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Abstract

The goal of ecology is to investigate the interactions among organisms and

their environment. However, ecological systems often exhibit complex dy-

namics. The application of mathematics to ecological problems has made

tremendous progress over the years and many mathematical methods and

tools have been developed for the exploration, whether analytical or numer-

ical, of these dynamics. Mathematicians often study ecological systems by

modelling them with partial differential equations (PDEs). Calculating the

stability of solutions to these PDE systems is a classical question. This thesis

first explores the concept of stability in the context of predator-prey invasions.

Many ecological systems exhibit multi-year cycles. In such systems, invasions

have a complicated spatiotemporal structure. In particular, it is common for

unstable steady states to exist as long-term transients behind the invasion

front, a phenomenon known as dynamical stabilisation. We combine absolute

stability theory and computation to predict how the width of the stabilised re-

gion depends on parameter values. We develop our calculations in the context

of a model for a cyclic predator-prey system, in which the invasion front and

spatiotemporal oscillations of predators and prey are separated by a region in

which the coexistence steady state is dynamically stabilised. Vegetation pat-

tern formation in water-limited environments is another topic where stability

theory plays a key role; indeed in mathematical models, these patterns are

often the results of the dynamics that arise from perturbations to an unstable

homogeneous steady state. Vegetation patterns are widespread in semi-deserts

and aerial photographs of arid and semi-arid ecosystems have shown several

kilometers square of these patterns. On hillsides in particular, vegetation is

organised into banded spatial patterns. We first choose a domain in parame-

ter space and calculate the boundary of the region in parameter space where

pattern solutions exist. Finally we conclude with investigating how changes in

the mean annual rainfall affect the properties of pattern solutions. Our work

also highlights the importance of research on the calculation of the absolute

spectrum for non-constant solutions.
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Preface

Understanding the natural world has always been a quest for human beings. Even back in

pre-literate societies, people closely observed the behaviour of animals and the properties

of plants for survival purposes. Then natural phenomena such as eclipses started to be

viewed as attributes of a natural world when they were earlier considered as the work of

angry gods.

Today this interest in the dynamics of the physical world has not died. Ecology is a

field in natural sciences that has always used mathematical methods in exploring organ-

isms in their environment; as early as in 1798, Malthus (1766-1834) published an essay

on population growth. My PhD work fits in the area of mathematical ecology and con-

cerns two ecological phenomena: the invasion of a population of prey by its predator and

self-organisation into patterns of vegetation in semi-deserts. More specifically, I am inter-

ested in the stability of solutions to the corresponding ecological systems. This thesis is

organised into four parts: Part I is an introduction to the thesis and starts with a discus-

sion on the concept of stability of homogeneous steady state solutions to spatiotemporal

systems. Parts II deals with absolute and convective instabilities of homogeneous steady

states. Parts III and IV concern periodic travelling wave solutions; the first explores their

spectral stability while the second investigates their absolute and convective instabilities.

It is my pleasure to express here my gratitude to CANPDE/Maxwell Institute for

Mathematical Sciences who made this work possible through their research grant. I am

particularly grateful to my supervisor Jonathan Sherratt for his constant support and

guidance throughout my PhD journey. Last but not least, I am particularly thankful to

Bernd Schroers and Wolfgang Staubach for the wonderful impact they made on the course

of my career.
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Chapter 1

Introduction

Ecological systems often exhibit complex (spatio-)temporal dynamics. Without the use of

mathematical tools, the progress of ecological research would be significantly impaired due

to the difficulty of studying such complex ecosystems with field data collection as the only

tool; in fact, field studies are often costly and time consuming because to obtain genuine

data, many experiments are often needed. For example, pattern formation in vegetation

happens over years and studying such patterns solely through field observation is simply

not practical. The growth of mathematical ecology over the past years has been highly

enlightening and has specifically revealed that complex dynamics in an ecological system

are not just the product of chance but arise from the system’s self-organisation. When

these dynamics become unstable, periodic spatial patterns or spatiotemporal chaos are

often born. Partial differential equations (PDEs) have been instrumental in modelling

ecological systems and mathematical investigation of the spatiotemporal behaviour of

these systems often requires the concept of stability of the PDEs’ steady states. A very

popular example of spatiotemporal patterns that stability theory helps explain are Turing

patterns.

