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Abstract. In the last few years, the scientific community

has witnessed an ongoing trend of using ideas developed in

the study of complex networks to analyze climate dynam-

ics. This powerful combination, usually called climate net-

works, can be used to uncover non-trivial patterns of weather

changes throughout the years. Here we investigate the tem-

perature network of the North American region and show

that two network characteristics, namely degree and cluster-

ing, have marked differences between the eastern and west-

ern regions. We show that such differences are a reflection

of the presence of a large network community on the west-

ern side of the continent. Moreover, we provide evidence that

this large community is a consequence of the peculiar char-

acteristics of the western relief of North America.

1 Introduction

Complex networks are powerful tools for describing the

structure and functioning of a wide range of natural, techno-

logical and social systems (da Fontoura Costa et al., 2011).

Owing to the general framework that the network theory

provides, a mathematical representation of such systems is

straightforward, not only allowing the description of net-

worked topologies but also leading to a better comprehen-

sion of dynamical processes in systems whose elements are

connected in a non-trivial fashion (Boccaletti et al., 2006).

In the past few years, complex networks have also been ap-

plied in climate sciences, creating this way the new field

of climate networks (Tsonis et al., 2006, 2008; Tsonis and

Swanson, 2008; Donges et al., 2009a, b; Gozolchiani et al.,

2008; Tsonis and Roebber, 2004; Yamasaki et al., 2008). Ac-

cording to this paradigm, climate networks are formed by

nodes, corresponding to spatial grid points in given global

climate data. These nodes are connected by edges, which

correspond to statistical similarities between times series of

given climate variables (e.g., temperature, relative humidity,

precipitation) associated with each node in the network. Al-

though this field is relatively new in the network research,

several results have been reported showing that network mea-

surements can indeed give new important insights into cli-

mate dynamics (Tsonis et al., 2006, 2008; Tsonis and Swan-

son, 2008; Donges et al., 2009a, b; Gozolchiani et al., 2008;

Tsonis and Roebber, 2004; Yamasaki et al., 2008; Rhein-

walt et al., 2012; Mheen et al., 2013; Runge et al., 2014).

For instance, by using degree centrality measurements of

climate networks, researchers were capable of identifying

highly connected nodes, which turned out to be related to

the North Atlantic Oscillation. These results revealed that

climate networks can exhibit small-world properties due to

long-range edges (called teleconnections) connecting highly

distant nodes (Tsonis et al., 2006, 2008). Moreover, the anal-

ysis of the teleconnections unveiled by this framework has

also shed light on the study of extreme climate events, such

as the El Niño–Southern Oscillation (ENSO) (Tsonis and

Swanson, 2008; Gozolchiani et al., 2008). More specifically,

by constructing climate networks of the surface temperature

field during El Niño and La Niña periods, it was found that

ENSO has a strong impact on the stability of climate systems,

which is manifested as the decrease of the temperature pre-

dictability during El Niño years. It is worth noting that the ap-

plication of concepts from complexnetworktheory in climate
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sciences has brought new insights that could not be unveiled

by using classical methods of climatology and statistics. Re-

cently, by using cross-correlation and mutual information to

construct climate networks and analyzing the betweenness

centrality field (node centrality measurement based on short-

est path lengths; Costa et al., 2007), researchers found wave-

like structures that are related to surface ocean currents, de-

tecting this way a backbone of significantly increased mat-

ter and energy flow in the global surface air temperature

field (Donges et al., 2009a, b). Furthermore, the authors

also showed that these results cannot be achieved by using

methods derived from multivariate analysis, such as princi-

pal component analysis (PCA) and singular spectrum analy-

sis (SSA) (Donges et al., 2009a). In this work, we extend the

analysis of climate networks by investigating the influence of

altitudes of the grid points on centrality measurements of the

networks generated through similarities in temperature time

series measured at the surface level. The main motivation for

including the altitudes on the network model is the assump-

tion that the flow of matter and energy can be affected by

topographical barriers, leading to anomalies in the correla-

tions between the time series of climate variables. Therefore,

in order to uncover these phenomena and quantify the influ-

ence of the relief on the network correlations, for each node v

we associate its geographical altitude hv with measurements

of the climate network, such as betweenness and clustering

coefficient.

We constructed climate networks allowing the existence of

long-range connections. By detecting communities in the cli-

mate networks, we found clusters that correspond to groups

of nodes embedded in geographical areas of similar relief

properties. Moreover, it was also found that the correlation

patterns between centrality measurements and relief proper-

ties vary according to the considered network community.

