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Abstract 

 

Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common 

health and economic problem worldwide, and one of the major risk factors for developing 

type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated 

with MetS and obesity. A dominant type 2/anti-inflammatory response is required for 

metabolic homeostasis within adipose tissue: during obesity, this response is replaced by 
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infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan 

parasites are able to manipulate the host immune response towards a TH2 immune phenotype 

that is beneficial for their survival and there is emerging data that there is an inverse 

correlation between the incidence of MetS and helminth infections, suggesting that, as with 

autoimmune and allergic diseases, helminths may play a protective role against MetS disease. 

Within this review, we will focus primarily on the excretory-secretory products that the 

parasites produce to modulate the immune system and discuss their potential use as 

therapeutics against MetS and its associated pathologies. 

 

Introduction 

 

Metabolic syndrome (MetS), which presents as a cluster of conditions such as hypertension, 

abdominal obesity, high fasting plasma glucose and dyslipidemia, is associated with a greater 

risk of developing type 2 diabetes (T2D) and cardiovascular diseases (CVD) such as 

atherosclerosis, the leading causes of mortality worldwide. The underlying mechanisms of 

MetS are still not fully understood but it is notable that the majority of patients with the 

syndrome exhibit some degree of insulin resistance (IR). There are many factors that 

contribute to the development of IR, including obesity, physical inactivity, age, diet and 

genetic factors, with obesity and physical inactivity being the main driving force in most 

cases. Thus, the mechanisms by which obesity may contribute to metabolic dysfunction have 

been under intense investigation in recent years. Hotamisligil et al were the first to observe a 

significant increase in the levels of the pro-inflammatory cytokine TNF- in obese mice, 

thereby linking inflammatory responses to obesity
1
. Chronic inflammation has since been 

found to be strongly associated with obesity and MetS - obese people with MetS have an 

increased level of circulating inflammatory markers such as C-reactive protein
2
 and there is 
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an increased incidence of cardiovascular diseases in patients with inflammatory diseases such 

as rheumatoid arthritis (RA)
3
. Under normal physiological circumstances, excess nutrients are 

processed and stored by professional metabolic tissues – the liver, white adipose tissue 

(WAT) and skeletal muscle. In obese individuals, these tissues can become overloaded, 

resulting in an increase in free fatty acids in the tissues and circulation, leading to cellular 

metabolic dysregulation manifesting as mitochondrial dysfunction, oxidative stress and an 

increase in intracellular lipids. Obesity-induced cellular dysfunction results in the activation 

of a number of intracellular signalling pathways such as those involving mTOR, JNK and 

IKK. In turn, these pathways converge and inhibit insulin signalling, primarily via serine 

phosphorylation of insulin receptor substrate (IRS) proteins, blunting insulin action in these 

tissues and leading to IR
4
.  

 

Intracellular signalling pathways involved in obesity and MetS 

 

The signalling cascade of PI3K/AKT/mTOR has a profound influence on cell survival
5
, 

regulation of insulin sensitivity/resistance and cell metabolism
6
. Specifically, the recently 

demonstrated ability of the mTOR inhibitor, rapamycin, to prevent insulin resistance in 

humans
7
 has highlighted this pathway as a point of intervention for MetS. The PI3K/AKT 

signalling cascade is activated by ligation of a range of receptors including G protein coupled 

receptors, B and T cell receptors and tyrosine kinase receptors such as the insulin and insulin 

like-growth factor 1 (IGF-1) receptor (Figure 1)
8
. The last two receptors stimulate IRS1 and 2 

to activate PI3K, which in turn results in the phosphorylation and activation of Akt
9,10

. In 

addition, the activation of the IIS (insulin/insulin like growth signalling) pathway leads to the 

up-regulation of mTOR complex 2 (mTORC2) and PDK1 activity, which are both required 

for the complete phosphorylation of Akt
11

. To date, Akt has been demonstrated to have 
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multiple roles: regulating mTORC1 activation, mediating cell survival via the suppression of 

apoptosis-associated proteins such as Bad
12

, inhibiting Fox0 transcription
13

, and regulation of 

NF-B activity
14

. Reflecting this, in the context of insulin signalling, the activation of Akt is 

essential for the upregulation of mTORC1 activity (via the inactivation of tuberous sclerosis 

complex 1 and 2 (TSC1/2) and activation of S6 kinase (S6K))
11

. The mTOR complex is 

primarily conserved for nutrient sensing: thus, activation of mTOR can be mediated by 

environmental amino acids, fatty acids, glucose and hormones
15

, an important factor when 

one considers the mechanisms of insulin resistance (IR) in terms of MetS. Indeed, recent 

findings suggest that nutrition can impact on mTOR activation, demonstrating that calorie 

restriction can reduce activation of mTOR and prevent IR
16

. By contrast, a number of studies 

have demonstrated that over-activation of mTOR results in the formation of a negative 

feedback loop, whereby IRS-1 and IRS-2 are downregulated by S6K signalling
17

, thereby 

impairing insulin sensing. Thus, it is evident that mTOR deactivation is key to the control of 

IR and that nutrient/calorie restriction may have a role in regulating this.  

