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Abstract

The recent increase in data accuracy from high resolution accelerometers offers

substantial potential for improved understanding and prediction of animal

movements. However, current approaches used for analysing these multivariable

datasets typically require existing knowledge of the behaviors of the animals to

inform the behavioral classification process. These methods are thus not well-

suited for the many cases where limited knowledge of the different behaviors

performed exist. Here, we introduce the use of an unsupervised learning algo-

rithm. To illustrate the method’s capability we analyse data collected using a

combination of GPS and Accelerometers on two seabird species: razorbills (Alca

torda) and common guillemots (Uria aalge). We applied the unsupervised

learning algorithm Expectation Maximization to characterize latent behavioral

states both above and below water at both individual and group level. The

application of this flexible approach yielded significant new insights into the

foraging strategies of the two study species, both above and below the surface

of the water. In addition to general behavioral modes such as flying, floating, as

well as descending and ascending phases within the water column, this

approach allowed an exploration of previously unstudied and important behav-

iors such as searching and prey chasing/capture events. We propose that this

unsupervised learning approach provides an ideal tool for the systematic analy-

sis of such complex multivariable movement data that are increasingly being

obtained with accelerometer tags across species. In particular, we recommend

its application in cases where we have limited current knowledge of the behav-

iors performed and existing supervised learning approaches may have limited

utility.

Introduction

The use of accelerometers has been recognized as a pow-

erful method for studies of behavior and for accurate

quantification of animal movements (Shepard et al. 2008;

Wilson et al. 2008; G�omez Laich et al. 2009). A recent

review emphasizes the already wide and rapidly accelerat-

ing use of accelerometers in studies of animal behaviors,

in both aquatic and terrestrial habitats (Brown et al.

2013). Mammals represented 45.6% of over 120 species

on which accelerometers have been deployed, followed by

birds. However, most studies using accelerometer data to

quantify animal behavior have required researchers to

proceed with custom-made analyses or involved manual

identification of the different behaviors performed by the

study species. The latest accelerometers are able to record

at high rates, between 100 and 300 Hz (Bidder et al.

2014), producing a large amount of data and making the

manual identification of behavioral patterns increasingly

challenging (Resheff et al. 2014).

Recent approaches to accelerometer data analysis and

latent behavioral class recognition have predominantly

used supervised learning algorithms. Among supervised

algorithms, the K-Nearest Neighbor algorithm has been
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applied on species including Kangaroos, Camels, and Cor-

morants (G�omez Laich et al. 2009; Bidder et al. 2014).

With this approach, previous knowledge about the differ-

ent behaviors performed by the species is required. The

researcher needs to manually label part of the behavioral

database to create the training data necessary for the algo-

rithm. Also, new methods and software based on super-

vised algorithms (Nathan et al. 2012; Resheff et al. 2014)

have been developed where the identification of behaviors

is customized depending on specific behavioral thresholds

of the studied species (G�omez Laich et al. 2009). These

approaches are not well-suited to cases where a priori

knowledge of the species’ behavior is lacking as they may

fail to identify important behavior types that are repre-

sented in the data but are neither detected nor expected

by the researcher.

In addition, the small size of some species leads to dif-

ficulties in monitoring with other devices, such as cam-

eras, and behaviors might be difficult to test and validate

in controlled environments.

Among the few existing applications of unsupervised

algorithms, Sakamoto et al. (2009) developed a tool able

to analyse and classify accelerometer data automatically

into several categories. Using the unsupervised algorithm

k-means, the software was able to identify general behav-

iors in cormorants and penguins (Sakamoto et al. 2009;

Watanabe et al. 2012). However, while promising, this

approach is limited in terms of the number and type of

behavioral groups recognized and the amount of data that

this particular clustering algorithm can handle (Sakamoto

et al. 2009). In an increasing proportion of studies, we

ideally require a method that can be effectively and effi-

ciently applied to increasingly high volumes of data

obtained and that can provide an accurate behavioral

classification without an algorithm needing to being

trained. In this study, we propose a new method for ana-

lysing accelerometer data and discerning between different

behavioral modes which can handle large volumes of data

and which does not require direct observations of the

behavior of the animals.

To illustrate the capability of the method, we analyse

data collected on two species of diving seabirds; common

guillemot (Uria aalge) and razorbill (Alca torda). We

focus on data collected during foraging trips, aiming to

measure the different activities performed by these two

species during their foraging activities. For this case study,

we will demonstrate the potential of unsupervised learn-

ing algorithms to detect different behaviors in two diving

species that use their wings for underwater propulsion

and face evolutionary trade-offs moving in both air and

water (Kovacs and Meyers 2000).

Previous studies on the diet of both species have

mainly be been based on observations of prey brought to

the chick during the breeding season. Data collected in

the North Sea concerning both self-feeding and chick

provisioning showed that both species take mainly

sandeel, sprat, young Atlantic herring, whiting and cod

(Rindorf et al. 2000; Mitchell et al. 2004). It is also neces-

sary to consider that seasonal changes, environmental

changes, and commercial fishing activities are likely to

affect the proportion of fish species brought back for the

chick or caught for self-feeding (Anderson et al. 2014).

