
Processing and properties of multifunctional bio-based poly(lactic acid)

composites
Fang, Mai

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/11748

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/11748


1 
 

Processing and properties of multifunctional 

bio-based poly(lactic acid) composites 

 

 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

OF THE DEGREE OF DOCTOR OF PHILOSOPHY  

 

June 2015 

 

Fang Mai 

School of Engineering and Materials Science 

Queen Mary University of London 

Mile End Road, London, E1 4NS 

  



2 
 

Declaration 

I declare that the work performed is entirely by myself during the course of my Ph.D 

studies at the Queen Mary University of London and has not been submitted for a 

degree at this or any other University.  

Fang Mai 

  



3 
 

Acknowledgements 

Researchers are like Sherlock Holmes. We are searching for hidden clues and then 

reasoning them. This dissertation is not only a personal accomplishment; it is also a 

product of many people. It took more than determination and hard work for the 

completion of this thesis.  

I would like to acknowledge first the China Scholarship Council (CSC) for the financial 

support, as well as offering me the opportunity for further study and this great 

international experience.  

Especially, I give my supervisors Dr. Ton Peijs and Dr. Emiliano Bilotti all my 

gratefulness for giving me the opportunity to work on the HIGHBIOPOL project, and 

for all the support and guidance during my PhD. Ton‟s sense of humour, easily 

understood explanations and open mind allowed me to grow. Emiliano‟s patience and 

kindness guided me through the process. 

I gratefully acknowledge the support of Mr. Kaloyan Palatov for the teamwork and early 

development of the project during the first year. I would like to thank Dr. Wei Tu for his 

constant help and his invaluable inputs through the project. I also want to thank the 

technical staff Mr. Vince Ford for designing and manufacturing some of the 

experimental equipments.  

Many thanks to my collaborator, Dr. Alexandre Clerbaux, Mr. Fang-Yue Chan, Mr. 

Michael Mainil, Dr. Michael Claes, and Mr. Julien Amadou in Nanocyl S.A. (Belgium); 

Dr. Youssef Habibi, Dr. Jean-Marie Raquez, and Dr. Philippe Dubois in University of 

Mons (Belgium). 



4 
 

Thanks are given to my wise and lovely colleagues at Queen Mary University of 

London and Nanoforce Technology Limited who helped me in any shape or form. 

A huge thank to my soul mate and husband Dong Dong for his love and understanding 

during my good and bad times. He always stands by my side, and there is no word to 

convey how much I love him. 

I would also like to thank my friends and family for their continual support and 

encouragement during my stressful stages.  

I looked back these years and want to say, doing a PhD was tough, but great, and I 

would totally do it again.  

  



5 
 

Abstract 

Following the eco-design concepts, this thesis investigated the manufacturing and 

properties of multifunctional bioplastic poly(lactic acid) (PLA) based composites. The 

main advantages of using bio-based polymer are to create performance products from 

sustainable resources, competing with fossil hydrocarbon sourced polymers, at the same 

time leaving open the possibility of composting as an alternative end-of-life option in 

addition to recycling. 

In Part I, self-reinforced PLA (SR-PLA) composites were produced based on oriented 

PLA tapes and a thin layer of PLA matrix, which were combined using a film-stacking 

technique into a „brick-and-mortar‟ laminated structure. The optimization of the uniaxial 

drawing and structure of these tapes, together with a study of the interfacial, tensile, 

impact and thermal properties of the obtained SR-PLA composites were investigated. In 

order to be successful in more demanding engineering applications the important issue 

regarding biodegradation during the PLA-based product‟s lifetime needs to be 

addressed. Therefore, monitoring of degradation levels during usage is of a vital interest. 

This is the subject of study of the 2nd part of the thesis. 

In Part II the aim is to develop multifunctional engineering bioplastics with improved 

performances (mechanical and electrical) and added functionalities (sensing properties). 

An in-situ degradation monitoring system for biodegradable polymers was successfully 

developed through the incorporation of carbon nanotubes (CNTs) in PLA. Changes in 

electrical resistivity of the PLA/CNT nanocomposites were successfully correlated with 

degradation levels of this bioplastic. PLA/CNT nanocomposites demonstrated excellent 

degradation sensing abilities at CNT concentrations around the percolation threshold, 
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with resistivity changes of about four orders of magnitude with biodegradation. The 

exceptional mechanical, electrical properties and 1D anisotropic geometry of CNTs also 

make them ideal reinforcing fillers for polymeric fibres. Therefore, the influence of 

CNT content and solid-state drawing on microstructure and the resulting mechanical 

and electrical properties of these nanocomposites were investigated. 
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Chapter 1.  

Introduction 

1.1 End of life options for composite waste: Recycle, reuse or dispose?  

A growing public awareness and new environmental legislations have created a 

substantial driving force for manufacturing of materials and end-products that consider 

their environmental impact at all stages of the life cycle. At this moment, „eco-design‟ or 

„designing for recycling‟ must be an important part of our daily lives if we are to 

preserve the natural resources of our planet. The automotive industry, in particular, is 

now trying to make every component recyclable because of an European Union (EU) 

directive on the end-of-life of vehicles (ELV). This regulation states that by 2015 all 

vehicles must be made of 95% recyclable materials, of which 85% can be recovered 

through reuse or mechanical recycling and 10% through energy recovery or thermal 

recycling [1]. 

For this reason, bio-based and biodegradable polymers and composites have been the 

subject of many studies over the last two decades. Poly(lactic acid) (PLA) is one of the 

most promising thermoplastic bio-based polymers because of its attractive mechanical 

properties, low emission of greenhouse gases, low amount of energy used for 

production, potential biodegradability and high industrial production capacity. However, 

due to its high brittleness (a typical tensile strain at break of less than 6% [2]) and low 

heat deflection temperature (HDT), PLA has not yet gained full market acceptance as an 
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engineering resin.  

One possible strategy to improve the mechanical and thermal properties of PLA has 

been through the addition of natural fibres to make so-called „green composites‟ [3, 4]. 

To date, a number of composite manufacturers have introduced in their product range 

PLA composites reinforced with natural fibres. The main driving force in pursuing the 

use of natural fibres is their environmental impact over the entire life cycle.  

The concept of recycling polymer based products gained momentum towards the end of 

the 1970‟s fuelled by the oil crises in 1973 and 1978-1979, which resulted in a 

significant increase in raw material costs. Recycling of polymer composites is an even 

more recent occurrence with significant work generally not starting until the latter half 

of the 1980‟s. However, with the increasing use of composite products, particularly in 

the automotive industry which consumes up to 25% of all composites manufactured, the 

issue of composite recycling is becoming ever more important [5]. 

The waste hierarchy as shown in Figure 1.1 is to extract the maximum practical benefits 

from products and to generate the minimum amount of waste. From the point of view of 

material utilization it is generally preferable to succeed with highest possible level of 

recycling. Landfill and incineration have always been the simplest but least desirable 

strategies of disposal accounting for 98% of composites waste, while other routes such 

as reuse and mechanical recycling account for the remaining 2% [5]. One composite 

example on disposal level is glass fibre reinforced polymer composites (GRP). During 

thermal recycling, there is a huge mechanical performance loss of recycled glass fibre 

compared to its original state [6]. As a result, these recycled fibres cannot be 

reprocessed or reused as reinforcement of composite due to their poor cost-performance 
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ratio. The group of Thomason in the University of Strathclyde has been working on the 

cost effective recycling of GRP. Sáez-Rodríguez et al. [7] investigated the regeneration 

of mechanical performance of thermally recycled glass fibres by using different 

chemical treatments. The results showed that strength loss of heat treated fibres (0.7 

GPa) can be recovered (2.1 GPa). Green composites have clear advantages with respect 

to energy recovery. Most green composites can be burned without problematic residues 

as in the case of glass fibre composites. Although the use of natural fibres seems at first 

to be an environmentally sound approach as they are renewable, there are some issues 

with respect to end-of-life scenarios for these composites. In the case of mechanical 

recycling their relatively poor thermal stability may lead to severe additional thermal 

degradation of the composites during subsequent reprocessing steps. 

 

Figure 1.1 The waste hierarchy and examples on each level. 

To assist in the transition from disposal of composite waste in landfill to recycling, 

industry needs to consider designing components for easier disassembly, reuse and 

recycling at the end of the products‟ life. One of the basic rules in „designing for 

recycling‟ is a reduction of the variety of materials. In the case of plastics, compatible 
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polymers should be selected, which in practice means use of monomaterials. An 

example of monomaterial composites is called self-reinforced polymer composites 

(SRPs) or „all-polymer‟ composites, in which a polymer matrix is reinforced with 

oriented fibres or tapes of the same polymer. The absence of „foreign‟ reinforcements 

means enhanced fibre-matrix interfacial adhesion and more importantly, full 

recyclability without the need for separation of fibre and matrix. After initial conception 

in the mid-1970s, numerous groups have investigated methods for scaling these 

concepts up into commercial products. To date, the most commercially applied 

technology is marketed as Curv
®
, with examples of loud speaker cones, protective 

sports equipment, automotive panels, and a major commercial range of luggage. 

Additionally, the use of PP coextrusion-based SRPs based on PURE
®
 has been 

prototyped in application such as automotive undertray panel and is reported to be 

applied to luggage, kayaks, skates and other recreational equipment as well as in 

motorsports applications [8]. 

1.2 Objectives 

Following eco-design concepts, in the first part of this thesis, another family of SRPs is 

being presented based on the bioplastic PLA. The main advantages of using bioplastic 

are to create performance products from sustainable resources, competing with fossil 

hydrocarbon sourced polymers, at the same time leaving open the possibility of 

composting as an alternative end-of-life option in addition to recycling. A flow diagram 

summarizing the possible life cycle of SR-PLA composites is shown in Figure 1.2. PLA 

pellets can be synthesized from corn through a series of chemical routes. From these 

pellets, oriented PLA tapes can be processed by extrusion and solid-state drawing. 
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These tapes can be woven into fabric and subsequently consolidated into sheets. Finally, 

finished articles can be produced by thermoforming of these sheets. At the end of the 

products‟ life, they can be collected and mechanically recycled into other PLA based 

products such as packaging or even new SR-PLA composites. The bioplastics specialist 

Purac has sponsored a project called „Perpetual Plastics Project‟ to highlight how easily 

PLA resins can be recycled with a small-scale demonstration machine. A new article can 

be remade using a 3D printer after the steps of cleaning, drying, shredding, melting and 

extrusion [9].  

 

Figure 1.2 Life cycle of SR-PLA composites. 

For SR-PLA composites, when these materials can no longer be recycled, these PLA 

materials can finally be composted in a commercial composting facility. Alternatively, 

of course they can also be incinerated with energy recovery. Chemical recycling or 

depolymerisation of PLA to recover the monomer lactic acid could also be an 

end-of-life solution. Piemonte et al. [10] reported that the production of lactic acid from 
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chemical depolymerisation of PLA is preferable compared to glucose fermentation in 

terms of energy saving. In brief, the multiple end-of-life options offered by SR-PLA 

composites empowers them to reduce the environmental impact of plastic products, and 

gives the end-user maximum flexibility in environmentally sound waste disposal 

schemes. 

The SRP concept applied in this thesis follows earlier work on PP and PET and is based 

on highly oriented PLA tapes and thin layers of isotropic PLA films, which are 

combined using a film-stacking technique into a „brick-and-mortar‟ structure (see 

Figure 1.3). The reinforcing tape is solid-state drawn under tension at temperatures just 

below the melting point of the polymer to orient the polymer chains along the tape‟s 

axis to improve strength and stiffness. This layer is then sandwiched between two thin 

outer layers of a PLA matrix with a lower melting point (154 
o
C) than the reinforcing 

tape (169 
o
C). During hot-pressing, the matrix layers are selectively melted to weld the 

tapes together to form a composite structure, while retaining the mechanical properties 

of the tape. 

 

Figure 1.3 Schematic of the hot compaction process. 

As will be shown in Chapter 4, these materials hold strong future promise for potential 
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applications as a high performance bio-based engineering plastic. However, in order to 

be successful in more demanding applications the important issue regarding degradation 

during the product‟s lifetime needs to be addressed. It is for this reason that monitoring 

of degradation levels during usage could prove to be of a vital interest for this type of 

materials. 

In the second part of the thesis, the aim is therefore to develop a range of 

multifunctional engineering bioplastic systems with improved performances 

(mechanical and electrical), functionalities (sensing properties), and processability. 

Carbon nanotubes (CNTs) have gained considerable attention with their outstanding 

properties. The combination of high Young‟s modulus and tensile strength, excellent 

thermal and electrical conductivity in combination with their low density and high 

aspect ratio has made them ideal candidate fillers for a whole new range of 

multifunctional nanocomposites. These opportunities include the use of CNTs as 

conductive filler in insulating polymer matrices and as reinforcement in structural 

materials [11-13]. Interestingly, it has been shown that the electrical conductivity of 

CNT networks in polymer matrices are affected by stimuli such as temperature [14], 

gases [15], vapour [16], mechanical stress and strain [17,18], pH [19], and liquids [20]. 

Generally, the underlying mechanism is that the introduced external stimuli results in a 

deformation of the CNT percolation network, thus leading to a change in electrical 

conductivity of the composites. Hence, measuring changes in the electrical resistivity of 

a compound can be used to „sense‟ or monitor its structural status. Here we will attempt 

to use such conductive CNT networks to monitor biodegradation in the PLA matrix, as 

it is expected that polymer degradation will change the mobility of the CNTs in the 

polymer matrix, leading to changes in the network and through this changes in electrical 
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properties. 

It is worth mentioning that in order to keep the environmental impact and carbon 

footprint as low as possible, Nanocyl (Belgium) has been working on the production of 

CNTs using biosourced hydrocarbon, methane, ethanol and camphor in another work 

package of the project HiBioPol. However, the CNTs used in the present work are a 

non-biosourced commercial available product.  

Based on the above facts, the main goals of the thesis are: 

• To understand the structure-property relationships of PLA during solid-state 

drawing and to optimize their mechanical properties via processing 

• To tackle the high brittleness, low heat resistance and unsatisfactory tensile 

properties of neat PLA through the development of SR-PLA composites 

• To produce conductive PLA/CNT tapes with high strength and modulus 

• To provide real-time information of the degree of degradation of PLA through the 

use of CNT as sensors 

• To investigate the market potential of SR-PLA composites 

1.3 Scope of the thesis 

This project describes the processing and properties of multifunctional bio-based PLA 

composites. The thesis is divided into two parts. Part I focuses on the manufacturing and 

properties of SR-PLA composites. Chapter 2 gives a comprehensive overview of the 

literatures of PLA composites and SRP‟s. The development of a high performance PLA 

tape as reinforcement is essential in imparting superior mechanical properties into 

resulting SR-PLA composites. Therefore, the influence of the applied draw ratio and 
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drawing temperature on the morphology and mechanical properties are presented in 

Chapter 3. Then, an investigation of interfacial, mechanical and thermal properties of 

resulting SR-PLA composites are carried out in Chapter 4. In Part II, the discussion 

focuses on the development and functionalization of PLA/CNT nanocomposites. After a 

literature review in Chapter 5, Chapter 6 describes an attempt of reinforcing PLA using 

CNTs through a melt-compounding process followed by solid-state drawing. The draw 

ratio dependency of mechanical and electrical properties in these nanocomposites is 

studied. Chapter 7 successfully explores a novel in-situ degradation monitoring system 

based on PLA/CNT films. Finally, Chapter 8 summarizes the findings of this project 

together with some ideas for future research, which could lead on from this project. A 

marketing study is also performed to determine whether commercial exploitation 

opportunities exist for the SR-PLA technology developed.  
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Chapter 2.  

Literature review 

2.1 Poly(lactic acid) (PLA): A sustainable bioplastic 

Polymers derived from renewable resources are now considered as promising 

alternatives to traditional petro-based polymers as they fulfil current environmental 

concerns. Poly(lactic acid) (PLA) is one of the most promising bioplastic because of its 

attractive mechanical properties, low emission of greenhouse gases, low amount of 

energy used for production, potential biodegradability and high industrial production 

capacity.  

The first attempt to prepare PLA was ascribed to Carothers (at DuPont) in 1932 as a low 

molecular weight product by heating lactic acid under vacuum [1]. However, the initial 

uses were limited to medical and pharmaceutical applications due to its limited capacity, 

high manufacturing cost, and low molecular weight. There is a sharp rise in the 

development and commercial marketing of PLA in the last two decades, since the 

advancement in the fermentation of dextrose obtained from corn dramatically reduced 

the cost to make monomer lactic acid [2]. During the last years of 20
th

 century several 

companies have made attempts to produce PLA in industrial scale. NatureWorks Llc. 

(USA) announced a production capacity of about 140,000 ton/year of PLA under the 

name Ingeo
TM

, mainly for the commodity market, such as film and fibres for packaging, 

housewares, and clothing.  
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PLA belongs to the family of aliphatic polyesters with the basic building block of lactic 

acid. The monomer lactic acid has two optically active stereoisomers: dextro- (D-) and 

levo- (L-) (Figure 2.1). Natural fermentation generally yields a mixture of 99.5% of the 

L-isomer and 0.5% of the D-isomer. The two isomers have identical physical properties, 

with the exception that of the L-isomer rotates the plane of polarized right clockwise 

while the D-isomer rotates it anti-clockwise. 

 

Figure 2.1 Two stereoisomers of lactic acid. 

There are two major routes to produce PLA from the monomer lactic acid (Figure 2.2). 

The conventional process is by the polycondensation of lactic acid. This process is 

carried out under high vacuum and high temperature. Solvent is used to extract 

by-products. This method leads to low molecular weight PLA due to difficulties of 

removing water and impurities [3]. The second method is ring-opening polymerization 

through the lactide intermediate. This method results in a higher molecular weight 

polymer and uses milder conditions [4]. 
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Figure 2.2 Polymerization routes to PLA [3]. 

Production of PLA via the lactide route allows the possibility of modifying the physical 

properties by controlling the stereochemical structure of the polymer [5]. The ratio of D- 

and L-isomers and their distribution along the polymer backbone can influence the 

molecular weight, crystallinity, and melting temperature of the end product [3]. Since 

the D-form is normally considered as defects in fermented lactic acid, fully amorphous 

materials can be produced by the inclusion of relatively high D-lactide content (> 15%) 

[6], whereas highly crystalline materials can be achieved when the D content is low (< 

2%) [7]. The crystallinity and melting temperatures of both pure poly-L-lactide (PLLA) 

and poly-D-lactide (PDLA) are about 37% and 175-178 ºC, respectively.  

Representations of PLA polymer chains having different ratios and distributions of the 

D- and L- isomers are shown in Figure 2.3. Different melting temperatures of PLA, 

varying from 130 
o
C to 220 

o
C, can be obtained [6]. PLLA having only L-lactic units has 

a melting temperature of 180 ºC and is shown in the upper row of Figure 2.3. A blend of 

PLLA and PDLA can lead to a polymeric stereocomplex with melting temperature as 
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high as 220 
o
C (See the bottom row of Figure 2.3).  

 

Figure 2.3 Examples of molecular configurations of PLA obtained through combining 

the two lactic acid isomers in varying proportions [3]. 

The mechanical properties of lactic acid based polymers can be varied to a large extent 

depending on not only stereochemical structures, but also crystallinity, molecular weight, 

crystalline orientation, the processing history, and so on. Generally, semi-crystalline 

PLA is preferred to the amorphous PLA when high mechanical properties are desired. 

Semi-crystalline PLA has an approximate tensile modulus of 3 GPa, tensile strength of 

50-70 MPa, flexural strength of 100 MPa, and strain at break of about 4% [8]. It has 

been shown that tensile strength and modulus of PLA increases by a factor of two when 

the molecular weight increases from 50 to 100 kDa [9]. A further increase in molecular 

weight to 300 kDa seemed not to influence the properties of the polymers significantly. 

Grijpma and Pennings [10] investigated the importance of the crystalline fraction in the 

toughness of PLA. They varied crystallinity of PLA copolymers by introducing 0-15 

mol.% D-lactide. The impact strength (37 kJ m
-2

) reached maximum at D-lactide content 

of 0.5 mol.% and a heat of fusion of 60 J g
-1

. They explained that this optimum in 

mechanical properties is reached at a point where the entanglement density is relatively 
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high and the crystallinity is large enough to make the effect of physical cross-linking on 

the brittle tensile strength. Superior mechanical properties have also been achieved by 

stereocomplexation of enantiomeric PLAs, which was ascribed to formation of 

stereocomplex crystallites giving intermolecular cross-linking [11]. There is no 

significant differences in mechanical properties of polymers of similar molar masses, 

but prepared by different polymerization processes [12].  

2.2 Natural fibre reinforced PLA composites 

In comparison with commodity polymers such as polyethylene (PE), polypropylene 

(PP), polystyrene (PS) and poly(ethylene terephthalate) (PET), the mechanical 

properties of semi-crystalline PLA are attractive, particularly its high Young‟s modulus, 

making it as an excellent substitute for commodity polymers in short-time packaging. 

However, due to its high brittleness and low heat deflection temperature (HDT), PLA 

has not yet gained full market acceptance as an engineering resin.  

One possible strategy to improve the mechanical and thermal properties of PLA has 

been through the addition of natural fibres (NFs) to make so-called „green composites‟ 

[13]. NFs have advantages such as low cost, high specific strength and modulus, 

biodegradability and renewability compared to glass fibres (GFs). 

Dicker et al. [14] used Ashby plots for a comparative evaluation of the mechanical 

properties of various fibres and their composites as shown in Figure 2.4. It can be seen 

that NFs and GFs are comparable in terms of specific stiffness and specific strength. 

However, a wide gap appears when comparing the mechanical properties of composite 

materials constructed from each of these fibres. There are several reasons for this 
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disparity between the properties of the raw fibres and their composites. One reason is 

the poor thermal stability of NFs. Wielage et al. [15] showed that the tensile properties 

of NFs can decrease by as much as 60% when the fibres were processed for 60 min at 

220 
o
C. Moreover, the poor compatibility between hydrophilic natural fibre and 

hydrophobic polymer matrix is also responsible. Numerous attempts have been made to 

overcome this issue, which will be discussed in details in the following paragraphs. 

 

Figure 2.4 Density specific mechanical properties [14]. 
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Table 2.1 Comparison of the mechanical properties of PLA-based green composites. 

Author (year) Fibre type (proportion) Tensile strength 

[MPa] 

Young’s modulus 

[GPa] 

Impact 

strength 

increase in % 
*
 

Oksman et al. [18] (2003)  

Nishino et al. [19] (2003) 

Plackett et al. [20] (2003) 

Huda et al. [21] (2005) 

Li et al. [22] (2006) 

Bax et al. [23] (2008) 

Bax et al. [23] (2008) 

Cheng et al. [24] (2009) 

Bledzki et al. [16] (2009) 

Bledzki et al. [16] (2009) 

Bledzki et al. [17] (2010) 

Flax (30 wt.%) 

Kenaf (70 vol.%) 

Jute fibre (40 wt.%) 

Recycled newspaper cellulose fibre (30 wt.%) 

Bamboo fibre (30 wt.%) 

Cordenka rayon fibre (30 wt.%) 

Flax (30 wt.%) 

Chicken feather fibre (5 wt.%) 

Man-made cellulose (30 wt.%) 

Abaca fibre (30 wt.%) 

Jute fibre (30 wt.%) 

53 

62 

93.5 

47.7 

45 

58 

54 

55 

91 

74 

82 

8.3 

6.3 

8.7 

6.3 

3 

4.9 

6.3 

4.2 

5.8 

8.2 

9.6 

-27% 

- 

-7% 

-49% 

- 

350 

-45% 

- 

260 

140 

20 

* Because the test methods presented in different papers differ from each other, percentage change values compared to the value for pure 

matrix given in every particular work are presented. Values are calculated by using information which was not given in numeric values but 

in figures.
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A comparative study on the mechanical properties of various NFs reinforced PLA 

composites is given in Table 2.1. The different extent of reinforcement accounts for the 

type of fibre used and its homogenization to the matrix. The composites with flax show 

higher strength and modulus within the NFs group, since the flax is characterized by 

higher mechanical properties than for example bamboo. The other factors that affect the 

mechanical strength include fibre diameter, length and aspect ratio. The diameters of NF 

bundles range considerably more than 50 μm. Man-made cellulose occurs in most cases 

as elementary fibres with a diameter of only 12 μm. Increasing fibre diameter affects the 

aspect ratio and thus decreases the mechanical performance of the composites. Bledzki 

and Jaskiewicz [16] pointed out that the highest aspect ratio of the man-made cellulose 

fibre is the main cause for its enhanced mechanical properties. Similarly, jute fibre 

bundles undergo separation during processing, allowing a better distribution and a 

favourable diameter for improved mechanical properties [17].  