 

The stress-activated c-Jun amino-terminal kinase (JNK) and the inhibitor of  kinase (IKK) 

are proposed to be central mediators of obesity-associated inflammation and stress responses 

(reviewed by
18

). Certainly, expression of both of these kinases is increased in the liver, 

skeletal muscle and adipose tissue of obese mice and genetic ablation of JNK1 renders mice 

resistant to weight gain and metabolic pathologies
19

. Additionally, mice that are heterozygous 

for IKK, an upstream activator of NF-B, are protected from insulin resistance in both diet-

induced and genetic obesity
20

. These kinases are potentially activated by a number of 

pathways during obesity. For example, signalling via the Toll-like receptors (TLRs) of the 

innate immune system potently activates JNK and IKK and TLRs have also been shown to be 

upregulated in adipose tissues during obesity. Indeed, macrophages and adipocytes can be 
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activated to produce pro-inflammatory cytokines IL-6 and TNF- after stimulation with 

saturated fatty acids (FAs) such as palmitate in a TLR4-dependent manner and knock-down 

of TLR4 reduces the activation of NF-B in adipose tissue of obese mice
21

. Moreover, 

MyD88 is a key signalling adaptor molecule required by most TLRs that has also been shown 

to play a role in dysregulated signalling during obesity, as evidenced by targeted depletion of 

MyD88 in the CNS of mice protecting them from weight gain and leptin resistance
22

. 

Highlighting the role of TNF downstream of TLR signalling, Hotamisligil and colleagues
1
 

have directly linked increased levels of TNF- with insulin resistance and obesity whilst 

others
23

 have demonstrated that blockade of TNF- signalling, via the genetic deletion of 

TNF- and its two receptors TNFR1 and 2, reduces the incidence of IR in HFD-fed mice. 

This reflects that ligation of TNFR1 and 2 receptors can trigger the activation of MAPK and 

NFB signalling
25

, thereby promoting pro-inflammatory cytokine release
24

 and indicating 

that, either via direct activity or synergistic mechanisms,  the TLR pathway is likely to 

contribute to the pathogenesis associated with in metabolic syndrome.  

 

Other innate immunity sensors like the NLRP3 (nucleotide-binding domain, leucine-rich-

containing family, pyrin domain-containing-3) inflammasome, activation of which leads to 

the cleavage of pro-caspase-1 and results in the production of mature IL-1 and IL-18, have 

also been demonstrated to play a critical role in the development of insulin resistance
26

. Thus, 

monocyte-derived macrophages from newly diagnosed, untreated type 2 diabetic patients 

show elevated expression of components of this inflammasome compared to healthy 

controls
27

. Moreover, a high-fat diet was found to induce caspase-1 activation in the AT of 

mice
28

, whilst ablation of NLRP3 improves insulin signalling in diet-induced obese mice and 

this is associated with a decrease in IL-1 in AT and reduced circulating IL-18
29,30

. IL-1 is 

one of the main cytokines to be implicated in the development of insulin resistance and 
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accordingly it has been shown that IL-1-/- 
mice on a HFD do not exhibit IR

30
. Furthermore, 

saturated FAs such as palmitate and stearate, were shown to activate NLRP3 in macrophages 

in a ROS-dependent manner
30

. Collectively, this led to the proposal that the increased levels 

of glucose and fatty acids in the organs and circulation of obese individuals are recognised by 

the NLRP3 inflammasome as metabolic danger signals
31

. As the inflammasome can also be 

activated by molecules such as ceramides, ATP, oxidised LDL, uric acids and cholesterol 

crystals, all of which, along with FAs, are elevated in obesity and can increase ROS 

production, a prerequistite for NLRP3 signalling
32

, the NLRP3 inflammasome may be 

activated by a range of substances during obesity. Demonstrating the importance of NLRP3 

activation in obesity, Dalmas and colleagues
33

 found that IL-1 derived from adipose tissue 

macrophages (ATMs) from obese type 2 diabetic patients induces the expression of IL-22 

and IL-17 by adipose-resident CD4
+
 T cells. These cytokines, in turn, can further stimulate 

the production of pro-IL-1 in macrophages
33

 highlighting the interplay between tissue 

resistant cells and indicating that the local cytokine milieu should be considered during the 

development of inflammasome-centric treatments. Nonetheless, these findings strongly 

support the NLRP3 inflammasome as an attractive therapeutic target against obesity and 

MetS, and indeed treatment with the IL-1 inhibitor Anakinra, has been shown to improve -

cell secretory functions and reduce systemic inflammatory markers CRP and IL-6 in T2D 

patients
34

. Together, these studies demonstrate that there are multiple signalling pathways 

that are activated in times of nutrient excess that contribute to the inflammatory response in 

obesity and that targeting of these pathways can be beneficial when it comes to novel 

treatments for patients with MetS. 
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Cellular composition of adipose tissue during obesity  

 

