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SUMMARY 

The composition of gut microbiota has been associated with host metabolic phenotypes, but 

it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient 

provision stabilizes exponential growth of E.coli, with the stationary phase occurring 20 min 

after nutrients supply accompanied by bacterial proteome changes, suggesting involvement 

of bacterial proteins in host satiety. Indeed, intestinal infusions of E.coli stationary phase 

proteins increased plasma PYY, their intraperitoneal injections suppressed acutely food intake 

and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations 

reduced meal size. ClpB, a bacterial protein mimetic of -MSH, was up-regulated in the E.coli 

stationary phase, was detected in plasma proportional to ClpB DNA in faeces and stimulated 

firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins 

produced after nutrient-induced E.coli growth may signal meal termination. Furthermore, 

continuous exposure to E.coli proteins may influence long-term meal pattern. 
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INTRODUCTION 

The composition of gut microbiota has been associated with host metabolic phenotypes (Ley 

et al., 2006) and transfer of ‘obese’ microbiota can induce adiposity (Turnbaugh et al., 2006) 

and hyperphagia (Vijay-Kumar et al., 2010), suggesting that gut microbiota may influence host 

feeding behavior. Although the mechanisms underlying effects of gut bacteria on host 

appetite are unknown, it is likely that they may use the host molecular pathways. 

The current model of appetite control involves gut-derived hunger and satiety hormones 

signaling to brain circuitries regulating homeostatic and hedonic aspects of feeding (Berthoud, 

2011; Murphy and Bloom, 2006). Prominent amongst these are the anorexigenic and 

orexigenic pathways originating in the hypothalamic arcuate nucleus (ARC) such as the 

proopiomelanocortin (POMC) and neuropeptide Y (NPY)/ agouti-related protein (AgRP) 

neurons, which are relayed to the paraventricular nucleus (PVN) (Cowley et al., 1999; Garfield 

et al., 2015; Shi et al., 2013). The ARC and PVN pathways also converge in the lateral 

parabrachial nucleus, which sends anorexigenic calcitonin gene-related peptide (CGRP) 

projections to the central amygdala (CeA) (Carter et al., 2013). The CeA, among other forebrain 

areas, was shown to integrate homeostatic and motivational aspects of feeding and also 

receives a sensory input from the brainstem (Areias and Prada, 2015; Becskei et al., 2007; 

Morris and Dolan, 2001). 

Putative mechanisms linking gut microbiota with the host control of food intake may 

involve energy harvesting activities of gut bacteria (Turnbaugh et al., 2006) or their production 

of neuroactive transmitters and metabolites (Dinan et al., 2015; Forsythe and Kunze, 2013). 

Another possibility, explored in this study, is that bacterial proteins may act directly on 

appetite-controlling pathways locally in the gut or via the circulation. In fact, several bacterial 

proteins have been shown to display sequence homology with peptide hormones (Fetissov et 
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al., 2008), and we have recently identified that the caseinolytic protease (Clp) B, produced by 

Escherichia coli (E.coli), is an antigen-mimetic of -melanocyte-stimulating hormone (-MSH) 

(Tennoune et al., 2014). -MSH is a POMC-derived neuropeptide playing a key role in signaling 

satiation by activation of the melanocortin receptors 4 (MC4R) (Cone, 2005). Although MC4R-

mediated -MSH anorexigenic effects have been mainly ascribed to its central sites of actions 

(Mul et al., 2013), a recent study shows that activation of the MC4R in the gut enteroendocrine 

cells stimulates release of the satietogenic hormones glucagon-like peptide-1 (GLP-1) and 

peptide YY (PYY) (Panaro et al., 2014). Hence, local gut signaling by microbiota-derived -MSH-

like molecules to the enteroendocrine cells is possible (Manning and Batterham, 2014). 

Most studies linking nutrition and microbiota have so far focused on the bacterial 

biodiversity (Parks et al., 2013), but little is known about how nutrient-induced bacterial 

growth may affect host metabolism. In fact, the dynamics of bacterial growth depend on 

nutrient supply, implying that regular daily meals should trigger the growth of gut bacteria. 

After a single provision of nutrients to cultured bacteria long-lasting exponential (Exp) and 

stationary (Stat) growth phases are observed which differ in protein expressions (Wick et al., 

2001). It is, hence, possible that during the different growth phases induced by regular 

nutrient supply, gut bacteria will synthetize proteins that may differentially influence host 

appetite acting via intestinal and/or systemic routes. 

To test this hypothesis, we studied growth dynamics of E.coli K12, a model organism of 

commensal strains of gut E.coli bacteria, exposed to regular nutrient supply, modelling two 

daily meals. Using proteomic approaches we compared proteins extracted from E.coli during 

the established pattern of alternations of the Exp and Stat growth phases and analysed the 

identified proteins for their relevance to energy metabolism. ClpB, a bacterial protein mimetic 

of-MSH, was used as a marker of E.coli proteins which can be involved in signaling satiety. 
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We have developed a ClpB immunoassay, in order to determine if ClpB production and plasma 

concentrations may depend on the bacterial growth and intestinal delivery of nutrients. 

Pursuing the possibility that gut bacterial proteins may directly influence peripheral and 

central pathways involved in appetite control, we examined in mice and rats the effects of 

E.coli proteins from the Exp or Stat growth phases on food intake and meal pattern, plasma 

GLP-1 and PYY and activations of some key appetite-regulating neurons in the brain such as in 

the ARC and CeA. 