With regards to tensile strength, it is very sensitive to the fibre/matrix interfacial 

adhesion. When an external load is applied to composites, the load is transferred from 

the matrix at the surface of composites to the fibres nearest the surface and continues 

from fibre to fibre via matrix and interface. Therefore, a weak interface induces an 

ineffective load distribution and the mechanical properties of the composites are 

impaired. On the contrary, a strong interface can assure an efficient load transfer to 

fibres even after several fibres are broken, with a consequent improvement of composite 

mechanical behaviour. It is therefore clear that optimization of interfacial adhesion is 

necessary in order to improve the overall mechanical properties. 

Both PLA and NFs are hydrophilic in nature and apparently is assumed that this 
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property will facilitate a better adhesion. Nevertheless, long fibre pull-outs and clean 

fibre surface of the PLA/flax composites as observed by Oksman et al. [18] proves a 

poor adhesion between the fibre and the matrix. Modifications of fibres were 

extensively reported in literatures. Mukherjee and Kao [25] reviewed the effect of fibre 

surface treatment on the fibre-matrix adhesion and mechanical properties of NFs 

reinforced PLA composites. Huda et al. [21] examined the effect of the addition of 

silane coupling agent and talc on the thermal and mechanical properties of 

PLA/recycled newspaper composites. The silane treated talc reinforced PLA/recycled 

newspaper hybrid composites flexural and impact strength was found to be significantly 

higher than that of those made without silane coupling agent. The silane treated hybrid 

composites showed improved properties such as a flexural strength of 132 MPa and a 

flexural modulus of 15.3 GPa, while the untreated composites exhibited flexural 

strength and modulus values of only 77 MPa and 6.7 GPa, respectively. 

Interestingly, Juntaro et al. [26] successfully attached nano-sized bacterial cellulose (BC) 

onto sisal fibres and then incorporated them into PLA. The presence of nanofibres led to 

a rise in interfacial adhesion with PLA, thus significantly improved both 

fibre-dominated and interface-dominated properties of these hierarchical composites. 

The impact strength of a composite depends on the type of fibre and is often inversely 

proportional to its interfacial adhesion with the matrix. Bax et al. [23] prepared 

Cordenka reinforced PLA composite and reported a maximum impact strength of 72 kJ 

m
-2

 with the addition of 30 wt.% fibres, which is approximately 4.5 times that of pure 

PLA. This value is also higher than the impact strength of PP/flax composite (32 kJ m
-2

) 

as reported in the literature [27]. Bledzki et al. [16] also obtained a 260% increase in 
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impact strength for man-made cellulose reinforced PLA composites. On the other hand, 

a decrease in impact strength was observed in case of jute fibres by Plackett et al. [20]. 

Similar results were observed by Oksman et al. [18] and Bax et al. [23] for PLA/flax 

composites. This can be explained by the relatively strong fibre-matrix adhesion leading 

to a more brittle failure behaviour in PLA/flax composites as compared to 

PLA/Cordenka composites. 

Improved HDTs are also observed in NFs reinforced PLA composites mainly due to 

increased crystallinity, modulus and/or the improved adhesion between matrix and fibre. 

Huda et al. [28] reported that surface-treated kenaf fibre reinforced laminated 

composites possessed higher storage moduli, impact strength and HDT than pure PLA 

resin but at the expense of tensile strength. 

To date, a number of composite manufacturers have introduced NFs reinforced PLA 

composites in their product range. FKuR (Germany) has developed wood reinforced 

PLA compounds (FIBROLON), which can be extruded or injection moulded into 

complex profiles, panels, and hollow profiles and/or into components for automotive 

interiors. Products of wood and biodegradable polyesters are also developed by 

FuturaMat (France) under the trade name BioFibra
®
 in grades suitable for injection 

moulding, extrusion, or thermoforming. Large scale use of PLA/NFs composites in 

automotive applications have been reported as well. Toyota, for example, uses kenaf 

fibre reinforced PLA composites for its Prius hybrid car interior parts [29].  

However, there are some major drawbacks which could limit the commercial adoption 

of these fibres as reinforcements in composites.  

First challenge comes to the fibre dispersion and its interfacial adhesion with the 

http://link.springer.com/search?dc.title=Bax&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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polymer matrix. Although chemical modification of fibres can potentially solve this 

issue, large amounts of hazardous chemicals are typically involved and chemical waste 

must be disposed appropriately.  

Variability in fibre properties is another major issue to be resolved if these materials are 

used in structural applications where durability must be accurately predicted. Due to 

NFs being obtained from natural sources, crop variety, factors including seed density, 

soil quality, fertilization, field location, fibre location on the plant, climate and harvest 

timing could all induce variability in properties, such as fibre shape, length and 

chemical composition.  

Furthermore, Summerscales et al. [30] compiled the results of quantitative life cycle 

assessment (QLCA) from Dissanayake et al.’s work. They found that the total energy 

required for flax using low energy agricultural processes was even greater than glass 

fibres. Therefore, the „green‟ claim for NFs composites may only be appropriate when 

the best practice is adopted in the growth, separation and processing of NFs, at the same 

time the durability of NFs composites is comparable to GFs composites.  

Although the use of NFs to reinforce PLA seems at first to be an environmentally sound 

approach as they are renewable, there are some issues with respect to end-of-life 

scenarios for these composites. In the case of mechanical recycling their relatively poor 

thermal stability may lead to severe additional thermal degradation of the composites 

during subsequent reprocessing steps. Furthermore, the recycling process of a 

traditional composite usually requires high technology and high cost due to the difficult 

separation of the fibre from polymer matrix [31]. Actually, the introduction of any 

„foreign‟ filler is in conflict with the basic idea behind recycling and monomaterial 
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products. 

2.3 Self-reinforced polymer composites  

2.3.1 Self-reinforced polymer composites  

A promising approach to composite recycling is the concept of „self-reinforced polymer‟ 

composites (SRPs) or „all-polymer‟ composites, in which a polymer matrix is reinforced 

with oriented fibres or tapes of the same polymer. The absence of „foreign‟ 

reinforcements means enhanced fibre-matrix interfacial adhesion and more importantly, 

full recyclability without the need for separation of fibre and matrix. The concept was 

first presented by Capiati and Porter [32] using oriented PE reinforcement and PE 

matrix with different melting temperatures. In following several decades, it has been 

successfully transferred to a range of polymers using various consolidation 

technologies. 

The most frequently used technology to manufacture SRPs is film-stacking, where 

similar polymers with different melting temperatures are used to achieve melting of one 

phase to yield matrix, while retention of another phase to yield reinforcement. Examples 

of this method include the work of Capiati and Porter [32], Kazanci et al. [33], Barany 

et al. [34], Houshyar et al. [35], and more recently Gong and Yang [36]. This method 

has many advantages, such as ease of production, good matrix distribution, can be 

applied to commercial polymer fibres or fabrics and films. The processing window can 

be large by selecting similar polymers but with very different melting temperatures. A 

wide variety of thin polymer films means that fibre volume fractions can be fairly well 

controlled. Other approaches for introduction of a polymer matrix phase amongst 
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polymer fibres include melt impregnation [37], powder impregnation [38], and solution 

impregnation [39, 40]. A low viscosity of the polymer matrix is crucial for good 

impregnation, where reinforcement fibres/tapes should be surrounded by matrix without 

voids. However, compared to non-crosslinked thermosets, the melt viscosities of 

thermoplastics are usually 3-6 orders higher, which means it is more difficult for 

thermoplastics to achieve a good matrix distribution by melt-impregnation.  

 

Figure 2.5 Consolidation of a SRPs from homogenous fibres by a hot compaction 

technology [41]. 

In 1993, Ward and others at the University of Leeds described a simple but innovative 

processing method, called „hot-compaction‟ [42], which has been investigated for a 

range of polymers [43-46]. Here an assembly of oriented polymer fibres or tapes is 

heated to a critical temperature, while held under pressure, such that a thin skin on the 
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surface of each oriented element is „selectively melted‟, creating a matrix phase. On 

subsequent fast cooling, the molten material recrystallises to form the matrix of the 

composite, with the remaining fraction of the original oriented phase acting as the 

reinforcement. This process is shown schematically in Figure 2.5. The first 

hot-compaction studies were carried out on unidirectional aligned melt-spun PE fibres 

[42]. They found that a maximum modulus of 36 GPa was obtained at the optimum 

compaction temperature of 136 
o
C with a processing window of ± 2 

o
C. DSC results 

showed that the optimum sample had around 15% of the molten and recrystallized  

  

Figure 2.6 Etched micrographs from unidirectional melt-spun CERTRAN PE fibres. (a) 

SEM picture of a transverse section of compacted fibres. (b) TEM picture of an 

interstitial lamellar region and its junction with adjacent fibres. 

matrix phase. In a later study [47], SEM and TEM of etched compacted samples showed 

how the recrystallized material fills the interstices in the close packed fibres. The molten 

skins recrystallized epitaxially on the surfaces of the un-molten portion of the fibres, as 

shown in Figure 2.6. Conditions were found for the successful compaction of a wide 

range of polymer fibres and tapes, including gel-spun PE fibres [41, 48], PET fibres 

[44], liquid crystalline polymer fibres [49] and fibrillated PP tapes [50]. Recent efforts 

have mainly focused on PP and this material is now commercially available under the 
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trade name Curv
®
. While it is a very elegant concept, the hot compaction process is 

clearly temperature sensitive. The need for unique and well-controlled composite 

processing routes may mean that these composites are more expensive to manufacture 

and more sensitive to manufacturing parameters than conventional composites. 

In the early 2000s, Peijs and coworkers developed a co-extrusion technique based on PP 

[31]. The key development is the concept of co-extruding multilayered tapes consisting 

of a PP homopolymer core covered by a thin PP copolymer skin with a lower melting 

temperature (see Figure 2.7). Subsequent solid-state drawing of these co-extruded tapes 

leads to a large increase in mechanical properties. These tapes can be woven into fabrics, 

and then further consolidated into sheets. An example of SRPs produced by using 

coextruded tape technology is shown in Figure 2.8. 

 

Figure 2.7 Co-extrusion technology is used for the development of high-performance 

PP tapes. These tapes consist of a highly oriented core (B) and a thin polymer skin (A) 

to weld the tapes together in a subsequent consolidation process. 
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Figure 2.8 Optical micrograph of a cross-section of a co-extruded PP woven tape-based 

SRP [51]. 

In this way, the reinforcement and matrix phase of the composite are produced at the 

same time; hence there is no need for a separate impregnation step when manufacturing 

the composites. The bonding between fibre or tape and matrix is achieved during 

co-extrusion. The processing temperature window could be widened to as much as 30 

o
C. Cabrera et al. [52] studied the effect of consolidation temperature on the flexural 

stiffness of unidirectional SR-PP produced by using co-extruded tape. They found that 

over the range of consolidation temperatures studied (140-170
 o

C), there was no 

significant effect of consolidation temperature on the flexural stiffness of the laminates, 

indicating that this wide temperature window would make composites based on 

co-extruded tapes less sensitive to thermal relaxation during hot-consolidation than 

mono-extruded tapes with a much narrower processing temperature window. The other 

main advantage of using co-extruded tapes is that the matrix material can be evenly 

distributed during composite consolidation. The volume fractions of reinforcement in 

these composites was extremely high (~ 90% or greater), while various parameters 
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could be used to adjust mechanical [53, 54] and interfacial properties [55].  

Because of the large processing window, a wide range of composite fabrication 

techniques were demonstrated by Cabrera et al., including filament winding [56], 

non-isothermal stamping [57] and the creation of sandwich panels [58]. Although the 

temperature processing window is quite wide, the characteristics of the final composite, 

such as static and dynamic mechanical properties [59, 60], fatigue resistance [61], 

impact resistance [62] and porosity [63], are very dependent on these processing 

parameters. This allows the composite properties to be tailored to the final application. 

Following the commercialization of SR-PP composites using co-extruded tape 

technology as the product PURE
®
, this idea was later also applied to create composites 

based on PET. Zhang and Peijs reported the use of co-extruded PET yarns with a 

copolyester skin layer to facilitate easier processing, resulting in composites with a fibre 

volume fraction of ~ 70% [64]. 

2.3.2 Self-reinforced poly(lactic acid) composites 

The creation of SRPs comprising various bioabsorbable precursor polymer fibres was 

also investigated mainly for medical applications, including polyglycolide (PGA), 

polyglycolide-lactide copolymer and PLA. This section will review the production and 

properties of the precursor PLA fibres first, followed by the development of SR-PLA 

composites to date. 

2.3.2.1 PLA fibre 

The development of high-stiffness and high-strength PLA fibres is essential in imparting 

superior mechanical properties onto the resulting SR-PLA composite. The mechanical 
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properties of fibres can be increased via molecular orientation during spinning and 

drawing, and the most commonly used methods of producing PLA fibres are melt 

spinning and solution spinning. The following paragraphs will review on the production 

of PLA fibres by both methods, along with correlations between structure and properties 

of the fibres. Comprehensive data on PLA fibre spinning are presented in Table 2.2.  

In general, solution-spun fibres are superior to melt-spun fibres from the standpoint of 

mechanical properties. This is attributed to the lower chain entanglement of polymer 

molecules in the solution state as compared to the melt state. For instance, Penning et al. 

[65] reported that dry spinning followed by hot drawing resulted in low crystallinity 

fibres having a tensile strength of 1 GPa, whereas fibres prepared from melt spinning 

followed by hot drawing had considerably lower strengths, ranging from 0.19 GPa for 

completely amorphous copolymers to 0.53 GPa for PLA homopolymer. Fambri et al. 

[66] were able to obtain fibres with tensile strengths and modulus of 1.1 GPa and 10 

GPa, respectively, with a PURAC brand biomedical material having Mv = 660,000. 

Similarly, Leenslag et al. [67] produced fibres with tensile strengths and modulus of 2.1 

GPa and 16 GPa from PLA with Mv = 900,000. The main drawbacks are that solvents 

such as chloroform and toluene are necessary, and the production speed is rather low. 

Table 2.2 Properties of oriented PLA fibre/tape. 

Author (year) Method Material Strength/

modulus 

[GPa] 

Comment 

Eling et al. 

[68] (1982) 

Melt spinning 

and drawing 

PLA 0.50 / 7.0 Initial Mv < 3×10
5 

Fambri et al. Melt spinning PLA 0.87 / 9.2 DR=10; Initial Mv=3.3×10
5 
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[69] (1997) and hot 

drawing 

Drawing at 160 
o
C; 

Crystallinity ~ 59.2% 

Mezghani et 

al. [70] 

(1998) 

High speed 

melt spinning 

PLA 0.38 / 6.0 Take-up velocity ~2000 m/min; 

Initial Mn=105,300 Daltons 

Extrusion temperature ~233 
o
C; 

Crystallinity ~ 42% 

Yuan et al. 

[71] (2001) 

Melt spinning 

and hot 

drawing 

PLA 0.53 / 5.2 DR=4.71; Initial Mv=4.95×10
5 

Drawing at 120 
o
C; 

Crystallinity ~61.9% 

Cicero et al. 

[72] (2002) 

 

Melt spinning 

and hot 

drawing 

PLA 0.38 / 3.2 DR=6; Initial Mn=47,600 

Radiant heating levels ~75%; 

Crystallinity ~ 47% 

Sawai et al. 

[73] (2006) 

Solid-state 

coextrusion 

PLA 0.50 / 8.0 DR=14; Initial Mv=4.6×10
5
 

Drawing at 170 
o
C; 

Crystallinity ~49% 

Leenslag et 

al. [67] 

(1987) 

Solution 

spinning and 

hot drawing 

PLA 2.1 / 16 DR=20; Initial Mv=9×10
5
 

Chloroform/toluene mixtures as 

solvent 

Solution temperature 60 
o
C; 

Drawing at 204 
o
C 

Crystallinity ~53% 

Fambri et al. 

[66] (1994) 

Solution 

spinning and 

hot drawing 

PLA 1.1 / 10 Initial Mv=6.2×10
5
 

Chloroform as solvent 

Drawing temperature 150-210 

o
C 

Table 2.2 (Continued)  

Commercial PLA fibres are mainly produced by melt spinning. Generally, PLA fibres 

are produced by a two-stage process: first melt extrusion, and then solid-state hot 

drawing. Eling et al. [68] reported melt extrusion of PLA at 185 
o
C through a capillary, 

followed by hot drawing in an electric tube furnace. The obtained fibres had a modulus 
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of 7 GPa and tensile strength of 0.5 GPa. The investigation of Cicero et al. [72] 

illustrates the two-step melt spinning of textile grade PLA. A maximum modulus and 

tensile strength of 3.2 GPa and 0.38 GPa were obtained respectively. Later, Cicero et al. 

[74] investigated the crystalline morphology of PLA by small-angle X-ray scattering 

and atomic force microscopy. They proposed a representation of the molecular structure 

of PLA (Figure 2.9) where the alignment of microfibres along the fibre axis is 

determined by the draw ratio. The crystalline and amorphous regions form stacks within 

the microfibrils and the interfibrillar region is populated by amorphous chains. Fambri 

et al. [69] reported melt-spun PLA fibres with tensile modulus of 9.2 GPa and tensile 

strength of 0.87 GPa. Yuan et al. [71] prepared PLA fibres by a two-step melt spinning 

process. Results showed that Mv dropped sharply by 13-20% during pulverization and 

by 39-69% during melt extrusion. The hot-drawing process had little effect on Mv of 

PLA.  

 

Figure 2.9 Supra-morphological model for two-step, melt-spun PLA [74]. 
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PLA filaments can be spun at high speed take-up velocities of up to 5000 m min
-1

 [70]. 

The crystallinity, birefringence, tensile strength, Young‟s modulus and yield strength, all 

exhibit maxima at take-up velocities between 2000 and 3000 m min
-1

. The boiling water 

shrinkage exhibits a minimum in this range, indicating that a stable morphology is 

developed through stress induced crystallization. The maximum tensile strength of these 

as-spun filaments was 385 MPa with a maximum modulus of 6 GPa. 

2.3.2.2 Self-reinforced PLA composites 

SR-PLA composites have been intensively studied since 1984, mainly for clinical use 

such as sutures, rods, screws and plates. Although few details regarding the exact 

processing routes were published in academic literature at that time, these bioresorbable 

composites were considered attractive as they possessed mechanical properties that 

exceeded most isotropic bioplastic, and could be naturally absorbed by the body over 

time, thus removing the need for surgical removal. 

In 1988, Törmälä et al. successfully manufactured an SR-PLA composite with higher 

strength than non-reinforced PLA for use in osteosynthesis devices [75]. The composite 

was produced by subjecting the fibres to elevated temperature and pressure. This 

process leads to more melting of the inner fibres but still allowed for the retention of 

some fibre orientation.  

Improved strength and rigidity were widely reported in literature. Table 2.3 compares 

the mechanical properties of SR-PLA reported in literatures. Majola et al. [76] 

successfully produced SR-PLA composite using sintering techniques at temperatures of 

130-135 
o
C for (PDLLA/PLLA rods) and 162-174 

o
C (PLLA rods). The fibres were  
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Table 2.3 Mechanical properties of SR-PLA composite as reported in literature. 

Authors (year) Materials Method Elastic 

modulus [GPa] 

Tensile 

strength [MPa] 

Flexural 

modulus [GPa] 

Flexural 

strength [MPa] 

Shear strength 

[MPa] 

Törmälä (1992) [77] 

Törmälä (1992) [77] 

Majola et al. (1992) [76] 

Majola et al. (1992) [76]  

Haltia et al. (2002) [78] 

Wright et al. (2005) [79] 

Wright et al. (2006) [80] 

Li and Yao (2007) [81] 

PLLA 

PLLA 

PLLA 

PLLA/PDLA 

PLLA 

PLLA 

PLLA 

PLLA 

Hot drawing 

Sintering 

Sintering 

Sintering 

Hot drawing 

Hot compaction 

Hot compaction 

Film stacking 

- 

- 

- 

- 

- 

5.4 

- 

2.3 

- 

- 

- 

- 

- 

- 

- 

43.6 

10 

- 

- 

- 

5.6 

5.6 

5.6 

- 

300 

250 

250-271 

209 

210 

- 

150 

- 

220 

96 

94-98 

102 

- 

143 

- 

- 
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initially produced by hot drawing and melt spinning techniques. They reported that the 

composite had initial bending and shear strengths of 250-271 MPa and 94-98 MPa 

respectively, which are significantly higher than of those non-reinforced PLLA (145 

MPa and 53 MPa respectively).  

Some studies also incorporated hydroxyapatite (HA) or tricalcium phosphate (TCP) into 

SR-PLA composites. The concept of combining bioceramics with SRPs in order to 

produce not only high strength and biocompatibility but also bioactivity had been tried 

earlier by Kellomaki et al. [82]. 

Since these composites are used in clinical applications, many reports quantified the 

mechanical properties of SR-PLA composites as a function of time of in vitro 

conditioning and others have data from animal experiments. Majola et al. [76] evaluated 

the strength and strength retention of SR-PLA composite rods after intramedullary and 

subcutaneous implantation in rabbits. They found that strength retention of SR-PLLA 

intramedullary rods is sufficient for fixation of experimental cortical bone osteotomies. 

Kellomaki et al. [83] designed several different bioresorbable scaffolds and found that 

SR-PLA rods were successfully used as scaffolds for bone formation in muscle by free 

tibial periosteal grafts in animal experiments. Wright-Charlesworth et al. [80] presented 

results of a nanoindentation study carried out with SR-PLA composites. The mechanical 

properties near the edge were lower than the interior of the sample after in vitro 

degradation, and changes were seen earlier for nanoindentation than for traditional 

flexural or tensile tests. 

Self-reinforced bone fracture fixation pins and screws based on PLLA and PGA have 
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been available in the market under trade names such as the Smartpin
TM

 and 

Smartscrew
TM

 by ConMed Linvatec. Nowadays, bioresorbable self-reinforced bone 

fracture fixation devices are in clinical use or in clinical research in more than 20 

countries [84]. The surgeon can select materials with tailored in vivo strength retention 

that suits individual needs in fracture fixation applications. 

Few studies on SR-PLA have focused on engineering rather than biomedical 

applications. One group studied various physical and thermal treatments and their 

effects on widening the processing window [81]. Jia et al. [85] reported SR-PLA 

composites and PLA reinforced polybutylene succinate (PBS) (PLA-PBS) composites 

based on commercial textile grade Ingeo™ PLA yarns from NatureWorks
®
. Despite the 

fact that these Ingeo™ have rather limited mechanical performance, improved tensile 

strength and modulus were observed for both types of SRPs, with the highest 

improvements reported for SR-PLA. They explained this by the better properties of the 

PLA matrix compared to PBS and better interfacial adhesion in the case of SR-PLA. 

In conclusion, PLA is considered as a very promising bioplastic but exhibits rather poor 

heat stability and high brittleness in its pristine state. Although natural fibres reinforced 

PLA composites do have some ecological advantages since they are renewable, there 

are some major drawbacks, such as poor interfacial adhesion with PLA, variability in 

fibre properties, and poor thermal stability during recycling process. The multiple 

end-of-life options offered by SR-PLA composites, including recycling and compositing, 

empowers them to reduce the environmental impact of materials, and gives the end-user 

maximum flexibility in selecting environmentally sound waste disposal schemes. To 

date, most studies on SR-PLA have focused on biomedical rather than engineering 
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applications. It will be very interesting to overcome the disadvantages of PLA by 

developing SR-PLA composites, thus converting high cost raw materials to value 

adding products. 
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Chapter 3.  

The influence of solid-state drawing on morphology and 

properties of melt-spun PLA tapes 

3.1 Introduction  

For the creation of self-reinforced poly(lactic acid) (SR-PLA) composites, first a 

tape-manufacturing route needs to be developed and optimized to ensure superior 

mechanical properties. Such a process will be based on solid-state deformation of PLA 

tapes rather than circular fibres as these allow for higher maximum „fibre‟ volume 

fraction because of a closer packing in subsequent consolidation processes. 

This chapter is concerned with the understanding of structure-property relationships of 

PLA films and tapes during stretching to optimize its use properties via processing. 

Since PLA is a semi-crystalline polymer, its mechanical properties depend strongly on 

its crystallinity, crystal orientation and morphology. Hence, the influence of draw ratio 

and drawing temperature on the superstructure (orientation and crystallization etc.) and 

morphology evolution of PLA, and the accompanying changes in mechanical and 

degradation properties will be discussed. 
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3.2 Experimental 

3.2.1. Materials 

PLA (NatureWorks
®
 Ingeo™ 4032D), containing 2.2% of D-isomer units, was 

purchased from Resinex (UK). Gel permeation chromatograph (GPC) in chloroform 

showed that the number average molecular weight (Mn) of the as received polymer is 

133,500 g mol
-1

. The melting temperature (Tm) is approximately 169 °C as measured by 

differential scanning calorimetry (DSC). 

 

Figure 3.1 Schematic of extrusion and solid-state drawing pilot-production line. 

3.2.2. Manufacture of PLA tapes 

Figure 3.1 shows the tape production line schematically. A single screw extruder (Dr. 