Finally we point out a possible effect of time series inter-

polation generated by stations in the degree and clustering

coefficient fields of the networks.

2 Materials and methods

2.1 Data set description

Throughout the analysis we used the following databases:

i. Monthly land temperature records from the National

Center for Environmental Prediction/National Center

for Atmospheric Research NCEP/NCAR (Kistler et al.,

2001; Fan and Van den Dool, 2008) obtained from Jan-

uary 1948 to January 2011. The data set consists of a

regular spatio-temporal grid with 0.5◦ of latitude and

longitude resolution. Each grid point i has a temperature

time series Ti(t) associated, containing the time evolu-

tion of the monthly mean temperature. A visualization

of stations employed in the analysis that originated from

Figure 1. Visualization of the stations used to interpolate the grid

points in the temperature database.

the database is shown in Fig. 1 (data provided by the

NOAA, 2013).

ii. Relief data set provided by National Geophysical Data

Center (NGDC, 2009) and consisting of 1 arc min regu-

lar gridded area measuring land topography and ocean

bathymetry.

2.2 Complex network measurements

In order to seek for relationships between the climate and

relief, we use network measurements related to centrality and

symmetry of connections. The most simple of them, referred

to as node degree, is given by

ki =

N∑
j=1

Aij, (1)

where Aij = 1 if nodes i and j are connected and Aij = 0

otherwise. The degree is a simple way to study the local im-

portance of a node. Concerning climate networks, the degree

can be used to quantify how many points of the studied re-

gion display a time series similar to a given point in the globe.

In other words, nodes with large degrees are related to large

regions of correlation.

The clustering coefficient of a node is the probability that

two of its neighbors are also connected in the network, and

is given by (da Fontoura Costa et al., 2011)

ci =
2T (i)

ki (ki − 1)
, (2)

where T (i) is the number of triangles passing through i or,

equivalently, the number of connections between neighbors

of i. The clustering bears interesting local information. If a

given point of the globe is strongly correlated with two other

points, the clustering quantifies how often these two points

are also strongly correlated with each other. The existence of

regions taking low values of ci suggests that the propagation

of climate changes occurs in a streamlined fashion in those
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regions. Conversely, large clustering is related to a more dif-

fusive propagation.

Another feature we study is the betweenness centrality. To

define this measurement, consider the following notation. Let

σst be the number of shortest paths from node s to node t

(da Fontoura Costa et al., 2011). If σst(i) is the number of

such paths passing through node i, the betweenness central-

ity is given by (da Fontoura Costa et al., 2011)

bi =
∑
s 6=t 6=i

σst(i)

σst

. (3)

It gives information about global relationships in climate dy-

namics. It is of great importance in quantifying if a node is

commonly used as a route for long-range correlations in the

network (Donges et al., 2009a).

A node can be central but still not communicate well with

the rest of the network. For instance, a node that is connected

to a highly connected node can be regarded as being central

in the network, but it has a strong dependence on its highly

connected neighbor. The accessibility measurement quanti-

fies the number of nodes effectively accessed after h steps,

where the node accessed at each step is chosen randomly.

Formally, the accessibility is computed as

ai =
1

Nh
i

exp

(
−

N∑
j

P hij logP hij

)
, (4)

where P hij is the probability that a random walk starting at

node i arrives at node j in h steps, Nh
i the number of reach-

able nodes in h steps from node i and exp(·) is the expo-

nential function (see, e.g., Viana et al., 2012, for a detailed

explanation of this measurement).

Real-world networks often display a modular structure,

i.e., the presence of communities (Fortunato, 2010). The

modular structure of a given network can be quantified by

the measurement known as modularity, which is given by

(Newman, 2003)

Q=
1

2m

∑
ij

(
Aij−

kikj

2m
,
)
δ
(
Ci,Cj

)
, (5)

where m= 1/2
∑
Aij is the total number of edges, Ci is the

community to which node i belongs and δ is the Kronecker

delta. Once the partitioning of the nodes into communities

is done, the modularity Q represents the fraction of edges

that connects nodes of the same community subtracting the

fraction of these edges that we would expect to find in a ran-

dom graph with the same degree sequence. Thus, Eq. (5) pro-

vides a significance test of the obtained network partitioning,

which will be used to validate our results in the next sections.