Razorbills typically bring several fish back to the colony

in their beak, while Common guillemots feeding chicks

bring back a single fish (Thaxter et al. 2013). It is not

known how many preys are captured during a single dive,

and there is little knowledge of adult diet prior to laying.

Information obtained from stomach flushing and fatty

acid analysis indicated seasonal shifts in the diet and that

prey diversity in common guillemot was higher than

razorbills (Ouwehand et al. 2004; Owen et al. 2013).

It has been suggested that guillemots, having higher

wing loading than razorbills (Pennycuick 1997; Hipfner &

Chapdelaine, 2002; Thaxter et al. 2010), make greater use

of the vertical dimension for foraging while razorbills

make greater use of the horizontal dimension through

flight (Thaxter et al. 2010). Guillemots perform longer

and deeper dives than razorbills (Paredes et al. 2008;

Thaxter et al. 2009) suggesting that the two species might

use the water column differently and feed on prey dis-

tributed at different depths. During diving activity, both

species alternate periods underwater with periods on the

surface where they replenish oxygen in preparation for

the next dive (Butler and Jones 1997). Dive shape, maxi-

mum depth, duration, and recovery periods on the sur-

face can be different among species, meaning that each

species can allocate its time in different ways depending

on the foraging strategy performed (Elliott et al. 2008;

Wilson et al. 2012). Despite information about the use of

horizontal and vertical dimensions while foraging, to the

best of our knowledge, no existing studies conducted on

these species have looked at the use of both dimensions

at the same time in order to gain a strong understanding

of their behaviors and time/energy budgets in the water

column and how they catch their prey. Thus, this study

represents an ideal example where deploying accelerome-

ters and then applying state-of-the-art analytical tools can

provide valuable information on foraging behaviors.

The primary aim of this study is to develop a generally

applicable method for analysing accelerometer data that is

able to independently (or automatically) identify common

behavioral modes among individuals, as well as specific

individual behaviors, in species moving in two or three

dimensions (in our specific case, that move in three

dimensions while foraging). Our secondary aim is to

demonstrate its use on two species of diving seabird
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anticipated to have contrasting foraging behaviors aiming

to clarify how these predators search for prey, as well as

highlighting different movement patterns.

Methods

We introduce the potential for Gaussian Mixture Models,

which are often used to model the probability distribu-

tion of continuous measurements in data clustering

approaches, data miming, pattern recognition, machine

learning, and statistical analysis of high dimensional data

(Biernacki et al. 2003). We first briefly describe the statis-

tical approach (further details are available in the section

below), before introducing the seabird data used within

an example application.

Maximum likelihood approach for fitting
Gaussian Mixture Models

A powerful method for finding maximum likelihood solu-

tions for mixture models with latent variables is called

the expectation-maximization algorithm, or EM algorithm

(Dempster et al. 1977; McLachlan & Krishnan, 1997). The

algorithm selects an initial setting for the parameters,

denoted hi. Then it alternates between two steps called

E step and the M step.

Given a joint distribution p(X, Z|h) over observed vari-

ables X and latent variables Z, governed by parameters h,
the algorithm maximizes the likelihood function p(X|h)
with respect to h. Proceeding into the Estep, the values of

the latent variables in Z are given by the posterior distri-

bution p(Z|X, hi). This approach considers the expected

value of the log-likelihood under the posterior distribu-

tion of the latent variable. In the Mstep the algorithm

evaluates hnew, checking for convergence of either the log

likelihood or the parameter values. If the convergence cri-

terion is not satisfied, the algorithm returns to select the

initial settings for the parameters recalculating hi (Bishop
2006).

In practice, the algorithm selects initial values for the

means, covariance and mixing coefficients from the vari-

ables given (observed variables) and evaluates posterior

probability distributions (latent variables, Estep). The

probabilities are used in the Mstep to re-estimate means,

covariance and mixing coefficients weighted by the proba-

bilities of each data point belonging to each cluster. Each

update to the parameters resulting from an Estep followed

by an Mstep increases the log likelihood function until

convergence.

This method, being both unsupervised and able to deal

with high dimensional data, represents an ideal solution

for analysing the type of data collected with accelerometer

tags.

Data collection

Data were collected in 2014 at two different locations in

Scotland (UK), Colonsay (56°3054″N, 6°24021″W) and Fair

Isle (59°22055″N, 1°48026″W). Three-Axis Accelerometer

tags (Axy-Depth, TechnoSmArt, http://www.technos-

mart.eu/) were deployed in combination with GPS tags

(Gt-120, IgotU) and mounted using Tesa tape (Tesa, Extra

Power) on the back of common guillemots (Uria aalge)

and razorbills (Alca torda). The weight of the combination

of the two devices plus the tape used was 25 g, <4 % of

birds’ body mass (Caccamise and Hedin 1985). The GPS

tags were set to record each location every 100 sec, the

accelerometer tags were set to record Pressure (millibar,

accuracy of 0.5 millibar) and Temperature (˚C, accuracy of
0.1°C) at 1 Hz and the acceleration in the three dimensions

(surge (horizontal) Ah, sway (lateral) Al and heave (verti-

cal) Av) at 25 Hz (Fig. 1). Both devices were then retrieved

after 2–4 days, when the animal was at the colony. Data

from 2 common guillemots and 5 razorbills were collected

respectively from Colonsay and Fair Isle (Scotland).