Collin GmbH, TEACH-LINE
®
 E 20T) with a length to diameter screw ratio (L/D) of 

25:1 and a compression ratio of 2.85:1 was employed to obtain PLA extruded films. 

Default extrusion settings are described in Table 3.1. Molten polymers were extruded 

through a 50 mm slit die. These extruded films were quenched on a chill roll, followed 

by post-drawing on heated rollers (Dr. Collin GmbH, TEACH-LINE
®
 MDO) to create 

oriented tapes. These tapes were drawn in a two-step solid-state drawing process below 
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the melting temperature. The first drawing step provided some initial orientation, but 

ultimate drawing was performed in the second step. The total draw ratio (DR) is defined 

as the ratio of drawn tape length to original tape length. The DR of as-extruded films is 

1. 

Table 3.1 Default extrusion parameters. 

 Temperature [
o
C] Screw speed 

[rpm] Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Tube 

Extruder 170 165 210 215 210 200 205 20 

 

The temperature of first set of rollers and initial draw ratio were fixed, while the second 

drawing conditions were varied for this investigation. The drawing parameters are listed 

in Table 3.2.  

Table 3.2 Solid-state drawing parameters (to give different DR) 

 Temperature [
o
C] Roller speed 

(1
st
 group) 

Roller speed 

(2
nd

 group) 

1
st
 drawing 

2
nd

 drawing 

80 

70/90/110/130 

0.5 m min
-1

 

0.2 m min
-1

 

2 m min
-1

 

0.8 m min
-1

 

 

3.2.3. Characterization 

Number average molecular weight (Mn) was determined by gel permeation 

chromatography (GPC). Measurements were performed at 30 
o
C in chloroform with an 

AGILENT Technologies 1200 series, equipped with 2 x Agilent PLgel Mixed D column 
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and a pre-column. 200 ml of polymer solution with a concentration of 5 mg ml
-1

 was 

injected at 1 ml min
-1

. The molecular masses were calculated using a polystyrene 

standard. 

Morphological studies were carried out on gold-coated samples using scanning electron 

microscopy (SEM) (FEI Inspector-F, The Netherlands).  

Differential scanning calorimetry (DSC) was conducted on Mettler-Toledo 822e. All 

samples were heated to 200 
o
C at 10 

o
C min

-1
 under a N2 atmosphere. The degree of 

crystallization (Xc) was obtained using the following expression: 

               100%m cc
C o

m

H H
X

H

 
 


 Equation 3.1 

where mH and 
ccH are the melting enthalpy and the cold crystallization enthalpy of 

test sample, o

mH is the melting enthalpy of the 100% crystalline PLA (93.6 J g
-1

) [1].  

Fourier transform infrared (FT-IR) spectra of various samples were measured with a 

Bruker Tensor 27 spectrometer. Attenuated total reflectance (ATR) mode was taken for 

the IR measurement. The spectra were obtained by collecting 16 scans at 4 cm
-1

 

resolution. 

Wide angle X-ray scattering (WAXS) were carried out at BM26 beamline of European 

Synchrotron Radiation Facility (ESRF). The energy of the X-ray beam was 1.033 Å. The 

sample-to-detector distance was 138.6 mm. All the 2D patterns were corrected for 

background scattering, and then integrated into 1D intensity profiles using fit2d software.  

To quantify the degrees of orientation of the lattice plane (200)/(110), Herman‟s 

http://www.utsc.utoronto.ca/~traceslab/ATR_FTIR.pdf
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orientation factor ( f ) was determined from the azimuthal intensity distribution by 

equation:  

              
23cos 1

2
f

 
  Equation 3.2 

Where   is the angle between the chain axis and the tape axis, and 2cos  is defined 

as: 

              

2
2

2 0

2

0

( ) cos sin

cos

( )sin

I d

I d





   



  






 Equation 3.3 

Where ( )I   is the scattering intensity at the angle . The value of f ranges from -0.5 to 

1. f = 1 indicates perfect alignments of polymer chains along drawing direction, whereas 

f = -0.5 means all the chains align perpendicularly to the drawing direction. When f = 0, 

it means that the chains are randomly aligned. 

In addition to the Herman‟s orientation factor, the full width at half maximum (FWHM) 

of the (200)/(110) diffraction peaks generated from the fitted azimuthal intensity 

distribution was also used to gain a qualitative estimate of the orientation. Smaller 

FWHM values correspond to a higher degree of orientation.  

Tensile tests were performed using an Instron 5586 at room temperature, equipped with a 

1 kN load cell. Since the strain at break of as-extruded PLA film was less than 20%, a 

lower testing crosshead speed (8 mm/min) was used. Rectangle-shaped specimens were 

used for testing. The reported values were calculated as averages over six specimens.  
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The dynamic mechanical analysis (DMA) Q800 from TA Instruments was performed on 

PLA tapes with different draw ratios. Specimens were tested in tension mode. A gauge 

length of 15 mm was used. The system was cooled to -10 
o
C, and then heated to 150 

o
C at 

a rate of 3 
o
C min

-1
. A static force of 0.01 N was applied to ensure the tape was taut 

between the grips. 

3.3 Results and discussion 

3.3.1 The influence of drawing on mechanical properties of PLA tape 

It is expected that the mechanical properties will improve with increasing DR because 

of increasing strain-induced crystallization and orientation. Figure 3.2(a) shows typical 

stress-strain curves of the PLA tape prepared at 90
 
°C upon different draw ratios. It 

should be noted that a yielding point is observed in the stress-strain curve of as-extruded 

film, while the strain at break exceeds 6%. This slightly more ductile behaviour could 

be possibly explained by plane stress conditions being present in these thin specimens 

[2]. Besides, the tightness of the clamps was also found to promote more ductile 

behaviour [2]. For drawn PLA tape, the strain hardening is observed after yielding. This 

slope of the strain hardening is strongly related to the DR. As DR increases to 4, the 

slope of the strain hardening actually jumps. The higher the DR, the greater the strain 

hardening of the tapes. This can be explained by the strain-induced crystallization and 

orientation of PLA. The strain-hardening behaviour is advantageous to industrial 

thermoforming processes because it assists in the production of higher quality films 

with uniform thickness, named self-level [3]. As expected, drawing has a positive effect 

on the Young‟s modulus and tensile strength of the tapes. As shown in Figure 3.3(a),  
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Figure 3.2 Stress-strain curves of PLA films and tapes subjected to (a) various draw 

ratios (Td=90 
o
C), and (b) different drawing temperatures (DR=8). 

compared to as-extruded PLA film (1.8 GPa in modulus and 53 MPa in tensile strength), 

a 128% and 227% increase in Young‟s modulus and tensile strength were achieved for 

oriented tapes of DR=8 drawn at 90 
o
C (4.1 GPa in modulus and 174 MPa in tensile 

strength), respectively. Interestingly, compared to as-extruded films, there is a 

significant increase in strain at break and ductility of the tapes with DR=4, leading to a 

much improved toughness. Further increase in DR results in a reduction of the strain at 
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break. This behaviour is similar as hot drawn PLA fibres reported in [4]. It is worth 

noting that tapes with DR=8 still have a strain at break of 30%. 

It was reported that for a fixed draw ratio, the 2
nd

 drawing temperature can have a 

dramatic effect on mechanical properties [5]. For this set of experiments, tapes were 

produced at a constant take-up speed and increasing drawing temperature (Td) in the 

second step from 70 to 130 °C in 20 °C increments. From the tensile test data presented 

in Figure 3.2(b) and Figure 3.3(b), a significant influence of Td on the overall 

mechanical behaviour can be seen. Young‟s modulus and tensile strength of the post 

drawn tapes increases with Td, with maximum values obtained for tapes drawn at 

130 °C. The Young‟s modulus and tensile strength for tapes drawn at 130 °C are 6.7 

GPa and 280 MPa, respectively. These values are 1.6 times and 1.5 times higher than 

for tapes drawn at 70 °C. Compared to isotropic PLA films, a 3.7 and 5.2 times increase 

in Young‟s modulus and tensile strength is achieved.  
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Figure 3.3 Young’s modulus and tensile strength as a function of (a) draw ratio and (b) 

drawing temperature in the specimen. 

Interestingly, in comparison to the small strain at break of as-extruded films, a much 

more ductile behaviour is observed after drawing. Compared to isotropic PLA, a 3.2 and 

12.7 times increase in strain at break and toughness is obtained for tapes drawn at 

130 °C (see Table 3.3). In contrast to the relatively smooth fracture surface of isotropic 

PLA, fibrillation takes place during the fracture process of these drawn tapes due to 

their highly anisotropic structures. As seen in Figure 3.2b, each drop in stress is 

accompanied by breakage along the axial direction in the tapes. In these oriented 

specimens, growing cracks are arrested by the anisotropic microstructure and 

catastrophic failure is postponed [6]. As a result, not only modulus and tensile strength 

but also ductility is greatly enhanced for tapes drawn at 130 °C. 
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Table 3.3 Tensile properties of various PLA tapes. 

Td 

[
o
C] 

DR Young’s 

modulus 

 [GPa] 

Tensile 

strength 

[MPa] 

Strain at 

break  

[-] 

Work of 

fracture
*
  

[J m
-3

] 

As-extruded 

90 

90 

90 

110 

130 

1 

4 

5 

8 

8 

8 

1.8±0.1 

3.5±0.1 

4.0±0.2 

4.1±0.4 

5.8±0.2 

6.7±0.4 

53±2 

157±7 

172±12 

174±13 

248±26 

278±7 

0.12±0.02 

0.66±0.09 

0.42±0.06 

0.29±0.03 

0.33±0.03 

0.38±0.03 

5.9×10
6 

8.3×10
7 

5.9×10
7 

3.8×10
7 

6.3×10
7 

7.5×10
7 

*
 Work of fracture =

0

f d

  , where  is stress,  is strain, and

f
 is the failure strain. 

The maximum tensile modulus and strength that could be achieved in this work were 6.7 

GPa and 0.28 GPa, respectively. These tensile properties are comparable to the maximum 

moduli and strengths previously reported for melt-spun drawn PLA fibres (see Table 2.2), 

but are well below those of melt-spun polyethylene (PE), polypropylene (PP) and 

poly(ethylene terephthalate) (PET) with moduli ranging from 15 to 70 GPa [7]. The 

reason for this is the low intrinsic modulus of a PLA crystal. Nishino et al. reported the 

crystal modulus of an α-form crystal of PLA by using X-ray diffraction [8]. They reported 

12 GPa for the crystal modulus of the α-form along the chain axis, meaning that the 

theoretically maximum achievable Young‟s modulus of a PLA fibre is well below the 

experimentally reported moduli for PE (235 GPa), PP (40 GPa) and PET (108 GPa), 

which all have much higher crystal moduli [9]. 

Overall, it can be concluded that drawing at 130 °C on the pilot line lead to good quality 

tapes as moduli of 6.7 GPa for these melt-crystallized PLA tapes compares well with a 

theoretical modulus of 12 GPa. Because of this, the highly oriented PLA tapes drawn at 
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130 °C were used as the reinforcement phase for SR-PLA composites. 

3.3.2 The influence of drawing on thermal properties of PLA tapes 

DSC was performed to find the development in crystallinity after drawing. As seen in 

Figure 3.4(a), the as-extruded films were almost amorphous (4% crystallinity content). 

The melting peaks observed are related to the crystallization developed during the DSC 

scan. It should be noted that for as-extruded films a glass transition with an enthalpy 

relaxation rather than a typical step change is observed. For samples that have been stored 

for a long time below the Tg, the 1
st
 heating curve often exhibits an endothermic 

relaxation peak rather than a step change. This peak can no longer be observed in the 

cooling curve. Preparing amorphous film is very important, because a too high initial 

crystallinity will reduce the maximum attainable draw ratio and consequently lower the 

final tape‟s mechanical properties. In agreement, Hyon and co-workers [10] started from 

as-spun fibres with crystallinity not greater than 5%, to draw them six times. 

For tapes drawn at 90 
o
C, the crystallinity increased dramatically to 53% and then 

reached a plateau at DR=4. The Tg and cold crystallization peaks were not detected in 

the DSC thermograms of drawn tapes. The melting peaks of all the samples appeared at 

166 
o
C.  

Furthermore, it is clear that increasing the drawing temperature results in a higher 

degree of crystallinity. The value for tapes drawn at 70 
o
C is 55% and rises to 67% for 

tapes drawn at 130 
o
C. Two different melting peaks can be distinguished for tapes drawn 

at 130 
o
C, at about 160 and 169 

o
C, respectively. The observed secondary peaks at lower 

temperatures are most likely due to varying lamellae thicknesses being present in the 

respective tapes. 
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Figure 3.4 DSC thermograms of (a) samples drawn at 90 
o
C with various draw ratios, 

and (b) samples drawn at different temperatures with draw ratio of 8. 

Since the mechanical properties of polymers are dependent on intermolecular 

interactions, the performance of polymers depends on the applied strain rate and 

temperature. The typical DMA plots, displaying the storage modulus (E’) and tan δ 

(E’’/E’) as a function of temperature, are shown in Figure 3.5. The mechanical glass 

transition is taken as the temperature of the maximum in tan δ. As seen in Figure 3.5(a), 
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all the tapes show a similarly shaped curve. Below Tg, E’ does not change much with 

temperature because the amorphous molecules are still essentially glassy. As soon as Tg is 

approached, however, the polymer chains in the amorphous phase begin to move, 

resulting in a reduced stiffness. 
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Figure 3.5 (a) Storage modulus and (b) loss factor against temperature for a range of 

PLA tapes with increasing draw ratio; (c) Storage modulus vs. draw ratio for a range of 

PLA tapes with increasing test temperature 

Figure 3.5(b) shows how the solid-state drawing influenced the tan δ peak position of 

PLA. As we can see, the tan δ peak is shifted to higher temperature with increased draw 

ratio. The peak position for PLA was at 70.0 °C and increased to 92.2 °C for the drawn 

tapes with DR=8. It was reported that Tg is influenced by the degree of crystallinity in 

PLA [11]. Moreover, it was reported earlier that orientation leads to a lower entropy in 

tapes, thus resulting in a higher Tm [12]. Similarly, upon heating, the highly ordered 

oriented PLA chains in the amorphous phase will try to re-establish their preferential 

isotropic state. However, the chains in constrained tapes have less mobility and as a 

result a higher Tg. Therefore, this positive shift in tan δ peak position can be attributed to 

strain-induced crystallization and a constrained oriented amorphous phase. Additionally, 

the intensity of the tan δ peak decreased with draw ratio compared to as-extruded film. 

This indicates that fewer polymer chains are participating in this transition. It should be 
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noted that the Tg values obtained from DMA are typically higher than those from DSC. 

This is because the oriented tapes studied with DSC are unconstrained and can relax 

before reaching Tg. Sub-Tg relaxation is inhibited for the DMA experiment because the 

oriented tapes are always slightly stressed. The confinement of the pre-strain prevents, or 

at least slows down, relaxation [12]. 

Moreover, E’ increases with draw ratio within the temperature range studied. As seen in 

Figure 3.5(c), below Tg (70-92 °C), there is no significant change in E’ for all tapes 

when increasing the test temperature from -10 °C to 25°C. At 80 °C, drawn tapes with 

DR=4 possess a low storage modulus, approximately 1.3 GPa, which indicates that the 

tapes have totally relaxed. The higher stretched tapes with DR=5 and 8, retain a higher 

modulus at elevated temperatures, possessing storage moduli of 2.8 GPa and 3.0 GPa 

respectively at 80 °C. These values shows that these tapes still possesses a greater 

storage modulus at 80 °C than undrawn PLA possesses at room temperature (2 GPa).  

3.3.3 Structure development in PLA tapes during solid-state drawing 

It was shown that depending on the drawing conditions, PLA is able to crystallize into 

different forms. When an amorphous film was drawn by a tensile force slightly above 

the Tg (60 °C), an oriented film with α crystals was obtained. When a semi-crystalline 

sample with α crystals was drawn, a part of the α crystals was transformed into oriented 

β crystals, depending on the draw conditions [13]. Eling et al. [14] reported that β 

crystals were generated upon tensile drawing at a high temperature to a higher DR, 

whereas drawing at a low temperature and/or low draw ratio produced α crystals. Thus, 

the drawn products of PLA commonly consist of β crystals or a mixture of β and α 

crystal. Leenslag et al. [15] and Hoogsteen et al. [16] prepared high-strength PLA fibres 
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that consisted of pure β-form crystals by hot drawing of solution-spun fibres at 

200-204 °C, namely 20-25 °C above Tm of an α crystal, to a draw ratio of 14-20. They 

found that the formation of β crystals depended on the sample molecular weight and 

molecular weight distribution in addition to the drawing temperature and draw ratio. 

It is very difficult to distinguish β reflection in WAXD pattern due to the overlap with α 

reflection. Since only long sequences of the 31 helix contribute to the X-ray (003)β 

reflection and shorter ones do not contribute to the intensity of this reflection, whereas the 

IR band of 912 cm
-1 

is active to the 31 helix independent of the sequence lengths. Thus, IR 

spectroscopy was more sensitive to detect a small amount of β crystals within a sample 

[17]. Therefore, the crystal transformation upon drawing was also characterized by IR 

spectroscopy. Cohn et al. [18] reported an absorption band at 921 cm
-1

 characteristic of α 

crystal. On the other hand, β crystals exhibit an absorption band at 912 cm
-1

 which is 

assigned to the CH3 rocking mode of β crystals. 

Figure 3.6 shows FT-IR spectra for a DR series prepared by solid-state drawing of PLLA 

at different drawing temperatures. According to the many FT-IR studies of PLLA, the 

band at 955 cm
-1

 is ascribed to the amorphous phase. The strong band at 871 cm
-1

 is 

attributed to the C-C backbone stretching. No absorption peak of either α or β crystal is 

observed for an original as-extruded film. An absorption band at 923 cm
-1 

characteristic 

of α-form crystal appeared at a DR of 4. The intensity of this band became gradually 

stronger with increasing DR. All the samples do not show a new absorption band at 912 

cm
-1

 characteristic of β-form crystal, indicating no crystal transformation obtained in this 

study.  
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Figure 3.6 Infrared spectra in the 800-1000 cm
-1

 region for a DR series prepared at 

different drawing temperature.  

2D-WAXS was performed to determine the PLA orientation after stretching. Figure 3.7 

displays the 2D-WAXS patterns of a DR series of PLA drawn at Td = 90 
o
C and also a Td 

series of PLA with DR=8. Herman‟s orientation factor (f) calculated from Gaussian 

function, as well as the full width at half maximum (FWHM) of the (200)/(110) 

diffraction peaks are used to quantify the orientation of PLA, and the corresponding 

values for various tapes are listed in Table 3.4.  

The PLA as-extruded film shows a diffuse isotropic scatter typical of an amorphous 

polymer. In the case of uniaxially drawn PLA tape with DR=4, there is a rapid growth 

of discrete equatorial reflections with low azimuthal spread typical of a well-oriented 

crystalline phase. The Herman‟s orientation factors of PLA tapes drawn at 90 
o
C are 

0.99 and 0.98 for DR=4 and 5, respectively. However, upon further drawing to DR=8, 

Herman‟s orientation factor decreases to 0.55. This tape displays a wider azimuthal 
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spread suggesting crystals with poorer orientation, which is quite unusual. This 

phenomenon occasionally occurs when the sample is „overdrawn‟ at low temperature. 

 

Figure 3.7 2D WAXS patterns of (a, e) as-extruded films, tapes drawn at 90 
o
C with DR 

of (b) 4, (c) 5 and (d, f) 8, and PLA tapes drawn at (g) 130 °C (DR=8) and (h) 140 °C 

(DR=8).The patterns were recorded with the incident beam perpendicular to the tapes.  

Table 3.4 Herman’s orientation factors of various PLA tapes obtained by WAXS. 

Td  

[
o
C] 

DR Herman’s factor  

(200)/(110) 

FWHM  

(200)/(110) [
o
] 

90 

90 

90 

130 

140 

4 

5 

8 

8 

8 

0.99 

0.98 

0.55 

0.99 

0.99 

7.4 

9.4 

16.3 

5.3 

6.2 
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Figure 3.8 Optical appearance of PLA tapes. From left to right; as-extruded film, tapes 

drawn at 90 
o
C to DR=4, 5 and 8. There is a clear transition from fully transparent to 

an opaque tape structure at DR > 5. 

An „overdrawing‟ regime was observed for the tape drawn at 90 
o
C to DR=8. It can be 

seen in Figure 3.8 that tapes drawn at DR=4 and 5 are transparent while the tape drawn 

at DR=8 is completely opaque due to the development of micro-voids. SEM was also 

performed in order to explain this phenomenon. As seen in Figure 3.9, the alignment of 

lamellae stacks can be viewed clearly for tapes drawn at DR=4. Denser packing of 

lamellae is found in tapes drawn at DR=5. At DR=8, fibrillated structure is observed. 

Micro-voids align parallel to the drawing direction. Furthermore, wavy striations appear 

perpendicular to the tape axis. These striations are present not only at the surface of the 

tape but in the core as well, indicating crystal reassembling. Therefore, the decreased 

crystalline orientation observed in WAXS may be due to the breakage of the oriented 

structure in the overdrawing samples. Zhang et al. [19] reported that when the drawing 

temperature is just above Tg (75 
o
C), during further stretching of PLA (strain > 100%), 

voids and cavities appear and develop, together with the breakage of existing crystals. 
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These wormlike structures have also been observed before in the oriented PP tapes. 

Schimanski et al. [20] found that for PP tapes with DR > 10, an „overdrawing‟ regime 

existed where tapes changed from transparent to opaque. They also observed that the 

crystal orientation increased rapidly with increasing DR at first, but started to decrease 

for DR > 10. They explained this phenomenon by the fibrillated structure in the 

overdrawing regime, in which high density regions are parallel aligned to the drawing 

direction and separated by low-density regions. Alcock [21] pointed out that the 

production of overdrawn tapes is not common in industry, since overdrawing is 

associated with increased fibre breakage during manufacturing.  

 

Figure 3.9 SEM cross-section images of (a) as-extruded films and tapes drawn at 90 
o
C 
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with (b) DR=4, (c) DR=5, and (d) DR=8. Arrows indicate the stretching directions. 

It should be noted that the arcs transform into spots with increasing Td, demonstrating 

an increase in orientation of the crystalline phase. Therefore, the improved modulus and 

strength with Td can be attributed to both an increase in crystallinity as well as 

orientation of the crystalline phase. 

3.3.4 Degradation behaviour of oriented PLA tapes 

In previous works [11], the authors reported extensively on the thermal degradation of 

PLA after melt processing. This degradation is attributed to ester group cleavage, as a 

consequence of the hydrolytic process at the high temperature of melt processing in the 

presence of residual water. In present work, PLA extruded films produced by melt 

processing showed a reduction of Mn by about 28%, from 133,500 g mol
-1

 of pellets to 

about 96,100 g mol
-1

 for as-extruded films. Eling et al. [14] produced fibres in which 

degradation was no higher than 40%. Fambri et al. [22] reported a molar mass 

degradation of more than 60% after melt spinning, but this result can be attributed more 

to shear stress effects due to long residence time (10 min). 

It has been found that the degradability of PLA can be modified significantly by 

changing the microstructure of the polymer. Figure 3.10 presents the GPC results of 

undrawn and drawn PLA tapes before and after degradation in two mediums at 50 
o
C. 

The results show that drawing has a significant effect on the hydrolytic degradation. In 

both medium, the extent of degradation was lower for drawn tapes than for as-extruded 

films. For example, after degradation for 4 weeks in water, the molecular weight of the 

tape with DR=8 is about twice that of isotropic films. It is well-known that the 

degradation of semi-crystalline polymers first occurs in the amorphous phase and then 
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in the crystalline regions, and therefore, our observation should be expected. This is also 

consistent with results reported by others [1]. 

 

 

Figure 3.10 Residual molecular weights of PLA as-extruded and drawn tapes before and 

after degradation in (a) water and (b) PBS. 

It is not easy to completely analyse how the microstructure affects the hydrolytic 

degradation of PLA because the crystallinity as well as the molecular orientation 

changes with the draw ratio. Rangari and Vasanthan [1] suggest that the crystallinity 



Chapter 3. Morphology and mechanical properties of solid-state drawn PLA tape 

83 
 

plays a dominant role in determining the extent of degradation relative to the molecular 

orientation. The study of PLA degradation will be discussed in details in Chapter 7. 

In summary, solid-state drawing has a significant effect on the hydrolytic degradation 

behaviour of PLA due to the morphological changes. Therefore, it can be useful for 

tailoring the degradability of PLA products. 

3.4. Conclusions 

The drawing conditions of PLA determine the morphology of the polymer, and through 

this control their mechanical properties and degradation profile. Both draw ratio and 

drawing temperature play an important role in the polymer morphology and resulting 

properties. An increase in modulus and strength is seen with increasing draw ratio, due 

to the strain-induced crystallization and orientation. Drawing at higher temperatures 

increases the modulus and strength further, which accounts for the improved orientation 

and crystallinity. More importantly, a large increase in toughness was observed with 

drawing, which is highly relevant for numerous PLA applications. α-form crystal were 

observed in all tapes. 
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Chapter 4.  

