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Unsupervised data-driven 
stratification of mentalizing 
heterogeneity in autism
Michael V. Lombardo1,2,*, Meng-Chuan Lai2,3,4,*, Bonnie Auyeung2,5, Rosemary J. Holt2, 
Carrie Allison2, Paula Smith2, Bhismadev Chakrabarti2,6, Amber N. V. Ruigrok2, 
John Suckling7,8, Edward T. Bullmore7,8, MRC AIMS Consortium2,7,9,10,11,†, Christine Ecker9,12, 
Michael C. Craig9,13, Declan G. M. Murphy9, Francesca Happé11 & Simon Baron-Cohen2,8

Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel 
approaches are needed to parse this heterogeneity to enhance precision in clinical and translational 
research. Applying a clustering approach taken from genomics and systems biology on two large 
independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable 
evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an 
explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region 
of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45–62% of ASC 
adults show evidence for large impairments (Cohen’s d = −1.03 to −11.21), while other subgroups are 
effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population 
that may allow for more individualized inferences and accelerate research towards precision medicine 
goals.

Autism spectrum conditions (ASC) are currently defined by consensus behavioral criteria of difficulties in 
social-communication and restricted repetitive behaviors. Although the population is subsumed under a single 
unitary diagnostic label, variability between affected individuals is considerable1. This diversity or ‘heteroge-
neity’ inherent within ASC can be seen at multiple levels, from a myriad of different etiological mechanisms2, 
developmental trajectories3,4, sex/gender5, clinical comorbidities6, cognitive/behavioral features (e.g., language 
development7), and the list could go on8. Accordingly, many in the field now subscribe to the idea that there 
is not just one ‘autism’, but rather multiple ‘autisms’9,10. Given these rich theoretical ideas about the complexity 
manifesting behind unitary clinical diagnostic labels like ‘autism’, it seems like a natural extension of logic that 
research would follow along such ideas. However, the opposite occurs a majority of the time, whereby clinical and 
translational research is done utilizing case-control comparison methodology that treats autism as one omnibus 
group and makes comparison to a matched ‘control’ or ‘comparison’ group. While the standard case-control 
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approach appears to be congruent with the categorical divide expressed within psychiatric diagnostic manu-
als like DSM-5 and ICD-10, it is antithetical with the rich ideas suggesting that in order to move forward in 
understanding mechanisms affecting individuals with ASC, one cannot effectively utilize a paradigm that lumps 
together heterogeneous mixtures of different types of individuals. This problem is not necessarily specific to 
autism per se, and is a general issue within psychiatry that has prompted the rise of alternative approaches such as 
the NIMH Research Domain Criteria (RDoC)11 as well as ideas related to the concept of ‘stratified psychiatry’12. 
Closely related to these ideas are the more generalized goals of ‘precision medicine’ outlined for all domains of 
medicine13,14. The goals of ‘precision medicine’ applied to ASC would outline an individualized approach to areas 
that can have immediate impact on treatment and support; from clinical assessment, diagnosis, personalized 
treatment and prognostic approaches, to better specificity in determining etiological mechanisms connected to 
specific phenotypes.

One primary challenge for meeting these goals is the basic question of how one should stratify a heterogeneous 
label like ‘autism’ into natural subdivisions that meaningfully point towards important underlying mechanisms 
and which could have potential for impact on clinical issues. There are multiple dimensions and levels through 
which one could start this process, from stratifications at the etiological level all the way up to subgroups distin-
guished by differing neural systems, cognitive, behavioral, and/or developmental patterns7. Analytically, strat-
ification can be based on supervised knowledge driven by experimenter-based preconceptions, theory, and/or  
assumptions. In contrast to supervised approaches, data-driven unsupervised approaches can be advantageous in 
a variety of cases when there is limited a priori knowledge that can be used to supervise the stratification process. 
As for goals of the stratification process, we ultimately need stratification approaches that identify consistently 
replicable subgroups nested within the ASC population. Subgroup effect sizes should ideally naturally organize 
into much more robust patterns of clear difference or a lack thereof and such effects should also allow for much 
more parsimonious distinctions than standard case-control comparisons.

Stratification could be very important at the cognitive level, particularly when applied to cognitive phenome-
non that links back to behavioral difficulties that are cardinal features of ASC15. Here we focus on the domain of 
mentalizing/theory of mind (henceforth ‘mentalizing’), which we have known for the last 30 years is a key cogni-
tive explanation behind social-communicative difficulties in ASC16–18. Despite much progress over the last 3 dec-
ades, it is notable that a majority of the evidence to date rests on statistical evidence about what differs on-average 
in a case-control setting. Hidden within these on-average case-control differences is additional complexity at the 
individual level. Many individuals will show evidence of some kind of deficit in mentalizing over the lifespan, 
while others may not show any difficulty or may simply mask the difficulty via compensatory mechanisms19,20. 
This heterogeneity will also likely change throughout development as individuals acquire more competence in 
the domain21. There are also conceptual distinctions within mentalizing, such as the distinction between explicit/
controlled versus implicit/automatic processes, with the latter continuing to be atypical much later in life despite 
an individual possessing explicit abilities20. The concept of mentalizing has also expanded considerably over time 
from its more constrained initial usage that was much more closely tied to ‘theory of mind’ as measured by stand-
ard false belief tasks. The term is now notably quite broad with respect to the different kinds of social cognitive 
components that can contribute to the overall domain of mentalizing, such as processing eye gaze, recognizing 
emotion, intuitive versus effortful tracking of other’s mental status separating belief from fact, comprehending 
social scripts, switching between self and other perspectives, etc. Thus, in addition to heterogeneity at the level of 
individuals, there is also conceptual heterogeneity what is considered ‘mentalizing’. Some have called for decon-
struction of the domain of mentalizing into more basic components22 and we would agree that such steps are 
essential to enhancing the precision of our understanding on the topic.

