandez et al [24]
(0.76 vs. 0.54) and than in a Danish cohort using both
EORTC (0.76 vs. 0.72) and CUETO (0.76 vs. 0.74) scores
[25]. However, it performed worse than in a Dutch cohort
using the same classifiers: EORTC (0.76 vs. 0.81 and 0.77)
and CUETO scores (0.76 vs. 0.82 and 0.81) [25].
The prediction ability of clinico-pathological prognos-

ticators depends on the outcome. They clearly perform
better in predicting TP than TFR, both in terms of clas-
sification (AUC, 0.76 vs. 0.62) and proportion of the ex-
plained variance (Rprobit

2 , 5.4 % vs. 3.1 %). Their lower
performance when predicting TFR could be due to the de-
pendence of factors other than biological explanations
such as the potential incomplete resection of the tumor
during the TURB and the tumour cell reimplantation on
first tumour recurrence [23], factors that are difficult to be

Table 1 Averaged area under the ROC curve (AUC) and coefficient of determination (Rprobit
2 ), as well standard deviations (between

parenthesis), obtained from the testing sets in the 10 fold-crossvalidation analyses of time to first recurrence (TFR) and time
to progression in the whole (TP), high risk (TPHiR) and low risk (TPLR) cohorts

Model Criterion TFR TP TPHiR TPLR

Whole series Whole series HiR tumors LR tumors

CPP AUC 0.62 (0.05) 0.76 (0.09) 0.57 (0.04) 0.45 (0.02)

Rprobit
2 0.031 (0.004) 0.054 (0.013) 0.151 (0.013) 0.0358 (0.0094)

SNPs AUC 0.55 (0.02) 0.58 (0.09) 0.56 (0.01) 0.55 (0.01)

Rprobit
2 0.010 (0.001) 0.001 (0.000) 0.009 (0.002) 0.0005 (0.0002)

CPP&SNPs AUC 0.61 (0.05) 0.76 (0.10) 0.57 (0.03) 0.47 (0.02)

Rprobit
2 0.041 (0.006) 0.050 (0.013) 0.155 (0.019) 0.0267 (0.0099)

CPP clinico-pathological prognosticators
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assessed and therefore are not accounted for in the model.
When the patients were stratified according to their risk
status, clinico-pathological prognosticators explained a
larger proportion of the phenotypic variance (~15 %) in
the HiR group than in the LR NMIBC, probably because
these factors were specifically selected to identify patients
with HiR tumors with a high potential of progression.
However, the overall classification performance of HiR
NMIBC patients was poorer (AUC= 0.57) than in the
whole cohort. While the discriminatory ability of clinical-
pathological parameters for both NMIBC outcomes is
valuable, there is room for improvement. More accurate
discriminatory models would better select patients for ag-
gressive treatment as well as would avoid unnecessary
treatments towards a better patient management. This
justifies the search of further prognostic factors, among
them tumour molecular alteration and inherited variation
markers [3, 26, 27].
Our results showed that common genome-wide SNPs

similarly, though poorly, classified patients regarding both
TFR and TP in the whole series and in the HiR and LR
subcohorts, AUCs ranging from 0.55 to 0.58. Adding SNP
to the models did not improve the classification perform-
ance of clinico-pathological prognosticators although im-
provements of Rprobit

2 were achieved for TFR (3–4) and TP
in the HiR cohort (15.1 - 15.5 %). Surprisingly, adding
SNP to clinico-pathological prognosticators worsened the
percentage of phenotypic variance (Rprobit

2 ) explained by
the model with clinico-pathological prognosticators only
by 7 and 25 % when predicting TP in the whole and the
LR-NMIBC cohorts, respectively. The little improvement
or even deterioration in terms of Rprobit

2 could be explained
by a correlation between the prediction of clinico-
pathological prognosticators and that of SNPs. To
confirm this, we calculated the Rprobit

2 of a model with

Xβ̂ obtained from clinico-pathological prognosticators
only as dependent variable and the SNPs as inde-
pendent variables (see Tables 2 and Additional file 1:
Table S6). The proportion of the clinico-pathological
prognosticators prediction variances of TFR and TP
explained by SNPs was larger than that of the TFR and TP
phenotypic variances. The calculation of Rprobit

2 allowed us
to report the first ĥ2 for TFR and TP in the whole series
and in the HiR and LR subcohorts. The largest ĥ2

corresponded to TFR (1 %) and to TP of patients at HiR
(1 %), although they may be underestimated because
of the sample size and the limitation on the number
of SNPs included in the model [28]. All the above ex-
plains the small or nil contribution of the SNPs to
the predictive ability of clinico-pathological prognosti-
cators of the phenotypes of interest. The poor pre-
dictive ability of common SNPs in NMIBC prognosis
is in line with a previous study reporting low GWAS
risk predictive values for UBC [19], as well as with
those obtained in studies predicting risk for other
neoplasms, such as breast cancer [29, 30]. The dif-
ferent results obtained with AUC and Rprobit

2 can be
explained by the different scales in which the predic-
tions are expressed (observable for AUC and liability
for Rprobit

2 ), their non-monotonic relationship, and the
lower number of events, especially when the individ-
uals were stratified.
While this is one of the largest and well-characterized