Data preparation and variable selection

Pressure data were converted to depth (m), here on

referred to as Depth, following the formula in UNESCO

Technical Papers (Fofonoff and Millard 1983).

The formula followed accounts for compressibility

(density). An ocean water column at 0°C (t = 0) and 35

PSU (s = 35) was assumed. The gravity variation with lat-

itude and pressure is computed as:

g
m

sec2

� �
¼ 9:780318 � ½1:0þ ð5:2788 � 10�3

þ2:36 � 10�5 � xÞ � x� þ 1:092 � 10�6 � p
(1)

where x = [sin (latitude/57.29578)]2 and p = pressure

(decibars). Latitude value was assumed to be the location

of each seabird colony. Depth was then calculated from

pressure:

Figure 1. Example of the position of the accelerometer on a general

seabird.
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Depth ðmÞ ¼
���ð�1:82 � 10�15 � pþ 2:279 � 10�10Þ

� p� 2:2512 � 10�5

�
� pþ 9:72659

� � p
	
=g

(2)

where p = pressure (decibars) g = gravity (m/sec2).

To calculate the orientation of the body angle, Pitch

(B), and the Dynamic Acceleration in the three dimen-

sions (surge Dh, sway Dl, heave Dv), the signals were

smoothed using a running mean of 1 sec for razorbills

and 2 sec for guillemots to calculate first the Static Accel-

eration. The difference in the time window applied to the

two species was due to the differences in the diving

behavior between the two species (see Results sections).

Static acceleration provided a measure of the body angle

of the instrumented animals. Body Pitch and the

Dynamic Acceleration were then calculated as follow:

B ¼ tan�1 Shffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2l þ S2v

q
0
B@

1
CA � 180

p
(3)

Dh ¼ Ah � Sh (4)

Dl ¼ Al � Sl (5)

Dv ¼ Av � Sv (6)

The measured values were corrected for imperfect

device orientation by examining the Pitch value from

each individual as it rested on the sea surface, assuming

that this value was representing the true zero (Sato et al.

2003, Watanuki et al. 2003; Laich et al. 2008). All the

signals were then standardized.

In addition to the variables commonly used in defin-

ing the different behavioral classes such as dynamic

acceleration and body pitch (Shepard et al. 2008; G�omez

Laich et al. 2009), a few more variables were derived

from the data. Vertical speed (Vs) was calculated as the

change in depth per second. The amplitude of the signal

of the heave Ampv and the variance of the difference Bvar
of the pitch, were calculated as the standard deviation

over a running mean of 5 sec for the guillemots and

10 sec for the razorbills (Table 1). It was assumed that

different behaviors might be detectable in different time

windows and by combining variables. Finding the appro-

priate variables and parameters was an iterative process

which depends on the data and tasks at hand. This

involved testing the EM with different combinations of

variables and parameters. For example the variables Ampv
and Bvar were tested across window sizes of 3, 5, and

10 sec each.

Dive analysis

Depth data were analysed using MTDive (MultiTrace Jen-

sen Software). A dive was deemed to have occurred when

the maximum depth was ≥1 m. Bottom time was calcu-

lated checking for points of inflection in the depth profile.

Modeling approach: behavioral
characterization

The proposed approach followed an iterative process con-

sisting of considering the general knowledge of the envi-

ronments where the data were collected, the general

behaviors known about the study species (fly, float and

dive) and the statistical properties of the variables calcu-

lated. For example, the study species perform constant

flapping while flying, producing high value for accelera-

tion in the vertical dimension. The calculation of the

amplitude Ampv highlighted the consistency of such

behavior over a time window of 5 sec for guillemots and

10 sec for razorbills. The effect of every new variable on

the partition performed by the EM algorithm was checked

every time that a new variable was calculated and added

to the list of variables used in the model.

To simplify the analytical procedure, since our primary

aim was to clarify behavioral states associated with forag-

ing when no additional information is available, we used

the depth data from the accelerometers to divide the data

for each animal into time spent above and below water.

For the underwater data, the EM was run for different

numbers of latent behavioral classes. The selection of the

best model was made by observing the type of partition

that the algorithm produced and the number of clusters

that could be ecologically explained. The variables selected

for these runs were Ampv, Bvar and the standardized chan-

nels of Vs, Dh, Dl, Dv and B for both species.

Table 1. List of the variables obtained and calculated from the

accelerometer data.