In the current work, we focus on components of mentalizing measured via a widely used task that involves 
explicit recognition of complex emotional and mental states simply from looking at the eye region of the face–the 
Reading the Mind in the Eyes Test (RMET)23,24. In a recent study comparing a relatively large ASC sample to a 
typically-developing (TD) control group, we found on-average reduction in RMET performance. However, ASC 
distributions were notably negatively skewed and there was a significant degree of overlap of ASC individuals 
within the range of scores occupied by TD individuals23; both suggest that behind case-control comparisons may 
be additional heterogeneity nested within the ASC population. However, a problem in determining whether sub-
groups can be delineated on a measure like the RMET is that the canonical output of the test is one-dimensional, 
and would require experimenter-derived cut-points that would ultimately be arbitrary and not well informed 
about whether such cut-points are natural dividing points for stratification that reflect quantitatively and/or qual-
itatively different subgroups.

Here we overcome this problem by employing a novel data-driven subgrouping approach on item-level per-
formance patterns on the RMET in two relatively large samples. Since we have little prior knowledge regarding 
how subgroups might manifest as item-level patterns of performance, we have opted for a data-driven unsuper-
vised approach to stratification to open up new knowledge about how any such subgroups are present within 
performance on the RMET. Our stratification approach is an unsupervised hierarchical clustering procedure 
traditionally applied to high-throughput data generated in the fields of genomics and systems biology in similar 
situations where the experimenter typically has impoverished knowledge or little motivation to exert precon-
ceptions or assumptions about precise distinctions or organization present in the data and whereby the goal is 
to have the data itself naturally present its organization. We show the existence of 5 separate ASC subgroups and 
4 separate TD subgroups that replicably appear across two large independent datasets. ASC subgroups separate 
into divisions that show very large differences compared to TD subgroups, as well as other ASC subgroups that 
show little to no difference. Thus, our unbiased data-driven stratification approach enhances the precision with 
which we can make more individualized statements about subsets of the ASC population while at the same time 
provides a novel methodological approach that is free from arbitrary experimenter-derived criteria and other 
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potential biases that may affect supervised approaches and overall, may uncover new aspects of organization 
within the ASC population that have not been previously considered.

Results
Our clustering approach discovered 5 distinct ASC subgroups (Fig. 1A,B) and 4 distinct TD subgroups 
(Fig. 1C,D) that replicably appear in both the Discovery and Replication datasets. Upon computing RMET 
sum scores for each subgroup, it is clear that clustering identifies natural subgroup divisions in the data that 
reflect different patterning of responses that result in quantitative differentiation in overall performance. Rank 
ordering the subgroups by RMET total scores results in a near linear trend for increasing RMET performance 
(Fig. 2A,B). In characterizing effect sizes for ASC versus TD subgroup comparisons (Fig. 2C,D) it is clear that the 
subgrouping procedure achieves the goals of enhancing sensitivity for identifying discrete ASC subgroups with 
large deficits, while at the same time enhancing specificity by showing that there are other ASC subgroups that 
show no sign of difficulty and are within the range of scores observed in the TD population. For example, the 
two poorest-performing ASC subgroups (subgroups 1 and 2) were dramatically lower than the range of scores 
observed in any of the TD subgroups with an effect size reduction in performance greater than 1.20 standard 
deviations. In the most extreme case when the worst performing ASC subgroup (ASC subgroup 1) was compared 
to the best performing TD subgroup (TD subgroup 4), the effect size rose to as high as 11.21 and 8.97 standard 
deviations respectively for each dataset. These poorest-performing ASC subgroups composed a relative minor-
ity of the Discovery (19%) and Replication (36%) ASC samples. ASC subgroup 3 is an intermediate subgroup, 
whereby inferences depend on which TD subgroup they are compared to. This subgroup is within the lower range 
of scores typically seen in the TD samples, and thus would show no deficit compared to the poorest-performing 
TD subgroup (Replication Cohen’s d =  0.15) or even slightly enhanced performance (Discovery Cohen’s 
d =  0.79). The poorest-performing TD subgroup was however, a minority of the TD samples comprising only 
19–22% of individuals. Thus, in comparison to any of the other TD subgroups representing the majority of TD 
individuals (77–80%), the intermediate ASC subgroup 3 still shows pronounced deficits greater than 1 standard 
deviation of difference. Combining the clearly impaired (subgroups 1–2) and intermediate (subgroup 3) ASC 
subgroups captures 45–62% of the ASC individuals in each dataset respectively. ASC subgroups 4 and 5 com-
prise the remaining ASC individuals, who showed performance well within the range of scores observed in TD 

Figure 1. Clustering individuals into subgroups by RMET performance. This figure illustrates the raw 
data from both Discovery (A, ASC; C, TD) and Replication (B, ASC; D, TD) datasets in a 2D matrix (i.e. rows 
are subjects, columns are RMET items). Red cells indicate correct responses. Black cells indicate incorrect 
responses. The rows (subjects) and columns (items) of each matrix are rearranged by hierarchical clustering 
on topological overlap similarity in RMET response patterns. Subgroups are denoted by the different colors 
underneath the dendrogram.
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subgroups. However, even amongst these higher performing ASC subgroups, there was evidence for on-average 
differentiation when compared to the highest performing TD subgroups. For example, the effect size for the rela-
tively highest-performing ASC subgroup (subgroup 4) versus the highest-performing TD subgroup (subgroup 4)  
was still a reduction around 2.13 and 2.58 standard deviations respectively. In contrast, there was also evidence 
that the highest-performing ASC subgroup performed much better than the poorest-performing TD subgroup 
(e.g., ASC subgroup 5 vs TD subgroup 1 Cohen’s d =  3.72 and 2.33) (Fig. 2C,D). This evidence of complex nested 
heterogeneity both within the ASC and TD samples points towards the need to make subgroup distinctions. 
Inferences without such important distinctions (i.e. standard case-control comparisons) could be biased in either 
direction depending on the mixture of heterogeneous individuals from various ASC and TD subgroups that 
would be nested in any one study.