Activation of these inflammatory pathways and consequent recruitment of infiltrating cells 

has a profound effect on the cellular composition of white adipose tissues (WAT). For 

example, in lean mice adipose ATMs are predominantly of an Alternatively Activated 

Macrophage (AAM)/M2-like tissue protective phenotype characterised by expression of 

Arginase 1, chitinase (Ym1) and IL-10 production. Whilst the transcription factor peroxisome 

proliferator activator receptor- (PPAR) is required for maturation
35

 IRF5 appears to act to 

suppress accumulation of AAM in AT
36

 Inflammation during diet-induced obesity triggers 

adipocytes to secrete pro-inflammatory mediators such as IL-6, IL-1ȕ, TNF-Į, MIPs and 

CCL-2 that recruit circulating macrophages into the tissue
37,38

, such that the number of 

macrophages in WAT positively correlates with increasing adiposity
39

. ATMs are known to 

play a key role in the inflammation associated with obesity. Although initially thought to be 

akin to M1-like inflammatory macrophages, a new subset of macrophages that lack 

expression of markers like CD38 and exhibit a distinct transcription profile, have recently 

been identified in adipose tissue and termed metabolically activated macrophages (MMe)
40

. 

These macrophages can be differentiated in vitro via stimulation with insulin, glucose and 

palmitate, stimuli mimicking the conditions present during obesity. MMes express ABCA1 

and CD36 and produce a host of pro-inflammatory cytokines and thus are phenotypically 

similar to ATMs found in human and murine adipose tissue
40

. Eosinophils have been 

demonstrated to be the major IL-4-producing cells in WAT and are essential for the 

maintenance of the AAM population in health
41

. In obesity, these cells are replaced by 

neutrophils and mast cells that help to generate the pro-inflammatory conditions in the WAT 

that are thought to contribute to IR. Additionally, it has recently been shown that the 

associated decrease in eosinophils in WAT is associated with a loss of group 2 innate 
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lymphoid cells (ILC2s), that have been reported to be important for the production of the IL-5 

and IL-13 that is required to sustain eosinophils and AAMs respectively in the WAT
42

. ILC2s 

have been detected in murine epididymal WAT and human subcutaneous fat and are 

decreased in both obese human donor adipose tissue and in the adipose tissue of mice fed a 

HFD
43

. By contrast, diet-induced obesity promotes the expansion of ILC1 cells that produce 

IFN-, driving differentiation of pro-inflammatory macrophages
44

. Other lymphocyte 

populations undergo similar shifts in phenotype: thus, whilst in healthy adipose tissue IL-4-

producing TH2 cells and adipose-specific CD4
+
 FOXP3

+
 T regulatory cells are essential for 

metabolic homeostasis, during diet-induced obesity these cells are replaced with infiltrating 

inflammatory TH1 cells
45,46

. Similarly, infiltrating cytotoxic CD8
+
T cells have been 

demonstrated to arrive prior to M1 macrophages in adipose tissue and depletion of these cells 

results in reduced adipose inflammation and an improvement in glucose tolerance suggesting 

they may be pivotal in the initiation of inflammatory responses in obesity
47

. Studies utilising 

MHC I
null

 and MHC II
null

 mice revealed that B cells are crucial for the activation of CD4
+
 and 

CD8
+
 T cells in adipose tissue, and corresponding with this, B cell

null
 mice have improved 

insulin sensitivity when fed HFD
48

. However, adipose-specific IL-10-secreting B regulatory 

cells, recently identified by Nishimura et al
49

, have been found to reduce inflammation within 

adipose tissues of obese mice. Consistent with this, depletion of IL-10 from B cells increased 

the infiltration of M1 cells and CD8
+
 T cells in adipose tissue and transfer of IL-10 Bregs, but 

not splenic B cells, from lean mice to obese B cell KO mice decreases the secretion of IFN- 

from CD8
+
 T cells

49
. These studies suggest that, as with macrophages, there is a delicate 

balance of effector B and T cell subsets present in the AT that exert positive and negative 

effects on the immune response. Overall, it can be stated that a TH2-biased, anti-

inflammatory immune profile promotes metabolic homeostasis in AT. 
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Parasites and associated immune responses 

 

Helminths, and the products they produce, are the most potent natural inducers of a type-2 

immune response. They typically prime T cells towards a TH2 phenotype characterised by 

the production of IL-4, IL-5 and IL-13, increase tissue eosinophil numbers, and prime B cells 

to generate high levels of IgE. In addition, helminths bias macrophages towards an AAM/M2 

phenotype and prime dendritic cells to induce TH2 responses. Helminths have co-evolved 

with humans for millennia and some are able to reside in individuals for decades without 

causing any severe pathology, which is beneficial not only to the parasite but also to the host. 