Parameter Label Definition

Acceleration recorded

from the accelerometer

Ah, Al, Av Surge (horizontal),

Sway (lateral), and

Heave (vertical)

Depth Depth

Vertical speed Vs Change in depth every second

Static acceleration Sx, Sy, Sz Surge, Sway and Heave

Dynamic acceleration Dx, Dy, Dz Surge, Sway and Heave

Pitch B Vertical orientation of the

body angle

Amplitude Ampv Standard deviation over a

running mean of 5 sec for

the guillemots and 10 sec

for the razorbills

Variance of the pitch Bvar
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For the subset of the data containing the activities

above water, it was not our aim to observe all potential

behaviors that these species are able to perform above

water. The observation of the two variables Ampv, and Dv

highlighted differences between the animal being in

motion or stationary, so it was a-priori decided to focus

on the main activities that could be performed such as

flying, floating and sitting on land. The EM was config-

ured to recognize three main latent behavioral classes,

corresponding to three general activities: high activity

while flying and flapping, medium activity while floating

or walking at the colony, and null activity, corresponding

to the animal sitting at the colony or floating on a calm

sea surface. The variables used for this run were Ampv
and the standardized channels of Dh, Dl, Dv, and B.

Accelerometer data were matched with the GPS posi-

tions and distances from the colony were then calculated

to observe how the classification above water was dis-

tributed on a spatial scale and whether activities occurred

at the colony or at sea. The GPS position of the colony

was represented by the first GPS position in the data, the

full R code for calculating the distances is included in

Data S3. Results are presented for two of the activities

performed above water: medium and low activity.

To observe individual variability and general species

behaviors, the algorithm was run at both individual and

species level. Where individuals were combined by spe-

cies, due to the differences in the total time of deploy-

ment among both individuals and species, the datasets of

the two common guillemots were sampled so to obtain

15 h of deployment from each animal. The datasets of

the five razorbills were sampled to obtain 22 h of data

from each individual. The two common guillemots were

labeled as COGU_1 and COGU_2 and the five razorbills

RAZO_1, RAZO_2, RAZO_3, RAZO_4, and RAZO_5.

Species were labeled as COGU and RAZO.

To observe the structure and the order of the behav-

ioral changes classified by the EM algorithm, we calcu-

lated transition probability matrices (Bishop 2006). For

simplicity, a behavior was deemed to occur if consistent

for a minimum of 1 sec, so the partition performed by

the EM was smoothed using a running mean of 1 sec.

Given a behavioral state Z at time t (Zt), we looked at the

behavioral state at the previous time step (Zt-1) and calcu-

lated the probability of staying within the same state or

switching between different states. The transition proba-

bility matrices were calculated for each species, pooling

together the results obtained from the runs on all individ-

uals.

Data preparation and analysis were performed in R ver-

sion 3.0.2 (R Core Team 2013). The EM analysis was per-

formed using the R package RMixmod (Biernacki et al.

2006). For brevity, results are shown only for two of the

combination of variables used in the analysis, Dv and B

on both common guillemots and for one razorbill as

examples (RAZO_3). The partition performed also on

other variables such Vs, Dh, Dl, for both common guille-

mots and for one razorbill as examples (RAZO_3) are

shown in the Data S1 and S2. The R code used for the

calculation of the variables and the analyses is also shown

in the Data S3.

Groups of behavioral states were classified as UW when

an individual was underwater, and AW when it was above

water. Both groupings are individual and species specific

and each behavioral state is denoted with a number (i.e.

UW1, UW2. . .). The colors in the plots and further

explanation in the results section will highlight common

behavioral states for comparison across individuals and

species.

Results

Dive analysis

The two common guillemots (COGU) performed deeper

and longer dives than the five razorbills (RAZO), (com-

mon guillemot, depth (m) mean = 43.56, SD = 18.52,

duration (sec) mean = 57.35, SD = 37.56; razorbill, depth

(m) mean = 4.49 SD = 2.48, duration (sec)

mean = 14.22, SD = 9.02, Fig. 2A,B). The frequency of

dives was lower in common guillemots compared to

razorbills (4 dives/h and 17 dives/h respectively).

Classification of groups of animals

Based on the partition performed by the EM algorithm it

was possible to recognize different behaviors among the

two species both underwater and above water (Fig. 3).

The classification performed on the combination of the

two common guillemots divided the underwater data into

four main behavioral classes: descending phase, deep

searching phase, chasing/catching events, and ascending

phase (Fig. 3B,F). The descending phase (mean � SD,

Pitch (degrees) �36.30 � 27.52, Heave (m/s2)

�0.0084 � 0.43, Fig. 3B,F, UW1) was characterized by

negative pitch angles accompanied by moderate values in

the heave acceleration reflecting the stroking movements

downwards. During the deep searching phase (Pitch

(degrees) 4.11 � 5.74, Heave (m/s2) �0.0042 � 0.37,

Fig. 3B,F, UW2) the animal was mainly in the deep part

of the water column moving horizontally (Example on

COGU_2, Fig. 4A-C). This state was present mainly in

deep dives. During chasing/catching events (Pitch (de-

grees) 0.43 � 36.43, Heave (m/s2) - 0.03 � 0.63, Fig. 3B

and F, UW3) the guillemots performed fast and sharp

changes of their orientation in the water column, this
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state showed the highest variance in all variables among

the states classified underwater (Data S1). While ascend-

ing in the water column (Pitch (degrees) 42.78 � 20.42,

Heave (m/s2) �0.015 � 0.083, Fig. 3B,F, UW4) the ani-

mal’s acceleration measured in the vertical dimension was

very small compared with the other states, indicating the

(A)

(B)

Figure 2. Dive depth (A) and duration (B)

performed by two common guillemots and five

razorbills equipped with accelerometers.