Although ASC subgroups show item-level patterning that is reflective of quantitative differentiation in overall 
performance, it is not the case that signal reflected in quantitative differences in overall performance drives all 
of the differentiation between subgroups. Rather, subgroups also show dissimilar patterning of item-difficulty 
across items. To better understand variability at the level of items, we ran identical clustering procedures (i.e. 
Ward hierarchical clustering on topological overlap) along the item dimension. The top two cluster branches can 
be described as differentiation between easy versus difficult items (Figs 1 and 3). To test for similar or different 
patterns of item-difficulty across the subgroups, we first computed a measure of item-difficulty, defined as the 

Figure 2. RMET total scores and effect sizes for comparisons across ASC and TD subgroups in Discovery 
and Replication datasets. Panels A,B show RMET total scores for each ASC and TD subgroup as boxplots 
along with dots overlaid to represent individual subject’s data points (Panel A depicts the Discovery (CARD) 
dataset, panel B depicts the Replication (AIMS) dataset). Panels C,D show standardized effect sizes (Cohen’s d;  
mean difference in units of standard deviation) for all pairwise comparisons of ASC versus TD subgroups. 
The effect sizes can be seen numerically within each cell and are also depicted by the coloring of the cell. The 
directionality of effect sizes can be interpreted as follows: negative values indicate an effect of TD subgroup 
> ASC subgroup, positive values indicate an effect of ASC subgroup > TD subgroup. An asterisk represents 
comparisons that pass Bonferroni correction for 20 pairwise comparisons.
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percentage of individuals in a particular subgroup who answered a specific item correctly. Item-difficulty plots 
for each ASC subgroups can be seen in Fig. 3A,B (for similar plots on the TD subgroups see Supplementary 
Figure 1). Next, we assessed similarity in item-difficulty by computing correlations across all pairwise subgroup 
comparisons, separately for subsets of easy or difficult items. Higher correlations indicate that item-difficulty 
patterns are similar between subgroups, whereas lower correlations indicate more dissimilarity of item-difficulty 
across subgroups. Here we find some evidence for similar patterning of item-difficulty between ASC subgroups, 
restricted primarily to comparisons of certain adjacent rank-ordered subgroups, particularly subgroups 3–5. 
However, these correlations did not easily translate to replicable effects across both the Discovery and Replication 
datasets, and in the case of difficult items in the Replication dataset, no significant item-difficulty correlations 
emerged. The general lack of replicable significant correlations between subgroups in item-difficulty indicates that 
most pairwise subgroup comparisons are not highly similar in item-difficulty patterns. This result suggests that 
in addition to picking up subgroups that can be characterized by quantitative differences in overall performance, 
the clustering approach also leverages useful information in the patterning of performance at the item-level to 
identify discrete subgroups.

Next, we asked the question of whether individuals within subgroups are highly homogeneous in item-level 
patterning and whether similarity extends across the independent datasets. To begin exploring this issue, the 
Discovery and Replication subgroups were concatenated in rank-order along the subject dimension into one large 
two-dimensional matrix (subjects x items) and we then computed the full distance matrix across all subjects. This 
procedure was done for subsets of easy and difficult items separately. These subject-wise distance matrices allow 
for visualization of the full spectrum of between-subject dissimilarities within and across subgroups and across 
different datasets (Fig. 4A,B; for TD matrices see Supplementary Figure 2). One overall gradient pattern emerges 
immediately in visual comparison across both easy and difficult item subsets. There is a general trend for marked 
between-subject similarity within subgroups at the poles of our rank-ordered subgroup hierarchy. That is, the 
worst and best performing subgroups tend to show high degrees of similarity within the subgroup boundaries 
(denoted by dark blue coloring in Fig. 4) and this effect generalizes to the homologous rank-ordered subgroup in 
the other independent dataset. While this effect tends to be most pronounced for the easy item subset, it can also 
be seen in the difficult item subset. Between-subject similarity decreases in a gradient fashion as one descends 

Figure 3. Item-difficulty patterning across ASC subgroups. Panels A (ASC Discovery) and B (ASC 
Replication) show item-difficulty profiles (i.e., percentage of subjects within a subgroup that answer the item 
correctly) for each ASC subgroup denoted by the different colored lines. Panels C,D show correlation matrices 
from item-difficulty between subgroups. Asterisks indicate specific comparisons that pass FDR q <  0.05 
correction for multiple comparisons.
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down the rank-ordered subgroup hierarchy from ASC subgroup 5. ASC subgroup 2 shows the highest levels of 
between-subject dissimilarity that hover around mid-range Hamming distance values of 0.5 to 0.6 that denote 
50–60% of items are dissimilar responses. This indicates that item-level patterning for individuals within ASC 
subgroup 2 are slightly dissimilar, relative to the much higher degree of similarity observed in other subgroups. 
This effect may be reflective of more random patterns of correct and incorrect responses, rather than consistent 
patterns of responses that are more homogeneous across all individuals within that subgroup.

To go further in specifically testing whether subgroup divisions in one dataset generalize to independent 
data, we used multi-class classification analyses. This analysis allows for an explicit test of the hypothesis that the 
subgroups identified in one particular dataset are not simply reflecting idiosyncratic variability for that specific 
dataset but rather indicate generalizable subdivisions within the population structure of ASC. A 5-way classifier 
on ASC subgroups achieves 65% accuracy, which is never otherwise observed within 10,000 permutations of 
subgroup labels (p <  9.99e-5; range of classification accuracy in the null distribution: 12.69% to 33.70%) (for TD 
classification see Supplementary Figure 3; for classification null distributions see Supplementary Figure 4).