This is a result of their ability to modify the typical TH2 response with a regulatory 

component characterised by the presence of Breg and/or Treg cells, AAM/M2-like 

macrophages and the production of IL-10 and TGF- cytokines and IgG4 antibodies
50

. One 

of the key mechanisms utilised by helminths to induce this immune phenotype is the 

production of excretory-secretory (ES) products which interact with and influence their host’s 

immune system
51,52

. However, in the past fifty years, due to increased hygiene and 

advancement of medicines we have drastically reduced the rate of infectious diseases such as 

those associated with helminths in the developed world. By contrast, during this time, the rate 

of allergic, autoimmune and inflammatory conditions such as asthma, rheumatoid arthritis 

and MetS-associated diseases has increased. In attempting to link these observations together 

it is pertinent that helminth infections and their products can be utilised in murine model 

systems to treat allergic and autoimmune diseases and currently there are number of clinical 

trials in progress, or being planned, that utilise helminths in the treatment of a range of 

allergic and autoimmune diseases (reviewed by
53,54

).  
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Helminths are not alone in their ability to modulate the host immune response to create an 

optimum environment – protozoan parasites, such as Leishmania and Toxoplasma, are able to 

impair the host’s initial TH1 response and bias it towards a TH2 phenotype to benefit their 

own survival. Specifically, L. mexicana, which causes the development of non-healing 

cutaneous lesions during infection, can suppress TH1-associated production of IL-12
55–57

 by 

macrophages and DCs, and consequently can inhibit IFN- production
58

. Further promoting 

this TH1-TH2 switch, products from the parasite can also significantly enhance IL-4 

production in the draining LN
59

. In addition, there is growing evidence to suggest that other 

intracellular protozoans such as Toxoplasma, Plasmodium and Trypanosoma species may 

also be capable of skewing host production of TH1/TH2 associated cytokines. Reflecting this, 

a number of studies have demonstrated that infection with P. chabaudi or T. cruzi have 

protective effects in the murine model of multiple sclerosis (MS), experimental autoimmune 

encephalomyelitis (EAE), during which both parasites trigger the upregulation of IL-27 

production, promoting a protective TH2 type phenotype
60,61

. To date, many of the 

mechanisms underpinning how these parasites manipulate the host cell machinery are yet to 

be defined. It is clear, however, that much like helminths, these intracellular parasites have 

evolved methods of steering the host immune response, possibly via the production of surface 

bound and/or excretory-secretory molecules.  

 

As inflammation has now been established as a significant underlying mechanism of MetS-

associated diseases it has recently been speculated that parasites may protect against MetS 

and this is supported by emerging evidence of an inverse correlation between helminth 

infections and incidence of MetS
62

. For example, Aravindhan et al examined the prevalence 

of filarial infection among diabetic, pre-diabetic and non-diabetic subjects in a cross-sectional 

study in India and reported a significant decrease in the incidence of filarial infection in 
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diabetic patients compared to non-diabetic subjects
63

. Consistent with this, helminth infection 

has been shown to be effective at reducing weight gain and improving glucose tolerance in 

obese mice. For example, Yang et al used both a genetic deficiency and a diet-induced model 

of obesity to demonstrate that infection with the gastrointestinal nematode Nippostronglyus 

brasiliensis caused less weight gain than that observed in wild-type littermates or uninfected 

mice on high-fat diet (HFD) respectively
64

. Likewise, chronic infection with the trematode, 

Schistosoma mansoni, decreased fat mass and adipocyte hypertrophy in HFD-fed mice, 

which were accompanied by improvements in whole-body glucose tolerance and insulin 

sensitivity
65

. Recently, it has additionally been demonstrated that infection with the filarial 

nematode Litomosoides sigmodontis improves glucose tolerance in diet-induced obese mice, 

and this is associated with an increase in eosinophils, AAM and CD4
+
 T cells in the 

epididymal AT
66

. Furthermore, S. mansoni infection has been demonstrated to reduce 

atherosclerotic lesion development in ApoE
-/-

 mice
67,68

, a well-established model for the 

study of atherosclerosic lesion formation
69

, and this is consistent with a reduced frequency of 

atherosclerosis in schistosomiasis patients
67

.  

 

Perhaps providing a molecular rationale for this, it has also recently been demonstrated that 

parasites can directly affect the mTOR signalling pathway: Narasimhan et al found exposure 

of human monocyte-derived dendritic cells to Brugia malayi microfilarie (MF) to have a 

similar effect as treatment with Rapamycin in that it resulted in downregulation of 

phosphorylation of mTOR, p70S6K1 and 4EBP1 while also inducing autophagy in these 

cells, as evidenced by upregulation of phosphorylation of Beclin-1, induction of LC3II and 

degradation of p62
70

. Similarly, it has been demonstrated that L. major promastigotes express 

a surface metalloprotease, GP63 that is important for mediating parasite engulfment
71

, and 

which influences a number of key signalling molecules
72

 in the intracellular environment of 
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the macrophage. Most notably GP63 can inhibit mTORC1, consequently resulting in a 

blockade in phosphorylation of translational initiation factor 4E-BP1
73

. This 

dephosphorylated state of 4E-BP1 causes suppression of macrophage protein synthesis
74

 and 

has been shown to be important for L. major parasite survival and replication. Moreover, it 

has been demonstrated that following infection, L. donovani-parasitised macrophages express 

lower levels of AKT
75

 which will have a profound downstream effect on mTORC1 activity. 