Manufacturing and properties of SR-PLA composites  

4.1 Introduction 

In the previous chapter, highly oriented poly(lactic acid) (PLA) tapes with good 

mechanical properties have been developed. In order to consolidate these tapes into 

SR-PLA composite, a PLA matrix with a lower melting point than the PLA oriented 

tapes, will be used to bond the tapes together using a film-stacking technique into a 

„brick-and-mortar‟ structure. During consolidation, the matrix layers are selectively 

melted to weld the PLA tapes together to form a composite structure. The optimization 

of interfacial bonding between tape and matrix film is crucial to the performance of 

SR-PLA composites. For this, appropriate compaction conditions that ensure sufficient 

fusion bonding need to be determined. In this chapter, the effect of compaction 

temperatures, pressure and corona surface treatment on the interfacial properties were 

investigated first.  

Once optimal interfacial properties are defined, an investigation of the basic mechanical 

properties and heat resistance of SR-PLA composites is carried out. As reviewed in 

Chapter 2, to date, SR-PLA composites have been studied mainly for clinical use rather 

than engineering applications. Until now, impact behaviour and HDT of SR-PLA 

composites, which both limit the majority of applications of PLA, have not been studied. 

In this chapter, interfacial, mechanical and thermal properties of resulting SR-PLA 
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composites are reported. 

4.2 Experimental 

4.2.1 Materials  

NatureWorks
®

 Ingeo
TM

 PLA 4032D and 3051D were used for the reinforcing tapes and 

matrix phase, respectively. Both grades are poly(L-lactic acid) (PLLA). Unless 

otherwise specified, PLA in this chapter always refer to PLLA. The weight average 

molecular weight (Mw) of PLA 4032D and 3051D are 133,500 and 72,633 g mol
-1

 

respectively, as determined by means of gel permeation chromatograph (GPC) in 

chloroform with an AGILENT Technologies 1200 series, equipped with 2 x Agilent 

PLgel Mixed D column and a pre-column. The melting temperature (Tm) of the PLAs 

used are approximately 169 
o
C for the oriented tapes and 154

 o
C for the matrix phase, as 

measured by differential scanning calorimetry (DSC) (see Figure 4.1). 

 

Figure 4.1 DSC melting endotherms of PLA pellets used for tape and matrix. 
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4.2.2 Manufacture of SR-PLA composites 

Since the compaction process requires the heating of tapes, it is crucial to determine 

how these tapes behave at elevated temperatures. Upon heating there will be significant 

relaxation of the polymer molecules that have been oriented in the solid-state drawing 

process, leading to a decrease in mechanical properties. To assess the „free‟ shrinkage of 

PLA tapes with no external pressure applied, sets of five 10 cm long tapes were heated 

to different temperatures in an oven. Preliminary tests showed that for all temperatures, 

shrinkage increases with time. For each temperature, a plateau value of shrinkage was 

reached after 60 min. All free shrinkage measurements were performed by placing tapes 

in an oven, allowing the oven to equilibrate to required temperature, and then holding 

for 60 min. Total shrinkage is defined as fraction of initial sample length remaining after 

exposure to elevated temperature. 

Figure 4.2 represents the shrinkage as a function of draw ratio, for various discrete oven 

temperatures. From this graph, it is clear that there is an increase in free shrinkage with 

increasing draw ratio and temperature, which is detrimental for mechanical 

performances. The polymer molecules have been highly oriented by solid-state drawing 

(see Chapter 3), and upon heating there will be significant relaxation and a decrease in 

mechanical properties. In order to limit shrinkage during processing at elevated 

temperature, the tapes are pre-tensioned, and pressure is applied while heating. It was 

reported that a shift of about 10 
o
C in Tm for constrained and unconstrained fibres could 

be measured in the case of PE, PET and PA6, while shift greater than 20 
o
C can be 

obtained in PP fibres [1]. Therefore, it might be expected that constraining the tapes can 

also further expand the temperature processing window of hot compacted SR-PLA. 
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Figure 4.2 Tape free shrinkage vs. draw ratio (tape post-drawn at 90 
o
C) at elevated 

temperature. 

Unidirectional (UD) and bi-directional (BD) laminates with a thickness of ~ 1.6 mm (67 

vol.% of tape) were manufactured by stacking in a [0]20 or [0, 90]5s lay-up configuration 

in a mould. Here the number in between brackets indicates the tape orientation within 

each layer, while the number layers of repeating groups are indicated by the subscript. 

To avoid coupling effects, the cross-ply laminate were made symmetric, which means 

that the laminate is mirrored around the mid-plane. Possible symmetric arrangements 

for the BD laminates are shown in Figure 4.3a. Laminates were produced at a 

compaction pressure of 2.5 MPa and a temperature of 150 or 160 
o
C (Figure 4.3b). The 

entire cycle from insertion of the mould into the press until removal of the consolidated 

laminate took approximately 30 min. All test specimens were then cut from the 

laminates using a band saw to the required dimensions.  
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Figure 4.3 (a) Symmetric lay-up of SR-PLA laminates; (b) Time-temperature and 

time-pressure profiles during consolidation. 

4.2.3 Corona treatment of PLA tapes and matrix  

Corona treatment is widely used to increase the surface energy, wettability, and 

adhesion characteristics by introducing polar groups onto polymeric surfaces [2]. In this 

work, both reinforcing tapes and matrix films were corona treated at ambient 

temperature in air using a BD-20AC Laboratory Corona Treater. The electrode power 

was 30 W for a treatment time of 2 min. The surface area of the electrode and the gap 

distance were 1.4 × 7.0 cm, and approximately 1 cm, respectively. 
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4.2.4 Characterization  

DSC was conducted on Mettler-Toledo 822e. All samples were heated to 200 
o
C at 10 

o
C min

-1
 under a N2 atmosphere.  

Tensile tests were performed using an Instron 5586 at room temperature, equipped with 

a 10 kN load cell at a crosshead speed of 8mm/min. UD and BD specimens were loaded 

at  = 0
o 

and  = 0
o
/90

o
, respectively, where   is defined as the angle between the 

tape direction and loading direction. Aluminium tabs were adhesively bonded to the 

specimens to prevent clamp failure. The reported values were calculated as averages 

over six specimens.  

 

Figure 4.4 Image of dart impact test set-up showing servo-hydraulic tester, impact 

striker, specimen and specimen holder. 

Impact performance of BD laminates was measured using a penetrating dart test on a 

Zwick Rel tensile machine, as seen in Figure 4.4. Laminates (60 × 60 mm) were 

clamped between two plates with an internal diameter of 20 mm. A hemispherical dart 

with a diameter of 10 mm was used and impact energies were obtained by recording the 
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load-time curve during penetration. The constant speed during penetration was 1 m s
-1

. 

ASTM Standard D648 defines the HDT at which the test bar deflects by 0.25 mm. A 

constant load of 1.83 MPa was applied at the mid-point of a 3-point bending sample. A 

Q800 dynamic mechanical analyser (DMA) from TA Instruments was used for 

determining HDT. For the test to be valid under the ASTM conditions, the smaller DMA 

sample must deform to the same strain induced in the sample at a load of 1.83 MPa as 

that in ASTM sample. Therefore, first the sample dimensions as well as applied load for 

testing on DMA Q800 were calculated as described in [3]. The clamp with 50 mm span 

was used for 3-point bending test. The sample was heated at the rate of 2
 o

C min
-1

 from 

-10 to 170 
o
C. The sample displacement was recorded as a function of temperature.  

 

Figure 4.5 Geometry and schematic of the T-peel sample. 

To suitably determine the bonding characteristics of a wide range of different tapes, 

T-peel tests (Mode I failure) was performed (Figure 4.5). Teflon film was used at the 

mid-plane between tape and matrix film to create an unbounded region. The specimens 

were peeled along the tape direction in a universal tensile machine equipped with a 100 
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N load cell at a cross-head speed of 150 mm min
-1

. The peeling force is defined as a 

force per unit width.  

4.3 Results and discussion 

4.3.1 Tailoring the interfacial properties of SR-PLA composites  

The optimization of interfacial bonding between tape and matrix film is crucial to the 

performance of SR-PLA composites. For this, appropriate compaction conditions that 

ensure good levels of fusion bonding need to be determined. The effect of compaction 

temperatures, pressure and corona surface treatment on peel strength was investigated 

and plotted Figure 4.6. 

As seen in Figure 4.6b, the peel strength increases with compaction temperature. At 150 

o
C, good fusion bonding is not yet achieved, as the compression moulded sample could 

be easily peeled apart by hands. A dramatic increase in peeling strength is observed for a 

temperature of 160 
o
C or above. A compaction temperature of 170 

o
C leads to a peel 

force of 0.95 N mm
-1

, 10 times higher than the peel force achieved at 150 
o
C. This is 

because Tm of the matrix is around 155 
o
C as measured by DSC and at 170 

o
C the 

matrix is fully melted, which results in strong bonding. Figure 4.6a shows photographs 

of peel surfaces of samples compacted at different temperatures. For poorly bonded 

sample, compacted at 150 
o
C and 0.3 MPa, the surface is smooth, while for well bonded 

sample, compacted at 170 
o
C and 0.3 MPa, fibrillation is evident, indicating cohesive 

failure within the oriented tape. 
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Figure 4.6 (a) Photographs of peel surfaces; (b) Average peel force as a function of 

compaction temperature for tapes compacted under different conditions. 

Apart from temperature, pressure has also a significant effect on the bonding. For a 

moulding temperature of 160 
o
C, the peel force reaches 0.85 N mm

-1
 when the applied 

pressure is 1 MPa. Corona treatment of both tape and matrix is also used to improve the 

welding property. At the same compaction temperature of 160 
o
C and pressure of 0.3 

MPa, peel force increases from 0.63 N mm
-1

 to 0.88 N mm
-1

 with corona treatment. 

Although the increment is significant, it may not justify the implementation in an 

industrial environment because it would add cost. Furthermore, equivalent levels of 

adhesive bonding can be achieved by simply adapting pressure and temperature during 

hot-pressing.  

The sample processed at 160 
o
C and 10 bars shows a slightly lower peel force compared 

to that of 170 
o
C and 3 bars, but experience less relaxation during hot-pressing, 

permitting maximum retention of tape properties. Hence, increasing pressure rather than 

temperature appears to be favourable for optimizing overall performance of SR-PLA 
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composites.  

4.3.2 Tensile properties of SR-PLA composites 

So far PLA tape with good mechanical and interfacial properties have been obtained by 

optimizing solid-state drawing parameters and consolidation conditions. The 

mechanical properties of actual SR-PLA composites are investigated in the following 

section.  

Figure 4.7 compares the mechanical properties of PLA tape and unidirectional (UD) and 

bi-directional (BD) SR-PLA composites obtained in present work with commercial PLA 

based composites as well as oriented PP and SR-PP composites. Compared to isotropic 

PLA, the modulus and strength of UD SR-PLA laminate consolidated at 160 
o
C 

increases to 4.4 GPa and 102 MPa, which is an improvement of about 144% and 92%, 

respectively. Still these values are lower than those of PLA tapes. SR-PLA composites 

consisting of amorphous sheets as matrix and commercial grade Ingeo
TM

 PLA yarns and 

fabrics from NatureWorks
®
 were prepared by Li et al. [4]. For UD SR-PLA composites 

with 25 wt.% yarns, a Young‟s modulus of 3.7 GPa and tensile strength of 58.6 MPa 

were reported. In our work, the Young‟s modulus (6.7 GPa) and tensile strength (278 

MPa) of the reinforcement tapes are considerably higher than those of the PLA yarns 

(1.1 GPa and 133 MPa) used in their work. Moreover, higher reinforcement content was 

achieved due to the tape geometry that allows for a „brick-and-mortar‟ composite 

morphology, leading to higher tensile properties. Particularly the tensile strength of the 

current SR-PLA composites compares very favourably with other SR-PLA composites, 

with tensile strength nearly twice than that of SR-PLA based on Ingeo
TM

 yarns [4]. 
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Figure 4.7 Comparison of mechanical property for PLA tape and UD SR-PLA 

composites, together with commercial thermoplastic composites. 

As seen in Figure 4.7, UD SR-PLA composites show better tensile strength and Young's 

modulus than BD SR-PLA composites compacted at the same temperature. Since an 

oriented PLA tape will work most effectively when loaded along its axis, composites 

containing continuous unidirectional tapes show as expected the highest tensile strength 

and modulus. For a bidirectional laminate, only 50% tapes are effectively loaded due to 

the cross-ply configuration, with the modulus of the laminate now being the weighted 

sum of the longitudinal modulus and transverse tape modulus. 

Two compaction temperatures were used to prepare BD SR-PLA laminates, but with 

only little effect on tensile modulus and strength. The slightly increase in tensile 

properties at high compaction temperatures is due to the increased interfacial bonding 

and better load transfer. 
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Compared to glass fibre or natural fibre reinforced PLA composites, although the 

modulus of UD SR-PLA sheet is lower, the tensile strength is outstanding and exceeds 

that of the rest PLA-based composites shown in the figure. Therefore, SR-PLA 

composites could be of particular interest for products where strength is critical. 

4.3.3. Impact properties of SR-PLA composites 

The relatively poor impact strength of PLA has prevented a broader field of application 

of these materials. Composite materials generally perform well under impact loadings 

due to their combination of high strength and high stiffness, and additional energy 

absorption mechanisms such as delamination.  

Figure 4.8 shows the penetration impact energy absorbed by different composite 

laminates, normalized for specimen thickness. Clearly, isotropic PLA shows very low 

energy absorption. On the other hand, SR-PLA composites absorbed significantly more 

energy compared to isotropic PLA. As shown in Chapter 3, the energy required to break 

a tape is 12.7 times higher than that of isotropic PLA film. Therefore, the tensile failure 

of PLA tapes in SR-PLA composites is expected to attribute greatly to the total energy 

absorption. Moreover, during impact, delamination, fibrillation and tape pull-out are 

additional processes that can potentially absorb significant amounts of energy. The 

contributions of some of them will be evaluated below. The energy increases from 0.5 J 

mm
-1

 for isotropic PLA to 6.8 J mm
-1

 for SR-PLA compacted at 150 
o
C, which is nearly 

a 14 times increase. The peak force increases from 205 N mm
-1

 to 819 N mm
-1

. 

Although the value of SR-PLA is lower than that of reported for SR-PP laminates, it is 

still a remarkable improvement. Furthermore, with increasing compaction temperature 

of SR-PLA, absorbed impact energy is reduced. Similar effects were reported for SR-PP 
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composites [5, 6] and are related to the fact that weak interfaces can have positive 

effects on energy absorption by allowing more delamination and less localization of the 

impact damage, with greater volume of composite being involved in the energy 

absorption process. As shown in Figure 4.6, an increase in interfacial strength was 

observed with increasing compaction temperature. Therefore, higher compaction 

temperature leads to better interfacial bonding, thus resulting in less delamination and 

less energy absorption.  

 

Figure 4.8 Impact energy (a) and peak force (b) normalised for specimen thickness.  
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By combining the tensile test results with the peel test results on SR-PLA composites, 

the contribution of the tape failure to the impact resistance of SR-PLA composites can 

be estimated. Ignoring frictional losses, the energy absorbed upon penetrating impact, 

Etotal, can be considered as follows [6]: 

 T ItotalE E E   Equation 4.1 

where ET = energy absorbed by plastic tape deformation, EI = energy absorbed by 

interfacial failure. The energy absorbed by tape deformation, ET, will be dictated by the 

tensile behaviour of the composite. Since penetration requires tape failure, the energy 

absorption during impact can be compared to energy absorption during tensile testing of 

virgin tape and consolidated SR-PLA composites. If the impact load is considered to be 

solely absorbed by tapes that pass through the impact site, an effective volume of tape 

which is loaded upon impact can be assumed [7]. 

The effective tape volume can be modelled by considering the SR-PLA plate as stacked, 

unconsolidated tapes by ignoring interfacial properties and crimping, and only 

considering tensile properties of the tape. Alternatively, to account for the effect of tape 

interactions, crimping, and processing, the tensile properties of bidirectional specimens 

tested in the 0
o 
/ 90

o
 direction can be considered [8]. In both cases, the volume loaded in 

tension can be considered as two rectangular sections running normal to each another 

with the impact site in the centre (see Figure 4.9). Although the stain rate applied in 

impact test (6.3 × 10
-4

 s
-1

) is smaller than that applied in tensile tests (1.7 × 10
-3

 s
-1

), the 

tensile strength and modulus are relatively consistent over the strain rates [9, 10]. Hence, 

the absorbed energy is assumed to be similar. Since impact energies are normalized for 

specimen thickness, the effective tape area, AET, are considered and given by: 
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 '2ET f fabA V V  Equation 4.2 

where a = striker diameter, 10 mm, b = effective tape length, 60 mm, Vf = volume 

fraction of tape in composite, and Vf’ = volume fraction of effective material in loading 

direction. 

 

Figure 4.9 Schematic of effective area of tapes loaded in tension during impact 

(redrawn from [5]).  

Table 4.1 lists the energy absorbed by tensile failure of the PLA tape together with the 

energy absorbed by penetrative impact of BD SR-PLA laminates. It shows that half of 

the energy absorbed by impact failure of BD SR-PLA compacted at 160 
o
C can be 

attributed to tape failure. On the other hand, the contribution of work of fracture of PLA 

tape failure decreases to 35% for BD SR-PLA plates compacted at 150 
o
C. Since 

laminates processed at lower temperatures possess lower interfacial strength, more 

energy is absorbed by other fracture mechanisms such as tape pull-out, debonding, and 

delamination. Tape pull-out is clearly visible from the out-of-plane deformation of 
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SR-PLA laminates, as shown in Figure 4.10a. 

Table 4.1 Energy absorption mechanism of SR-PLA composites. 

Specimen Tape BD SR-PLA 

Compaction temperature [
o
C] - 150 160 

Absorbed impact energy [J m
-1

]
 1 - 6.8 ×10

3
 5.4 ×10

3
 

Energy absorbed by tape tensile failure (per 

unit thickness) [J m
-3

] 
2 

7.5×10
7
 4.4 ×10

6
 5.0 ×10

6
 

Effective area loaded in tensile [m
2
]
 3 2.70×10

-4
 5.39 ×10

-4
 5.39 ×10

-4
 

Effective energy absorbed by tape tensile 

failure (per unit thickness) [J m
-1

]
 4 

2.03×10
4
 2.37×10

3
 2.70×10

3
 

Percentage of energy absorbed by tape 

failure 
5 

- 35% 50% 

1
 Experimentally determined dart impact energy per unit thickness of laminate. 

2
 Experimentally determined work-to-break from integrated stress-strain curves of tape 

and laminates. 

3 
Calculated from Equation 4.2. 

4
 Calculated by multiplying laminate work-to-break (2)

 
and effective tape area (3). 

5
 Total impact energy (1) normalized to effective tape work-to-break (4). 

Figure 4.10b shows typical impact penetration damage. Isotropic PLA shows lower, 

more localized, energy absorption since the deformation is limited to the immediate 

impact site, unlike the SR-PLA specimen which shows large deformations, large 

amounts of fibrillation and delamination, and thus high energy absorption. 

Only the impact behaviour of BD laminates was studied as dart impact tests in case of 

UD laminates would lead to failure by transverse splitting and delamination along the 
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tape direction and subsequent low levels of energy absorption [11]. 

 

Figure 4.10 (a) Side image of out-of-plane deformation of SR-PLA BD composite 

laminates. (b) Front image of typical impact penetration damage of different materials. 

4.3.4 Heat deflection temperature (HDT) 

Apart from its high brittleness, a second limiting property of PLA is its low HDT. One 

popular strategy is adding plasticising agents or inorganic fillers acting as a nucleating 

agent. Huda et al. [12] reported superior heat-resistance properties of PLA/kenaf fibre 

composites. The HDT of these natural fibre composites was as high as 174.8 
o
C 

compared to 64.5 
o
C of neat PLA. Although the HDT was significantly improved, the 
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presence of these fibres poses serious concerns with respect to recyclability. Other 

methods involved heat treatments of samples near the crystallization temperature. Tang 

et al. [13] found a percolation threshold of crystallinity corresponding to HDT. HDT 

started to increase when the crystallinity exceeds 20%. The neat PLA showed HDT of 

52 
o
C at 20% crystallinity while 80 

o
C at 25% crystallinity after 20 min annealing. It is 

well known that HDT can also be improved by forming PLA stereocomplex. Nam et al. 

[14] reported that with the addition of 25 wt.% poly(D-lactic acid) (PDLA), HDT 

dramatically increased from 56 
o
C for PLLA to 110 

o
C for stereocomplex PLA.  

Table 4.2 The heat deflection temperature (HDT) and corresponding crystallinity (Xc) 

of the PLA and SR-PLA composites. 

Sample PLA BD SR-PLA 

at 150 
o
C 

BD SR-PLA 

at 160 
o
C 

UD SR-PLA 

at 160 
o
C 

HDT [
o
C] 

Xc [%] 

57±1 

8.1 

67±2 

52.3 

66±2 

48.6 

83±3 

48.7 

 

As seen in Table 4.2, the HDT of SR-PLA composites increased compared to that of 

isotropic PLA. UD SR-PLA compacted at 160 
o
C exhibits the highest HDT (~ 83 

o
C). 

This value suggests that the upper service temperature limit for PLA increases with 

drawing. The improved heat resistance in SR-PLA laminates is mainly derived from the 

increase in modulus as well as crystallinity. This improvement in HDT for SR-PLA by 

26 
o
C is useful for many applications and similar to annealed PLA [13], while being 

slightly below that of stereocomplex PLA [14]. Compared to other plastics, UD 

SR-PLA composites exhibit a similar HDT as polystyrene (PS) (~ 85 
o
C), which is often 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC0QFjAB&url=http%3A%2F%2Fwww.biogeneral.com%2Fpdfs%2Fbioab_3.pdf&ei=ihfBVPPkD4yf7gbslYDwDA&usg=AFQjCNHtvlrd2Xf2E37zJqoPeB887mis9g&sig2=Eqjc7zgn7xv4miUJZSaiKQ&bvm=bv.83829542,d.ZGU
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used in food packaging, and acrylonitrile butadiene styrene (ABS) (~ 88 
o
C). UD 

SR-PLA composites have a higher HDT than nylon 6 (~ 60 
o
C), PP (~ 70 

o
C), and PET 

(~ 65 
o
C) [15]. This could open up new markets for PLA bioplastics such as consumer 

electronics, packaging, vehicle-interior components, and a great deal more. 

4.3.5 Prototypes 

To illustrate one example of what is possible with SR-PLA composites; Figure 4.11 

shows a picture of a football shin pad produced from BD SR-PLA composite. This 

product shows high impact performance and an attractive textile-like texture. Moreover, 

combined with its „green credentials‟ sports products might be an interesting market. 

The direct forming route to manufacture the shin pad of SR-PLA composite is to wind the 

tapes and matrix onto the mould and then place the lay-up into oven, without the need for 

pre-consolidating. The interfacial strength in the SR-PLA composites is due mainly to the 

radial forces induced by compressive shrinkage. This is an interesting alternative to 

stamping of pre-consolidated sheets, as it eliminates an expensive belt-pressing step 

normally required in the manufacturing of semi-finished sheet products.  

 

Figure 4.11 Football shin pad of Nike Mercurial (left) and the one made of SR-PLA 

composite (right). 
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Sandwich panels are a very efficient way of providing high bending stiffness at low 

weight. The stiff and strong skin facings carry the bending loads, while the core resists 

shear loads. The principle is the same as a traditional „I‟ beam. Since the aim of this 

research is to produce composite structures in which all phases are PLA, sandwich 

structures are possible that use SR-PLA composites as a face material and PLA foam as 

a core material. Again PLA with a lower melting temperature can be used as an adhesive 

layer to combine the two together. The scheme and a picture of SR-PLA sandwich panel 

are shown in Figure 4.12. BioFoam
®
 was used as PLA core foam, provided by Synbra 

Technology bv in Etten-Leur, The Netherlands. The density of PLA foam is 30 kg/m
3
. It 

is isotropic in terms of properties. 

 

Figure 4.12 (a) Scheme and (b) picture of SR-PLA sandwich panel. 