 

RESULTS 

 

E.coli Growth Dynamics in Vitro After Regular Nutrient Provision and Proteomic Analysis 

A regular, each 12 h provision of Müeller-Hinton (MH) nutritional medium to cultured E.coli 

increased bacterial biomass and shortened the Exp growth phase (Fig. 1A,B). As such, after 

the 5th MH medium supply, the Exp growth phase lasted for 20 min, and it did not further 

change after the following nutrient provisions with the same (0.3) relative increase in OD, 

reflecting an identical bacterial growth (Fig. 2A-C). According to the McFarland standards, an 

increase of 0.3 OD corresponds to an increment of 108-109 of bacteria.  

Because the growth dynamics of regularly-fed bacteria can be associated with the host 

prandial and postprandial phases, we have compared the proteomes of E.coli extracted in the 

middle of the Exp phase, i.e. 10 min after nutrient provision, and in the Stat phase 2 h later, a 

time normally characterized by a feeling of satiety in the host (Fig. 1C). Two-dimensional 

polyacrylamide gel electrophoresis was performed separately on membrane and cytoplasmic 

fractions (Fig. 1D,E). The total number of detected protein spots was 2895 (1367 membrane 

and 1528 cytoplasmic). Comparative analysis revealed 20 differentially expressed (by at least 
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1.5 fold) membrane proteins (Suppl. Fig. 1A,B). Among them, 17 proteins showed increased 

expression in the Exp phase and of these, 15 were identified by mass spectrometry (Suppl. Fig. 

1C). Contrary to the membrane proteins, 19 from 20 differentially expressed cytoplasmic 

proteins showed increased levels during the Stat phase (Suppl. Fig. 2C). Only flagellin had 

higher expression in the Exp phase. The majority of identified proteins were implicated in 

either anabolic or catabolic processes (Suppl. Tables 1,2) showing an overall mixed metabolic 

profile in both growth phases, as summarized in Fig. 1F. Thus, these data show that the 

proteomes of regularly fed E.coli are qualitatively different between growth phases, although 

their metabolic profiles are not clearly distinguishable. 

After the 9th nutrient provision, total bacterial proteins were extracted in the Exp and Stat 

phases displaying concentrations of 0.088 mg/ml and 0.15 mg/ml, respectively, and were used 

in the ATP production assay, tested for ClpB levels and used for intracolonic infusions and 

intraperitoneal (I.P.) injections. 

 

ATP Production Capacity by E.coli Proteins in Vitro is Similar for Both Growth Phases  

To verify if proteome changes between growth phases may influence bacterial energy 

extraction capacities, the adenosine-5'-triphosphate (ATP) production by E.coli K12 proteins 

from the Exp and Stat phases was tested in vitro. We found that proteins from both growth 

phases were able to increase ATP production from different energy sources (Fig. 1G). The ATP 

concentrations were higher, when a protein-containing mixed energy source, such as the MH 

medium was used as compared to a sucrose solution. The ATP production increased dose-

dependently with concentrations of bacterial proteins. However, no significant differences 

were found between ATP-producing effects of proteins from the Exp or Stat phases (Fig. 1G). 

These results confirm that bacterial proteins may continue to catalyze ATP production after 
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bacterial lysis suggesting that nutrient-induced bacterial growth may contribute to increased 

ATP production in the gut. Changes in whole-body ATP content can be relevant to appetite 

control via regulation of the activity of adenosine-5'-monophosphate-activated protein 

kinase, resulting in increased food intake, when ATP levels are low and vice versa (Dzamko and 

Steinberg, 2009). Furthermore, increased intraluminal ATP production may contribute to the 

digestive process via gut relaxation (Glasgow et al., 1998). 

 

Increased E.coli ClpB Production in the Stat Growth Phase 

E.coli ClpB is a conformational protein mimetic of -MSH, and may be potentially involved in 

E.coli effects on host feeding. We developed and validated an enzyme-linked immunosorbent 

assay (ELISA) for detection of E.coli ClpB (for details see Experimental procedures and Suppl. 

Fig. 3). To investigate whether ClpB production is different between two growth phases, we 

used Western Blot and ELISA. ClpB-corresponding, 96 KDa bands was detected in all proteins 

preparations, with an increased mean level during the Stat phase (Fig. 1H,I). These changes 

were further confirmed using the ClpB ELISA, showing almost doubling of ClpB concentrations 

in the Stat phase (Fig. 1J). 

 

In vivo Nutrient-Induced Bacterial Growth & Effects of E.coli Proteins in the Gut to Stimulate 

GLP-1 and PYY Plasma Release 

To verify if our in vitro model of regular nutrient-induced E.coli growth is relevant to gut 

bacterial growth dynamics in vivo, MH medium or water were infused into the colon of 

anaesthetized rats. We found that instillations of the MH medium, but not water, induced 

bacterial proliferation in the gut with the Exp growth phase lasting for 20 min (Fig. 2A), 

consistent with our in vitro data. To see if the bacterial growth in the gut may be accompanied 
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by increased plasma ClpB, its concentrations were measured in the portal vein before and 

after colonic infusions. ClpB was readably detected in rat plasma but no significant differences 

were found 30 or 60 min after MH infusion (Fig. 2B). 