We then inspected the confusion matrices for such multi-class predictions and this illuminated further key 
considerations. The misclassifications were nearly always for proximal (i.e. adjacent in rank-order) subgroups. An 
important distinction could be made between subgroups 1 and 2 versus subgroups 3–5. Nearly all the predictions 
for individuals within subgroups 1–2 or 3–5 stay within such superordinate groupings. Given that there was an 
important distinction between subgroups 1–2 being the most profoundly affected or ‘impaired’ ASC subgroups, 
whereas subgroups 3–5 showed performance within the TD range, it is interesting to consider that the accuracy 
recalculated for a distinction between subgroups 1–2 versus subgroups 3–5 is 92% and 93% respectively (Fig. 5). 
Expanding the set of ‘impaired’ subgroups to also include the intermediate subgroup 3 and comparing them to 
subgroups 4–5 results in 88% and 84% accuracy respectively. This indicates that while the much harder task of 
multi-class prediction is not perfect, a coarser stratification into what could be considered roughly as ‘impaired’ 
versus ‘intact’ subgroups is much more robust.

Finally, we examined whether ASC subgroups differed on other variables such as sex/gender, age, AQ, 
EQ, BDI, BAI, ADOS and ADI-R scores. ASC subgroups did not systematically differ across both Discovery 
and Replication datasets by sex/gender or EQ (see Supplementary Table and Supplementary Figures 5–9). 
Although there were significant age effects in both datasets (Discovery: F(4,373) =  2.55, p =  0.03; Replication: 
F(4,118) =  3.48, p =  0.009), these effects were driven by different pairwise subgroup comparisons and were thus 
not systematic across the datasets. Within the AIMS dataset, where depression (BDI), anxiety (BAI), and autism 
symptom severity data (ADOS, ADI-R) were also available, no differences emerged between the subgroups (see 
Supplementary Table and Figures). Subgroups did show some important differences on the AQ and VIQ. For 
AQ, ASC subgroup differences manifested in both Discovery (χ 2(4,373) =  13.69, p =  0.008) and Replication  
(χ 2(4,104) =  9.89, p =  0.04) cohorts with the most RMET-impaired ASC subgroup (i.e., subgroup 1) showing 
markedly higher AQ scores than other better performing ASC subgroups (Fig. 6A–D). For VIQ there was a clear 
effect of lower VIQ in poor RMET performing ASC subgroups (F(4,118) =  3.76, p =  0.006; Fig. 6E,F). Given the 
presence of such an effect, we re-ran all hypothesis tests on RMET between-group differences while controlling 
for variability in VIQ and came to identical conclusions regarding robust differences. Therefore, although VIQ 
was lower in poor performing ASC subgroups, this could not be considered the primary explanation behind the 
subgroups’ poor RMET performance.

Figure 4. ASC Between-subject dissimilarity of RMET response patterns. This figure depicts between-
subject dissimilarity matrices in ASC for the easy item (A) or difficult item (B) subsets. Cooler colors indicate 
more between-subject similarity, whereas hotter colors indicate more between-subject dissimilarity. Each cell 
of the matrices represents the dissimilarity between a pair of subjects. The rows and columns are arranged by 
subgroup rank order and Discovery and Replication datasets are adjacent to each other and denoted above the 
rows and columns by D and R. The black outlines delineate between-subject dissimilarities within a particular 
subgroup.
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Discussion
In this study we examined heterogeneity in mentalizing ability as measured by the RMET in adults with and with-
out ASC. We discovered 5 ASC subgroups and 4 TD subgroups that consistently emerged across two relatively 
large independent datasets. Variability in ASC ranged from subgroups that were very impaired to those within the 
TD range of scores, and in some cases, high-performing ASC subgroups were better than poor-performing TD 
subgroups. The spectrum of effect size differences between ASC and TD subgroups was highly consistent across 
independent datasets. The fact that replicable patterns of heterogeneity were found across datasets and across 
both TD and ASC underscores the idea that parsing heterogeneity amongst both ASC and TD populations is of 
considerable importance. The enhancement of sensitivity and specificity over and above a standard case-control 
comparison is self-evident when comparing the effect sizes in Fig. 2C,D to the case-control effect sizes of Cohen’s 
d =  − 0.36 and − 1.15 across Discovery and Replication datasets respectively. Such case-control comparison effect 
sizes mask a large degree of complexity hidden within both ASC and TD populations. Therefore, the precision at 
which we can understand mentalizing in ASC may be limited until we gain a better grasp on the nested heteroge-
neity present in such a domain both within the ASC and TD populations.

It is particularly noteworthy that the two poorest performing ASC subgroups (i.e. subgroups 1 and 2) were 
a relative minority of the sample in both datasets (i.e. 19% of the Discovery (CARD) dataset and 36% of the 
Replication (AIMS) dataset). When these ASC subgroups are considered relative to the other subgroups within 
the TD-range of scores (i.e. ASC subgroups 3–5), ability to accurately make a binary ‘impaired’ versus ‘intact’ 
prediction from a multi-class classifier is very high (92–93%). ASC subgroup 3 also represents an intermediate 
degree of impairment, as this subgroup shows decreased scores compared to all but the poorest-performing TD 
subgroup comprising the bottom 19–22% of TD individuals. Including ASC subgroups 1–3, the estimates of ASC 
individuals showing subtle-to-large impairment on the RMET ranges from 45–62%. Therefore, unlike the case 
of earlier points in development where a large percentage of individuals show difficulty in the domain of mental-
izing21, in adulthood many individuals do not fall into subgroups 1–3 that would be considered impaired. One 
important caveat in interpretation is that these numbers are based on one test of mentalizing (i.e., the RMET). 
Clearly, there are other ways to measure different components of mentalizing ability and the RMET likely only 
taps specific components within the larger umbrella of mentalizing22. Examination of mentalizing subgroups 
using other tests will be particularly helpful for better understanding how heterogeneity manifests in similar 
or different ways across different aspects of mentalizing. Another caveat is that the RMET may not be sensitive 
enough to detect more subtle difficulties that translate better into understanding of real-world naturalistic social 
interactions, or which may be better measured with tasks/tests that tap an individual’s ability to automatically or 
implicitly mentalize, or which employ utilization of mentalizing to make more complex judgments (e.g., moral 
judgments)19,20,25–30. Nevertheless, our findings of discrete, replicable, and robust ASC subgroups with differing 
explicit mentalizing ability as measured by the RMET in adulthood represents an important stride forward in 
terms of the precision of our understanding of mentalizing difficulties in adults with ASC. This work is highly 
compatible with the goals of ‘precision medicine’ or ‘stratified psychiatry’ and is what is needed to move forward 
with research that has clinical impact for patients and which can also further translational research progress 
focused on honing in on treatment-relevant mechanisms12,14.