Indeed, the importance of mTOR activity in macrophages has recently been investigated, 

utilising macrophage specific mTOR null mice to demonstrate that in the absence of mTOR 

activity, HFD-fed mice exhibit a  reduced liver and adipose inflammatory gene expression 

profile
76

. These studies are of particular interest as very recent work has demonstrated that 

elevated dephosphorylated 4E-BP1 levels can protect against diet-induced obesity, insulin 

resistance and associated MetS
77

 while autophagy is known to play a key role in the 

suppression of production of inflammasome-associated cytokines IL-1 and IL-18 by 

stabilising mitochondria and preventing release of mitochondrial DNA into the cytoplasm
78

. 

As inhibition of the inflammasome or IL-1 has been demonstrated to prevent IR, targeting a 

regulator could represent a potential future therapy against diabetes and MetS. 

 

Currently, there is a great deal of ongoing work examining the effect of helminth infection on 

metabolic syndrome: however, the present review will examine in detail the potential of 

parasite products, in particular, excretory secretory products, to influence the immune system, 

and specifically, their effect on the metabolic syndrome.  
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Excretory-secretory products of parasites 

 

Helminths are able to modulate the host immune response to ensure their own survival. One 

of the main mechanisms employed by these pathogens is the release of “excretory-secretory” 

(ES) products that actively dampen the host immune response to the parasite. These products 

are a diverse mix of proteins, glycans, lipids and nucleic acids and while they may utilise 

different mechanisms, in general they induce a type 2/regulatory phenotype in the host (see 

Table 1). ES-62, a 62kDa glycoprotein, is the major ES protein of the rodent filarial 

nematode Acanthocheilonema viteae and is perhaps the best characterised of all the secreted 

helminth products. ES-62 contains the unusual post-translational modification of 

phosphorylcholine (PC) moieties attached via an N-linked glycan
79,80

, and this feature appears 

to be responsible for the majority of the anti-inflammatory effects of ES-62
81,82

. These effects 

include priming DCs towards a TH2 phenotype; inhibiting macrophage and mast cell 

activation; promoting induction of B regulatory cells and inhibiting TH1 and TH17 

polarisation (reviewed in
83

). Similarly, S. mansoni soluble egg antigen (SEA) which contains 

ES products, skews the host immune response to the worm from an inflammatory TH1 to a 

TH2 phenotype. DCs treated with SEA in vitro are polarised to prime TH2 responses and are 

refractory to TLR stimulation
84

 while macrophages treated with one of the components of 

SEA, LNFPIII, a trisaccharide LewisX-containing glycan, differentiate fully into an 

alternatively activated phenotype with upregulated expression of CD301, Ym1 and Arg1 and 

produce IL-10
85

. In vivo administration of ES products is sufficient to induce a strong TH2 

response – for example, ES from adult N. brasiliensis (NES) induces a strong TH2 response, 

even in the presence of the TH1/TH17 polarising agent, complete Freund’s adjuvant86
. 

Helminth ES products from a variety of species have also been found to be therapeutic in 

multiple mouse models of inflammatory disease including collagen-induced arthritis (CIA), 
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type 1 diabetes (T1D), experimental autoimmune encephalomyelitis (EAE), colitis, and 

asthma and other allergies (reviewed in
52

). As discussed, MetS is associated with chronic 

inflammation and thus, given their potent anti-inflammatory effects, and therapeutic potential 

in inflammatory diseases it seems likely that helminth ES products could have a significant 

impact on MetS. 

 

Protozoan parasites also produce a range of secreted products that influence the host to ensure 

their own survival. One of the best studied molecules constitutes a group of cysteine 

proteases (CPs) produced by L. mexicana
87

. It has been demonstrated that this highly active 

group of Cathepsin-L like proteases are primarily produced by the amastigote (intracellular 

form of parasite)
88

 and their role as a key virulence factor during infection has been 

confirmed in a number of studies through the use of a variety of CP mutant promastigotes
55

. 

Further evidence suggests that the most abundantly expressed form of L. mexicana specific 

CP, CPB2.8 can drive a TH2 response in vivo. Pollock et al have demonstrated that 

administration of purified recombinant CPB2.8 can stimulate both IL-4 and IL-5 production 

in the draining lymph node and can enhance circulating IgE titres
59

. The mechanisms 

underpinning these findings remain unclear, however it should be considered that, the CPs 

are similar in structure to other allergy-inducing proteases such as dust mite derived DerpI, a 

potent inducer of IL-4 and IgE
89

. Thus, it is perhaps unsurprising that CPB2.8 is so effective 

in polarising the immune response from a TH1 dominated healing response, to a TH2 

dominated chronic phentotype. Hence, these Leishmania secreted CPs represent a group of 

potentially novel immunomodulatory molecules.  
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Helminth ES and MetS 

 