NMIBC cohort worldwide, the restricted sample size in
the subgroup analyses is one of the limitations we face
here because the small number of events limits the pre-
diction accuracy of the genomic profile achieved with
the SNPs. This is even clearer when patients were fur-
ther stratified as LR-NMIBC. Although increasing sam-
ple size of the study would be desirable, heterogeneity
across studies regarding patient recruitment, patho-
logical classifications applied, and treatment or patient
management would increase random misclassification
and, therefore, would dilute estimates. While we con-
ducted a genome-wide exploration, the models did not
include all genotyped SNPs (1 million) but a subset that
were filtered by a restrict LD. When we applied a less re-
strictive LD threshold (r2 < 0.8) and considered a larger
number of common SNPs neither the classification per-
formance nor the percentage of the phenotypic variance
explained improved (results not shown). Including in the
models both rare and structural variants may help in
further characterizing and increase the precision of the
predictive estimates. Application of other statistical
modeling approaches could indeed yield improvements
in the predictive power, for example by considering non-
additive models that include epistatic interactions be-
tween SNPs or adding functional information in the
model. Exploring the integration of other –omics data
such as microRNAs, as well as considering possible in-
teractions between treatment and variants could also
help in this regard.
This study also presents several strengths as its

population-based nature, detailed medical information,
long follow-up, and centralized pathological review de-
creasing heterogeneity of the covariates stage and grade.
The use of state-of-the art methodology applied here
allowed to handle a highly dimensional problem and

Table 2 Estimates of the determination coefficient (Rprobit
2 )

measuring the proportion of variance of the liability to first
recurrence (TFR) and progression (TP) risks in whole, high risk
(TPHiR) and low risk (TPLR) cohorts of the clinicopathological
prognosticators explained by the common SNPs

TFR TP TPHiR TPLR

Whole series Whole series HiR tumors LR tumors

Rprobit
2 0.0260 0.0165 0.0025 0.0066
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time-to-event data, as well as censoring. The application
of such methodology allowed us to provide the first esti-
mates of heritability for UBC outcomes.

Conclusions
Here we provide the scientific community, for the first
time, with a methodology to estimate the heritability and
the prediction ability of multidimensional data in the
prognosis field. By applying it to the UBC setting, we ob-
served that the role of common SNPs is very limited in
the prediction of risk of recurrence and progression in
NMIBC. Future studies should explore whether the
integration of other genetic variants, as well as their
interaction among them and with treatment, contrib-
ute to build a more accurate predictive model allow-
ing the final assessment of the translational potential
of genetic inherited variants into the clinics.

Appendix 1. Participating centers in the study
U.S. National Cancer Institute (NCI)
Institut Municipal d’Investigació Mèdica and Hospital
del Mar
Centro Nacional de Investigaciones Oncológicas (CNIO)
Hospital Germans Tries i Pujol (Badalona, Barcelona)
Hospital de Sant Boi (Sant Boi, Barcelona)
Centre Hospitalari Parc Taulí (Sabadell, Barcelona)
Centre Hospitalari i Cardiològic (Manresa, Barcelona)
Hospital Universitario (La Laguna, Tenerife)
Hospital La Candelaria (Santa Cruz, Tenerife)
Hospital General Universitario de Elche
Universidad Miguel Hernández (Elche, Alicante)
Universidad de Oviedo (Oviedo, Asturias)
Hospital San Agustín (Avilés, Asturias)
Hospital Central Covadonga (Oviedo, Asturias)
Hospital Central General (Oviedo, Asturias)
Hospital de Cabueñes (Gijón, Asturias)
Hospital de Jove (Gijón, Asturias)
Hospital de Cruz Roja (Gijón, Asturias)
Hospital Alvarez-Buylla (Mieres, Asturias)
Hospital Jarrio (Coaña, Asturias)
Hospital Carmen y Severo Ochoa (Cangas, Asturias)

Additional files

Additional file 1: Table S1. Clinico-pathological variables included in
the predictive models for time to first recurrence (TFR) and time to
progression (TP). Table S2. Summary of censored patients and events
(%) for each event in each time interval defined for the statistical analyses.
Table S3. Area under the ROC curve (AUC) and coefficient of determination
(Rprobit
2 ) obtained for each testing set in the 10 fold-crossvalidation analyses

of time to first recurrence. Table S4. Area under the ROC curve (AUC) and
coefficient of determination (Rprobit

2 ) obtained for each testing set in the 10
fold-crossvalidation analyses of time to progression. Table S5. Area under
the ROC curve (AUC) and coefficient of determination (Rprobit

2 ) obtained for
each testing set in the 2 fold-crossvalidation analyses of time to progression
in patients at high risk. Table S6. Area under the ROC curve (AUC)

and coefficient of determination (Rprobit
2 ) obtained for each testing set

in the 2 fold-crossvalidation analyses of time to progression in patients at
low risk. Table S7. Coefficient of determination (Rprobit

2 ) obtained for each
testing set in the 10 fold-crossvalidation analyses of time to first recurrence
(TFR), time to progression (TP) in the whole cohort, and time to progression
(TP) in the high and low risk cohorts (TPHiR and TPLR). (DOC 113 kb)

Additional file 2: Supplemental Methods. Model including non-genetic
variables. (DOC 55 kb)
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