Nevertheless, plasma ClpB concentration correlated positively with ClpB DNA content in 

rat faeces (Fig. 2C); presence of such correlations were confirmed by an independent study in 

rats (data not shown). Furthermore, plasma ClpB levels were increased in mice after 3 weeks 

of gavage with wild type but not with ClpB mutant E.coli (Suppl. Fig. 3F). These data indicate 

that plasmatic ClpB depends on number of ClpB-expressing bacteria in the gut but it cannot 

be a short-term signal of satiation to the brain. 

Next, we determined if growth-dependent changes of E.coli proteomes may influence 

host appetite control locally in the gut via release of satiety hormones. In a separate 

experiment, anaesthetized rats received 20 min colonic infusions of E.coli proteins from the 

Exp or Stat phases, both at 0.1 mg/kg. The concentrations of ClpB in the colonic mucosa 

measured 20 min after the infusion were higher in rats receiving the Stat phase proteins (Fig. 

2D) but it was not affected in plasma (Fig. 2E). The colonic infusions of E.coli proteins from the 

Exp, but not the Stat phase, stimulated plasma levels of GLP-1 (Fig. 2F) and, in contrast, 

increased plasma levels of PYY were detected after infusion of proteins from the Stat, but not 

the Exp, phase (Fig. 2G). Thus, E.coli proteins produced during nutrient-induced bacterial 

growth in the gut may influence short-term appetite control via stimulation of gut satiety 

hormone release. 

 

Food Intake and Hypothalamic and Amygdala c-Fos Activation After Acute E.coli Protein 

Administration in Rats 
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Because E.coli-derived ClpB was present in plasma of rats and mice, it is possible that plasmatic 

E.coli-derived proteins might influence long-term appetite control via a systemic route. 

Testing this possibility in overnight fasted rats, we found that a single I.P. administration (0.1 

mg/kg) of the Stat phase membrane fraction of E.coli proteins, decreased 1 h- and 2 h-food 

intake during refeeding as compared with the control group (Fig. 3A). In contrast, 

administration of the cytoplasmic fraction of the Exp phase E.coli proteins increased 4 h food 

intake (Fig. 3B). Because both cell protein fractions are simultaneously present and in order 

to see if E.coli proteome may influence spontaneous food intake, free feeding rats were 

injected before the onset of the dark phase with total bacterial proteins (0.1 mg/kg, I.P.). Food 

intake was measured for 2 h after injections, and was followed by the immunohistochemical 

analysis of c-Fos expression in brain. We found that rats injected with bacterial proteins from 

the Stat phase ate less than controls, while food intake was not significantly affected by 

injections of bacterial proteins from the Exp phase (Fig. 3C). 

An increased number of c-Fos-positive cells was found in the ARC of rats receiving Stat 

phase proteins (Fig. 4D). The majority of c-Fos expressing cells in the ARC contained -

endorphin (Controls, 71.31 ± 12.81%, E.coli exp. phase, 73.56 ± 10.45% , E.coli stat. phase, 

80.50 ± 9.68%, ANOVA p=0.36),  i.e. were identified as anorexigenic POMC neurons (Fig. 4A-

C). Although the total numbers of -endorphin-positive cells were not significantly different 

among the groups (Controls, 54.82 ± 10.67 cells, E.coli exp. phase, 66.03 ± 11.43 cells, E.coli 

stat. phase, 66.03 ± 5.06 cells, ANOVA p=0.09), the relative number of c-Fos activated -

endorphin neurons was increased in rats receiving Stat phase proteins (Fig. 4E). Furthermore, 

the number of c-Fos activated -endorphin neurons correlated inversely with food intake (Fig. 

4F). 
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C-Fos expressing cells were also analyzed in the ARC neighboring ventromedial nucleus 

(VMN, Fig. 4G-I) showing their increased number in rats receiving bacterial proteins from the 

Stat phase (Fig. 4J). 

Similarly, in the CeA, the number of c-Fos-positive neurons was increased in rats injected 

with the Stat phase proteins (Fig. 4O) and correlated inversely with food intake (Fig. 4P). We 

used double-immunostaining to see if c-Fos activated CeA neurons were located in the 

terminal field of CGRP-positive fibers (Fig. 4K-M). A confocal microscopy revealed that c-Fos 

expressing neurons in the CeA were often surrounded by CGRP fibers (Fig. 4N), confirming 

that they were located in the terminal field of anorexigenic projections from the parabrachial 

nucleus. Thus, acute systemic increase in E.coli proteins from the Stat phase was associated 

with decreased food intake and activation of anorexigenic neurons including both accessible 

to circulating factors such as in the ARC and in the brain-downstream nuclei such as CeA. 

 

Feeding Pattern and Hypothalamic Neuropeptides After Chronic E.coli Protein Injections in 

Mice 

To determine the potential long-term effects of systemic presence of E.coli proteins on body 

weight, food intake and feeding pattern, two daily injections of E.coli total proteins (0.1 mg/kg, 

I.P.) were administered for one week to free feeding mice. The first day after injections was 

characterized by significantly lower body weight and food intake in mice receiving bacterial 

proteins from the Stat but not the Exp phase (Fig. 5A,B). Although daily meal size was not 

significantly different among the groups, its decrease relative to the day before injection was 

observed after one week in mice receiving Stat phase proteins as compared to controls (Fig. 