The strong TH2 response generated in response to SEA and LNFPIII led Bhargava et al to 

investigate whether these products have any effect on chronic inflammation with respect to 

obesity and subsequently improve metabolic function in HFD-fed mice. Injection of either for 

4-6 weeks after the onset of obesity in HFD-mice augmented the production of IL-10, as well 

as increasing insulin sensitivity
85

. Unlike with live helminth infection
65

, neither treatment had 

any effect on body weight or circulating lipid or adiponectin concentrations
85

. However, both 

LNFPIII and SEA had significant effects on the cell composition/interactions in the WAT – 

there was a decrease in the number of observed crown-like structures (CLS), and the gene 

expression of inflammatory genes such as TNF-, Casp1, nlrp3, il18 and il1 was reduced 

with a corresponding increase in il10 and the M2 genes Arg1 and MgL1
85

. It has recently 

been demonstrated that SEA mediates this improvement in metabolic homeostasis by 

restoring the type 2 response in the WAT through the induction of eosinophil recruitment
65

, 

which has previously been shown to be crucial in promoting the presence of M2 

macrophages
41

. Correspondingly, SEA shifts the M1/M2 ratio towards an M2 phenotype, and 

increased the numbers of IL-4
+
, IL-5

+
 and IL-13

+
 CD4

+
 T cells in gonadal WAT

65
. In keeping 

with improved insulin sensitivity there was also an increase in insulin receptor B, insulin 

receptor substrate 2, C/ebp- and glucose transporter 4 gene expression in the WAT of 

LNFPIII-treated mice. These effects are not due to direct effects of LNFPIII on adipocytes: 

they appear to be mediated indirectly via production of IL-10 by macrophages as conditioned 

medium from LNFPIII-primed macrophages from WT but not IL-10-
/-
 mice improved insulin 

responsiveness in 3T3-l1 adipocytes
85

. SEA and LNFPIII were also demonstrated to have a 

strong protective effect on diet-induced hepatic steatosis, with treated HFD-mice exhibiting 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

reduced serum levels of the triglycerides, AST and ALT as well as decreases in genes 

associated with lipogenesis such as Srebp, in the liver
85

. 

 

Of interest, while not a secreted helminth product, L. sigmodontis antigen (LsAg) has also 

been demonstrated to mediate some protection against MetS, as therapeutic administration of 

LsAg for a two-week period improves glucose tolerance in diet-induced obese mice. This 

protection was found to require eosinophils but to be independent of CD4
+
FOXP3

+
 T cells

66
. 

Treatment of the pre-adipocyte cell line (3T3-L1) with LsAg was found to inhibit their 

differentiation into mature adipocytes suggesting LsAg may also be able to suppress 

adipogenesis
66

. It will therefore be interesting to see whether Ls ES products have similar 

properties. 

  

Helminth ES and Atherosclerosis 

Atherosclerosis is a lipid-driven disease of the arteries, caused by lipid deposition and intimal 

thickening of the aorta and larger arteries, characterised by sustained inflammatory responses 

and specifically, the chronic activation of macrophages
90,91

. MetS significantly increases the 

risk of atherosclerosis, which is one of the main underlying pathologies for cardiovascular 

diseases such as stroke and myocardial infarctions, as alluded to earlier, the leading cause of 

death in the Western world
92

. Wolfs et al demonstrated that weekly treatment with SEA 

resulted in a 44% reduction in atherosclerotic plaque size in a cholesterol-induced murine 

model of atherosclerosis
91

. This was associated with a significant decrease in circulating 

inflammatory monocytes, as well as reduced plaque necrosis and inflammation, and reduced 

gene expression of CD68, TNF- and MCP-1 in the aortic arch
91

. Chronic exposure to SEA 

has also been shown to cause a 30% reduction in plasma serum cholesterol and LDL levels in 

ApoE
-/-

 mice fed a high-fat diet
93

, however there was no effect on lesion size or 
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inflammation, a perhaps surprising observation which the authors speculated could be a result 

of using dead eggs and heat-treated SEA in this study
93

.  

 

ES-62’s anti-inflammatory properties dictate that it can protect against inflammatory diseases 

in models such as collagen-induced arthritis and the MRL/lpr model of systemic lupus 

erythematosus
94–96

. Patients with these diseases are at greater risk of developing 

atherosclerosis and thus the protective effect of ES-62 was investigated in gld.ApoE
-/-

 mice, 

that are commonly utilised as a model for the study of the accelerated cardiovascular disease 

that can occur in some lupus patients
97

. When treated with ES-62, via osmotic pumps for 12 

weeks to release ES-62 at a steady rate and mimic natural infection, these mice demonstrated 

reduced atherosclerotic lesion area of nearly 60% compared to PBS-treated mice, with 

reduced numbers of macrophages and collagen at the lesion site. Similar to studies in the 

MRL/lpr mouse, they also had some evidence of reduced renal disease as measured by 

decreased proteinuria, as well as decreased levels of the anti-nuclear antibodies (ANA) that 

contribute to kidney disease
98

. 