Since the modularity Q quantifies how good a given par-

tition is, many methods intended to uncover communities

in networks are based on the optimization of this measure-

ment. Different strategies for the modularity optimization

have been adopted in the literature such as simulated anneal-

ing (Reichardt and Bornholdt, 2006; Guimera et al., 2004),

greedy algorithms (Newman, 2004; Clauset et al., 2004)

and extremal optimization (Duch and Arenas, 2005). Al-

though these algorithms provide accurate results, most of

them have great computational cost. For this reason, we

adopt the method proposed in Newman (2006) to obtain the

community structure of climate networks. This method con-

sists in mapping the modularity optimization in terms of the

spectrum of the so-called modularity matrix B defined as

B= A−
kkT

2m
, (6)

where A is the adjacency matrix, m is as defined before in

Eq. (5) and k = [k1, . . .,kN ]
T the vector whose element ki is

the degree of the ith node. The spectral optimization of the

modularity Q has complexity of the order of O(N 2 logN ),
which turns out to be faster than, for instance, simulated an-

nealing and extremal optimization approaches, besides pro-

viding more accurate results for large networks (Newman,

2006; Fortunato, 2010).

2.3 Climate networks

Because we are most interested in the topological charac-

teristics of climate networks and its correlations with relief

heights, we consider now only the connected subgraph whose

nodes are located inside a continent. Note that we do not

simply extract the subgraph over land discarding any edges

which connects nodes on the ocean; rather we recalculate

the threshold ε by taking into account only the nodes in the

spatio-temporal grid which are over land.

Having the values of temperatures for each grid point in

the data set, a simple way to infer that two points have sim-

ilar dynamical evolution is through the Pearson correlation

coefficient between pairs of time series, which is given by

ρij =

〈
TiTj

〉
−〈Ti〉

〈
Tj
〉√(〈

T 2
i

〉
−〈Ti〉

2
)(〈

T 2
j

〉
−
〈
Tj
〉2) , (7)

where Ti is the time series associated with a point i in the

spatio-temporal grid and 〈X〉 means the average of the vari-

able X. Furthermore, we also remove the mean annual cycle

in order to avoid seasonal effects in the time series.

We start with a fully connected network where each grid

point is a node and two nodes are connected through an

edge with an associated weight given by ρij. The fully con-

nected network can be studied by using weighted versions

of the characteristics presented in Sect. 2.2 (cf. Boccaletti

et al., 2006, for a description of weighted measurements

for graphs). Nevertheless, we are only interested in connec-

tions representing strong correlations. Hence, connections

having a correlation smaller than a given threshold ε are dis-

carded. This leads to a network defined by the adjacency ma-

trix A whose elements are given by Aij =2(ρij− ε)− δij,

www.nonlin-processes-geophys.net/21/1127/2014/ Nonlin. Processes Geophys., 21, 1127–1132, 2014



1130 T. K. D. Peron et al.: Correlations between climate network and relief data

where2(·) is the Heaviside function. The threshold ε should

be chosen in order to keep the network edges that corre-

spond to strong correlation between time series, thus elim-

inating the non-relevant ones (Tsonis et al., 2006, 2008; Tso-

nis and Swanson, 2008; Gozolchiani et al., 2008; Donges

et al., 2009a). Therefore, for all networks analyzed in this

approach, the threshold ε was chosen so that only 5 % of the

connections are kept in the network. Without the constraint

of only nearest-neighbors connections, it is reasonable to ex-

pect a much richer pattern of connectivity with, e.g., presence

of communities in the network, i.e., clusters of nodes that are

more connected inside these groups than external nodes to

the cluster. In the context of climate networks, the grouping

of nodes into communities was shown to be related to dif-

ferent climate patterns and to unveil different known climate

zones (Tsonis et al., 2011).

3 Results

From Fan and Van den Dool (2008) we know that the land

surface temperature database is constructed by interpolating

recorded time series from stations spread over the globe. In

order to avoid interpolation effects, it is useful to analyze the

spatial distribution of the stations that generate this database.

Using data from NGDC (2009), in Fig. 1 we show the sta-

tion location used to record the monthly average tempera-

ture time series. As we can see, apart from the northeast re-

gion of Brazil, South America is sparsely covered by sta-

tions, whereas North America and Europe are more densely

covered. Therefore, in order to eliminate any doubts as to

whether the observed patterns in the networks measurements

are being affected by the interpolation, we turn our analysis

to regions with a high density of stations, namely, the North

American region.

Applying the methodology described in Sect. 2.3, we ob-

tain the climate networks and extract the centrality mea-

surements for the region with the values of longitude θ and

latitude φ ranging in the intervals −128◦ ≤ θ ≤−60◦ and

30◦ ≤ φ ≤ 70◦, respectively. Our results are shown in Fig. 2.