5C). In contrast, meal frequency in these mice showed an increasing trend (Fig. 5D). Whereas 

total food intake among the 3 groups was not significantly different during the study period, 
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mice injected with the Exp phase proteins had increased food intake during the light (inactive) 

period (Fig. 5E), and decreased during the dark (active) period (Fig. 5F). In contrast, mice 

receiving the Stat phase proteins displayed lower food intake than controls in the dark period 

without any effect in the light period (Fig. 5E,F). While during the first day after injections mice 

receiving proteins from the Stat phase displayed increased satiety ratio (Fig. 5G), reflecting an 

increased duration of post-meal intervals relative to the amount of food eaten during 

preceding meals, the same group showed a tendency towards a decrease at the end of the 

study (Fig. 5H). 

To get an insight into the molecular changes underlying altered feeding pattern 

observed after 6 days of bacterial protein injections, we analyzed hypothalamic mRNA 

expression levels of several neuropeptides involved in appetite control. We found that mice 

receiving the Stat phase proteins showed elevated precursor mRNA levels of anorexigenic 

brain-derived neurotrophic factor (BDNF) and of orexin as compared to controls, and of 

anorexigenic corticotropin-releasing hormone (CRH) as compared to mice injected with 

proteins from the Exp phase. The latter also showed elevated mRNA levels of BDNF but 

decreased mRNA levels of the precursor of orexigenic pyroglutamylated RFamide peptide 

(QRFP) (Suppl. Table 3). These data suggest that long-term systemic effects of E.coli proteins 

in mice may influence their meal pattern without affecting total energy balance via 

modulation of hypothalamic neuropeptide expression. 

 

Electrophysiological Activation of Hypothalamic POMC Neurons by E.coli-Derived ClpB 

To confirm that bacterial proteins present in the circulation may directly activate feeding-

related brain circuitry, we used an electrophysiological approach. We looked if ClpB, an -

MSH mimetic protein and a marker of E.coli proteins up-regulated in the Stat phase, may 



 12 

directly activate ARC POMC neurons. Brain slices from POMC-eGFP mice were examined using 

cell-attached patch-clamp electrophysiology (Fig. 6A,B). We found that, bath addition of ClpB 

(1 nM) increased action potential frequency of ~50 % of the tested ARC POMC neurons (n 

=7/13) by 229 ± 109 % (basal: 2.02 ± 0.78 Hz vs. ClpB: 3.82 ± 1.36 Hz, Fig. 6C,D). In general, 

POMC neurons did not fully return to their basal firing rate until at least 10 min after ClpB 

application (Fig. 6C,D). 

 

DISCUSSION 

Our study reveals that bacterial proteins may physiologically link gut E.coli to host control of 

appetite involving both short-term effects on satiation, associated with nutrient-induced 

bacterial growth, acting locally in the gut, as well as long-term regulation of feeding pattern 

associated with plasmatic changes of bacterial proteins that may activate central anorexigenic 

circuitries. The following main results support this conclusion: 1) regular provision of nutrients 

stabilizes the Exp growth of E.coli lasting for 20 min both in vitro and in vivo; 2) E.coli Stat 

growth phase was characterized by increased total bacterial protein content and a different 

proteome profile, including increased expression of ClpB, a bacterial protein mimetic of -

MSH; 3) E.coli proteins dose-dependently stimulated in vitro ATP production; 4) Plasma levels 

of ClpB did not change after nutrient-induced bacterial growth in the gut, but correlated with 

ClpB DNA in gut microbiota and was increased after chronic E.coli supplementation; 5) 

Intestinal infusion of E.coli proteins from the Exp or Stat growth phases increased plasma GLP-

1 or PYY levels, respectively; 6) Acute I.P. administrations of E.coli proteins from the Stat phase 

decreased food intake and led to c-Fos activation in anorexigenic ARC and CeA neurons while 

their chronic I.P. injections reduced meal size without affecting total food intake and body 

weight, and finally 7) ClpB stimulated firing rate of ARC POMC neurons ex vivo. 
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Regular Provision of Nutrients and Bacterial Growth 

Among the wide variety of bacteria in the gastrointestinal tract, E.coli is the most abundant 

facultative anaerobe, justifying it as a model organism for commensal gut bacteria. Here, we 

show that during regular nutrient supply to cultured E.coli the growth dynamics of a rich 

bacterial population is characterized by an immediate Exp growth entering the Stat phase 20 

min after nutrient supply. The growth cycle, which is apparently limited to only one division 

of bacteria, is then identically reproduced after the next provision of nutrients, suggesting that 

it can play a role of a pacemaker. A similar dynamics of bacterial growth in response to nutrient 

infusion was seen in the rat colon, supporting that our in vitro data can be relevant to in vivo 

situation, e.g. in humans taking regular meals, and that it is not limited to E.coli. The 108-109 

increase of bacterial number remained stable after each new provision, suggesting that the 

corresponding stable production of the bacterial biomass in the gut, including proteins, may 

play a role in regulation of host feeding. Given that the average prandial phase in humans is 

similar to the duration of the Exp growth of regularly-fed bacteria, it is tempting to speculate 

that host satiety may be triggered by gut bacteria reaching the Stat phase 20 min after a 

contact with ingested nutrients. However, bacterial content in the gastrointestinal tract 

ranges from 103 in the stomach to 1012 in the colon. Moreover, about 2 h is necessary for the 

advancement of ingested nutrients through the stomach and small intestine, and the transit 

through the large intestine requires about 10 h. Because of such a delay of nutrient delivery 

to most gut bacteria, it is likely that beside the direct contact with the nutrient bolus, bacterial 

growth during the prandial phase might also be initiated by nutrients released into the gut 

lumen by the Pavlovian cephalic reflex to ingestion (Power and Schulkin, 2008). 
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Bacterial Protein Expression During Growth Phases and Intestinal Sensing 