  

Can other parasite molecules influence the outcome of MetS? 

 

The seminal work carried out by Bhargava (2012) has shown that modulation of 

inflammatory responses by a parasite-derived product can significantly impact on the 

outcome of MetS in obese mice
85

. Specifically, it has been shown that suppression of M1 

inflammatory responses and polarization towards an M2 phenotype are advantageous in the 

fight against metabolic disease, therefore suggesting the parasite products that influence 

M1/M2 polarisation during chronic parasite infection may provide a potential novel therapy 

for treatment or prevention of MetS. It is interesting to speculate therefore that other parasite 
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products with the ability to influence the differentiation of macrophages may also have the 

potential to be therapeutic in MetS. With this is mind, it is of particular interest that the 

intracellular protozoan T. gondii, has been shown to utilise some of its key proteins conserved 

for cellular invasion to do just that. Rhoptry proteins (ROPs) are secreted from the apical 

complex during the process of host cell entry and are either released into the host cytosol or 

retained at the parasitophorous vacuole membrane (PVM). Recently, a number of studies 

have demonstrated how ROPs, specifically ROP16 (in Type I/III strains of T. gondii) can 

target host transcription and cause prolonged phosphorylation of STAT3 and STAT6, 

resulting in the suppression of IL-12 production
99,100

. Further to this, ROP16-mediated 

STAT6 activation has also been associated with enhanced levels of arginase-1 production, in 

both macrophages and fibroblasts. Thus, the secreted ROP16 appears to be instrumental in 

ablating TH2 suppressive cytokine production and also promoting M2 macrophage 

polarization
101

. Moreover, ROPs do not appear to be the only protozoan products to exhibit 

this effect: for example, a T. gondii-specific peroxiredoxin (Prx) known as rTgPRx
102

, which 

has recently been shown to be a potent anti-inflammatory molecule
103

, appears to promote 

development of an AAM phenotype via STAT6-dependent and -independent enhancement of 

arginase-1 and YM1 expression. In addition, the recombinant protein has been shown to 

stimulate the expression of IL-10 to further reinforce the regulatory/TH2 type response. 

These marked effects of the protozoan Prx may not be so surprising as a number of studies 

had previously demonstrated the effectiveness of Prxs derived from the helminths S. mansoni 

and Fasciola hepatica, in similarly driving alternative activation of macrophages in vivo. 

Thus, treatment of BALB/c mice with recombinant F. hepatica Prx, induces Ym1 expression 

in peritoneal macrophages, and increases circulating titres of IL-4
104,105

. Additionally, as 

mentioned previously, various ES products from several helminth species stimulate 

alternatively activated macrophages: thus, ES-62-treated macrophages are refractory to LPS-
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induced pro-inflammatory cytokine production
106

 and treatment of macrophages with SEA 

induces an anti-inflammatory profile with decreased levels of LPS-induced IL-12 and TNF- 

and increased IL-10 production
91

.  

 

Targeting other relevant inflammatory mediators 

 

It has recently been demonstrated that ES-62 interacts, via its PC moieties, with CRP in 

human serum
107

. This interaction does not result in activation of the complement cascade 

because the ES-62-CRP-C1q complex generated appears to be unable to efficiently cleave 

C2. In this way ES-62 secreted by the parasite during infection can provide some protection 

against the activation of complement, thus preventing parasite opsonisation. However, it also 

further demonstrates the ability of ES-62 to dampen inflammatory responses, in this case 

CRP-dependent that may play an important role in conditions that represent medical 

emergencies such as myocardial infarction and stroke. Furthermore, PC binding to CRP has 

recently been demonstrated to bias migrating monocytes and T cells towards an M2 and TH2 

phenotype respectively in an in vitro model
108

 and therefore it is possible that ES-62 by 

binding to CRP may also have this capability. 

 

We have previously discussed the importance of NLRP3 inflammasome activation in driving 

inflammation and disease during MetS and therefore, molecules with the ability to suppress 

such responses could provide a potential therapeutic for the syndrome. For example, 

treatment of human macrophages with F. hepatica helminth defence molecule 1 (FhHDM-1), 

a cathelicidin-like molecule secreted by the parasite, significantly reduces their production of 

IL-1 in response to phagocytosis of Alum particles
109

 while a small molecule analogue 

(SMA) of ES-62 (based on its PC moiety), SMA 12b, has been found to mediate its 
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protective effects in the CIA model via suppression of NLRP3 activation and decreased IL-

1 production
110

. The protozoan product rTfPRx suppresses macrophage ROS production via 

modulation of NLRP3 inflammasome activation and is capable of inhibiting both caspase-1 

and IL-1 production following LPS-stimulation of the inflammasome
103

. Finally, 

Leishmania-derived, GP63 also appears to modulate activation of the NLRP3 inflammasome, 

suppressing the production of IL-1, both during infection and, importantly, in macrophages 

treated with purified GP63
111

. These modulators all exhibit potential as modifiers of the 

NLRP3 inflammasome pathway and as such are exciting candidates for the basis of future 

therapeutics. 