N = number of dives.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 3. Behavioral partition performed by the unsupervised algorithm Expectation Maximization on razorbills (RAZO) and common guillemots

(COGU), underwater (UW) and above water (AW). The dynamic acceleration performed in the vertical axis (Heave) and the vertical orientation

(Pitch) are shown. Colors represent the different behavioral states recognized by the EM algorithm, the same colors correspond to the same

behaviors. RAZO (A, E, C and G): UW1 = Descending phase, UW2 = Searching/Catching phase, UW3 = Ascending phase. COGU (B,F, D and H):

UW1 = Descending phase, UW2 = Deep searching phase, UW3 = Catching phase, UW4 = Ascending phase. AW1, AW2 and AW3 = medium,

high and low activity above water corresponding to floating on the sea surface, flying and standing at the colony.
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animal being passively pushed up by the pressure of the

water column.

The run performed on the combination of the five

razorbills clearly divided the underwater data in three

main behavioral classes: descending phase, chasing/catch-

ing events and ascending phase (Fig. 3A,E). As for the

common guillemot, during the descending phase the ani-

mal was mainly facing downwards while descending in

the water column (Fig. 3A,E, UW1, Pitch (degrees)

�19.75 � 17.65) with an acceleration in the vertical

dimension indicating the effort of the movement in this

phase (Heave (m/s2) �0.016 � 0.30). During chasing/

catching events (Fig. 3A,E, UW2), the animals made fast

and sharp changes in their orientation in the water col-

umn (Example on RAZO_3, Fig. 5C-E) producing high

variability in both the Pitch and Heave (respectively

�0.42 � 31.97, 0.02 � 0.47) channels. While ascending

in the water column e (Fig. 3A,E, 3), the animal was

mainly facing upwards (Pitch (degrees) 26.32 � 19.45).

The acceleration in the vertical dimension (Heave (m/s2)

�0.012 � 0.067) was very small compared with the

others in the other states, indicating the animal being

pushed up by the pressure of the water column.

The three behavioral states labeled above the water

surface represented three general activities that both

species can perform during a foraging trip (Fig. 6).

These states were called medium, high, and low activity

(AW1, AW2, and AW3) as they were constant among all

animals, both individually and as species group (see indi-

vidual results below). These three types of behaviors were

identified similarly in both species. State AW1 repre-

sented mainly the animal floating on the water surface

but also when walking at the colony, as suggested from

the analysis of the distances to the colonies (Fig. 7).

Depending on the ocean condition, this state could have

a larger variance in the Pitch channel, as shown for the

razorbills (mean Pitch (degrees) 9.7 � 19.86, Fig. 3G,

AW1). However, the signal recorded in the Heave chan-

nel clearly showed a low level of movements (Heave,

mean � SD, 0.001 � 0.10, Fig. 3). State AW2 repre-

sented mainly the flying and flapping activity performed

while the animal was travelling to and back from the

foraging area, or during short high activity phases such

as flapping on the water column or at the colony. This

state resulted in the highest variance in both Pitch and

Heave among the states classified outside water (Fig. 6C,

D, AW2). State AW3 represented mainly the animal not

performing any type of movement, while floating on

calm water surface or standing/sitting at the colony

(Fig. 7).

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Figure 4. Example of the latent behavioral classes’ recognition performed by COGU_2 in both deep (A, B, C) and shallow (D, E, F) dives. A and

D represent the diving depth (m), B, E and G the dynamic acceleration performed in the vertical axis (Heave), C, F and H the vertical orientation

(Pitch). Colors represent the different behavioral states recognized by the EM algorithm, the same colors correspond to the same behaviors.

Underwater, UW1 = Descending phase, UW2 = Shallow searching phase, UW3 = Deep searching phase, UW4 = Catching phase,

UW5 = Ascending phase. Outside water, AW1 = floating, AW2 = flying/flapping.