The subgroup distinctions outlined here are also particularly important because of how they apply specifically 
to the RMET. The RMET is a long-standing instrument that is widely used within the fields of autism research and 

Figure 5. Confusion matrices for multi-class classifier predictions of ASC subgroup membership. This 
figure presents confusion matrices showing actual subgroup membership along the rows and predicted 
subgroup membership by the classifier along the columns. In each cell the numbers refer to counts of the 
number of individuals in each cell. We also used color in each cell to depict the percentage of actual subgroup 
individuals predicted within each subgroup category (0% indicated by dark blue, and then color continuously 
changing to dark red indicating 100%). Above the matrices are descriptions of which dataset was used for 
training and testing.
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social neuroscience. The NIMH RDoC lists the RMET as one of several important tests for characterizing varia-
tion in social processes, particularly under the category of Perception and Understanding of Others (http://1.usa.
gov/1Qs6MdI). In addition to its wide usage in autism research, the RMET has also been used to characterize and 
compare social-cognitive abilities across different categorical psychiatric diagnoses31–34. With regards to treat-
ment research, the RMET is widely used as treatment outcome measure, particularly for drug manipulations (e.g., 
oxytocin) or behavioral interventions targeting social skills and social cognition35–38. All of this prior clinically 
important research utilizes an analytic strategy of computing RMET summary scores across all items and then 
onto potentially sub-optimal omnibus case-control comparisons that may mask the presence of nested subgroups 
within ASC. The current work should signal a change in this practice for how the RMET is utilized in important 
clinical settings (e.g., evaluating treatment outcome). Rather than using summary scores in an omnibus ASC 
group, a more fruitful approach would be to use the RMET to distinguish subgroups and to then specifically 
evaluate whether such ASC subgroups respond differently to treatment. In other words, the added knowledge we 
provide here is that these subgroups could signal a meaningful distinction that helps in the design of intervention 
studies and the subsequent interpretation of such findings. Given the current state of largely mixed results for 
many interventions for ASC39, it may become clearer after subgrouping that some treatments do systematically 
work for particular subgroups but not others.

In addition to impact in clinical research areas, the current study could potentially have large impact on basic 
research targeting mechanisms and the phenotypic diversity of ASC. For example, inconsistency within the litera-
ture on the cognitive phenotype of ASC40, particularly as it pertains directly to mentalizing and/or more generally 
the domains of emotion and social cognition, may be better understood with an approach that focuses more on 
parsing heterogeneity into subgroups as we have shown here. Additionally, inconsistency in the functional and 
structural neuroimaging literature on ASC41–45 could be mitigated by a better understanding of mentalizing heter-
ogeneity nested within relatively small ASC samples typically utilized in such work. This point is underscored by 
recent work by Byrge and colleagues, whereby it was suggested that some group-level differences in case-control 
designs could be driven by the effects nested within a small subgroup of patients30. A better a priori understand-
ing of the heterogeneity present within the ASC population could be of large impact for study design and could 
also implicate different underlying etiological, neurobiological, and developmental mechanisms that explain such 
heterogeneity7,46–48.

A major innovation in this work is the approach to subgrouping. Rather than utilizing the RMET in a stand-
ard approach by summarizing all items into one total score, we have instead retained the full set of informa-
tion encoded across the 36 items as input into an unsupervised hierarchical clustering approach that came to 

Figure 6. Characterization of subgroup differences on autistic traits (AQ) and verbal IQ (VIQ). Panels 
A,C,E are boxplots with dots overlaid to show individual subject’s data points. Panels B,D,F are heatmaps 
depicting the effect size for ASC subgroup comparisons. AQ data within the Discovery (CARD) dataset are 
shown in panels A,B, whereas AQ data within the Replication (AIMS) dataset are shown in panels C,D. Panels 
E,F show VIQ data from the Replication (AIMS) dataset. Effect sizes are standardized effect sizes (Cohen’s d) 
and interpreted as the mean difference in units of standard deviation. Asterisks indicate specific comparisons 
that pass FDR q <  0.05 correction for multiple comparisons.

http://1.usa.gov/1Qs6MdI
http://1.usa.gov/1Qs6MdI
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data-driven conclusions about the presence of discrete ASC subgroups. This unsupervised approach avoids 
using potentially arbitrary experimenter-derived cutoffs and instead utilizes natural data-driven distinctions that 
are robust enough to emerge in a consistent fashion across independent datasets. Importantly, this clustering 
approach leverages distinctions in the patterning of item-level performance that can relate to quantitative distinc-
tions in overall performance but also subtle dissimilarity in item-difficulty across the subgroups. Recent work has 
applied similar logic and approaches to clustering the phenotype based on gold-standard diagnostic instruments49 
and for clustering 26 different mouse models of genetic mechanisms related to ASC46. However, these other types 
of clustering approaches do not benefit from some of the specific innovations inherent in the technique we have 
used. Specifically, we utilized important computational steps taken directly from weighted gene co-expression 
network analysis (WGCNA)50,51, which is a widely used approach in genomics and systems biology and has been 
highly utilized specifically in autism genomics research52–57. In particular, the computational steps of converting a 
distance matrix into a topological overlap matrix and then running hierarchical clustering on this similarity met-
ric rather than other metrics is important since topological overlap is less susceptible to noise influences because 
it leverages information about similarity of neighbors. Additionally, the dynamic hybrid tree-cutting algorithm 
that cuts the cluster tree into discrete subgroups is also highly innovative compared to most other tree-cutting 
methods which rely on using a single cut height across the dendrogram, and which generally cannot make fine 
distinctions that the dynamic algorithm can make within local neighborhoods of the dendrogram. Thus, our 
analytic approach is applicable across translational research contexts and could be utilized more widely across a 
whole range of new applications focused on data-driven stratification in ASC.