Using ClpB as a marker of E.coli proteins helped us to determine the putative action sites of 

bacterial proteins on host appetite pathways. ClpB is a chaperone protein present in both 

cytosolic and membrane E.coli compartments (Winkler et al., 2010); its increased expression 

may save bacteria from elevated protein aggregations in the Stat phase (Kwiatkowska et al., 

2008). From the other hand, as an -MSH mimetic, increased ClpB production may contribute 

to the activation of anorexigenic pathways after nutrient-induced E.coli proliferation. 

Although bacterial proteins are present in the intestinal mucosa (Haange et al., 2012), their 

passage across the gut barrier has not been reported. In theory, after spontaneous or induced 

bacterial lysis in the gut (Rice and Bayles, 2008), bacterial components may pass across the 

mucosal epithelial barrier by absorption in enterocytes and by paracellular diffusion. For 

example, lipopolysaccharide, which is released upon lysis of gram-negative bacteria, is 

naturally present in plasma of healthy humans and mice with higher basal levels after 

consuming high-fat meals (Cani et al., 2007). Here we show that bacterial ClpB is present in 

rat plasma with levels remaining stable following bacterial proliferation in the gut or after 

intestinal infusion of bacterial proteins. This indicates that plasmatic ClpB, and likely other 

bacterial proteins present in plasma, are not acutely influenced by nutrient-induced bacterial 

proliferation and, hence, their potential effects on the short-term satiety signaling should be 

limited to the gut. 

Nevertheless, plasma ClpB concentrations correlated with ClpB DNA in gut microbiota, 

suggesting that the number of ClpB-producing bacteria, which should be at long-term 

relatively independent from its daily fluctuations of the nutrient-driven bacterial growth 

(Liang et al., 2015; Zarrinpar et al., 2014), may be the main factor responsible for the long-

term maintenance of plasma ClpB levels. This conclusion is further supported by our data, 
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obtained upon validation of ClpB ELISA, showing increased plasma ClpB concentrations in mice 

chronically gavaged with E.coli but not in mice that received ClpB-mutant E.coli (Suppl. Fig. 3). 

Thus, gut bacterial proteins present in plasma such as ClpB, may act systemically potentially 

linking the composition of gut microbiota with the long-term control of host food intake. 

 

Intestinal Effects of E.coli Proteins on Satiety Hormones  

Next, we studied if E.coli proteins in the gut may stimulate the systemic release of gut satiety 

hormones such as GLP-1 and PYY (Adrian et al., 1985; Flint et al., 1998). In fact, both hormones 

are produced by the same or distinct enteroendocrine L-cells, present throughout the 

intestine and especially abundant in the colon (Eissele et al., 1992). These cells are directly 

and continuously exposed to gut bacteria and their fragments, including proteins. We found 

differential effects of E.coli proteins on GLP-1 and PYY release, with stimulation of GLP-1 levels 

by proteins from the Exp phase and of PYY levels from those of the Stat growth phase. These 

results point to some similarities between nutrient-induced bacterial growth and the known 

dynamics of meal-induced release of GLP-1 and PYY. In fact, as shown in humans, an acute 

peak of plasma GLP-1 occurs 15 min after an intragastric infusion of a liquid meal, while a 

longer-lasting elevated plasma PYY starts between 15-30 min after a meal (Edwards et al., 

1999; Gerspach et al., 2011). A longer release of GLP-1 has been associated with fat intake 

(van der Klaauw et al., 2013). Thus, the growth dynamics of regularly-fed gut bacteria fits 

temporally into the dynamics of host GLP-1 and PYY release, suggesting an inductive role of 

gut bacteria, and specifically of E.coli proteins, in meal-induced signaling of intestinal satiety 

and meal termination. A differential effect of E.coli proteins from the Exp phase to stimulate 

GLP-1, may possibly reflect an incretin role of GLP-1 in glycemic control (Edwards et al., 1999). 
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Presence of functional MC4R in L-cells (Panaro et al., 2014) may possibly underlie activation 

of these cells by bacterial proteins containing-MSH-mimetics such as ClpB. 

 

Systemic Effects of E.coli Proteins on Food Intake and 

Appetite-Regulating Brain Pathways 

We showed here that administration of E.coli proteins in hungry or free-feeding rats and in 

free-feeding mice changed acutely their food intake depending on the growth phase of E.coli. 