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 733

M. Chimienti et al. Unsupervised Learning in Accelerometer Data



Classification of individual animals

Based on the partition returned by the EM algorithm per-

formed on the underwater dataset, it was possible to rec-

ognize up to five behaviors in individual common

guillemots and three behaviors in individual razorbills,

highlighting differences among species. The analysis on

individual common guillemots highlighted extra behaviors

such as shallow searching and shallow activities. The anal-

ysis of COGU_1 classified five different behaviors, where

three (descending, chasing/catching and ascending) were

consistent with those classified in the group analysis

(Fig. 8). The five behaviors were classified as descending,

shallow searching, shallow activity, chasing/catching,

ascending. The analysis of the COGU_2 also classified five

different behaviors: descending, shallow searching, deep

searching, chasing/catching, ascending, where four (de-

scending, deep searching, chasing/catching, ascending)

were consistent with the four classified in the group anal-

ysis (Fig. 4). The three behaviors classified in each razor-

bill were consistent with those resulting from the analysis

on the entire group. The three behaviors were classified as

previously, Descending phase, Searching/Catching phase,

and Ascending phase (Fig. 5). The transition probability

matrices clearly showed the structure of the changes

between the behavioral changes in both species (Tables S1

and S2). For the underwater movements in particular,

common guillemots showed a general sequence of behav-

iors made of: Descending (UW1), Searching (UW2 or

UW3), Chasing/Catching (UW4) and Ascending (UW5).

The probability of switching between Descending (UW1)

and Ascending (UW5) was negligible, as was the probabil-

ity of switching between the two searching phases UW2

and UW3 in COGU_2. By contrast, razorbills showed

high probabilities of switching between the three states

detected underwater: Descending (UW1), Chasing/Catch-

ing (UW2) and Ascending (UW3). The probability of

switching from Descending (UW1) to Chasing/Catching

(UW2) was lower than the probability of switching from

Ascending (UW3) to Chasing/Catching (UW2).

Discussion

Accelerometers have the potential to provide a wide range

of detailed information on animal behavior and physiol-

ogy. However, inferring behavioral models from the com-

plex multidimensional data that accelerometers yield is

crucial for realizing the potential and methods capable of

informing this inference have just begun their develop-

ment (Jonsen et al. 2013). A suite of statistical tools,

(A)

(B)

(C)

(D)

(E)

Figure 5. Example of the latent behavioral classes’ recognition performed by RAZO_3. A represents the diving depth (m), B and D the dynamic

acceleration performed in the vertical axis (Heave), C and E the vertical orientation (Pitch). Colors represent the different behavioral states

recognized by the EM algorithm, the same colors correspond to the same behaviors. Underwater, UW1 = Descending phase, UW2 = Searching/

Catching phase, UW3 = Ascending phase. Outside water, AW1 = floating, AW2 = flying/flapping.
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(A)

(B) (D)

(C)

Figure 6. Example of above water activity in both common guillemot (A and B) and razorbill (C and D). A and C represent GPS tracks and B and

D sections of the dynamic acceleration recorded in the vertical dimension (heave) corresponding to the GPS positions highlighted in the boxes.

OW1 = floating on the sea surface/medium activity at the colony, AW2 = flying/flapping, AW3 = standing sitting, low activity.

Figure 7. Distribution of behavior AW1 (medium activity, i.e. floating, walking at the colony) and AW3 (low activity, i.e. still at the colony) in

relation to the breeding colony.
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including mechanistic multistate movement models (Mor-

ales et al. 2004), Hidden Markov Models (Langrock et al.

2012), Markov switching autoregressive models (Pinto

and Spezia 2015) and State-Space Models (Jonsen et al.

2005; Bestley et al. 2013; Bailey et al. 2014) have already

begun to be applied to the analysis of time-series move-

ment data resulting from GPS, data storage tags and

telemetry data. Mobile marine predators forage in a three

dimensional environment (Shiomi et al. 2010) and more

complex state-space models have started to integrate one-

dimensional diving traces with two-dimensional horizon-

tal movement tracks (Bestley et al. 2015), highlighting the

importance and the difficulty of combining multiple

dimensions and variables when animals move and forage

in more than two dimensions. Here, we have demon-

strated that unsupervised learning algorithms can provide

an important additional tool for analysing accelerometer

data. We suggest that this new approach will be of partic-

ular utility for the many cases when it is not possible to

use or collect any additional measurement or data as

proxies for the classification of the animal‘s behavioral

modes.

Using two species of seabird as a case study, we have

demonstrated that the expectation maximization (EM)

algorithm, effectively and efficiently classifies different

behaviors in both species at both group and individual

levels. In addition, the flexibility of this approach high-

lighted differences, similarities and new insights in the

underwater foraging strategies of the two study species.

We will first discuss the specific results of our case study

before highlighting opportunities and challenges associ-

ated with using this unsupervised learning approach in

comparison with the currently more frequently used

supervised learning algorithms.

The behavior of razorbills and guillemots
foraging underwater as revealed by the
unsupervised learning algorithm

The approach was tested on two different species known

to feed on similar prey and for behaving differently

underwater, but knowledge was lacking on exactly how

the behaviors differed. Number of dives performed, time

spent underwater, depth reached (Fig. 2) and the parti-

tion provided by the EM algorithm (Figs 4, 5 and 8)

clearly distinguished where and how the individuals

behave differently, highlighting differences in movements,

foraging strategies and suggesting that the two species

might use the vertical dimension differently (Thaxter

et al. 2010).