A further advantage to our approach of finding data-driven distinctions is that such distinctions are generaliz-
able across datasets. As we have shown with the classification analyses, the stratifications made in one dataset gen-
eralize to multi-class predictions in independent data. Such high levels of multi-class predictions are extremely 
difficult to obtain and such results attest to the power of such multiple class divisions in the data. In the context 
of a more simplistic 2-class distinction of ‘impaired’ versus ‘intact’, the multi-class predictions were even more 
accurate, as the multi-class prediction errors were mainly localized to adjacent subgroups and such a 2-class dis-
tinction yielded very high accuracy. In future work, such information about replicable subgroups could be turned 
into valuable assessment or research tools that could aid in study design and participant screening. For instance, 
randomized control trials may use the RMET to screen patients along such distinctions or as an outcome measure 
and use such distinctions to analyze individualized treatment response patterns. Such stratifications could also be 
useful in clinical assessments and facilitate personalized treatment planning and outcome prediction.

In addition to highlighting the promise of such stratifications for autism research, there are additional char-
acteristics of ASC subgroups that are important to stress. First, variables such as sex/gender, age, trait empathy, 
depression and anxiety symptoms, and clinical measures of autistic symptom severity were not systematically dif-
ferent across ASC subgroups. However, poor performing ASC subgroups tended to be lower in VIQ and higher in 
self-reported autistic traits measured by the AQ. This effect of higher self-reported autistic traits in more affected 
subgroups is interesting from the standpoint that similar effects do not emerge on clinical measures of autistic 
symptom severity (e.g., ADOS and ADI-R). It may be that this effect emerges due to differences in what is meas-
ured in an instrument like the AQ versus the ADOS and ADI-R. This effect may be of clinical importance as those 
individuals with high levels of autistic traits and poor performance on the RMET may potentially need different 
approaches of intervention and support than other individuals within other subgroups (e.g., they may particularly 
benefit from adjustments in the occupational or educational environments to reduce social load). The VIQ effect 
on the RMET and more generally on mentalizing ability has been noted before21,58 and may be easily understood 
in the context of the RMET since this test may tax vocabulary for some individuals and on certain items. Despite 
this effect of VIQ, we found that the main comparisons of ASC versus TD subgroups were unchanged after 
accounting for VIQ variability. This evidence suggests that while some variability in RMET performance is linked 
to variability in VIQ, the subgroup distinctions and patterns of RMET performance are not fully explained by 
VIQ variation.

There are some important caveats and limitations to keep in mind regarding the current work. First, the full 
spectrum of heterogeneity in autism likely will not be captured with just one test such as the RMET. Parsing the 
wide spectrum of heterogeneity in autism at the cognitive level will likely require many tests spanning a much 
wider range of cognitive domains. However, the methods described here, applied specifically to the RMET, are 
directly translatable to future work that must look into a wider range of variables. Furthermore, while the RMET 
alone might not capture all of the heterogeneity in autism, it may be that it could reveal important distinctions 
that might be masked in more wide-sweeping looks that span across several cognitive domains. Conversely, it 
could be that sensitivity and specificity in parsing mentalizing heterogeneity could be maximized by targeted 
studies that employ several tasks that tap different components within mentalizing. Future work along these lines 
would be very important in furthering our understanding of heterogeneity in mentalizing in autism.

Second, although we have analyzed the data for dissimilarity in item-difficulty patterns across subgroups, 
another approach would have been to implement multi-group item response theory (IRT) analysis. By fitting an 
IRT model for each subgroup, parameters could be tested for a between-subgroup differences in measurement 
invariance. The current work is limited in ability to use such an approach effectively because the sample sizes of 
each subgroup are too small59. Future work that can achieve larger sample sizes across subgroups could utilize 
this approach.

Third, subsets of RMET items could be further investigated for potential subtle differences that could explain 
some of the heterogeneity described here. In the current work, we have only made a broad distinction between 
item subsets that could be characterized as relatively easy or difficult. Currently, much finer distinctions within 
smaller item subsets are not directly apparent in a manner that generalizes across the two datasets. However, 
much more work could be done in this respect, particularly in relation to decomposing aspects through which 
RMET item subsets might differ on a variety of other levels not currently measured.
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Fourth, another interesting finding from the current work is the presence of 4 discrete TD subgroups that 
emerge across both independent datasets. This result may seem surprising under the prior belief that the TD 
population is relatively homogeneous. However, such a prior may not be warranted given that there are other 
ways in which we know the TD population is stratified (i.e. genetic stratification, cultural differences, individual 
differences in personality, etc.). This finding will likely require further work to parse apart what creates such 
distinctions within the TD population and whether such distinctions can be characterized in meaningful ways 
by leveraging associations with other variables. Such stratification may further help enable more precise studies 
utilizing the TD population as well as open up new questions regarding the mechanisms that may underlie such 
distinct subgroups.

Finally, it is noteworthy that in the case of simpler 2-class distinction of ‘impaired’ versus ‘unimpaired’ that 
a similar kind of discovery could have been made without the use of an unsupervised data-driven clustering 
approach on item-level performance patterns. Rather, a simple cut-off score derived from RMET total scores 
could potentially have been made and verified in independent data as maximizing sensitivity or specificity. For 
example, visually assessing Fig. 2, optimal cut-points for determining an ‘impaired’ subgroup could be made 
around total scores of 15–19, as these points tend to be those where very few TD individuals fall below. This 
issue brings up the larger discussion point in relation to contrasting two different approaches to stratification–
supervised versus unsupervised approaches. On the one hand, supervised experimenter-driven approaches like 
deriving cut-off scores after seeing and interpreting the data can ultimately be useful, particularly when they are 
validated with independent datasets. Such approaches utilize intelligence injected by the experimenter via prior 
knowledge and/or interpretation of the data to help guide the stratification process. However, such an approach 
can be limiting if the supervised knowledge is uninformed, impoverished, inaccurate, or incomplete in some 
way, as can be the case in many situations where advanced and precise knowledge on the topic is elusive. In these 
circumstances, unsupervised approaches can be advantageous as they may yield discoveries that would otherwise 
remain hidden without knowledge to help supervised approaches come to similar distinctions. At the moment, it 
is difficult to say which approach would yield potentially the most useful results in a clinically-significant sense. 
Such a question should be answered with more work that ultimately determines which kinds of stratifications 
yield subgroups that can be meaningfully interpreted or can get us closer to very important mechanisms or 
which could yield significant uses in clinical settings. Future work assessing other associated data from sub-
groups such as these would be helpful in determining which approach to subgrouping is most useful in terms of 
clinically-significant real-world utility.