4.4 Conclusions 

PLA is considered as one of the most promising bioplastics but exhibits rather limiting 

heat stability and brittleness in its pristine state. These disadvantages have been 

overcome by developing SR-PLA composites with enhanced modulus, tensile strength, 
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impact properties and heat resistance, thus converting high cost raw biobased materials 

to value adding products. SR-PLA composites exhibit the properties and values to create 

new market opportunities, together with environmental attributes. It has been shown 

that it is possible to tailor the mechanical properties of SR-PLA laminates by altering 

the hot-pressing conditions. Compaction at 160 
o
C produced a well bonded structure 

and SR-PLA composites with good levels of strength and stiffness to make them 

suitable candidates for semi-structural components. On the other hand, SR-PLA 

composites consolidated at lower temperature of 150 
o
C showed optimal energy 

absorption, which may find applications that are aimed at protection from low velocity 

impacts. Moreover, the multiple end-of-life options offered by SR-PLA composites, 

including recycling and compositing, empowers them to reduce the environmental 

impact of materials, and gives the end-user maximum flexibility in selecting 

environmentally sound waste disposal schemes. 

4.5 References 

1. N. M. Barkoula, T. Peijs, T. Schimanski, and J. Loos, Processing of single polymer 
composites using the concept of constrained fibres. Polymer Composites, 2005. 26(1): p. 

114-120. 

2. M. Żenkiewicz, J. Richert, P. Rytlewski, and K. Moraczewski, Some effects of corona 
plasma treatment of polylactide/montmorillonite nanocomposite films. Plasma Processes 

and Polymers, 2009. 6(S1): p. S387-S391. 

3. S. E. B. Wadud, and R. R. Ullbrich, Using the DMA Q800 for ASTM International D 648 
Deflection Temperature Under Load. 

4. R. Li, and D. Yao, Preparation of single poly(lactic acid) composites. Journal of Applied 

Polymer Science, 2008. 107(5): p. 2909-2916. 

5. B. Alcock, N. O. Cabrera, N. M. Barkoula, and T. Peijs, Low velocity impact performance 

of recyclable all-polypropylene composites. Composites Science and Technology, 2006. 

66(11): p. 1724-1737. 

6. B. Alcock, N. O. Cabrera, N. M. Barkoula, Z. Wang, and T. Peijs, The effect of temperature 
and strain rate on the impact performance of recyclable all-polypropylene composites. 

Composites Part B: Engineering, 2008. 39(3): p. 537-547. 

7. T. Peijs, E. Smets, and L. Govaert, Strain rate and temperature effects on energy absorption 
of polyethylene fibres and composites. Applied Composite Materials, 1994. 1(1): p. 35-54. 



Chapter 4. Manufacturing and properties of SR-PLA composites 

106 
 

8. B. Alcock, N. O. Cabrera, N. M. Barkoula, A. Spoelstra, J. Loos, and T. Peijs, The 
mechanical properties of woven tape all-polypropylene composites. Composites Part A: 

Applied Science and Manufacturing, 2007. 38(1): p. 147-161. 

9. B. Alcock, Single polymer composites based on polypropylene: processing and properties, 

2004, Queen Mary, University of London. 

10. C. Norbert, Recyclable all-polypropylene composites: Concept, properties and 
manufacturing, 2004, Technische Universiteit Eindhoven, Netherlands. 

11. T. Abraham, S. Wanjale, T. Bárány, J. and Karger-Kocsis, Tensile mechanical and 

perforation impact behaviour of all-PP composites containing random PP copolymer as 
matrix and stretched PP homopolymer as reinforcement: Effect of β nucleation of the matrix. 

Composites Part A: Applied Science and Manufacturing, 2009. 40(5): p. 662-668. 

12. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Effect of fibre surface-treatments on 
the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibres. 

Composites Science and Technology, 2008. 68(2): p. 424-432. 

13. Z. Tang, C. Zhang, X. Liu, and J. Zhu, The crystallization behaviour and mechanical 

properties of polylactic acid in the presence of a crystal nucleating agent. Journal of 

Applied Polymer Science, 2012. 125(2): p. 1108-1115. 

14. B. U. Nam, and B. S. Lee, Toughening of PLA stereocomplex by Impact modifiers. Journal 

of the Korea Academia-Industrial Cooperation Society, 2012. 13(2): p. 919-925. 

15. Heat Deflection Temperature Testing of Plastics. October 29, 2014; Available from: 

http://www.matweb.com/reference/deflection-temperature.aspx. 



 

107 
 

 

Part II. Multifunctional poly(lactic acid)/carbon 

nanotube nanocomposites 

 



Chapter 5. Literature review 

108 
 

 

Chapter 5.  

Literature review 

In recently years, the increased interest in multifunctional materials is driven by the 

need for developing new materials that simultaneously perform combined functions. 

The addition of nanofillers, such as cellulose nanofibrils [1], nanoclays [2], and metallic 

oxides [3], has received significant interest as a way to improve the properties of PLA. 

Depending upon the nature and characteristics of the nanoparticles used, the ultimate 

properties of the resulting nanocomposite can be tailored. Among the various 

nanofillers, carbon nanotubes (CNTs) have gained great attention and interest as a 

multifunctional nanomaterial because of their exceptional mechanical, electrical and 

thermal properties. Also, the high aspect ratio and 1D anisotropic geometry of CNTs 

makes them especially suitable for polymeric fibre applications. 

In this chapter, we first review the structure and fundamental properties of carbon 

nanotubes. Next, the mechanical reinforcements of various CNT-based composites by 

different techniques are critically analyzed and compared. Lastly, the electrical 

percolation behaviour of CNT-based composite and their potential use as macroscopic 

sensors are highlighted. This review is not intended to be comprehensive, as our focus is 

on exploiting the exceptional mechanical and electrical properties of carbon nanotubes 

toward the development of multifunctional materials. More reviews can be found in the 

literatures. For example, Thostenson et al. [4] and Chou et al. [5] reviewed recent 
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advances related to the science and technology of carbon nanotubes and their 

composites; Breuer and Sundararaj [6] reviewed recent studies on polymer/carbon 

nanotube composites; Li et al. [7] surveyed the recent advances related to the use of 

carbon nanotubes and their composites as sensors and actuators, while Gibson et al. [8] 

reviewed recent publications dealing with vibrations of carbon nanotubes and their 

composites.  

5.1 Carbon nanotubes  

5.1.1 Atomic structure and morphology of carbon nanotube  

Nanotube properties are highly dependent on chirality, size, morphology, and 

nanostructure. The atomic structure of nanotubes can be described in terms of chiral 

vector: 1 2hc na ma  , as shown in Figure 5.1. Where (n, m) are integers, and 1a  and 

2a  are unit vectors. Nanotubes with n = m are called armchair tubes (chiral angle of 

30
o
), and nanotubes with m = 0 are known as zigzag tubes (chiral angles are 0

o
). For any 

other values of n and m the tubes are chiral tubes.  

 

Figure 5.1 Schematic diagram showing how a hexagonal sheet of graphite is ‘rolled’ to 

form a carbon nanotube [4]. 
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Depending on chirality, carbon nanotubes can either be conducting or semi-conducting. 

Wei et al. [9] demonstrated that multi-walled carbon nanotubes can carry an electric 

current density greater than 10
9
 A cm

-2
, which is more than 1,000 times greater than 

copper; hence these novel electrical properties have generated substantial interest in 

utilizing carbon nanotubes in nanoelectronics [10]. Investigations on the influence of 

chirality on the mechanical properties have also been reported. The analytical work of 

Yakobson et al. [11, 12] found that the chirality has a relatively small influence on the 

elastic stiffness. 

CNTs can be broadly classified into two categories: single-walled nanotubes (SWNTs) 

and multi-walled nanotubes (MWNTs) (see Figure 5.2). A SWNT can be schematically 

considered as a rolled graphene sheet forming a hollow tube. A MWNT is composed of 

concentric single-walled tubes, which are held together by van der Waals bonding. 

SWNTs, in theory, are more desirable for creating high performance nanocomposites as 

the poor intratube interactions in MWNTs can result in minimal load transfer between 

the layers through shear. In fact, when nanotubes are embedded in a polymer, effective 

stress transfer may potentially only be achieved through their outer walls [13]. 

Furthermore, when considering the effective properties of MWNTs in nanocomposites, 

the entire cross-sectional area of the nanotubes should be taken into consideration, 

hence compromising the effective properties for MWNTs [14]. 

5.1.2 Properties of carbon nanotubes 

The general properties of CNTs have been discussed in a number of publications. In this 

chapter, we will only discuss their mechanical and electrical properties. 
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Figure 5.2 TEM images of different CNTs (A: SWCNTs; B: MWCNTs with different 

layers of 5, 2 and 7) [15]. 

Mechanical properties of CNTs 

Since carbon-carbon covalent bonds are among the strongest atomic bonds in nature, 

when CNTs were discovered, their structure immediately encouraged speculation about 

their potential mechanical properties. The mechanical properties of CNTs have been 

extensively studied both experimentally and theoretically.  

The first direct measurement was made by Wong et al. in 1997 [16]. They used atomic 

force microscopy (AFM) to measure the stiffness constant of arc-MWNTs pinned at one 

end, which gave an average Young‟s modulus of 1.28 TPa. More importantly, they also 

made the first strength measurements, obtaining an average bending strength of 14 GPa. 

Salvetat et al. also used AFM to bend an arc-MWNT that had been pinned at each end 

over a hole [17], obtaining an average modulus of 0.81 TPa (Figure 5.3). 
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Figure 5.3 (a,b) TEM images of typical nanotubes. (c,d) AFM images of nanotubes 

adhered on a polished ultrafiltration alumina membrane with a portion bridging a pore 

of the membrane. (a,c) For an arc-discharge MWNT; (b,d) for a catalytic MWNT. (e) 

Cross-section profiles of the nanotube (A) and corresponding pore (B) depicted in (c). 

Reproduced from [17]. 
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Tensile loading of individual arc-MWNTs inside an electron microscope was reported 

by Yu et al. [18]. For a range of tubes, they obtained modulus of 0.27-0.95 TPa and 

strengths of 11-63 GPa. They also showed MWNT fracture at strains up to 12% in the 

outermost layer with the inner walls telescoping out in a „sword-in-sheath‟ mechanism. 

Measurements on SWNTs took longer due to the difficulties in handling them. The first 

measurement was performed by Salvetat et al. [19]. They observed a tensile modulus of 

1 TPa for small diameter SWNT bundles. However, the properties of larger diameter 

bundles were dominated by shear slippage of individual nanotubes within the bundle. 

Yu et al. [20] were able to measure the tensile properties of bundles by a similar 

approach they used for their MWNT study. They reported moduli in the range 0.32-1.47 

TPa and strengths between 10 and 52 GPa. Failure occurred at 5.3%, giving a toughness 

of about 770 J g
-1

. Besides, they found that failure occurred for the nanotubes on the 

perimeter of the bundle only, with the rest of the tubes slipping apart. 

It is worth mentioning that in order to have a more accurate idea of the real potential of 

CNTs as reinforcing fillers for composite materials, a clear definition of the 

cross-sectional area of CNT needs to be introduced. In fact, the majority of the studies 

presented in literature assumed that only the external layer of nanotubes carried the load. 

Hence they used only the area occupied by the external wall as cross-sectional area, 

ignoring the hollow part of the nanotube. However, this assumption leads to an 

overestimate of the nanotube‟s mechanical properties. When nanotubes are used as 

reinforcing fillers in nanocomposites, the entire volume they occupy needs to be 

considered in micromechanical models, hence the entire cross-sectional area including 

the hollow part should be considered. For this reason, Ciselli [22] calculated the 



Chapter 5. Literature review 

114 
 

effective Young‟s modulus and tensile strength for SWNTs, DWNTs and MWNTs. She 

found that the effective properties of MWNTs reach lower bound values when only the 

external wall carries the load and upper bound values when all walls carry the load. 

Calculations are strongly dependent on the structure of the nanotubes and the interaction 

between the outermost layer and the internal layers. 

Electrical properties of CNTs 

The unique electrical properties of CNTs are caused by the quantum confinement of 

electrons normal to the nanotube axis. In the radial direction, electrons are confined by 

the monolayer thickness of the graphene sheet. Consequently, electrons can propagate 

only along the nanotube axis, and so to their wave vector points. 

The electrical properties of perfect MWNT are rather similar to perfect SWNT. 

However, due to weak coupling between the concentric cylinders of MWNT, only the 

outer shell contributes to the electron transport and thus to the final electrical properties 

[23]. Gojny et al. [24] concluded that MWNTs offer the highest potential for 

enhancement of electrical conductivity, due to the relatively low surface area and high 

aspect ratio that enables a good dispersion.  

5.2 Mechanical properties of polymer/CNT composites  

5.2.1 Nanoplatelets vs nanofibres 

In general, nanocomposite is a multiphase material where one of the phases is 

nano-scale. In terms of nanofiller dimensionality, they can be classified as 

zero-dimensional (nanosphere), one-dimensional (nanofibre), two-dimensional 

(nanoplatelet), and three-dimensional (interpenetrating network) systems. 
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An important morphological characteristic for understanding the structure-property 

relation in nanocomposites is the surface area/volume ratio (A/V) of the reinforcement 

(Figure 5.4). The reduction of particle diameter (d), platelet thickness (t), or fibre 

diameter (d) from micrometer to nanometer changes the ratio by three orders of 

magnitude. This significant increase in interfacial area for nanofillers means that the 

properties of the nanocomposites will be dominated by the interface properties. On the 

other hand, this larger contact surface makes the dispersion of fillers more difficult.  

 

Figure 5.4 Surface area/volume relations for varying reinforcement geometries [25]. 

In terms of A/V, the increase with respect to the aspect ratio is much steeper for platelet 

compared to fibre, as shown in Figure 5.5. This indicates that the former are more 

difficult to disperse than the latter, since the contact surface between the platelets is 

greater compared to fibres. Consequently, homogeneous nanocomposites should be 

created more easily using nanofibres than nanoplatelets. 
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Figure 5.5 Plot of surface area/volume ratio (A/V) vs. aspect ratio for cylindrical 

particles with a given volume (Redraw from [26]). 

Furthermore, theoretical predictions described by van Es [27] show that the shape of the 

filler has an influence on the mechanical reinforcing potential. Figure 5.6 shows the plot 

of calculated Young‟s modulus of unidirectional composites filled by platelets or fibres 

using the Mori-Tanaka model. It shows that at a given aspect ratio, fibre reinforcement 

gives a higher reinforcing action than platelet reinforcement. At high aspect ratios, both 

types of reinforcement approach the upper bound limit given by the rule of mixtures. 

While fibres with an aspect ratio of 100 already approach optimum reinforcement, 

platelets need an aspect ratio of 1000. This implies that in the unidirectional composite 

case, fibres are more effective than platelets. On the other hand, platelets are more 

effective than fibres in the case of 3D randomly oriented composites, as shown in 

Figure 5.7. 
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Figure 5.6 Young’s modulus E33 of a composite with uniaxially oriented fibrous and 

platelet fillers. Mori-Tanaka’s estimates are represented by solid lines. The upper bound 

reinforcement value, calculated by the rule of mixture, is given by the dotted lines [27].  

 

Figure 5.7 Young’s modulus of a composite with 3D randomly oriented fibrous and 

platelet fillers. The solid lines are calculated by using simple approximations, while 

elaborate Mori-Tanaka’s estimates are represented by dotted lines [27]. 
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5.2.2 Mechanical properties of polymer/CNT composites 

In this section, we discuss mechanical properties of bulk composites first, followed by 

fibre composites. In order to compare different studies, we will use the rate of increase 

of Young‟s modulus with volume fraction dEc/dVf as a measure for reinforcement. 

The results for solution processed bulk composites are quite impressive. Cadek et al. 

[28] carried out nanohardness tests on spun-cast films of arc-discharge MWNTs in both 

polyvinyl acetate (PVA) and polyvinylcarbazole (PVK). They observed increases in 

moduli from 7 GPa to 12.5 GPa with 0.6 vol.% MWNTs in PVA, and from 2 GPa to 6 

GPa with 4.8 vol.% in PVK. These increases are equivalent to the reinforcement values 

of dY/dVf = 917 GPa and dY/dVf =83 GPa for PVA and PVK, respectively. They found 

that the crystallinity of PVA increased linearly with MWNT content, whereas no such 

effect was observed for PVK. This indicates that the difference in reinforcement may be 

related to the presence of a crystalline interface for PVA composites, which may 

maximize the stress transfer, and an amorphous interface for PVK composites.  

It should be noted that Velasco-Santos et al. [29] observed reasonably large increases in 

modulus, from 0.71 GPa for a poly(methyl methacrylate-co-ethyl methacrylate) 

copolymer to 2.34 GPa with 1 wt.% arc-MWNTs (dY/dVf ~272 GPa). However, in this 

work no nucleation of crystallinity was observed, suggesting that good stress transfer 

can be obtained at an amorphous interface depending on the polymer.  

Lower reinforcement was observed in the case of melt processing bulk composites. 

Zhang et al. prepared MWNTs reinforced polyamide 6 (PA6) nanocomposites [30, 31]. 

They observed a three times increase in modulus with the addition of only 2 wt.% 

MWNTs, corresponding to an impressive dY/dVf of 64 GPa. Yield strength increased 



Chapter 5. Literature review 

119 
 

from 18 to 47 MPa, while no decrease in ductility was observed. These impressive 

results were attributed to the good dispersion and adhesion, as observed by microscopy 

measurements.  

Many studies reported that similar to polymer molecules, CNTs provide much more 

effective reinforcement when they are uniaxially aligned compared to randomly 

distributed in isotropic composites. Kearns and Shambaugh [32] reported very 

promising mechanical properties in PP/SWNT fibres. A reinforcement value of dY/dVf ~ 

530 GPa and a strength of ~1GPa was observed with the addition of 1 wt.% SWNTs. 

Moreover, the strain to break actually increased from 19% to 27%, which means 

SWNTs actually toughened the material.  

Coleman et al. [33] critically analyzed and compared the mechanical properties of 

various polymer/CNT composites prepared by different techniques. The results are 

listed in Table 5.1. It is obvious that composites based on chemically modified CNTs 

showed the best results. This is not surprising, since functionalization should 

significantly improve both dispersion and stress transfer. The results for solution 

processed composites, especially PVA-based composites, are also impressive. However, 

many of these significant reinforcements are due to crystallinity nucleation, which 

cannot be relied upon for all polymer matrices. Of all the processing methods, the 

overall properties are worst for the melt processed composites. However, at an industrial 

level CNTs reinforced composites are most likely to be produced by melt processing. 

Therefore, the problems with mechanical reinforcement of melt processed composites 

must be addressed. 
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Table 5.1 Summary and comparison of reinforcement of SWNT and MWNT composites 

fabricated by various methods, where Y is the composite Young’s modulus, σ is the 

composite strength, and Vf is the nanotube volume fraction [33]. 

 Mean 

dY/dVf 

[GPa] 

Median 

dY/dVf 

[GPa] 

Max dY/dVf 

[GPa] 

SWNTs     MWNTs 

Max Y 

[GPa] 

Max σ 

[MPa] 

Solution 

Melt 

Melt (fibre) 

Epoxy 

In-situ polymerization 

Functionalization 

309 

23 

128 

231 

430 

157 

128 

11 

38 

18 

60-150 

115 

112 

68 

530 

94 

960 

305 

1244 

64 

36 

330 

150 

380 

7 

4.5 

9.8 

4.5 

167 

29 

348 

80 

1032 

41 

4200 
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5.3 Electrical conductivity of polymer/CNT composites 

Polymer matrices are electrical insulators with extremely low electrical conductivity 

(10
-10

-10
-15

 S m
-1

). Dispersing conductive materials in such insulating matrices can form 

conductive polymer composites (CPCs). The electrical conductivity of a composite is 

strongly dependent on the volume fraction of the conductive phase. At low volume 

fractions, the conductivity remains very close to the conductivity of the pure matrix. 

When a certain volume fraction is reached, the conductivity of the composite drastically 

increases by many orders of magnitude. This phenomenon is known as percolation and 

can be well explained by percolation theory. Because of the high aspect ratio 

(100-10,000) of CNTs, the electrical percolation threshold of CNT-reinforced polymer 

nanocomposites is much lower than nanocomposites containing conventional 
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conducting fillers, such as metallic particles (60 wt.%) or carbon black (3-15 wt.%). 

Depending on the polymer matrix, the processing conditions and the nanotube type used, 

percolation thresholds ranging from 0.001 wt.% to more than 10 wt.% have been 

reported [7]. Sandler et al. [34] reported an ultra-low percolation threshold of 0.0025 

wt.% for epoxy/MWNT composites, while Bryning et al. [35] also reported a very low 

percolation threshold of 0.0052 vol.% for epoxy/SWNT composites. 

There are some traditional thoughts that the electrical conductivity of composites can be 

significantly improved if CNTs are well dispersed. Liao et al. [36] and Kuan et al. [37] 

observed that the electrical resistance decreased as crystallinity of polymer/CNT 

nanocomposite reduced at the same CNT loading. This phenomenon can be attributed to 

the better dispersion of CNTs in low crystalline polymer matrices than high crystalline 

matrixes [36, 37]. The probability of self-aggregation of conductive materials was 

reduced, and thus more electrical conducting paths were built up in the binary 

conductive materials system (Figure 5.8).  

 

Figure 5.8 The model of conductive paths in the nanocomposite bipolar plates with (a) 

better dispersion of MWNTs in a low crystalline PP matrix (b) MWNTs aggregation in a 

high crystalline PP matrix [36]. 



Chapter 5. Literature review 

122 
 

Grossiord et al. [23] and Xu et al. [38] also pointed out that due to the increasing 

number of complete conductive paths, good dispersion can bring high composite 

conductivity. However, it has been also reported that agglomeration of CNTs to a certain 

extent helps enhancing the composite conductivity. Martin et al. [39], Du et al. [40] and 

Hu et al. [41] considered that electrical conductivities or low percolation thresholds can 

be achieved by heterogeneous distributions of SWNT in polymer matrices. Gojny et al. 

[24] showed that the stable dispersion can be detrimental for the overall conductivity 

because it lead to the formation of an isolating epoxy layer around the nanotubes. 

Delozier et al. [42] thought that a more uniform distribution of SWNT bundles would 

result in a reduced possibility of CNT bundle contacts to form a conductive network. It 

should be noted that while partially agglomerated systems may benefit from enhanced 

composite conductivity; it may be technically challenging to produce them in a highly 

controlled manner. 

There are also some contradicting results regarding the effect of CNT alignment on 

electrical conductivity. Haggenmueller et al. [43] reported poly(methyl methacrylate) 

(PMMA)/SWNT composites with enhanced electrical properties along the fibre 

direction by aligning nanotubes in the matrix. Choi et al. [44] also observed that 

nanotube alignment contributed to the enhancement of electrical conductivity in 

epoxy/SWNT composites. This effect was explained by the formation of a more 

efficient percolation path in the parallel direction. On the other hand, the results of Du et 

al. [45] indicated that the alignment of nanotubes significantly lowered the electrical 

conductivity (6 orders of magnitude) compared to isotropic composites at the same 

nanotube concentration. Li et al. [46] studied the effect of nanotube alignment on the 

electrical conductivity of composites by using Monte Carlo simulations and taking into 
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account the nanotube waviness. It was found that both an increase and a decrease in 

electrical conductivity by nanotube alignment are actually possible, depending on the 

overall degree of alignment. The conductivity seems to be of the highest value when the 

alignment angle is around 20
o
. This conclusion is consistent with the experimental 

observation of Du et al. [45]. The anisotropy of conductivity is strongly affected by 

nanotube alignment especially when the nanotube contents are small. But the effect of 

alignment becomes weaker at larger nanotube contents. 

5.4 Carbon nanotube-based composite sensors 

Polymer/CNT composites have been considered to replace conventional sensors in 

certain applications due to their flexibility and ease of manufacturing. The common 

feature among many reports on sensors is that a change in volume or deformation due to 

chemical, thermal or mechanical loading results directly in a change in resistance. 

Nanotube-based composites were reported to be used as vapour sensors. As shown in 

Figure 5.9, when the polymer matrix is exposed to some external stimuli, the physical 

distance change between nanotubes due to polymer swelling is considered as one of the 

most common responses. Even if this distance change is a few angstroms, it will lead to 

a significant transition of electrical junctions from direct contact to tunneling in between 

CNTs. As a result, the electrical property change of the nanocomposite is very high. The 

number of sensing molecules and the interaction parameter with the matrix determine 

the extent of matrix swelling and resistance variation [47]. Yoon et al. [48] found that 

the gas concentration affects the distance between CNTs through polymer swelling. Wei 

et al. [49] also demonstrated that the aligned nanotube composite arrays showed similar 

changes in electrical resistance when subjected to thermal or optical exposure. Again, 
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they suggested that the resistance changes are attributed to expansion of the matrix. 

 

Figure 5.9 Schematic diagram of junction resistance change between two nanowires 

due to polymer matrix swelling [48]. 

Zhang et al. [50] reported that MWNT reinforced polycarbonate (PC) composites can 

be utilized as strain sensors. The sensitivity (electrical conductivity change to applied 

strain) of this nanocomposite was reported to be 3.5 times higher than traditional strain 

gages. They claimed that the instantaneous change in resistance with strain showed the 

potential for self-diagnostic and real-time health monitoring. Zhang et al. [51] also 

demonstrated a thermoplastic elastomer/MWNT composite capable of successfully 

sensing large strain deformations in the range of 0%-80%. The resistivity-strain 

relationship shows an exponential relationship with universal, nanotube content 

independent behaviour. They explained the controlling mechanism for changes in 

resistivity by fluctuation induced tunneling model when strain is greater than 5%, while 
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by conductive network deformation for strains below 5%. 