(A)

(B)

(C)

(D)

(E)

Figure 8. Example of the latent behavioral classes’ recognition performed by COGU_1. A represents the diving depth (m), B and D the dynamic

acceleration performed in the vertical axis (Heave), C and E the vertical orientation (Pitch). Colors represent the different behavioral states

recognized by the EM algorithm, the same colors correspond to the same behaviors. Underwater, UW1 = Descending phase, UW2 = Shallow

searching phase, UW3 = Shallow flapping, UW4 = Catching phase, UW5 = Ascending phase. Outside water, AW1 = floating, AW2 = flying/

flapping.
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Razorbills mainly fed in shallow water, probably feeding

on shallow fish aggregations and performing three different

activities: descending, chasing/catching, and ascending

(Fig. 5 and Data S2). Common guillemots performed both

shallow and deep dives, showing more flexible underwater

movements and performing distinctive searching activities,

not detected in razorbills. Differences in movement patterns

performed by the two common guillemots (Figs 4 and 8

and Data S1) can be attributed to the fact that the two indi-

viduals foraged in two different part of the water column

(COGU_1 mean depth 6.9 � 6.658 m, COGU_2 mean

depth 26.03 � 18.664 m). In guillemots buoyancy

decreases with increasing depth changing from positive to

negative at about 60–70 m (Lovvorn et al. 2004). Foraging

animals aim to maximize their foraging efficiency (Pyke

et al. 1977; Halsey and Butler 2006) and the combination of

their physiology and morphology (Butler and Jones 1997)

and the distribution and abundance of resources, determine

different types of movement (Giuggioli and Bartumeus

2010; Barto�n and Hovestadt 2012). The effect of the

pressure due to the depth, sea bed, prey distribution and

type of prey caught are suspected to be the main contribu-

tors to different type of movements and dive profiles (Elliott

et al. 2008; Cook et al. 2010), making individuals perform

different orientations and types of movements. The deep

searching behavior (Fig. 4, UW3), for example, resulted in

a lower variance in Pitch and Heave distributions compared

with the shallow searching (Fig. 4 UW2, Fig. 8 UW2).

In both species the chasing/catching phase was charac-

terized by a high variance in pitch angles and high peaks

in the heave, surge and sway acceleration (Data S1 and

S2) reflecting the mechanical effort of the animal when

driving at prey both in the middle of the water column

and near the sea bed. Prey such as squid and fish schools

can be taken by birds from below, diving underneath and

rapidly swimming up (Wilson and Duffy 1986; Crook

and Davoren 2014) explaining the fast and sharp changes

of orientation in the water column and the high peaks in

the three dimensions (Zimmer et al. 2011).

Gaining insights using a transition
probability matrix approach

Comparing and contrasting the foraging behaviors of dif-

ferent species (or different populations within a species)

will be a major area of research interest in the coming

decade, as costs of tracking technologies reduce and more

individuals can be sampled. Developing approaches that

facilitate this comparison will be important and here we

have used a transition probability matrix approach. The

sequence of behaviors illustrated in the transition proba-

bility matrices provides a very clear means of identifying

and quantifying the different behavioral strategies

undertaken by the two species underwater. At least within

our small sample of individuals, this approach reveals that

our common guillemots always switched from descending

to searching before ascending. In contrast, all of the

razorbills in this study showed high probabilities of

switching between underwater states, in particular

between chasing/catching events and ascending phases.

The behavioral switching that we observe in the razorbills

suggested similarity with the “rush and grab” behaviors

shown in other seabirds species (Wilson and Duffy 1986;

Wilson et al. 2002). We suggest that the development and

consistent application of approaches such as the transition

matrix used here will play a vital role in determining key

similarities and differences between species, or between

populations.

Multiscale foraging behavior can be
revealed by joint deployment of GPS and
accelerometers

While foraging, marine predators display movement pat-

terns at multiple spatial and temporal scales and they are

assumed to match the spatial structure of prey aggregations

(Fauchald et al. 2000; Regular et al. 2013). The combina-

tion of high frequency GPS and Time Depth Recorders

(TDRs) allows the study of both vertical and horizontal

fine-scale foraging behavior (Dragon et al. 2012; Evans

et al. 2013) permitting a better understanding of behavioral

responses to the variability in prey distribution. We fitted

our birds with a combination of GPS and accelerometers

and the data this provides (see Fig. 6) has the potential to

reveal how very fine scale behaviors (such as those analysed

in this study) related to larger spatial scales of behavior.

Notably, the combined use of instruments adds new

knowledge about the behavioral modes performed above

water, allowing a reliable quantification of time spent fly-

ing, floating and at the colony. The increase in precision of

use of time and space begins to allow a much greater

understanding of exactly where and how marine predators

start to search for prey and how the foraging behavior may

vary both spatially and temporally. Furthermore, increased

understanding of the multiscale foraging behavior can yield

important information on how the quality of habitat

patches and resources vary in time, and can enable insights

into the potential effects of habitat changes (Hussey et al.

2015). As we gain data from an increased sample of indi-

vidual razorbills and guillemots we will prioritize the joint

analysis of GPS and accelerometer data.