Because the ATP production by Exp and Stat proteins was similar, such changes in food intake 

must involve other underlying mechanism than energy extracting capacities of bacterial 

proteins. Considering that plasma ClpB was not affected by intestinal infusion of nutrients and 

was stable over short-time, any systemic action of bacterial proteins on appetite should be 

interpreted as relevant to their long-term modulatory effects. Furthermore, because of the 

short duration of the Exp growth phase of regularly-fed bacteria, bacterial proteins 

upregulated during the long-lasting Stat phase should dominate in plasma under physiological 

situations. We found that E.coli Stat phase proteins produced generally acute anorexigenic 

responses in both hungry and free-feeding animals. However, after their chronic delivery the 

daily food intake was normalized. A progressive decrease of meal size in chronically-injected 

mice was accompanied by increased meal frequency, most likely as a compensatory 

mechanism to maintain total food intake. Accordingly, the pattern of mRNA expression of 

appetite-regulating neuropeptides in the hypothalamus showed a mixed response with 

activation of both anorexigenic and orexigenic pathways. Of note, both groups of mice 

receiving E.coli proteins showed a similar increase of BDNF mRNA, an anorexigenic pathway 

downstream of MC4R in the VMN (Xu et al., 2003). This pathway may underlie a decreased 

food intake during the dark phase observed in both groups. This effect was further 
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accentuated in mice injected with the Exp phase proteins showing lower levels of orexigenic 

QRFP (Chartrel et al., 2003) and NPY (Herzog, 2003). By contrast, mice that received Stat phase 

proteins displayed an enhanced anorexigenic profile with elevated levels of CRH mRNA, most 

likely implicating MC4R-expressing PVN neurons (Lu et al., 2003). These changes, combined 

with increased mRNA precursor expression of orexin A that stimulates meal frequency (Baird 

et al., 2009), may contribute to the altered meal pattern after 6 days of injections. Thus, these 

results support a role of systemically present E.coli proteins in regulation of meal pattern, 

without affecting long-term energy balance. 

Consistent with our hypothesis that bacterial proteins produced during the Stat phase 

may activate some key central anorexigenic pathways, we found an increased c-Fos 

expression in the ARC POMC neurons as well as in the VMN. This nucleus has long been known 

as a satiety center and is interconnected with the ARC POMC neurons (Sternson et al., 2005). 

The obtained c-Fos pattern resembles that of a satietogenic response during food ingestion 

(Johnstone et al., 2006) or induced by satiety hormones such as PYY or pancreatic polypeptide 

(Batterham et al., 2002; Blevins et al., 2008; Challis et al., 2004; Lin et al., 2009). A relatively 

small number (~10%) of c-Fos-activated POMC neurons suggests that circulating E.coli 

proteins might have a modulatory effect on appetite control acting via this hypothalamic 

pathways. Although it was not feasible to determine c-Fos activation by the NPY/AgRP 

neurons, their contribution to signaling by bacterial proteins cannot be excluded; these 

neurons also express MC3R and MC4R (Mounien et al., 2005). Moreover, a stronger activation 

of c-Fos in the field of anorexigenic CGRP projections to the CeA (~40%) may signify a 

convergent down-stream action from ARC POMC and NPY/AgRP neurons, and possibly from 

other appetite-regulating brain areas, such as the nucleus of the solitary tract. 
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Finally, to determine if bacterial circulating proteins might have direct effect on 

appetite-regulating brain sites, we applied ClpB on hypothalamic slices which contain, among 

others, the ARC POMC neurons. Our results show that about 50% of the studied POMC 

neurons increase their action potential frequency, remaining activated for at least 10 min. The 

sustained effect of ClpB is consistent with the effect of α-MSH on POMC neurons expressing 

functional MC3R and MC4R (Smith et al., 2007). However, we do not know if ClpB was able to 

activate POMC neurons by direct binding to these receptors or indirectly via a local neuronal 

network. In either cases, our results point to a role of ClpB as a physiological activator of the 

hypothalamic anorexigenic pathway, somewhat similar to satietogenic PYY and leptin 

(Batterham et al., 2002; Cowley et al., 2001). 

Taken together, these data support a role of systemically-present E.coli proteins in 

influencing host appetite via activation of brain anorexigenic pathways, possibly involving 

bacterial mimetic proteins of peptide hormones such as ClpB. The results also suggest that 

changes of microbiota composition, resulting in low or high abundance of E.coli, and possibly 

of other bacteria expressing the same proteins, e.g. from the Enterobacteriaceae family, may 

influence via a systemic route the meal pattern. Future studies should determine, if gut 

bacteria belonging to other families may also express proteins with appetite-modulating 

properties and clarify their possible involvement in the host metabolic phenotypes. 
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EXPERIMENTAL PROCEDURES 

Detailed experimental procedures are shown in Supplementary materials. 

 

In vitro E.coli growth and proteomic analysis 

E.coli K12 bacteria were cultured at 37°C in MH medium. E.coli protein extracts were resolved 

by isoelectric point using the IPGphor isoelectric focusing system (GE Healthcare). Molecular 

weight separation was done using Ettan Daltsix vertical electrophoresis system (GE 

Healthcare). Gels proteins were visualized by CBB G-250 staining (BIO-RAD) and analyzed using 

ImageMaster 2D Platinum 5.0 software (GE Healthcare). The protein spots of interest were 

excised using the Ettan Spot Picker (GE Healthcare), and automated in-gel digestion of 

proteins was performed on the Ettan Digester (GE Healthcare). Protein extracts were analyzed 

with a nano-LC1200 system coupled to a 6340 Ion Trap mass spectrometer equipped with a 

nanospray source and an HPLC-chip cube interface (Agilent Technologies). For protein 

identification, MS/MS peak lists were extracted and compared with the protein databases by 

using the MASCOT Daemon search engine 2.2.2 (Matrix Science). 

 

ATP assay 

Bacterial proteins from the Exp or Stat phases were added to the plate in duplicates with 3 

concentrations (1, 10 and 25 µg/mL), adjusted with ATP assay buffer to the same volume and 

incubated with different nutrients solution including 15% sucrose or MH medium 2 h at 37°C. 