Thostenson and Chou [52] demonstrated that conductive CNT networks formed in 

epoxy can be utilized as highly sensitive sensors for detecting the onset, nature, and 

evolution of damage in advanced polymer composites. Figure 5.10 shows the resistance 

response of a five-ply unidirectional composite during tensile loading. At low strain 

there is a linear increase in the resistance with deformation. A sharp increase in 

resistance occurs when ply delamination is initiated. As the delamination grows with 

increasing stress there is a large increase in resistance marked by increases in the slope 

of the resistance curve. The CNT network formed in these fibre reinforced polymer 

composites is less than 0.15 vol.%. More importantly, incorporation of in situ 

CNT-based sensing capability is non-invasive to the structural properties of the 

laminate. 

 

Figure 5.10 Load/displacement and resistance response of a five-ply unidirectional 

composite with the centre ply cut to initiate delamination [52]. 
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In summary, carbon nanotubes are considered to be ideal candidates for multifunctional 

materials due to their unique properties. Effective processing to realize the full potential 

of CNTs is however still a great challenge. For development of CNT-based composites 

and their potential use as macroscopic sensors, a fundamental knowledge of their 

structure/property relations is necessary from the nanoscale to macroscopic scale. 
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Chapter 6.  

Conductive poly(lactic acid) tape reinforced with 

carbon nanotubes  

6.1 Introduction 

As reviewed in Chapter 5, CNTs provide much more effective reinforcement when they 

are uniaxial aligned compared to randomly distributed in isotropic composites. However, 

the alignment of CNTs could significantly lower the electrical conductivity.  

Adding more conductive filler is a natural route to achieve improved electrical and 

mechanical properties of nanocomposite fibres. Bin et al. [1] prepared ultra-high 

molecular weight polyethylene/multi-walled carbon nanotubes (UHMWPE/MWNTs) 

conductive tapes from solution. The drawn composites containing 15 wt.% MWNTs 

showed 10
-1

 S m
-1

 in electric conductivity and 58 GPa in Young‟s modulus at room 

temperature. Later the same group [2] confirmed that iodine doping for drawn 

UHMWPE/MWNT tapes is one of the techniques to develop high modulus conductive 

materials. The nanocomposite tape containing 4.16 vol.% MWNTs exhibited a modulus 

of 25 GPa, while the corresponding electrical conductivity was about 10 S m
-1

. 

Thermal annealing of highly oriented polymer/CNT fibres or tapes was also reported. 

Miaudet et al. [3] found that annealing near the glass transition temperature (Tg) can 

dramatically increase the electrical conductivity of poly(vinyl alcohol) (PVA)/MWNTs 



Chapter 6. Conductive PLA tape reinforced with CNTs 

131 

 

fibres. They explained this increase in conductivity by the increased mobility of 

polymer chains, which can lead to mobility of CNTs and an increase in quality and 

number of nanotube contacts in the network. Although the effect of thermal annealing 

on the mechanical properties of the polymer fibre was not reported in this study, it is 

inevitable that the good mechanical properties of these fibres or tapes cannot be retain 

after annealing due to polymer relaxation. 

Deng et al. [4, 5] developed a methodology that allows for a thermal annealing process 

on highly oriented polypropylene (PP) tapes to improve conductivity without sacrificing 

mechanical properties. In order to achieve this, a bicomponent tape structure was 

fabricated by coextrusion followed by solid-state drawing. Here the neat homopolymer 

PP core, possessing a higher melting temperature, provides high mechanical properties, 

while co-PP/MWNT skins, possessing a lower melting temperature, was annealed above 

the melting temperature of the skins without affecting polymer relaxation in the core. 

This method produced a conductive (275 S m
-1

), high-strength (500 MPa) polymer tape 

at relatively low (5 wt.%) MWNT loading in the skins, with an overall MWNT content 

in the tape at around 0.5 wt.%.  

To date, the effort toward producing conductive fibres or tapes with high strength and 

stiffness continues. Up to now, few studies have reported on conductive PLA/MWNT 

fibres or tapes with high mechanical performance. McCullen et al. [6] reported a 

percolation threshold for PLA/MWNT electrospun fibre mats at about 0.3 wt.% and a 

tensile modulus of 55 MPa. Li et al. [7] fabricated oriented PLA and modified MWNT 

composites through solid-state drawing at 90 
o
C. High filler loading up to 15 wt.% 

MWNT was added into the polymer matrix to improve mechanical properties. Although 
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high values for both modulus (9.9 GPa) and strength (233 MPa) were reported for 

nanocomposite fibres of draw ratio 4.8 containing 5 wt.% MWNT, the nature of this 

increase in mechanical properties was more likely due to the a change in PLA 

morphology rather than MWNTs, as neat PLA fibres showed similar mechanical 

properties. Electrical properties were not reported in this work.  

In this chapter, the influence of MWNTs and solid-state drawing on microstructure and 

resulting mechanical and electrical properties of PLA/MWNT nanocomposite tapes will 

be investigated. Various MWNT contents and drawing conditions will be studied in 

order to obtain the best compromise between high electrical conductivity and 

mechanical properties. 

6.2 Experimental 

6.2.1 Materials and sample preparation  

Ingeo
TM

 PLA 3051D was purchased from RESINEX, United Kingdom. Multiwall 

carbon nanotubes (MWNTs) (Nanocyl
TM

 NC 7000) were kindly supplied by Nanocyl 

S.A. (Belgium). These MWNTs have an average diameter of 9.5 nm, length of 1.5 μm, 

and a surface area of 250–300 m
2
 g

−1
 according to the producer.  

A masterbatch containing 15 wt.% MWNTs was prepared by melt blending in a DSM 

Xplore micro-compounder (The Netherlands) at 180 
o
C and 100 rpm for 3 min. 15 cm

3
 

materials can be mixed in a co-rotating, fully intermeshing, conical twin-screw 

compounder with a recirculation channel and a valve to vary the mixing time. This 

masterbatch was then diluted with pure PLA using the same processing conditions to 

produce nanocomposites with a desired MWNT concentration. Nitrogen gas flow was 
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used to minimize polymer degradation during the compounding process. The extruded 

strands were cut into pellets and then compression moulded into films at 180 
o
C for 3 

min using a Collin hot press P300E (Germany). Samples of dimensions 40 mm × 4 mm 

were cut from these films and drawn at 80 
o
C at a cross head speed of 20 mm min

-1
 in a 

temperature controlled chamber attached to an Instron 5584 machine. The draw ratio 

(DR) of the tape is calculated by the following equation:  

 
 

Extension
DR

Original Length
  Equation 6.1 

In this chapter, samples are denoted as xMWNT DR=y, where x and y represents 

MWNTs weight percentage in PLA, and draw ratio of the oriented tapes, respectively. 

For example, 1MWNT DR=4 represents a sample containing 1 wt.% MWNTs and 

stretched to a draw ratio of four. Increasing MWNT content hampered the drawability of 

the nanocomposites. The maximum draw ratio for PLA nanocomposites with MWNT 

contents above 2 wt.% was only four. 

6.2.2 Characterization 

Morphological studies were carried out using scanning electron microscopy (SEM) (FEI 

Inspector-F, The Netherlands). A high acceleration voltage was applied for alignment 

observation. The samples were uncoated and directly observed on the surface along the 

drawing direction. For dispersion observations, samples were cold fractured in liquid 

nitrogen and then gold sputtered before analysis. SEM images were taken of each 

sample‟s cross-section perpendicular to the drawing direction. 

Rheology was conducted on an AR 2000 Advanced Rheometer by TA Instruments 
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connected to an environmental chamber with a 25 mm parallel plate setup. The 

disc-shaped samples were tested at 180 °C over a frequency sweep range of 100 Hz to 

0.01 Hz and strain of 0.1% which is within the linear elastic region of the material. 

Mechanical tests were performed using an Instron 5586 at room temperature, equipped 

with a 1 kN load cell at a crosshead speed of 8 mm/min. The reported values were 

calculated as averages over six specimens.  

Differential scanning calorimetry (DSC) (Mettler-Toledo 822e) was used to investigate 

the thermal properties. All samples were heated to 200 
o
C at 10 

o
C/min. Crystallinity 

was determined using the heat of fusion of 100% crystalline PLA, which is 93.6 J g
-1

 

[8]. 

Wide angle X-ray scattering (WAXS) 2D patterns were recorded with the incident beam 

perpendicular to the tapes. The X-ray wavelength was 1.54 Å. The sample-to-detector 

distance was 50 mm. All images were corrected for background scattering. The details 

of the calculation method of Herman‟s factor were described in Chapter 3. 

Specimens were also tested in tension mode using a Q800 dynamic mechanical analyser 

(DMA) from TA Instruments. The system was cooled to -10 
o
C, and then heated to 150 

o
C at a rate of 3 

o
C /min. A static force of 0.1 N was applied to ensure the tape was taut 

between the grips, while a strain of 0.1% was used throughout. 

Bulk electrical conductivity was measured along the stretching direction with the 

two-point method. Silver paste was coated on both cross-sectional ends of the sample to 

ensure good contact with the electrodes of the electrometer. The resistance between two 

silver paste marks along the specimen length direction was measured using a Model 
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6517B Electrometer (Keithley Instrument Inc, USA) at room temperature. The voltage 

is scanned between 0 V and 30 V, at 0.5 V intervals. All current-voltage curves were 

linear in this study. The volume resistivity was calculated in relation to the specimen 

dimensions. For specimen with a resistance greater than 10
10 

Ω, electrical resistivity is 

not measurable and the tapes are considered as non-conductive. Three specimens for 

each composite were tested, and the average value was reported. 

6.3 Results and discussion 

6.3.1 Dispersion and alignment of MWNT 

The homogeneous dispersion of MWNTs in polymer matrices is one of the most 

important requirements in achieving high mechanical reinforcement as inhomogeneities 

can lead to structural defects in the composite material. SEM images of fracture surfaces 

of isotropic films and tapes are shown in Figure 6.1. They show that MWNTs are well 

dispersed in the PLA matrix without showing noticeable aggregates for both isotropic 

films and tapes irrespective if the MWNT loading is 0.5 wt.% or 5 wt.%. It is well 

established that drawing can promote CNT dispersion in polymer matrices [9]. However, 

no differences in state of dispersion can be observed for the different draw ratios in this 

work. 

As mentioned before, CNTs provide much greater effective reinforcement when they 

are uniaxial aligned rather than isotropically organized in bulk composites. The 

alignment of MWNTs in the PLA tapes was investigated with SEM, as shown in Figure 

6.2. It is worth noting that SEM was used in a high accelerating voltage mode here, 

since Loos et al. [10] reported that SEM operated in charge contrast mode offers the 

potential to monitor the organization of CNTs networks in the polymer matrix of 
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Figure 6.1 SEM images of cross-sectional areas of (a) 0.5MWNT DR=1; (b) 5MWNT 

DR=1; (c) 0.5MWNT DR=4; (d) 5MWNT DR=4. 

conductive nanocomposite. The penetration depth of the primary electrons increases 

with increasing acceleration voltage. Therefore, using high acceleration voltage, the 

three-dimensional CNTs network underneath the polymer surface can be visualized. In 

Figure 6.2, the brightness variations in the images are related to the position of the 

CNTs in the sample. CNTs located at or near surface appear brighter, whereas CNTs 

located deeper in the nanocomposite appear darker. A filler network is observed in 

nanocomposites containing 5 wt.% MWNTs before drawing. Most of MWNTs are 

dispersed as entangled coils in isotropic film, while highly aligned MWNTs are seen 

after solid-state drawing, even at a relatively low draw ratio of 4. 
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Figure 6.2 SEM images of (a) 5MWNT DR=1 and (b) 5MWNT DR=4 on the surface. 

Arrow indicates the drawing direction. 

6.3.2 Rheological behaviour 

Oscillatory rheology is a powerful tool to assess indirectly the dispersion state of the 

nanofiller in PLA matrix because the rheological responses are highly dependent on 

micro- and meso-structure and particle-particle interactions [10]. Figure 6.3(a) and (b) 

show the dependence of dynamic storage modulus (G’) and complex viscosity (|η∗|) for 

the neat PLA and PLA/MWNT samples, respectively. At low frequencies, PLA chains 

are fully relaxed and present typical terminal behaviour with a scaling factor of about G
′

∝ω
2
, which is consistent with Cox-Merz rule [11]. However, with the addition of 

MWNTs the dependence of low-frequency G′ on ω weakens especially at high loading 

levels. The beginning of a plateau can be observed between a MWNT concentration of 

0.7 wt.% and 1 wt.% where a sudden large jump in G′ and |η*| occurs. This indicates 

that there is a sudden change in composite microstructure. As MWNT loadings increase, 

nanotube-nanotube interactions begin to dominate in the viscoelastic behaviour. As a 

result, the MWNTs form a rheological percolating network, which highly impede the 
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long range motion of polymer chains. Hence the Newtonian plateau of the viscosity 

curve disappears as seen in Figure 6.3(b). Wu et al. [12] also studied the viscoelasticity 

of PLA/CNT nanocomposites using the same PLA grade. They reported a higher 

rheological percolation threshold of about 2.7 wt.%. Since high aspect ratio nanotubes 

were used in both studies, the large increase seen here is believed to be caused by a 

better dispersion state in present system. 

 

 

Figure 6.3 Variation in: (a) storage modulus (G’), (b) complex viscosity (|η∗|) , (c) 

Cole–Cole plots of dynamic storage modulus (G’) vs. dynamic loss modulus (G’’) at 

various temperatures for neat PLA and PLA/MWNT samples and (d) imaginary 

viscosity (η’’) vs. real viscosity (η’) for the neat PLA and PLA/MWNT samples. 
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Further evidence to confirm rheological percolation can be extracted from plots of log G′ 

versus log G″ (Cole-Cole plot). As can be clearly seen from Figure 6.3(c), the plots for 

both unfilled and filled compositions at 0.7 wt.% MWNTs follow the same path, with 

slight changes in slope. However, the slope in these plots decreases sharply, as 

nanofiller concentration exceeds 0.7 wt.%. This decrease in slope can be attributed to 

the formation of a physical network in the host matrix. 

This strong restriction is further confirmed by the plots of imaginary viscosity (η″) vs. 

real viscosity (η′) as shown in Figure 6.3(d), which is often used for the description of 

viscoelastic properties of polymers. The single arc of the neat PLA corresponds to the 

local dynamics of PLA. With the addition of MWNTs up to 0.7 wt.%, no changes are 

observed in the curves. As the loading level reaches 1 wt.%, the local relaxation arc of 

PLA disappears, and a rigid tail at high-viscosity region is observed. This indicates that 

the long-term relaxation of those restrained PLA chains becomes dominant in the whole 

relaxation behaviour of the nanocomposites. This also confirms that a percolation 

network is formed at present MWNT loadings and, that long-range motion of PLA 

chains is highly restrained as a result. 

The cross-over point (Gc), being the point at which plots of G′ and G″ intersect with 

frequency (ω) were also recorded in Figure 6.4. This point is representative of the 

transition from viscous to elastic behaviour. Neat PLA and nanocomposites with low 

MWNT loadings (< 0.7 wt.%) display a single cross-over point at higher frequencies, 

close to 100 Hz. With further addition of MWNTs, both G′ and G″ increased, where G′ 

increased significantly and G″ only slightly. Consequently, at intermediate MWNT 

loadings (1 wt.%) the curves of G′ and G″ also intersected at lower frequencies (1 Hz).  
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Figure 6.4 Cross-over points for curves of G’ and G’’ as a function of frequency for (a) 

neat PLA and PLA/MWNT composites with (b) 0.5 wt.%, (c) 0.7 wt.%, (d) 1 wt.%, (e) 2 

wt.% and (f) 5 wt.% MWNTs. 
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Interestingly, with further addition of MWNTs (> 2 wt.%), both curves merge and 

eventually for the composite with 5 wt.% MWNTs, G′ is greater than G″ across the 

whole frequency range examined. These results confirm the onset of rheological 

percolation at MWNT loading of 0.7-1 wt.%. At higher filler concentrations an 

extensive interconnected nanotube network is formed and the composites display more 

solid-like behaviour. 

6.3.3 Mechanical properties 

The mechanical properties of MWNT reinforced nanocomposites are strongly 

dependent on several microstructural parameters such as the properties of the matrix, 

the properties of the MWNTs, the dispersion and alignment of the MWNTs, and the 

interfacial bonding. The Young‟s modulus and tensile strength of nanocomposites before 

and after drawing were plotted as a function of MWNT contents in Figure 6.5. For 

isotropic films, with the addition of MWNTs, both Young‟s modulus and tensile 

strength did not show significant improvements. For isotropic films containing 2 wt.% 

MWNTs, the Young‟s modulus increased from 1.9 GPa to 2.3 GPa, and tensile strength 

increased from 48 MPa to 53 MPa. On the other hand, for oriented tapes containing 2 

wt.% MWNTs at draw-ratio (DR) 7.5, Young‟s modulus increased from 3.6 GPa to 5.5 

GPa, while tensile strength was improved from 114 MPa to 156 MPa. As seen in Figure 

6.5(a), the experimental data were fitted linearly for both nanocomposite films and tapes, 

and the analysis gave a slope dEc/dVf of 30 GPa, 92 GPa and 195 GPa for 

nanocomposites of draw ratio 1, 4 and 7.5, respectively. These results clearly 

demonstrate that solid-state drawing greatly improves the reinforcing efficiency of 

CNTs. 
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Figure 6.5 (a) Young’s modulus and (b) tensile strength as a function of MWNT volume 

fraction in the composite isotropic films and oriented tapes, solid line in (a) represents 

the linear fit of the data.  

Table 6.1 compares the effective reinforcement in terms of Young‟s modulus and tensile 

strength of CNTs in various PLA nanocomposites reported in literatures and this work. 

In order to compare different studies, we will use the rate of increase of Young‟s 

modulus with volume fraction dEc/dVf as a measure for reinforcement. The data  
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Table 6.1 Comparison of PLA/CNT nanocomposites fabricated by various methods and 

present work, where Ec is the composite Young’s modulus, σ is the composite strength, 

and Vf is the nanotube volume fraction. 

Type of CNT Max dEc/dVf 

[GPa] 

Max σ 

[MPa] 

MWNTs [13] 

MWNTs (DR=1) [7] 

MWNTs (DR=2.8) [7] 

MWNTs (DR=3.4) [7] 

MWNTs (DR=4.8) [7] 

Maleic anhydride grafted MWNTs [14] 

PLA grafted MWNTs [15] 

Oxidized MWNTs [16] 

Functionalized MWNTs by DCA 

reaction [17] 

PLA grafted MWNTs [18] 

Acid-treated SWNTs grafted with 

2-isocyanatopropyl triethoxysilane [19] 

MWNTs (This work DR=1) 

MWNTs (This work DR=4) 

MWNTs (This work DR=7.5) 

62 

43 

54 

9 

7 

- 

132 

25 

109 

 

227 

756 

 

30 

92 

195 

- 

64 

138 

188 

230 

76 

72 

86 

57 

 

63 

- 

 

55 

89 

156 

 

presented here are evaluated based on the values reported in the papers. It should be 

noted that as modulus does not always increase linearly with volume fraction, dEc/dVf is 

calculated at low volume fractions. The most obvious result here is that composites 

based on chemically modified nanotubes show the best results, as functionalization 

should significantly improve both dispersion and stress transfer. Moreover, it is shown 

that SWNTs demonstrate higher reinforcing efficiency than MWNTs. In case of 
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MWNTs, interlayer sliding (so-called „sword and sheath‟ slippage) [20] and weak 

inter-tube coupling can limit their potential as structural reinforcement. Although the 

effective reinforcement of MWNTs in isotropic PLA films is rather low, this 

reinforcement efficiency is greatly enhanced after solid-state drawing and among the 

highest reported for MWNTs in PLA. 

6.3.4 Micromechanical analysis 

The Halpin-Tsai equations have been used successfully to predict the modulus of 

polymer/carbon nanotube composites [21, 22]. In case of a random distribution of 

nanotubes in the polymer matrix, the modified Halpin-Tsai equations are written as 

[23]: 
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where Ec, ENT, and Em are the modulus of composite, nanotube, and polymer matrix, 

and lNT, DNT, and VNT are the length, diameter, and volume fraction of nanotubes in the 

composite, respectively. It is worth noting that the modulus of carbon nanotubes ENT is 

known to be a strong function of nanotube diameter or number of layers [20, 24-27]. 
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Reported moduli range from 0.2 to 1 TPa. In this work, we have chosen to use the 

modulus reported in the paper [28] of 500 GPa since these nanotubes are similar to 

those studied here (~ 10 nm).  

In case of aligned carbon nanotubes along the tape direction, the Halpin-Tsai equations 

are written as: 
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 Equation 6.6 

where E|| is the modulus of the composite tape with MWNTs aligned along the tape‟s 

axial direction. Since a high degree of MWNT alignment in PLA matrix was already 

observed at DR=4 (Figure 6.2), equation 6.5 and 6.6 were used for the calculations of 

nanocomposite tapes with DR of 4 and 7.5. 

Using the nanotube‟s aspect ratio (lNT/DNT) as an adjustable parameter for fitting, the 

model shows a good agreement with the experimental data. Using lNT/DNT ~19, a good 

correlation is achieved for composites containing < 2 wt.% MWNTs. The low effective 

aspect ratio of MWNTs in the nanocomposite films is because of the random 

distribution of MWNTs in three dimensions in the matrix as seen in Figure 6.2(a); hence, 

their true aspect ratio is not fully exploited for optimal reinforcement. The calculated 

effective aspect ratio of the MWNTs increases to ~56 in oriented tapes. It is rather 

surprising that even in the case of oriented tapes the effective aspect ratio of the 

MWNTs is far lower than their original geometrical aspect ratio (~158). Wu et al. [28] 

explained that the large difference also found in their study mainly comes from 
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structural changes in the CNTs themselves. For instance, CNTs may be bent, entangled, 

and even break up during melt mixing, which will highly reduce their aspect ratio 

values. Another reason might be that as the Halpin-Tsai equation assumes perfect stress 

transfer, it highly unlikely that this is the case and the differences in aspect ratios are 

most likely the result of imperfect stress transfer. This data also shows that the stress 

transfer is better for aligned CNTs in drawn tapes than for isotropic films. Since 

MWNTs are used as received without any modification, the values obtained seem 

reasonable. 

Table 6.2 Summary of reinforcement of MWNT in nanocomposites drawn at various 

draw ratios, where Ec is the composite Young’s modulus, Vf is the nanotube volume 

fraction, σ is the composite strength, and lNT/DNT is the aspect ratio of MWNT. 

Draw Ratio Max dEc/dVf 

[GPa] 

Max σ 

[MPa] 

Effective 

lNT/DNT 

Method 

1 

4 

7.5 

30 

92 

195 

55 

89 

156 

19±1.5 

26±2.8 

56±12 

Fitting using Eq. (6.2)-(6.4)  

Fitting using Eq. (6.5)-(6.6) 

Fitting using Eq. (6.5)-(6.6) 

 

6.3.5 Morphology change 

It is worth noting that many studies on the effect of the addition on CNTs on polymer 

morphology indicated that the enhanced mechanical properties were a mere result of an 

altered crystallinity of the polymer matrices [22]. CNTs were found to nucleate and 

template oriented crystallization of polymer. In the present work, as shown in Table 6.3, 
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the crystallinity of PLA increased after drawing, indicating stress-induced 

crystallization of PLA during drawing. However, at the same DR, polymer crystallinity 

in PLA/MWNT tape is roughly similar to that of neat PLA tape. Therefore it is believed 

that the increase in modulus and strength in the case of tapes containing CNTs is not 

attributed to changes in crystallinity. With increasing MWNT loading, no significant 

changes in melting peaks were observed. 

Table 6.3 The glass transition temperature (Tg), melting temperature (Tm), and 

crystallinity (Xc) of neat PLA and PLA/MWNT composites. 

Sample DR 

[-] 

Tg
 a) 

[
o
C]

 

Tm1 
b) 

[
o
C] 

Tm2 
b) 

[
o
C] 

Xc 
b) 

[%] 

PLA 

0.3MWNT 

0.7MWNT 

1MWNT 

2MWNT 

 

PLA 

0.3MWNT 

0.7MWNT 

1MWNT 

2MWNT 

1 

1 

1 

1 

1 

 

7.5 

7.5 

7.5 

7.5 

7.5 

69 

69 

69 

68 

70 

 

79 

79 

83 

83 

85 

- 

- 

- 

- 

- 

 

144 

144 

143 

143 

- 

153 

153 

153 

152 

153 

 

152 

152 

152 

152 

152 

1 

2 

4 

2 

1 

 

32 

32 

34 

35 

33 

Data obtained from
 a)

 DMA; 
b)

 DSC 
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Figure 6.6 2D WAXS patterns of neat PLA and nanocomposites isotropic films and 

tapes. The Herman’s orientation factor (f) is given by
23cos 1

2
f

 
 , where θ is the 

angle between the chain axis and the tape axis. 