In conclusion, the discoveries in this study allow for a more precise understanding of mentalizing in adults 
with ASC. Our insights have the potential to further personalized medicine aims in ways that accelerate progress 
towards clinical impact for patients. By understanding how the autism spectrum can be stratified in clinically 
meaningful ways, translational opportunities may open up that could test whether such distinctions are rooted in 
separate underlying mechanisms.

Materials and Methods
Discovery Dataset. In this study we analyzed two large datasets that served as discovery and replication 
sets. The discovery dataset came from the Cambridge Autism Research Database (CARD)23 and consisted of 395 
adults with ASC (178 males, 217 females) and 320 typically-developing controls (TD; 152 males, 168 females) 
within the age range of 18–74 years. Sample sizes used in final analyses are presented in Table 1. The CARD 
data were collected online from two websites (www.autismresearchcentre.com, www.cambridgepsychology.com) 
during the period of 2007–2014. Once participants had logged onto either site, they consented for their data to 
be held in the Cambridge Autism Research Database (CARD) for research use, with ethical approval from the 
University of Cambridge Psychology Research Ethics Committee (reference No. Pre.2013.06).

CARD participants who self-reported a clinical autism diagnosis were asked specific information about the 
date of their diagnosis, where they were diagnosed, and the profession of the person who diagnosed them. The 
inclusion criterion for participants in the ASC group was a clinical diagnosis of an autism spectrum condition 
(ASC) according to DSM-IV (any pervasive developmental disorder), DSM-5 (autism spectrum disorder), or 
ICD-10 (any pervasive developmental disorder) from a recognized specialist clinic by a psychiatrist or clini-
cal psychologist. Such online self or parent-reported diagnoses agree well with clinical diagnoses in medical 
records60. Control group participants were included if they had no diagnoses of ASC and no first-degree relatives 
with ASC. For both groups, participants were excluded if they reported a diagnosis of bipolar disorder, schizo-
phrenia, eating disorder, obsessive-compulsive disorder, personality disorder, epilepsy, or an intersex/transsexual 
condition. Participants with a diagnosis of depressive or anxiety disorder were not excluded as these conditions 
are common in the general population and occur at high rates in adults with autism1.

Dataset
ASC Sample Size 
(Males, Females)

TD Sample Size 
(Males, Females)

ASC Age Mean 
(SD)

TD Age Mean 
(SD)

Discovery (CARD) 378 (169, 209) 316 (148, 168) 37.36 (11.72) 35.07 (12.06)

Replication (AIMS) 123 (85, 38) 126 (85, 41) 26.79 (7.70) 27.84 (6.76)

Table 1.  Dataset characteristics. This table indicates the sample sizes and age in each group and dataset used 
in final analyses. For sample size, the total sample size is noted alongside the number of males and females noted 
in parentheses. For age, we report the mean and the standard deviation (in parentheses).

http://www.autismresearchcentre.com
http://www.cambridgepsychology.com
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Replication Dataset. The replication dataset consisted of participants from the MRC AIMS Consortium 
dataset (n =  123 ASC; 85 male, 38 female; n =  128 TD; 87 male, 41 female) within the age range of 18–5261–64. 
Sample sizes used in final analyses are presented in Table 1. The study was given ethical approval by the National 
Research Ethics Committee, Suffolk, UK. All volunteers gave written informed consent. Participants were 
recruited and assessed at one of the three MRC AIMS centers: the Institute of Psychiatry, London; the Autism 
Research Centre, University of Cambridge; the Autism Research Group, University of Oxford. All participants 
were right-handed. Exclusion criteria for all participants included a history of major psychiatric disorder (with 
the exception of depressive or anxiety disorders), head injury, genetic disorder associated with autism (e.g., frag-
ile X syndrome, tuberous sclerosis), or any other medical condition affecting brain function (e.g., epilepsy). All 
ASC participants were diagnosed according to ICD-10 research criteria for pervasive developmental disorder. 
ASC diagnoses were confirmed using the Autism Diagnostic Interview-Revised (ADI-R)65 and it was allowed 
for participants to be 1 point below cutoff for one of the three ADI-R domains in the diagnostic algorithm. The 
Autism Diagnostic Observation Schedule (ADOS)66 was used to assess current symptoms for all participants with 
ASC. The Wechsler Abbreviated Scale of Intelligence (WASI)67 was used to assess Verbal IQ (VIQ), Performance 
IQ (PIQ) and Full Scale IQ (FSIQ). Depressive and anxiety symptoms were measured with the Beck Depression 
Inventory (BDI) and Beck Anxiety Inventory (BAI).

Reading the Mind in the Eyes Test (RMET). All participants in both discovery and replication datasets 
completed the ‘Reading the Mind in the Eyes’ Test (RMET), adult version24. The RMET consists of 36 items of 
grey-scale photos cropped and rescaled so that only the area around the eyes can be seen. Each photo is sur-
rounded by four mental state terms and the participant is instructed to choose the word that best describes what 
the person in the photo is thinking or feeling. Participants in both discovery and replication datasets completed 
a computerized online version of the RMET at home. Participants were instructed to select the most appropri-
ate item within 20 seconds for each stimulus (presented in random order). Responses were coded as correct or 
incorrect (wrong items selected, or no response after 20 seconds), giving a maximum total correct score of 36. To 
guard against the possibility that many items timed-out, we used a rule that if an individual had time-outs on 9 or 
more items (> 25% of all items), then such individuals were excluded from analysis. The final sample sizes after 
filtering by this criterion is shown in Table 1 for both datasets. All participants in both discovery and replication 
datasets also completed the Autism Spectrum Quotient (AQ)68 and the Empathy Quotient (EQ)69 on the same 
online platform and before taking the RMET.