After the incubation, ATP was measured using an ATP assay kit according to the 

manufacturer’s instructions (BioVision). 
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Development and validation of ClpB immunoassay 

Design of the ClpB detection assay was based on several criteria, such as a specific and 

sensitive detection in a linear concentration range (Suppl. Fig. 3A). For this assay both 

polyclonal and monoclonal anti-ClpB antibodies were generated. To verify that ClpB plasma 

assay detects ClpB derived from gut bacteria, we used the ClpB ELISA to measure ClpB in 

plasma of mice which had been supplemented via intragastric gavage daily for 3 weeks with 

WT or with ΔClpB E.coli. Plasma samples were available from our previous study (Tennoune 

et al., 2014). We found that ClpB was normally present in mouse plasma including both 

controls and mice gavaged with a culture broth without bacteria. Importantly, ClpB plasma 

levels were increased in mice receiving WT E.coli but were unchanged in mice supplemented 

with ClpB-deficient E.coli, confirming the gut bacterial origin of plasmatic ClpB (Suppl. Fig. 3F). 

 

Intestinal administrations of E. coli proteins in rats 

Animal care and experimentation were in accordance with guidelines established by the 

National Institutes of Health, USA and complied with both French and European Community 

regulations (Official Journal of the European Community L 358, 18/12/1986). Female Sprague-

Dawley rats, body weight 200-250 g (Janvier Labs, Genest-Saint-Isle, France) were kept in 

holding cages (3 rats per cage) in a fully equipped animal facility under regulated 

environmental conditions (22 ± 1 ˚C, on a 12 h light–dark cycle with lights on at 7:30 a.m.) for 

1 week in order to acclimatize them to the housing conditions. Standard pelleted rodent chow 

(RM1 diet, SDS, UK) and drinking water were available ad libitum. 
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Experiment #1 

Rats were anaesthetized by ketamine / xylazine solution and after a laparotomy, the colon 

was mobilized by placing 2 ligatures: 1st at the caecocolonic junction and the 2nd, 4 cm below. 

Colonic infusions and luminal content sampling were performed using a polypropylene 

catheter inserted into the ascending colon and fixed with the 1st ligature. 2 ml of MH medium 

or water were infused into the colon and immediately thereafter withdrawn for the 

measurement of OD. Blood samples were taken from the portal vein before and 30 and 60 

min after the 1st infusion. Faecal samples were taken from the colon at the end of experiment 

for DNA extraction and PCR of ClpB.  

 

Experiment #2 

Rats were anaesthetized and the colon was mobilized as described above. E.coli proteins (0,1 

µg/kg in 2 ml of PBS) were infused into colon once for 20 min. Blood samples were taken from 

the portal vein before and after infusions for assays of GLP-1, PYY and ClpB. Samples of colonic 

mucosa were taken for ClpB ELISA assay. GLP-1 and PYY assays were performed using a 

fluorescent enzyme immunoassay kit (Phoenix Pharmaceutical Inc., CA), according to the 

manufacturer’s instructions. 

 

Administrations of E. coli proteins in rats, food intake and brain c-Fos study 

Male Wistar rats, were acclimatized to the housing conditions and were fed as described 

above. Two experiments including food restriction were performed in the same rats with 4 

days interval. The 3rd experiment in free feeding rats involved their new series. The 

experimental design is presented in details in supplementary materials. Food intake was 

measured during 4h in first two experiments and 2h in the 3rd experiment after which rats 
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were anaesthetized by sodium pentobarbital (0.2 mg/kg, I.P.) and perfused for the 

immunohistochemical study of c-Fos expression in the brain. Positive cells were counted at 

x20 magnification from 6 consecutive sections. 

 

Chronic administrations of E. coli proteins in mice 

Two-month-old male C57Bl6 mice were placed in the BioDAQ mouse cages (Research Diets, 

Inc., New Brunswick, NJ) and divided into three groups (n=8), each receiving for one week two 

daily I.P. injections at 9:00 and at 18:30 of either: (i) PBS, (ii) bacterial proteins in Exp or (iii) in 

Stat phase (0,1 mg/Kg of body weight). Feeding data was analyzed using the BioDAQ data 

viewer 2.3.07 (Research Diets). For the meal pattern analysis, the inter-meal interval was set 

at 300 s. The satiety ratios were calculated as time (s) of post-meal interval divided by amount 

of food (g) consumed in the preceding meal. After the experiment, mice were killed by 

decapitation; the brain was removed and the hypothalamus dissected for the neuropeptide 

mRNA microarray.  

 

Electrophysiological recordings 

Brain slice were prepared from adult POMC-eGFP mice as previously described (Fioramonti et 

al., 2007) and incubated in oxygenated extracellular medium for a recovery period at least 60 

min at RT. Cell-attached recordings were made using a Multiclamp 700B amplifier, digitized 

using the Digidata 1440A interface and acquired at 3 kHz using pClamp 10.3 software (Axon 

Instruments, Molecular Devices, Sunnyvale, CA). After a stable baseline was established, 1 nM 

of ClpB (Delphi Genetics) was perfused for 5-10 minutes. The POMC neurons’ firing rate was 

measured over the last 3 min of the ClpB perfusion, 7-10 min after the perfusion and 

compared with the firing rate measured 3 min before the perfusion.  
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Statistical analysis 

Data were analyzed and the graphs were plotted using the GraphPad Prism 5.02 (GraphPad 

Software Inc., San Diego, CA). Data are shown as means ± standard error of means (SEM), and 

for all test, p < 0.05 was considered statistically significant. 
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Figure legends 

 

Figure 1. Effects of repeated nutrient supply on E.coli growth in vitro and proteomic analysis. 