2D WAXS was performed to determine the influence of MWNT presence on PLA 

orientation after drawing. Figure 6.6 displays the 2D WAXS patterns of a series of neat 

PLA and nanocomposites with different draw-ratios (DR). Herman‟s orientation factor 

(f) calculated from Gaussian function is used to quantify the orientation of the PLA, and 

the corresponding values are listed in the corner of the graph. The neat PLA and 

nanocomposite films all show a diffuse isotropic scatter typical of an amorphous 

polymer. In case of uniaxially drawn PLA tape with DR=4, there is a rapid growth of 
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discrete equatorial reflection with a low azimuthal spread typical of a well-oriented 

crystalline phase. The Herman‟s orientation factors of neat PLA tapes are 0.94 and 0.95 

for DR=4 and 7.5, respectively. However, with the addition of 1 wt.% MWNTs, 

Herman‟s orientation factor decreases to 0.55 and 0.58 for DR=4 and 7.5, suggesting 

crystals with lower degrees of orientation, which is quite unusual. In the present work, 

nanocomposite tapes were uniaxially drawn from isotropic amorphous films. A high 

degree of crystallinity and a highly ordered crystalline phase was established at low 

DR=4 for neat PLA tapes, but the presence of CNT in the PLA matrix seem to perturb 

the orientation of the polymer crystals rather than enhancing the orientation process. 

Since no increase in crystallinity and polymer crystal orientation are observed in drawn 

tapes with the addition of MWNTs, DMA was performed to better understand the 

improved mechanical properties of the nanocomposite tapes. As seen in Table 6.3, Tg of 

neat PLA increases from 69 °C to 79 °C after drawing. Cicero et al. [29] reported the 

same trend in their two-step melt-spun drawn PLA fibres. Since Tg is associated with 

cooperative segmental motion of amorphous molecules, we can assume that the 

increased Tg can be attributed to strain-induced crystallization and enhanced orientation 

of the amorphous chains. Furthermore, for isotropic films there is only 1 
o
C increase in 

Tg with the addition of 2 wt.% MWNTs compared to neat PLA, while for drawn tapes 

the Tg of the nancomposites containing 2 wt.% MWNTs increases by 6 
o
C compared to 

neat PLA at the same DR. This indicates that solid-state drawing results in the 

retardation in the relaxation of amorphous regions due to physical interactions with the 

reinforcing phase. Therefore, the improved mechanical reinforcement efficiency in 

oriented nanocomposite tapes can also be contributed to the modification of the 

amorphous phase by an interplay between nanotube addition and solid-state drawing. 
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6.3.6 Electrical properties 

Electrical properties of the PLA nanocomposites are also strongly depended on MWNT 

content and draw ratio. The electrical resistivity results of PLA/MWNT composites are 

plotted as a function of MWNT concentration in Figure 6.7(a). It can be seen that 

electrical resistivity increased with draw ratio. The significant decrease (up to several 

orders of magnitude) in electrical conductivity in drawn composite fibres as compared 

with isotropic nanocomposites was also reported for CNT loaded poly(methyl 

methacrylate) (PMMA) [30], PP [31] and polycarbonate (PC) [32]. This is attributed to 

the disruption of the CNT percolation network during drawing. However, 

nanocomposites with different MWNT loadings behave differently upon stretching. At 

low concentrations, the resistivity jumps rapidly with increasing draw ratio. For instance, 

the resistivity of a composite tape containing 1 wt.% MWNTs increased by a factor of 6 

after drawing only four times, as compared to isotropic composites. The electrical 

resistivity of composite tapes containing 2 wt.% MWNTs increased from 4×10
-2

 to 

5.7×10
0 

Ω m when draw ratio increased from 1 to 4, and it increased further to 3.5×10
5 

Ω m when draw ratio increased to 7.5. On the other hand, the resistivity for high 

MWNT loaded composites, such as 5 wt.% and 6.5 wt.%, remained nearly constant 

with draw ratio. Du et al. [33] reported that the percolation conductivity of a „stick‟ type 

network depends on both the alignment and the concentration of the sticks. A higher 

CNT loading can improve tube-tube connections and compensate for tube displacement 

due to drawing. 
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Figure 6.7 (a) Resistivity vs. nanotube loading of PLA/MWNT composites with various 

draw ratios; together with percolation equation fit to the experimental data of 

composites containing MWNTs at (b) DR=1, (c) DR=4, and (d) DR=5. Inset: a log-log 

plot of conductivity vs. reduced mass fraction determines the critical composition. 

The electrical conductivities of isotropic and drawn PLA/MWNT composites all show 

typical percolation behaviour with increasing MWNT content (see Figure 6.7(b), (c) and 

(d)). To determine the percolation threshold Pc, the following scaling law is used: 

 
0
( )t

cP P    Equation 6.7 

where 0  is a scaling factor,   is the conductivity of the nanocomposite and P is the 

filler content. The exponent t is an exponent which depends on the dimensionality of the 
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conductive network. A straight line with Pc = 0.73 wt.%, 1.49 wt.% and 1.98 wt.% gives 

a good fit for composite tapes of draw ratio 1, 4 and 5, respectively. Clearly, as expected 

the percolation threshold increases with draw ratio.  

It is interesting to note that the conductivity of the composite tape with 2 wt.% MWNTs 

at draw ratio of 7.5 can still reach 10
-6

 S m
-1

 (3.5×10
5 

Ω m), which is equivalent to 

conductivity levels of commercial conductive polymer fibres using carbon black as a 

conductive filler. For example, B31 conductive Terylene fibre of Japan Belltron and 

L602 conductive Terylene fibre of Japan Luana have both electrical resistivity of 

10
6
-10

8 
Ω m [34]. 

Soroudi et al. [35] reported a conductive Panipol CXL (a polyaniline blend)/CNT 

modified PP fibre (7.5 wt.% CNTs) with resistivity of 6.25×10
-2 

Ω m. Li et al. [34] 

reported a poly(ethylene terephthalate) (PET) conductive fibre (0.6 wt.% CNTs) with a 

„core-shell‟ structure, possessing a tensile strength of ~142 MPa and a bulk resistivity of 

8×10
6
 Ω m. Deng et al. [4] also produced a highly conductive (3.6×10

-3
 Ω m) and 

high-strength (500 MPa) PP tape (0.5 wt.% CNT) with a „core-shell‟ structure,  

Therefore, with the exception of „core-shell‟ structures, the current PLA/MWNT tapes 

(2 wt.%, DR=7.5) are among the best compromises in terms of mechanical properties 

(5.5 GPa in Young‟s modulus, 156 MPa in strength) and electrical properties (3.5×10
5 

Ω m in resistivity). 

6.4 Conclusions 

Conductive oriented PLA/MWNT tapes with enhanced mechanical properties were 

reported in this paper. Good dispersion of MWNTs in PLA matrix was observed by 
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SEM. With the addition of MWNTs, a percolating network was formed between 0.7 and 

1 wt.%, and the long-range motion of PLA chains was highly restrained as a result. A 

high degree of MWNT alignment was already achieved at a draw ratio of 4. Both 

mechanical and electrical properties were strongly depended on the presence of MWNT 

and solid-state drawing. Micromechanical analysis showed that the reinforcing 

efficiency dEc/dVf increased from 30 GPa for isotropic composites to 195 GPa for 

oriented composite tapes, indicating that drawing greatly improved the effective 

reinforcement by MWNTs. A significant increase in electrical resistivity in drawn 

PLA/MWNT tapes as compared to isotropic films was observed. The electrical 

resistivity of oriented PLA/MWNT tapes (~3.5×10
5 

Ω m) was 7 orders of magnitude 

higher than that of isotropic composite films (~4×10
-2 

Ω m) at the same MWNT 

concentration (2 wt.%). Percolation threshold shifted from 0.73 wt.% to 1.98 wt.% after 

drawing 5 times. It is interesting to note that the nanocomposite tapes of 2 wt.% 

MWNTs and DR=7.5 have a volumetric electrical conductivity of 10
-6

 S m
-1

, which 

similar to that of many commercial conductive fibres using carbon black as a 

conductive filler at much higher filler loadings. 
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Chapter 7.  

Poly(lactic acid)/carbon nanotube nanocomposites with 

integrated degradation sensing 

7.1 Introduction 

Numerous hydrolytic degradation tests have been performed on PLA in order to 

simulate its process of degradation in the human body (T ~37 
o
C) [1-6] and in natural 

media such as soil or compost (25 
o
C < T < 58 

o
C) [7-9], all reporting that PLA can be 

hydrolysed to give low molecular weight water-soluble oligomers. It has been found 

that degradability can be modified significantly by changing the microstructure of the 

PLA [10], or by blending with other polymers, additives, plasticizers and often 

inorganic fillers [11, 12]. However, to the best of our knowledge, so far there is no 

report on the development of a degradation monitoring system, which would give 

on-line information regarding structural safety during the products lifetime, while at the 

same time reducing inspection and/or maintenance costs. 

Chapter 5 reviewed some reports on polymer/carbon nanotube (CNT) composites as 

sensing materials for various stimuli, including temperature [13], gases [14], vapour 

[15], mechanical stress and strain [16, 17], pH [18], and liquids [19]. Generally, the 

underlying mechanism is that the introduced external stimuli results in a deformation of 

the CNT percolation network, thus leading to a change in electrical conductivity of the 

composites. 
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In this chapter, we pioneered the use of the evolution of electrical resistivity as a means 

to monitor poly(lactic acid) (PLA) degradation. As the morphology of the polymer 

changes during degradation, it results in a change of the filler network, thus leading to a 

change in electrical resistivity of the nanocomposites. Therefore, through the evolution 

of the electrical signal during PLA degradation, we will be able to correlate changes in 

electrical resistivity with degradation levels of the polymer. 

Two different mediums were used to understand the degradation behaviour. 

Phosphate-buffered solution (PBS) is usually used to simulate in vivo conditions, while 

water is more related to environmental conditions. Various techniques were performed 

to study the hydrolytic degradation and morphological changes of PLA. 

7.2 Experimental  

7.2.1 Materials  

Multi-walled carbon nanotubes (MWNTs) (NC7000
®
) were supplied by Nanocyl S. A., 

Belgium. MWNTs were used as received without purification. Ingeo
®
 PLLA 3051D 

was purchased from RESINEX, United Kingdom. Phosphate buffered saline (PBS) 

powder was obtained from Sigma-Aldrich Chemical Co. 

7.2.2 Sample preparation  

MWNTs were melt-blended with PLA using a DSM X‟plore 15 Mini-extruder (The 

Netherlands), at 180 
o
C and 100 rpm for 3 min to prepare masterbatch containing 15 wt.% 

MWNTs. This masterbatch was then diluted with neat PLA to the desired CNT 

concentration using the same processing conditions. Nitrogen gas flow was used to 
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minimize degradation of the polymer during the compounding process. The extruded 

strands were successively pelletized and compression moulded into films of 130 μm 

thickness using a hot press (Dr. Collin, P300E, Germany) at 180 
o
C

 
for 3 min. 

7.2.3 Hydrolytic degradation 

Five rectangular samples of dimensions 60 mm × 4 mm × 0.15 mm were dried and 

immersed in glass vials (30 ml) of distilled water (25 ml) or PBS (25 ml) at pH 7.4 ± 0.2. 

The sealed vials were then placed in a hot water bath at the degradation temperature of 

50 
o
C. Temperature plays a key role in the degradation rate of PLA. Zhang et al. [20] 

studied the hydrolytic degradation of PLA in water at temperatures close to Tg. They 

found that the weight loss speed of amorphous PLA at 60 
o
C was about 3 times faster 

than that at 50 
o
C. About 32% of the weight of amorphous PLA was lost after only 11 

days at 60 
o
C. Hakkarainen et al. [21] reported similar results for PLA degradation in 

PBS. 33% of the molecular weight was lost after only 3 days when hydrolysis 

temperature was raised to 60 
o
C. In our preliminary tests, we found that PLA and its 

nanocomposites fractured into many pieces after 3 days at 75 
o
C. Therefore, in order to 

keep the samples intact for further tests, a lower temperature of 50 
o
C thus a slower 

degradation speed was chosen in present work. After selected immersion periods, 

specimens were removed from the vials, washed several times with distilled water and 

dried in desiccator until constant weight (see Figure 7.1). The weight losses of the 

samples were not applied to quantify the degradation here, since the very small amount 

of thin films gave big fluctuations when measuring using scales. Therefore, changes in 

molecular weight were used to measure the hydrolytic degradation.  
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Figure 7.1 Sketch of hydrolytic degradation and electrical resistance measurement. 

7.2.4 Characterization  

Morphological studies were carried out on gold-coated samples using scanning electron 

microscopy (SEM) (FEI Inspector-F, The Netherlands). 

Number average molecular weight (Mn) was determined by gel permeation 

chromatography (GPC). The same method and equipment were used as described in 

Chapter 3. 

Differential scanning calorimetry (DSC) (Mettler-Toledo 822e) was used to investigate 

the thermal properties of the PLA films before and after degradation. All samples were 

heated to 200 
o
C at 10 

o
C min

-1
. Crystallinity was determined using the heat of fusion of 

100% crystalline PLA [22]. 

The morphological analysis by X-ray diffraction (XRD) was performed on a Siemens 

D5000 Diffractometer using Cu (Kα) radiation (wavelength: 1.54 Å) at room 

temperature in the range of 2θ= 5
o
 to 40

o
 with a scanning rate of 2

o
 min

-1
.  
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Infrared spectra (FT-IR) in the attenuated total reflection mode (ATR) were obtained on 

a Brüker Tensor 27 spectrometer. The samples were analysed in 4000 to 600 cm
-1

 range 

with a 4 cm
-1

 resolution.  

The electrical conductivity of all films was measured by a simple two-point 

measurement using a picoammeter (Keithley 6485) and a DC voltage source (Agilent 

6614C). Silver paste coating was used to ensure good contact with the electrodes of the 

electrometer. The volume resistivity was calculated in relation to the specimen 

dimensions. The measured volume resistance, VR , was converted to volume resistivity, 

using the formula: 

 V

A
R

L
   Equation 7.1 

where A is the effective area of the specimen and L is the specimen length. For 

specimens with a resistivity exceeding 10
10

 Ω, electrical resistivity is no longer 

measurable and the films are considered as „non-conductive‟. Three specimens for each 

composite were tested, and average value was reported. 

7.3 Results and discussion 

7.3.1 Hydrolytic degradation and morphological changes  

Morphology changes of PLA during hydrolysis are investigated first. The appearance of 

neat PLA films changes after degradation. As shown in Figure 7.2, as degradation time 

increases, sample becomes relative opaque and brittle in both mediums. The opacity is 

probably attributed to light scattering due to the presence of water/degradation 

products/holes, or the evolution in crystallinity. 



Chapter 7. PLA/CNT nanocomposites with integrated degradation sensing 

161 

 

 

Figure 7.2 Optical images of the pure PLA samples degraded in (a) water and (b) PBS. 

The morphology change on the sample surface is also observed using SEM (see Figure 

7.3). Before degradation, the surface is smooth while after 28 days degradation in PBS 

several micro-holes are observed on the surface. This indicates that degradation occurs 

in present work. 

 

Figure 7.3 Surface morphology of pure PLA sample before (a) and after degradation in 

PBS for 28 days (b). 

The Mn values of PLA films before and after hydrolysis are plotted in Figure 7.4 as a 

function of hydrolysis time. The Mn of the PLA films decreases linearly with hydrolysis 

time in both mediums, which means that the hydrolysis rates are constant corroborating 
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previous observations [20]. Accordingly, complete hydrolysis of PLA, in similar 

conditions, takes place at two stages. During the first stage, a rapid decrease in 

molecular weight was observed; while during the second stage, the decrease rate was 

much slower with increasing hydrolysis time. Therefore, the hydrolysis time range 

studied was most likely within the first stage of PLA degradation. After 28 days of 

degradation, Mn decreases by about 68% in water (from 72,633 g mol
-1

 to 22,991 g 

mol
-1

), and by around 84% in PBS (from 72,633 g mol
-1

 to 11,593 g mol
-1

). These 

results indicate that PBS leads to greater degradation than water because hydrolysed 

oligomers of PLA are swollen and solubilized more easily in PBS in the form of 

Na-salts as soon as they are produced. Consequently PLA chains undergo accelerated 

degradation before concomitant dissolution at extended hydrolysis time. 

 

Figure 7.4 Residual molecular weights (Mn) of PLA films as a function of degradation 

time. 

The morphology changes during hydrolysis appear clearly in the WAXD spectra of the 

samples (see Figure 7.5). It can be noticed that both neat PLA and PLA/1CNT 
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nanocomposites, which initially show only an amorphous halo, clearly exhibit 

crystalline peaks already after 8 days degradation in water. The main 2θ peak at 16.5
o
 is 

indexed as a (200)/(110) reflection of α-form homo-crystal structure. This stable α-form 

homo-crystal structure is found as the major component in PLA or PLA/CNT residues 

after degradation. The intensity of the peak at 16.5
o 

increases with degradation time, 

which means that crystallinity increases after hydrolysis.  

   

 

Figure 7.5 WAXD spectra of (a) neat PLA and (b) PLA/1CNT before and after selected 

times of hydrolysis. 
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This increase of crystallinity during hydrolysis can also be assessed by FT-IR, and the 

results are shown in Figure 7.6. It can be seen that the absorption band at 923 cm
-1

 (due 

to flexural C-H bond vibration), representative of the crystalline structure of PLA 

increases with hydrolysis time for samples degraded in both medium. 

 

 

Figure 7.6 FT-IR spectra of neat PLA before and after selected times of hydrolysis in (a) 

water and (b) PBS. 
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Many studies have investigated the degradation behaviour of PLA. From these studies it 

is generally concluded that degradation proceeds through two main stages [21]. First, 

water diffuses into the amorphous regions as these phases allow water to penetrate more 

easily than the highly ordered and densely packed crystalline regions. The second stage 

starts in the crystalline regions when most or all of the amorphous regions have been 

removed. In order to better understand the effect of crystallinity on the degradation 

behaviour of PLA, DSC was performed. 

Figure 7.7 shows the DSC scans of PLA films before and after hydrolysis for 28 days 

and Table 7.1 gathers the related values of glass transition temperature (Tg), melting 

temperature (Tm) and crystallinity (Xc). The glass transition endothermic peak at around 

60 
o
C is supressed after the hydrolysis period. This confirms the preferential 

degradation of the amorphous phase. A small amount of amorphous chains is left in the 

residues as reported by Tsuji et al. [23]. On the other hand, a crystallization exothermic 

peak at around 134 
o
C is observed, which probably can be attributed to crystallites 

formed during DSC heating [24]. 

Table 7.1 Thermal properties obtained by DSC of PLA before and after degradation. 

Sample Tg  

[
o
C] 

Tm  

[
o
C] 

Xc  

[%] 

PLA no degradation 62.8 149.1 1.6 

PLA in water 28days - 152.2 32.1 

PLA in PBS 28days - 151.8 36.5 
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Figure 7.7 DSC scans of PLA films before and after degradation. 

As seen in Figure 7.7 and Table 7.1, the Tm of PLA before hydrolysis shifted from 149.1 

o
C to 152.2 

o
C and 151.8 

o
C for PLA films degraded in water and PBS after 28 days, 

respectively. Tm for both degraded films show a 2 
o
C increase, which indicates that 

lamellae become thicker after degradation. On the other hand, the crystallinity values of 

both degraded PLA films in water and PBS increase after 28 days. This increase in 

crystallinity of PLA upon degradation is likely to be attributed to partial selective 

removal of PLA chains from free and restricted amorphous regions [20] and/or 

recrystallizaton from plastisticization effect due to the presence of tie-chain segments 

and water diffusion [25].  

In conclusion, the reduced Tg and increased Xc of samples after degradation confirms 

that amorphous regions within the PLA have been partial removed. 
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7.3.2 Degradation sensing  

As shown in Chapter 6, the percolation threshold for PLA/CNT isotropic films is 

around 0.7 wt.%. In this section, it will be demonstrated that the PLA/CNT films are not 

only electrically conductive but are also sensitive to degradation stimuli. Figure 7.8 

shows the degradation of PLA/CNT films with different filler loadings in both 

mediums.  

As seen in Figure 7.8a, typically resistivity decreases upon degradation in water. 

However, different nanotube concentrations lead to significant differences in sensitivity 

of the electrical signal. Resistivity remains almost constant for nanocomposites with 3 

wt.% CNTs, while upon lowering the CNT content to 1 wt.%, a slight change in 

resistivity within one order of magnitude is observed. Similar behaviour is also 

observed for nanocomposites with 0.8 wt.% CNTs. Here, the change in resistivity is 

approximately two orders of magnitude, which indicates that a lower CNT 

concentration makes the system more sensitive as expected [15]. For composites with a 

CNT loading around the percolation threshold of 0.7 wt.% resistivity is dramatically 

reduced compared to higher concentrations. Here, the resistivity value changes about 

four orders of magnitude. Nanocomposites containing CNT concentrations below the 

percolation threshold (0.5 wt.%) were also investigated. The initial resistivity value for 

these composites is above 10
6
 Ohm.m, which is outside the measurement range for the 

current experimental set-up. The results show that even after 14 days degradation in 

water resistivity is still not measurable. There is however a sudden drop in resistivity 

after 21 days of degradation, while it becomes constant quickly after that. In other 

words, the nanocomposites with 0.5 wt.% CNTs seem less sensitive over a wide 
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degradation time range than nanocomposites with 0.7 wt.% CNTs. However, the first 

sensory systems could still be of interest as they respond more in an on/off fashion 

rather than show a gradual change.  

 

 

Figure 7.8 Evolution of resistivity during degradation for various composites degraded 

in (a) water and (b) PBS. 

Changes in resistivity for composites degraded in PBS are fairly similar as in water (see 

Figure 7.8b). However, after 14 days of degradation in PBS the nanocomposites with 
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0.5 wt.% CNTs become conductive, while the sample degraded in water during the 

same period remains non-conductive. According to GPC results, this is due to the lower 

molecular weight attesting for a faster degradation in PBS. However, resistivity values 

of nanocomposites containing 0.5 wt.% CNTs degraded within 14 days are still not 

measurable. In short, these results indicate that composites with a CNT loading around 

the percolation threshold show greater sensitivity and the strongest signal change. These 

results can be explained from the well-established percolation theory [26], which states 

that conductive polymer composites (CPCs) with filler content close to the percolation 

threshold give sharper responses to changes in their environment. It is interesting to 

note that degradation sensing with CPCs results in a reduction in resistivity, i.e. and 

increase in conductivity due to an improved conductive network. Sensing of most other 

stimuli such as strain [27], damage [28], temperature [29], liquids and vapour [15] 

typically result in an increase in resistivity due to a break-down of the conductive 

network. 

When CNTs are blended with semi-crystalline polymers, the nanotubes tend to be 

located in the amorphous phase, since chain folding expels the CNTs from the 

crystalline phase [30]. According to DSC results degradation partly removes amorphous 

PLA, which will directly result in a change in CNT network density within that phase. 

In present study, the observed decrease in resistivity of the CPC, rather than the increase 

in resistivity as generally observed when sensing most other stimuli, can be explained 

on the basis of the volume exclusion theory. According to WAXD and DSC data, 

degradation partially removes the amorphous phase and induces re-crystallization of 

PLA. As CNTs are excluded from crystalline regions, an increased CNT network 
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density results in an increased effective CNT concentration in the amorphous phase (see 

Figure 7.9). The calculation of the effective CNT loading is based on assuming that 

CNTs are located in the amorphous phase. For instance, for nanocomposites containing 

0.7 wt.% CNTs, if the total weight of the nanocomposites is 100 g, then the weight of 

CNTs in the nanocomposites is 0.7 g. Before degradation, the crystallinity is 1.6%, 

which means that the weight of the amorphous phase is (100-0.7) g × (1-1.6%) = 83.412 

g. Therefore, the effective CNT loading in the nanocomposites is (0.7 g/83.412 g) × 100 

≈ 0.8 wt.%. However, after 28 days degradation in water, a part of the amorphous phase 

is removed, and the weight of the remaining amorphous phase is (100-0.7) g × (1-32%) 

= 67.524 g. Thus, the effective CNT loading now increases to (0.7 g/67.524 g) × 100 ≈ 

1.0 %.  

 

Figure 7.9 Schematic image of CNT network change after degradation. CNTs are 

presented in black and are not to scale. CNT network density increases due to the 

partial removal of amorphous phase. 