1.1 Unstable Equilibrium and Turing Patterns

In temporal systems, if a solution is locally stable any perturbation decays over time. It

is well know through the extensive mathematical work of Alan Turing (1912-1954) that a

steady state, stable in a temporal system, can become unstable when diffusion terms are

added to the system. This ‘destabilisation’ has been named Turing instability and has

been widely studied. For example, Segel & Jackson (1972) introduced a predator-prey

1



system where Turing instability arises under some conditions. The system is the following:

prey
∂v

∂t
= ǫ

∂2v

∂x2
+ f(v, w) (1a)

predators
∂w

∂t
=

∂2w

∂x2
+ g(v, w). (1b)

Here v, v > 0 and w, w > 0 denote prey and predator densities, which depend on space

x and time t, and the functions f and g are defined as f(v, w) = (1 + κv)v − µvw and

g(v, w) = vw − w2.

The model (1) has a coexistence steady state (v∗, w∗) with

v∗ = w∗ = ρ = 1/(µ− κ); (2)

we need ρ > 0 which implies the condition µ > κ. Let ṽ and w̃ denote small perturbations

to v∗ and w∗ respectively. The first step in calculating the stability of (v̄, w̄) is to linearise

(1) about (v∗, w∗). This yields the following system of linear equations:

∂ṽ

∂t
= ǫ

∂2ṽ

∂x2
+ a11ṽ + a12w̃ (3a)

∂w̃

∂t
=

∂2w̃

∂x2
+ a21ṽ + a22w̃ (3b)

where a11 = ∂f

∂v

∣
∣
∣
(v∗,w∗)

= κρ, a12 = ∂f

∂w

∣
∣
∣
(v∗,w∗)

= −µρ, a21 = ∂g

∂v

∣
∣
∣
(v∗,w∗)

= ρ and a22 =

∂g

∂w

∣
∣
∣
(v∗ ,w∗)

= −ρ. The steady state (v∗, w∗) is stable in the temporal system

dv

dt
= f(v, w) (4a)

dw

dt
= g(v, w) (4b)

if and only if all the eigenvalues of the matrix

A =

(

a11 a12

a21 a22

)

have negative real parts. This condition is equivalent to:

a11 + a22 < 0 (5a)

a11a22 − a12a21 > 0 (5b)
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implies

κ < 1 (6a)

µ > κ. (6b)

The parameter values κ = 0.9 and µ = 0.94, for example, satisfy the conditions in (6).

Thus, the steady state (v∗, w∗) = (25, 25) is stable in the temporal system (4); and PDE

simulations confirm this (see Figure 1.1a). However, when the same simulations are run in

the diffusive system (1) where we choose ǫ = 0.5, we notice that the solution quickly moves

away from (v∗, w∗) and we obtain spatiotemporal patterns (Turing patterns): the steady

state (v∗, w∗) is unstable in (1). Figure 1.1b is an illustration of this Turing instability.

Obviously the linear stability criterion (an equilibrium is stable if and only if all

the eigenvalues of the coefficients matrix of its linearisation have negative real parts)

does not apply in spatiotemporal systems. In such systems, stability is characterised by

the ‘essential spectrum’: an equilibrium is stable if and only if all the eigenvalues in its

essential spectrum have negative real parts. In the next section, we show that the essential

spectrum of the steady state (v∗, w∗) is unstable, thus confirming the simulation results in

Figure 1.1b; but first, we start with an introduction to the calculation of essential spectra

for reaction-diffusion equations in general.