Energetics

Accelerometers have allowed the investigation of the

biomechanics of diving birds in great detail (Yoda et al.
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2001; Sato et al. 2002; Watanuki et al. 2003; Elliott et al.

2012) showing high correlation between overall dynamic

body acceleration (ODBA) and the rate of oxygen con-

sumption (VO2) in both great cormorants Phalacrocorax

carbo (Wilson et al. 2006) and humans (Halsey et al.

2008). The dynamic component of body acceleration has

been used as an index of mechanical power to quantify

energy expenditure of different behavioral activities (Wil-

son et al. 2006; Elliott et al. 2012). Relating the OBDA

expressed in each behavior/activity highlighted here, with

the type of movement and type of dive, will have the

potential to generally inform the variation in energetic

costs of different dives and foraging trips. This new infor-

mation can be used in future movement models by

matching the different movement modes and movement

variables such as speed, orientation and energy costs.

Therefore, with the new approach presented here, it will

be possible to acquire a more complete picture of the

mechanisms underlying movement patterns as well as

likely responses to spatial heterogeneity and habitat modi-

fication.

Variable selection

The variables and parameters used in this work were cal-

culated from the basic recordings of accelerometer tags

delineating an approach transferable to other species and

study systems. Using the methods presented here will

make the future analyses of this type of data easier and

more flexible. Importantly, the selection of the different

variables to be included in the EM algorithm played a

critical role in the analysis. The calculation of integrated

variables such as vertical speed, the amplitude, and vari-

ance of the different signals, helped the discrimination of

distinctive behavioral phases. For example, flight/flapping

and chasing/catching prey underwater were behavioral

modes both characterized by high peaks in the amplitude

of the Heave channel and the calculation of these inte-

grated variables helped highlighting such behaviors. We

expect the use of these integrated variables to have the

potential to also improve the performance of conven-

tional supervised analyses. Depending on the species and

the systems considered these types of integrated variables

might be more useful than just using the raw output val-

ues of the accelerometer tags (Wang et al. 2015).

Relative merits of the unsupervised
approach

Both supervised and unsupervised approaches have

advantages and disadvantages. In supervised learning, the

model defines the partition of the observations depending

on the input set called “labels”, where each cluster has

been defined. In unsupervised learning, instead, it is

assumed that the observations are governed by latent vari-

ables, so no input set exists and the model aims to find

the hidden structure in the observations (Bishop 2006).

From an ecological point of view, supervised algorithms

allow the identification of known behaviors for which

there is a training data set. However, this approach does

not readily allow the identification of new and unknown

behaviors. Unsupervised algorithms, instead, might be

better suited for the type of data where behaviors cannot

be observed and will allow the classification of unknown

behaviors into different categories.

Estimating the frequency of events being mislabeled,

and the accuracy of unsupervised approaches, is quite dif-

ficult when a validation dataset of “correct labels” is not

available. It is possible to obtain an indication of misla-

beling events by comparing the labels with a “more cor-

rect” set of labels obtained by smoothing the

classification. Flexible smoothing functions that consider

the type of behavior performed and the likelihood of hav-

ing such behavior for a sufficient length of time can

approximate a validation dataset. The comparison

between original and smoothed labels will make it possi-

ble to indicate the accuracy of the unsupervised learning

methods. In the current work, the transition probability

matrix was calculated from a smoothed classification.

Here, we arbitrarily chose to smooth over any behavior

that was not consistent for more than 1 sec in order to

observe sequences of behaviors. As already stated, further

work in this direction is needed in order to better quan-

tify mislabeling and uncertainty.

Conclusions

The general challenge of identifying the mechanisms

underlying ecological patterns is particularly relevant for

movement research (Holyoak et al. 2008). When deployed

with other sensors, accelerometers can provide a wide

range of detailed information on the surrounding envi-

ronment, physiology, and animal behavior (Johnson and

Tyack 2003; Wilson et al. 2008). However, it might be

challenging to record such information when monitoring

longer periods, migrations, and winter habitats in both

marine and terrestrial environments. The size of the study

species might not always allow deployment of multiple

data storage tags and it is not always possible to have

direct observations of the behavior of animals in con-

trolled environments for validation purposes. Such cases,

as the one proposed here, emphasize the need for

approaches able to automatically recognize the different

behavioral pattern. The novel approach presented in this

study is based on the combined use of the unsupervised

learning algorithm Expectation Maximization and the
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calculation of new integrated variables. This approach can

detect latent behavioral states at both group and individ-

ual level, highlighting key behavioral modes of two differ-

ent species. Depending on the environment and species

considered, integrated variables can highlight different

types of behaviors allowing the user to avoid setting spe-

cies specific thresholds and to generalize the method and

not bias model outputs. Integrated variables are a funda-

mental aspect when developing new methods able to anal-

yse such complex movement data collected both in the

terrestrial and marine environment.
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nition performed in COGU_1 and COGU_2 underwater.
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nition performed in RAZO_3.

Data S3. R code used for the analysis of the accelerometer

data.

Table S1. Transition probability matrix of the behavioural

states classified in the 5 razorbills.
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states classified in the 2 guillemots.
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