 

As mentioned earlier in the review, MyD88 appears to be a crucial integrator of TLR and 

inflammasome signals impacting on obesity and MetS
112

, and one of the key mechanisms of 

ES-62 in its protection in CIA and lupus models is the degradation of MyD88
95,96

. 

Interestingly, ES-62 has also been demonstrated to strongly suppress the basal levels of active 

Akt in DCs in vitro in a TLR4-dependent manner
81

 thus suggesting that it can target multiple 

layers of the pathways necessary to reduce the damaging pro-inflammatory immune response 

generated during MetS. 

 

Conclusions 

 

Inflammation associated with MetS has now been established to be central to the 

development of insulin resistance and cardiovascular disease. During obesity, the cellular 

composition of adipose tissue changes from an anti-inflammatory/TH2 environment 

characterised by M2, eosinophils, TH2 CD4
+
 T cells and Bregs to a pro-inflammatory 

environment characterised by higher numbers of M1, neutrophils, mast cells, TH1 and 
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cytotoxic CD8
+
 T cells. Throughout this review we have discussed the host immune 

regulation that helminths and protozoans can elicit during infection and the secretory 

molecules that these parasites use to exert these effects, particularly their ability to drive a 

TH2 response while suppressing an opposing inflammatory phenotype. Therefore, it is 

possible that helminth- and protozoan-derived molecules that enhance protective anti-

inflammatory responses, such as Type 2 immunity, alternative activation of macrophages and 

modulation of mTOR signalling could be beneficial in the treatment of metabolic disorders 

(Figure 2). 
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Figure Legends 

 

Figure 1: The role of PI3K/Akt, mTORC1, mTORC2, and the NLRP3 inflammasome in the 

development of metabolic syndrome. A schematic detailing the key signalling molecules and 

pathways activated/supressed during nutrient excess, insulin resistance and associated chronic 

inflammation. 

 

Figure 2: Parasitic ES products are able to influence a range of signalling pathways such as 

PI3K/Akt and the inflammasome, as well as biasing immune system cells towards a type 2 

phenotype, both of which suggest they may be able to provide protection against MetS. 

 

Table 1: The mechanisms of action of some of the best characterised parasite-derived 

excretory-secretory products on the immune system and in murine disease models is 

summarised. 

  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Table 1 

  

Parasite 

excretory-

secretory 

product 

Immune responses affected Animal disease model References 

A. viteae ES-62 

Downregulates MyD88 to subvert TLR-

mediated activation of macrophages, DCs and 

mast cells in a TLR4-dependent manner; 

resets macrophage and TH1/TH2/TH17 

homeostasis; inhibits B2 cell activation and 

induces IL-10-secreting B1 cells and various 

Breg populations 

Collagen-induced arthritis (CIA); 

ovalbumin-induced airway 

hypersensitivity; oxazolone-induced 

contact sensitivity, MRL/lpr model of 

SLE, Gld.ApoE-/- model of lupus-

associated accelerated atherosclerosis 

12,83,95,96,98,113, 

131,14 ,141,15 

S. mansoni SEA 

Priming of DCs towards a TH2 phenotype, 

induction of TH2 cells in vivo, induction of 

Tregs 

Experimental Autoimmune 

Encephalomyelitis (EAE); Type 1 

Diabetes (T1D) in non-obese diabetic 

(NOD) mice; CIA; glucose tolerance in 

HFD-fed mice; cholesterol-driven 

model of atherosclerosis 

18,85,116–119 

S. mansoni LNFPIII 
Induction of AAM phenotype; priming of 

DCs towards a TH2 phenotype 

glucose tolerance in HFD-fed mice; 

psoriasis; T1D; EAE 
20,85,116,120,121 

F. hepatica ES 

Priming of DCs to induce TH2 and Treg 

responses; induction of AAMs; inhibition of 

TH17 responses in vivo 

T1D in NOD mice; CIA 24,122–125 

F. hepatica HDM-1 
induction of AAM; inhibition of NLRP3 

inflammasome activation in macrophages 

murine models of T1D and multiple 

sclerosis 
25,124,126 

F. hepatica 

peroxiredoxin 
Induction of AAM not tested 04105 

N. brasiliensis ES Induction of TH2 cells in vivo via DC priming allergic lung inflammation 27,86,127,128 

H. polygyrus ES 

Inhibition of TH1 responses; inhibition of 

macrophage NO production; inhibition of 

PAMP-mediated DC responses 

not tested 50,51 

L. mexicana CPB2.8 
Induction of TH2 response in vivo, induction 

of IgE 
not tested 58,59 

T. gondii Rhoptry 

proteins 

Suppression of IL-1; enhanced arginase-1 in 

macrophages and fibroblasts 
not tested 100,101 

T. gondii 

peroxiredoxin 

Induction of AAM; stimulation of IL-10; 

inhibition of macrophage ROS and IL-1ȕ 
production via inhibition of NLRP3 

inflammasome activation 

not tested 102,103 
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