The experimental data together with the theoretically predicted electrical conductivity 

using volume exclusion theory is plotted in Figure 7.10 as a function of CNT loading 



Chapter 7. PLA/CNT nanocomposites with integrated degradation sensing 

171 

 

for composites before and after 28 days degradation in water. Theoretical predictions fit 

the experimental data well. The volume exclusion effect in the formation of conductive 

paths due to the removal of amorphous phase is only operative at lower concentrations. 

At higher concentrations, the conductivity is almost undisturbed. This is probably due to 

the fact that composites containing 3 wt.% CNTs have already a very robust network 

and hence, polymer degradation does not lead to major changes in local nanotube 

densities. 

 

Figure 7.10 Experimental and predicted percolation threshold (Pc) based on volume 

exclusion theory of PLA/CNT composites before and after 28 days degradation in water. 

(Considering Xc = 32% for all degraded samples). 

Figure 7.11 correlates the molecular weight of pure PLA with the corresponding 

electrical resistivity of the various nanocomposites. The curves show a similar trend as 

in Figure 7.8. Hence, by detecting an electrical signal change within this CPC film we 

are able to obtain on-line information of the degradation level of the PLA matrix 

without damaging the product. In summary, the developed PLA/CNT nanocomposites 
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demonstrated good degradation sensing capabilities at CNT concentrations around the 

percolation threshold, making them interesting candidates for applications in smart 

biocomposites. 

 

Figure 7.11 Correlation between residual molecular weight of pure PLA and 

corresponding electrical resistivity of nanocomposites degraded in (a) water and (b) 

PBS. 
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7.4 Conclusions 

A degradation sensor based on PLA/CNTs has been successfully prepared. 

Nanocomposites with a CNT loading around the percolation threshold gave the highest 

sensitivity and strongest signal change. The observed increase in conductivity is due to 

an increased CNT network density after partial removal of the amorphous phase of the 

semi-crystalline polymer matrix. Such an in-situ degradation monitoring system would 

give on-line information regarding degradation level and makes it a good candidate for 

applications in smart biocomposite products. It should be noted that the degraded 

nanocomposites are too brittle to perform mechanical tests. The samples broke in the 

clamps during the test. Therefore, there is no correlation study between the mechanical 

properties and the electrical resistivity in this work. 

In the current work non-oriented isotropic films were studied which can be used as 

stand-alone products but can also be applied to functionalise PLA products through the 

addition of a smart PLA surface coating or film. Such a degradation sensitive surface 

film could be very thin, thus reducing the overall quantity of CNTs needed in the final 

product. Moreover, the resulting overall reduction in CNTs required should have added 

benefits in terms of recyclability, biodegradability and compostability of these modified 

PLA products. 
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Chapter 8.  

Marketing potential exploitation, summary and future 

work 

Trials for fabricating the self-reinforced poly(lactic acid) (SR-PLA) composites and 

embedding smartness in PLA via the addition of carbon nanotubes (CNTs) were a 

learning experience. In this chapter, evidence is gathered to investigate the potential 

exploitation of the achieved work and remaining challenges, through a combination of 

desk research and telephone interviews conducted by Elucidare Limited. Even though 

SR-PLA have properties that are inferior to the mechanical properties of SR-PP 

composites, our research provided invaluable lessons on which conclusions could be 

drawn and discussed. Suggestions for future work are also provided at the end of this 

chapter.  

8.1 Marketing research 

The purpose of this section is to determine whether commercial exploitation 

opportunities exist for SR-PLA technology. Which hurdles are faced in order to 

commercialize the technology? The strengths, weaknesses, opportunities and threats 

involved are identified. For this two questions needs to be addressed. First of all, how 

do SR-PLA composites compare to alternatives such as natural fibre reinforced PLA 

composites in terms of performance, and what are the potential applications? Secondly, 

are SR-PLA composites potential substitutes for SR-PP composites, and is their 
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biodegradability and bio-base character valuable for the market? 

8.3.1 Technology assessment 

Is PLA more environmentally friendly? 

Whenever someone hears that PLA is made from renewable resources, there is an 

immediate expectation that it must be better for the environment. However, one needs to 

ask the question if these products are really more environmentally friendly than 

petro-based polymers such as PP and PET. The mass of PLA originates from carbon 

dioxide (CO2) in the atmosphere. However, like all manufacturing processes, the 

production of PLA requires additional energy. Then the relevant questions are: does the 

energy required for processing cause more CO2 emissions than the amount of CO2 

embedded in PLA? And is the overall amount of fossil fuels required for processing of 

PLA less that the total needed for petro-based products? Moreover, how do 

biomass-based material producers compete with energy producers as well as food and 

feed? 

Cargill Dow LLC [1] claimed that PLA uses fewer fossil resources and emits less CO2 

in its manufacturing than the petro-based products it replaces. These differences are 

measurable and significant according to the standard methodology for life-cycle 

inventory (LCI). Nova-Institut GmbH [2] contributed to the discussion about whether 

food crops should be used for other industrial uses. They suggested a differentiated 

approach to find the most suitable biomass for industrial uses based on scientific facts 

and logical arguments. They claimed that all kinds of biomass should be accepted for 

industrial uses depending on the sustainability and resource efficiency. Today, European 

policy only provides support for energy uses. However, the higher added value and 
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employment, as well as the greater land and resource efficiency speak in favour of 

supporting the material use of biomass. 

While it is true that PLA has interesting environmental benefits, these benefits alone do 

not drive investment in manufacturing. The materials need to work well and need to be 

competitively priced. With large-scale production, prices are expected to drop. However, 

lactic acid-based bioplastics are expected to remain more expensive than commodity 

polymers in the near future. In other words, the cost, availability and physical properties 

of these bioplastics needs to be better than whatever it is they are to replace. Mazda's 

biofabric technology, which contains 100% plant-derived PLA and is being used in the 

seat covers and door trims, is a firm support for the use of bioplastics in the future. The 

fibre strength, durability, abrasion resistance, as well as flame retardant properties of 

these fibres are improved by controlling the molecular architecture. 

 

Figure 8.1 Potential applications of SR-PLA composites. 

The current market for PLA is mainly packaging. SR-PLA technology shows 

opportunities for expanding new market. Based on the properties of SR-PLA shown in 
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Chapter 4, the first commercial applications of these materials are likely to be in impact 

critical applications, such as luggage, sports products, underbody shields or as an 

alternative to natural fibre reinforced PLA for inner-trim parts (see Figure 8.1). 

Can SR-PLA compete with PLA/natural fibre composites? 

An essential point for looking into potential markets for SR-PLA composite is whether 

they have the right level of performances at the lowest possible cost. Generally, in the 

selection process, specific stiffness, specific strength and performance/cost values are 

considered as important criteria to make a decision. Table 8.1 gives a direct comparison 

of different engineering materials. These results are not expected to be absolute but are 

considered as a quick snapshot comparing their relative performance. Unidirectional 

natural fibre reinforced PLA composites represent the best combination of specific 

strength and specific modulus of all listed composites. It is worth noting that both 

SR-PLA composites and green composites are problematic due to their decomposable 

nature. The biodegradability issue needs to be addressed, especially when dealing with 

structural parts of exterior panels for future vehicles. 

Can SR-PLA composites compete with SR-PP composites? 

The commercial success of a material on a large scale will depend on many factors in 

addition to technological and environmental aspects. In recent years a wide range of 

SRPs has been presented in the literature. However, not all of these concepts are 

suitable for commercialization. Numerous potential industrial applications have been 

reported, mostly for SR-PP composites, as the cost/performance ratio of PP is one of the 

best of all polymers. To date, the most successful technology is based on hot  
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Table 8.1 The evaluation of various materials. 

Sample Price 

[GBP/kg] 

Density 

[103 

kg/m3] 

Tensile 

strength 

[MPa] 

Young’s 

modulus 

[GPa] 

HDT 

1.8 MPa 

[oC] 

Specific 

strength 

(SS) 

Specific 

modulus 

(SM) 

SS/ 

Cost 

SM/ 

Cost 

Neat PLA 4032D 

PLA+10 wt.% glass fibre [3] 

PLA+30 wt.% glass fibre [3] 

PLA+10 wt.% mineral filler +20 wt.% impact modifier 

[3] 

PLA+30 wt.% mineral filler+10% impact modifier [3] 

PLA+30 wt.% natural fibre (woodflour/cellulose) + 10% 

impact modifier [3] 

PLA+30 wt.% short flax fibre [4] 

PLA+ 30 vol.% flax fibre mats [5] 

UD PLA+ 30 vol.% kenaf [6] 

UD PLA+ 70 vol.% kenaf [6] 

PLA high impact [3] 

SR-PLA tape 

UD SR-PLA composites 

~1.6 

1.88-2.26 

1.82-2.32 

1.88-2.13 

1.57-1.76 

1.95-2.2 

 

- 

- 

- 

- 

2.01-2.26 

- 

- 

1.24 

1.31-1.33 

1.47-1.49 

1.25-1.28 

1.39-1.41 

1.29-1.31 

 

1.26-1.5 

1.2-1.53 

1.2-1.5 

1.2-1.5 

1.11-1.21 

1.21 

1.22 

53 

59.3-62.4 

82.6-86.8 

20-37 

24-25.3 

55.6-58.4 

 

53 

100 

130 

223 

29-52 

278 

102 

1.8 

6.8-6.98 

10.1-10.3 

2.85-4.14 

4.04-4.24 

5.19-5.32 

 

8.3 

9.5 

15 

22 

2.3-2.6 

6.7 

4.4 

57 

105-107 

147-151 

59.9-86.5 

69-71 

53-55 

 

- 

- 

- 

- 

49.7-79 

- 

83 

42.7 

46.1 

57.2 

22.5 

17.6 

43.8 

 

40 

77 

100 

158 

34.9 

224 

83.6 

1.45 

5.2 

6.9 

5.5 

3.0 

4.0 

 

6.2 

7.3 

11.6 

15.6 

2.1 

5.5 

3.6 

26.7 

22.3 

27.6 

11.3 

10.6 

21.1 

 

- 

- 

- 

- 

16.3 

- 

- 

0.9 

2.5 

3.3 

2.8 

1.8 

1.9 

 

- 

- 

- 

- 

1.0 

- 

- 
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compaction and marketed as Curv
®
, and coextrusionbased SRP commercialized under 

the name PURE. 

When considering the bio-based SR-PLA composites developed in the present work, 

great attention should be paid to their competitiveness with other existing SR-PP 

composites. The prefix „bio‟ can only be attractive if material costs are moderate and 

customer acceptance can be guaranteed. Therefore, material data of SR-PLA composites, 

which are in competition with PP equivalents, should be referenced to adequate values. 

However, our results in Chapter 4 showed that SR-PLA composites are mostly interior 

to SR-PP composites in terms of cost/performance ratio. 

SR-PLA composites could become even less competitive in the market when bio-based 

PP‟s are used for SR-PP. Companies such as Braskem and Dow Chemical Company 

have been investing heavily in developing technologies to manufacture bio-based PP 

using ethanol derived from sugarcane. Braskem (Brazil) is to start its first bio-based PP 

manufacturing site with an initial annual capacity to be at least 50 kilo tons [7]. 

Bio-based PP is expected to replace synthetic PP in a number of applications in the near 

future. 

8.3.2 Feedbacks from interviews 

Managing Director, Net Composites  

„Although self-reinforced plastics are a nice idea on paper, it is probably fair to say they 

have struggled to get real commercial traction beyond Samsonite. It is very difficult to 

point to commercial applications where they have successful sold in any volume.‟ The 

reason might be that „they sit in the space beyond conventional bulk polymers like 
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ordinary PP with certain properties and an attached price, and as you progressively 

reinforce PP using SRP the properties go up but also the price goes up. This has always 

been the challenge. It has always been questionable whether they hit the sweet spot.‟ 

When they are asked about how does SRP with glass reinforced materials, they said, 

„why would you go for SRP over a conventional composite? You might for impact 

performance. This is the fit for Samsonite. Other areas looked at types of shields and car 

flooring where you are exploiting the impact properties. And it can be recycled if a 

customer wants a monomaterial to recycle. However, there will only be a limited 

number of applications where impact performance is the deal maker. Similarly increased 

recycling is interesting to people but they don‟t to pay any more for that.‟ 

Engineering team leader, Cobham PLC 

„The uses for SRP are expanding. One of its primary draws is its impact performance. 

This is why people like Samsonite are using it for suitcases. And I have seen research 

for it to be used for floors in bomb resistant vehicles for military, but also it is gaining 

traction in semi-structural applications like automotive. And now also its electrical 

properties, namely it is a dielectric. SR-PP is almost completely invisible to radar and 

other electrical signals; coupled with its semi-structural properties means you can make 

quite effective radomes and other coverings for aerospaces, trains, and satcoms to cover 

radar and communications equipment. 

Towards the end of my time at NetComposites we wanted to start looking at SR-PLA 

but unfortunately all our funding applications were rejected by the UK government and 

by Brussels. But yes, I certainly think there are legs to this. Changing from PP to a 

bio-sourced and biodegradable alternative has a lot of appeal to users of this kind of 
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material. We first looked at automotive industry and they said they would not be the 

kind of people that would be looking for a degradable alternative, but we found a lot of 

users that are using these materials because of their green credentials and because of the 

marketing potential it gives them. The greener, the better. So this would appeal not only 

to those using SR-PP but also those using a flax or hemp reinforced PLA. So there are 

two avenues you can come from: people that are currently using SRP materials and 

those using non-SR bioplastics and composites. Certainly we had dealings with 

automotive companies on SR-PP, but when we tried to “sell” them the idea of 

biodegradable materials they did not seem too receptive due to the fact that, well, they 

will degrade. It is as simple as that.‟ Then we mentioned the degradation sensor 

technology developed. They said, „This is very interesting. I think this would be one of 

the big things that would help get PLA into semi-structural applications in the 

automotive industry. This will give them confidence that actually they can monitor it 

and they do know how long it will be good for. When we were talking to the automotive 

industry this was one of their big concerns. They said „we don‟t know how long it takes 

to degrade; we don‟t know how long it will last.‟ If you have a painted PLA component 

then you have no idea what it is like inside: it looks the same whether it is degraded or 

not. Normally in a car, the PLA would be coated. But if there is a chip then with this 

CNT monitoring you would be able to detect degradation due to the unknown nature of 

the environment‟. 

Managing Director, Composites Evolution Limited 

„SR-PLA is certainly interesting from a technical point of view. But it is a very rare 

customer that will pay extra just for bio-derived or compostable. The material has to 
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offer something else as well. PLA is already expensive. SR-PLA will be more expensive 

so it has to have a significant advantage over SR-PP. Even SR-PP hasn‟t taken off to the 

extent that was originally thought, so the markets for SR-PLA are possibly very narrow.  

There is an interesting feature in that the impact performance of PLA is improved when 

self-reinforced. PLA isn‟t that good in impact, so this might allow the use of PLA where 

not previously possible, but again depending on cost as it‟s already an expensive 

polymer.‟ 

Manager-Advanced Materials Engineering Europe, Visteon 

‘When I worked on self-reinforced polymers we found there was quite an amazing step 

change in properties when they were being reinforced with themselves. But within this 

program we lost sight of the cost of these materials. Being cynical, typically the driver 

in automotive is for a low-cost material, and if they are green as well, great, but always 

the driver seems to be for low-cost material.‟ 

From the desk research and telephone interviews, we can conclude that it could be 

difficult to commercialize SR-PLA technology. However, recent environmental 

regulations, societal concerns and growing environmental understanding throughout the 

world could be a driving force. Still exploitation of the results to commercialize a 

product faces the following hurdles:  

1. Virgin PLA market is not mature enough and is still considered a niche market.  

2. The cost/performance ratio of SR-PLA composites is poor.  

3. SR-PP composites perform better. PP could be bio-based in future and is also 

recyclable. 

4. Targeted markets are quite difficult to identify either because of lack of 
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performances or too high costs even if PLA is bio-sourced and potentially 

recyclable. Sports equipment might, however, be an option. 

8.2 Summary 

PLA is nowadays considered as one of the most promising bioplastics but exhibits 

rather limiting heat stability and brittleness in its pristine state. While significant gains 

in impact toughness and heat resistance have been realized using plasticization and 

blending, maintaining a high tensile strength and modulus of PLA is difficult. 

Upgrading of PLA can be done by the introduction of mineral fillers such as CaCO3 or 

glass- or natural fibres but the introduction of such „foreign‟ fillers is also in conflict 

with the basic idea behind recycling and monomaterial products.  

In this thesis, fully biobased and recyclable self-reinforced PLA (SR-PLA) composites 

were developed using a film-stacking technique. The multiple end-of-life options 

offered by SR-PLA composites, including recycling and composting, empowers them to 

reduce the environmental impact of materials, and gives the end-user maximum 

flexibility in selecting environmentally sound waste disposal schemes. 

In order to obtain optimum performance of the SR-PLA composites, first a 

tape-manufacturing route was optimized to ensure superior mechanical properties of the 

reinforcement. In accordance with literature, it was found that the Young‟s modulus and 

tensile strength of the post drawn tapes increased with increasing draw ratio and 

drawing temperature. PLA tapes with a maximum Young‟s modulus and tensile strength 

of approximately 6.7 GPa and 280 MPa could be routinely obtained on a pilot 

production line. Compared to isotropic PLA, a 3.7, 5.2, 12.7 times increase in Young‟s 

modulus, tensile strength and tensile toughness was achieved after solid-state drawing.  
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The consolidation of these highly oriented PLA tapes in a unidirectional (UD) or 

bi-directional (BD) form can be achieved by welding the tapes together by heating 

under pressure. This bonding is achieved by using a PLA matrix with a lower melting 

temperature than the tapes, thus preserving the orientation of PLA tape. It has been 

shown that it is possible to tailor the mechanical properties of SR-PLA laminates by 

altering the hot-pressing conditions. Compaction at 160 °C produced a well bonded 

structure and SR-PLA composites with good levels of strength and stiffness to make 

them suitable candidates for semi-structural components. UD SR-PLA composites 

compacted at 160 
o
C exhibited enhanced modulus (2.5 times) and strength (2 times) 

compared to neat PLA resin. On the other hand, SR-PLA composites consolidated at a 

lower temperature of 150 °C showed optimal energy absorption, which may find 

applications that are aimed at protection from low velocity impacts. BD SR-PLA 

composites compacted at 150 
o
C absorbed 14 times more energy compare to PLA resin 

as measured in dart impact tests. Furthermore, the HDT of UD SR-PLA increased by 

about 26 
o
C compared to neat PLA resin, mainly as a result of an increase in modulus 

and crystallinity.  

According to the marketing research, SR-PLA composites do not poses the best 

cost/performance ratio in comparison to SR-PP or natural fibre reinforced PLA 

composites, which is identified as the main disadvantage of SR-PLA composites. 

However, the excellent impact performance may prove to turn out the key property of 

SR-PLA. The first market introduction may be therefore in impact applications such as 

sports equipment.  

Another big concern from industry that prevents PLA from getting into semi-structural 
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applications is the degradation of PLA. For PLA based product to be used in more 

demanding engineering applications, the important issue of degradation during the 

product‟s life time has therefore been addressed in the second part of this thesis. We 

pioneered the use of minute amount (0.7 wt.%) of carbon nanotube (CNT) into a PLA 

matrix as a means to monitor degradation. Nanocomposites with a CNT loading around 

the percolation threshold gave the highest sensitivity and strongest signal change. The 

observed increase in conductivity is due to an increased CNT network density after 

partial removal of the amorphous phase of the semi-crystalline polymer matrix. Such an 

in-situ degradation monitoring system would give real-time information regarding 

structural safety and makes it a good candidate for applications in smart biocomposite 

products. 

Apart from degradation sensing, conductive oriented PLA/MWNT tapes with enhanced 

mechanical properties were prepared. These tapes showed significant morphological, 

mechanical and electrical property changes after drawing, with polymer crystallinity, 

nanotube dispersion and alignment all being improved. Interestingly, the presence of the 

MWNTs perturbed the orientation of the crystalline polymer chain domains. Drawing 

lowered the electrical conductivity and increased the percolation threshold of the 

nanocomposites, but micromechanical analysis showed that it greatly improved the 

reinforcing efficiency of the MWNTs. This resulted in an overall good balance of 

physical properties of the oriented PLA/MWNT tapes with one of the best compromises 

in terms of high mechanical properties (5.5 GPa in Young‟s modulus, 156 MPa in 

strength) and electrical properties (3.5×10
5
 Ω m in resistivity) for conductive polymer 

composite fibres or tapes. 
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8.3 Future work 

Both theoretical analysis referred to in Chapter 5 and experimental data reported in 

Chapter 6, indicates that 1D fillers are more promising for unidirectional oriented (1D) 

nanocomposites, while 2D fillers are more effective in 2D structures. It seems therefore 

natural to focus future works on bidirectionally (2D) oriented films based on 

PLA/nanoplatelets. Graphene, an atomically thin 2D material made of sp
2
-hybridized 

carbon atoms, has attracted great attention since its discovery in 2004. The elaboration 

of PLA/graphene nanocomposites and their compatibilization have scarcely been 

investigated at this stage except for a few reports. Kim and Jeong [8] investigated the 

morphology, structures, thermal stability, mechanical and electrical properties of 

PLA/exfoliated graphite (PLA/EG) nanocomposites obtained by melt-compounding. EG 

nanoplatelets with ~15 nm thickness and ~10 μm diameter were prepared by the 

acid-treatment and rapid thermal expansion. When melt-compounded with PLA matrix, 

SEM images and XRD patterns confirmed that EG nanoparticles were homogeneously 

dispersed in the PLA matrix. As a result, the thermal degradation temperatures T5% and 

Young‟s moduli increased from 350 
o
C and 3 GPa for neat PLA to 364 

o
C and 4.1 GPa 

for PLA/EG nanocomposites at a EG content of 3 wt.%. However, the experimental 

Young‟s moduli of PLA/EG nanocomposites were still far lower than the moduli 

predicted by the Halpin-Tsai model. The electrical percolation threshold of PLA/EG 

(3-5 wt.%) was also shown to be much lower than that of graphite-based 

nanocomposites (10-15 wt.%) [8]. To further realize the reinforcement of these 

nanofillers, it would be interesting to investigate biaxially stretched PLA/graphene 

films.  
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In Chapter 7, only isotropic PLA/CNT films were investigated. It has been 

demonstrated in Chapter 3 that orientated PLA tapes degrade slower than isotropic PLA 

films. Therefore, very interesting results can be also expected from studying the 

degradation sensing behaviour of PLA/CNT oriented conductive tape. As stated earlier, 

of particular importance in the development of sensors and actuators based on carbon 

nanotube composites is their electrical conductivity. Conductive PLA/CNT tapes were 

successfully prepared in Chapter 6. These tapes are less conductive compared to 

isotropic films, and the percolation threshold increased with solid state drawing. Thus, it 

is expected that the oriented tapes should be more sensitive to degradation than isotropic 

films at the same concentration of CNTs. Moreover, the level of electrical conductivity 

can be set rather accurately by the solid-state drawing process, meaning that the 

sensitivity can be tailored by the drawing process. 

Besides the search for applications of SR-PLA technology, some research still needs to 

be carried out and basic questions need to be answered. In order for a material 

technology to be commercially successful, it is necessary that it can be delivered in the 

required form. The choice of processing routes used to create a product depends on the 

characteristics of the material itself and the complexity of the final part.  There are 

some processing related problems for SR-PLA composites as temperatures required to 

achieve sufficiently low viscosities of polymer matrices to allow good matrix 

impregnation would normally also melt the reinforcement phase. Figure 8.2 shows an 

overview of the main forming options for SR-PP composites. The main options are 

direct forming (i.e. directly consolidating the composites from precursor fibres or 

fabrics in the final form) and thermoforming of pre-consolidated laminates. However, 

apart from tape relaxation during subsequent thermoforming, further degradation might 
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happen in the case of PLA through thermal degradation, leading to deterioration in 

mechanical properties. Therefore, forming conditions, such as strain rate applied during 

thermoforming, temperatures applied, thermal stability of PLA, must be all well 

understood.  

 

Figure 8.2 Some potential routes to manufacture SRP products [9]. 

In summary, we compared the economic, environmental and structural implications of 

SR-PLA composites with their alternatives: natural fibres reinforced PLA and SR-PP 

composites. Although SR-PLA composites have properties that are inferior to their 

direct competitors, the multiple end-of-life options offered by SR-PLA composites 
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empowers them to reduce the environmental impact of plastic products, and gives the 

end-user maximum flexibility in waste disposal schemes. Some research still needs to 

be carried out for scaling up this lab-proven technology; however our research provided 

invaluable lessons on which conclusions could be drawn and discussed. The inherent 

brittleness and poor thermal resistance of PLA, which are two main challenges towards 

its wider industrial application, has been overcome through the development of SR-PLA 

composites, while simultaneously improving the tensile strength and modulus of 

SR-PLA. Especially, the good impact properties of SR-PLA composites are impressive, 

which may find its use in applications such as luggage and sports equipment. 
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