As we can see in Fig. 1, the region has stations approximately

uniformly distributed. Therefore, we can discard the hypoth-

esis that the area with high values for the degree in Fig. 2a

is due to interpolation effects. It is also interesting to note

that in Fig. 2b there are two distinct patterns in the clustering

coefficient field. While the eastern region has an almost uni-

form distribution for ci , the western region displays a more

irregular distribution. The same pattern is also followed by

the other centrality measurements. Figure 3 shows the ac-

cessibility and betweenness centrality fields. Likewise, the

patterns observed in the western and eastern regions differ

significantly, especially for the accessibility. It is important

to note that, according to Figs. 2a and 3b, the regions taking

low values of degree and accessibility overlap significantly.

This pattern cannot be interpreted in a straightforward fash-

Figure 2. (a) Degree ki and (b) clustering coefficient ci obtained

from the network of temperature correlations.

Figure 3. (a) Betweenness centrality bi and (b) accessibility ai for

h= 3 steps obtained from the network of temperature correlations.

ion, as the relevant correlation between degree and accessi-

bility usually appears when the hierarchical definition of the

degree is taken into account (Viana et al., 2012).

Nonlin. Processes Geophys., 21, 1127–1132, 2014 www.nonlin-processes-geophys.net/21/1127/2014/
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Figure 4. Community structure for the network constructed with

the grid points with θ and latitude φ in the intervals −128◦ ≤ θ ≤

−60◦ and 30◦ ≤ φ ≤ 70◦ of the temperature database. Grid points

colored with the same color correspond to nodes belonging to the

same network community.

The topology of the climate network was further ana-

lyzed by identifying the natural topological communities.

The communities arising from the application of the eigen-

vector strategy (see Newman, 2006) are shown in Fig. 4. A

straightforward comparison of Figs. 2 and 4 reveals that the

large community located at the western region corresponds

to the nodes taking the lowest values of degree and accessi-

bility (see Figs. 2a and 3a). As for the clustering coefficient,

it is irregularly distributed.

Figure 5 displays the network communities and the relief

structure. Remarkably, the variations in the largest commu-

nity border on the west side of North America are followed

by variations in the relief structure. Comparing Figs. 5 and 2,

we notice that the contrast between the west and east region

in the degree and clustering coefficient field is also observed

in the relief structure. More specifically, the regions present

very different patterns in the relief structure which is also re-

vealed in the pattern of network measurements, suggesting

that with our methodology we may be able to quantify the

influence of the landscape in the climate network organiza-

tion.

4 Conclusions

Despite being a recent field, climate networks have already

been shown to provide valuable information about climate

dynamics (Tsonis et al., 2006, 2008; Tsonis and Swanson,

2008; Donges et al., 2009a, b; Gozolchiani et al., 2008;

Tsonis and Roebber, 2004; Yamasaki et al., 2008). In this

study, we used the monthly land temperature records from

NCEP/NCAR reanalysis to define correlations between sta-

tions, which are then transformed into network connections

when they exceed a specified threshold. One important point

raised during our investigation was the effect of the spatial

distribution of stations on the resulting network. We found

that data pertaining to the region in which (−128◦, 30◦)≤

Figure 5. Boundaries of the communities obtained from the climate

networks. Note that the largest community coincides with a regular

relief profile.

(θ,φ)≤ (−60◦,70◦) should not suffer such effects, given its

almost uniform distribution of stations. One important topic

to be studied in the future is the specific effect of spatial het-

erogeneities in the sampled data on the formation of abnor-

mal, but most likely predictable, structures in the network.

In this study, we showed that North America, when mod-

eled as a climate network, displays two regions with distinct

topological properties. We have found that the eastern and

western regions display striking differences of degree, acces-

sibility and clustering coefficient, which may be explained

by the presence of communities arising from the climate net-

work. More specifically, the eastern side was found to be

characterized by uniform values of centrality measurements.

Conversely, the western side was mainly characterized by an

heterogeneous distribution of measurement values. The rela-

tionship between climate and relief was analyzed in the relief

data set provided by NOAA jointly with the climate network

data. Interestingly, we uncovered dynamics not detected by

other traditional methods. The most important pattern aris-

ing from the analysis was the observation that the topologi-

cal community of the climate network in the western region

matched the region with peculiar relief structure, suggesting

a strong influence of the relief on the climate dynamics.

Of paramount interest for future studies is to use other rel-

evant climate variables (e.g., humidity, wind, pressure) to un-

cover additional relationships between relief and climate, us-

ing the ideas developed in the climate networks field, as well

the boundary effects (Rheinwalt et al., 2012) of spatially em-

bedded networks.
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