Statistical Analysis. RMET item-level data for all subjects was concatenated into a two-dimensional matrix 
with subjects along the rows and RMET items along the columns. This data matrix was then converted into a 
distance matrix across subjects. The value within each cell of this distance matrix indicates how similar each 
individual is to another individual in RMET item-level patterns of response. The distance metric computed was 
Hamming distance, which is a measure of the percentage of dissimilar item responses between two subjects and is 
appropriate in this context where RMET item-level responses are binary. For the purpose of clustering into sub-
groups, the distance matrices for each dataset were converted into a topological overlap matrix (TO). Topological 
overlap is an advantageous metric of similarity over and above other distance metrics that only take into account 
similarity between the two individuals of interest because topological overlap will also take into account similarity 
between the neighbors of the target individuals. When two individuals are highly similar between themselves 
and also in their neighbors, they have high topological overlap. Topological overlap matrices are highly effective 
in other applications70,71 including the systems biology method of WGCNA72. The topological overlap matrices 
were then input into agglomerative hierarchical clustering using Ward’s method as the linkage method. The den-
drograms created from clustering were then cut into subgroups using a dynamic hybrid tree cutting algorithm 
(deepSplit =  1) also commonly used in systems biology applications such as weighted gene co-expression network 
analysis73. This tree-cutting algorithm is optimal for finding subgroups as it finds a dynamic cut height for each 
branch of the dendrogram rather than using a single cut height for all branches. This entire subgrouping proce-
dure was implemented on both the ASC and TD groups independently.

Once subgroups were defined, we computed total RMET scores (i.e. sum across all items) for each individual 
and ran independent samples t-tests to specifically compare the total score across all pairwise comparisons of ASC 
subgroups versus TD subgroups. Only comparisons that passed Bonferroni correction for 20 comparisons were 
considered significant. Standardized effect size for each comparison was also computed as Cohen’s d. All pair-
wise comparisons between ASC and TD are visualized as heatmaps showing standardized effect size (Cohen’s d)  
for each comparison. Note that we did not compute within-group comparisons because such comparisons would 
be circular given that the subgrouping (selection) and testing would be done on the same data.

In addition to stratifying the subject dimension we also applied clustering to the item dimension of the dataset. 
This clustering was done to primarily find the two major subdivisions of items that could be characterized as easy 
versus difficult items. These subsets of items were then used in further analyses that examined different patterning 
of item-difficulty across the subgroups. To measure item-difficulty we calculated the percentage of individuals 
within a particular subgroup that answered a specific item correctly. To examine the hypothesis that subgroups 
show similar or different item-difficulty profiles we computed correlations between the item-difficulty measures 
for each pairwise subgroup comparison. Correlations were deemed significant if they passed an FDR q <  0.05 
threshold that corrects for multiple comparisons. These significant correlations indicate subgroup comparisons 
whereby item-difficulty was significantly similar across the subgroups. The non-significant correlations are taken 
to be subgroup comparisons whereby there was no sufficient evidence to state that item-difficulty profiles were 
similar across the subgroups.

To examine between-subject dissimilarity of item-level performance patterns between subgroups and across 
datasets, we computed subject-wise distance matrices. These matrices show the similarity metric of Hamming 
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distance for each pairwise subject combination across both datasets. These matrices were computed separately 
for the easy and difficult item subsets. These matrices primarily serve a descriptive purpose to explicate all 
between-subject dissimilarities and to show how similar individuals from a particular rank-ordered subgroup 
are to the homologous subgroup identified in the other dataset. If homologous subgroups identified in different 
datasets are indeed highly similar, we expect to see high degree of between-subject similarity across datasets.

To quantitatively evaluate the degree to which subgroups identified within one dataset could be accurately pre-
dicted within a second independent dataset we ran multi-class classification analyses using the ensemble learning 
algorithm AdaBoostM274 implemented within the fitensemble.m function in MATLAB R2015b (learner type 
set to ‘Discriminant’ and with 20 weak learners). Homologous subgroup labels were based on rank ordering 
of the subgroups by total RMET scores. These homologous subgroup labels allowed us to then evaluate how 
well multi-class classification performance was in identifying the same rank ordered subgroups across datasets. 
Classification accuracy was then compared to simulations where subgroup labels were randomly permuted 
10,000 times, and p-values were computed as the percentage of times under randomly permuted labels that clas-
sification accuracy was as high or higher than accuracy obtained under the true subgroup labels. To visualize 
multi-class classification performance, we present confusion matrices illustrating the percentage of individuals 
within each subgroup that are predicted in each subgroup category. We also computed classification accuracy for 
specific subsets of subgroups combined that could generally be called ‘impaired’ versus ‘intact’; that is, subgroups 
1–2 versus subgroups 3–5 and subgroups 1–3 versus subgroups 4–5.

Finally, we examined other variables such as sex/gender, VIQ, age, AQ, EQ, BDI, BAI, and ADOS and ADI-R 
subscales to test hypotheses about whether the ASC subgroups would differ on these variables. To test for the pos-
sibility of imbalances across the subgroups as a function of sex/gender, we counted up the number of males and 
females across all subgroups and compared them to expected counts derived from a chi-square test. To test VIQ, 
age, AQ, EQ, BDI, BAI, ADOS, and ADI-R score differences we used one-way ANOVAs to test for differences 
between ASC subgroups. Because AQ and EQ showed markedly skewed distributions, we ran a Kruskal-Wallis 
one-way nonparametric ANOVA instead of a parametric ANOVA. ANOVA results were followed up with 
post-hoc pair-wise comparisons that were Bonferroni corrected for multiple comparisons.
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