A,B. Dynamics of E. coli K12 bacterial growth during 9 regular provisions of MH medium. C. 

Proteins were extracted during the last growth cycle as indicated by arrows during the Exp 

phase (Exp, a) and the Stat phase (Stat, b). Representative images of Coomassie Brilliant Blue-

stained 2-D gels of cytoplasmic proteins extracted from E. coli K12 in Exp (D) and in Stat (E) 

phases, MW, molecular weight. F. Number of E.coli proteins increased in each growth phase 

in relation to their catabolic or anabolic properties. G. Effects of bacterial proteins on ATP 

production in vitro from different food substrates. ClpB protein levels ±SEM in 2 growth phases 

was analyzed by Western Blot (H,I) and ELISA (J). OD, optical density. Student’s t-test, *p<0.05. 

 

 

Figure 2. Effects of intestinal infusions of nutrients and E.coli proteins in rats. A. Bacterial 

growth dynamics after colonic instillations of MH medium, and (B) plasma ClpB before and 

during instillations. C. Detection of ClpB DNA in rat faeces and its correlation with plasma ClpB 

levels before instillations. Effects of colonic infusion of E.coli proteins from Exp and Stat 

growth phases on concentrations of ClpB in colonic mucosa (D) and plasma (E), and plasma 

concentrations of GLP-1 (F) and PYY (G), before (T0) and 20 min after infusions (T20). D, 

Student’s t-test, *p<0.05, F,G, ANOVA, p=0.02 and p= 0.0004, respectively, Tukey’s post-test 

* p<0.05 and ***p<0.001. All data are shown as mean±SEM. 
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Figure 3. Food intake after acute injections of E.coli proteins in rats. A,B. Food intake after 

I.P. injections of membrane (A) and cytoplasmic (B) fractions of E.coli proteins from Exp and 

Stat growth phases or PBS as a control (Contr) in rats during refeeding after overnight food 

restriction. C. 2h food intake in free-feeding rats injected with total E.coli proteins before the 

onset of the dark phase. A, ANOVA p=0.04, Tukey’s post-test Contr. vs. Stat., *p<0.05, 

Student’s t-test Contr. vs Stat. $p=0.01. B, Student’s t-tests, Exp. vs. Contr. and vs. Stat. 

$p<0.05. C, ANOVA p=0.05, Tukey’s post-test Contr. vs. Stat., *p<0.05 and Student’s t-test Exp. 

vs. Stat. $p=0.04. All data are shown as mean±SEM. 

 

 

Figure 4. Effects of E.coli proteins on c-Fos expression in the brain. Immunohistochemical 

detection of c-Fos (green) in the ARC (A-C), VMN (G-I) and CeA (K-N) 2 h after I.P. injections of 

Exp. and Stat. E.coli proteins in rats. Double staining with -endorphin (-end, red) in the ARC 

(A-C) and with CGRP in the CeA (red, K-N) including a confocal image (N). c-Fos-positive cell 

number in the ARC (D), VMN (J) and CeA (O). Percentage of -end activated cells in the ARC 

(E) and their correlation with food intake (F).  Correlation between number of c-Fos cells in 

the CeA and food intake (P). D,J, ANOVA p<0.05, Tukey’s post-test, *p<0.05. E, ANOVA, 

p=0.006, Tukey’s post-tests *p<0.05 and **p<0.01. O, ANOVA, p=0.0003, Tukey’s post-tests, 

**p<0.01 and ***p<0.001. All data are shown as mean±SEM. 
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Figure 5. Effects of chronic injections of E.coli proteins in mice. A,B. Effects of bi-diurnal 

injections during 6 days, of E.coli proteins from Exp and Stat  growth phases or PBS as a control 

(Contr) in mice on: body weight (A), food intake (B), meal size (C) and meal number (D). Total 

mean food intake was also analyzed separately in light (E) and dark (F) periods. The satiety 

ratio, expressed as post-meal interval (s) x1000 vs. food (g) consumed in the preceding meal, 

at day 1 (G) and day 6 (H). A, B, 2-way RM ANOVA, Bonferroni post-tests Contr. vs Stat., 

***p<0.001 and **p<0.01. C, Student’s t-test Contr. vs. Stat. #p<0.05. E, F, K-W test p<0.002, 

Dunn’s post-tests, ***p<0.001 and M-W test #p<0.05. G, ANOVA p=0.005, Tukey’s post-test, 

**p<0.01. H, Student’s t-test, $p<0.05. All data are shown as mean±SEM. 

 

Figure 6. Effect of ClpB on electrical activity of ARC POMC neurons. POMC-eGFP neuron 

(arrow) visualized with x60 objective under infrared (A) and fluorescent light (B) during patch-

clamp recording. Action potential frequency expressed in percent of change vs. basal level, 

mean ±SEM (C). Representative cell-attached recording of a POMC-eGFP neuron activated by 

ClpB (1 nM), thick black bar above the trace. Washout: 10 min. RM ANOVA p<0.05, Bonferroni 

post-tests *p<0.05,**p<0.01. 
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