1.1.1 Calculating Stability in Spatiotemporal Systems: the Es-

sential Spectrum

Consider a reaction-diffusion system

Ut = DUxx + f(U) (7)

where U ∈ RN , f is a smooth function and D is positive diagonal matrix. Let U∗ denote

a steady state solution of 7. A small perturbation Ū to the steady state U∗ satisfies the

linearised system

Ūt = DŪxx + ∂Ūf(U
∗)Ū , (8)

to leading order. We look for perturbations of the form Ū = Ũeλt+νx, where λ, ν ∈ C and

Ũ ∈ CN . λ is called the temporal eigenvalue and ν, the spatial eigenvalue. Substituting

this into 8 and omitting the tildes, we obtain

[Dν2 + a− λ]U = 0, (9)

3
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Figure 1.1: Illustrations of the destabilisation of a stable equilibrium through diffusion.
We use ǫ = 0.5, κ = 0.9 and µ = 0.94. The steady state (v∗, w∗) = (25, 25) is stable
in the ODEs (4) but appear to be unstable in the PDEs (1). We run the simulations
on the domain x ∈ (0, 50) and initially, the population densities at each grid point on
this domain were v∗ and w∗ slightly perturbed between 10 < x < 40 by adding 1% of
ρ sin(2π

3
(x − 10)) to both densities. Panel (a) shows simulation results in the nonspatial

system while Panel (b) shows dynamics after diffusion has been added; on both panels
from top to bottom, are solutions at t = 0, t = 2, t = 4, t = 6 and t = 20. We used
a finite-difference scheme with a space step of 0.05 and a time step of 5 × 10−4 with
zero-Neumann boundary conditions.
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where a is matrix containing the coefficients ∂Ūf(U
∗).

Definition of the Essential Spectrum Let Σess denote the essential spectrum. An

eigenvalue λ is in Σess if and only if λ satisfies (9) for some non-zero U in CN and some

ν ∈ iR, where i is the imaginary unit. In other words, the essential spectrum of U∗ is the

set of temporal eigenvalues λ satisfying the dispersion relation

D(λ, ν) = det(Dν2 + a− λ) = 0 for some ν ∈ iR (10a)

⇒ det(−γ2D + a− λ) = 0 for some γ ∈ R. (10b)

Note that condition (10b) is equivalent to det(a − λ) = 0 when γ = 0 implying that

the eigenvalues λa of the matrix a are always in the essential spectrum. The latter can

then easily be traced by means of numerical continuation. The numerical continuation

software we use in this thesis is AUTO. To implement the essential spectrum, we simply

input Equation (10b) in AUTO and set γ = 0 and the λa’s as starting points; continuing

in γ, γ ∈ R then traces out the entire spectrum. We now revisit the Segel & Jackson’s

(1972) model (1) and implement in AUTO the essential spectrum of the equilibrium (2) for

ǫ = 0.5, κ = 0.9 and µ = 0.94.

Results of the Implementation of the Essential Spectrum in AUTO We have seen

previously that, for κ = 0.9 and µ = 0.94, the steady state (2) is stable in the system (4)

but appears unstable in the spatially extended system (1), with the diffusion coefficient

ǫ = 0.5. This suggests that the essential spectrum of (2) crosses into the right-half plane,

for these parameter values. This was confirmed when we calculated this spectrum as

described above (see Figure 1.2). A natural question now is this: given a value of ǫ, what

characterises the region(s) in the parameter plane (κ, µ) in which these Turing instabilities

arise?

1.1.2 The Extent of Turing Instability in the Segel-Jackson Equa-

tion

The calculation of the extent of Turing instability is based on the idea that the steady

state (v∗, w∗) first becomes unstable with respect to a spatially heterogeneous perturbation

with a certain wavenumber. Recall the linear equations (3) issued from the linearisation

of (1) about (v∗, w∗).

• If (1) is considered on a bounded domain (0, L) then any solution (ṽ, w̃) of (3) has

5
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Figure 1.2: Essential spectrum of the steady state (v∗, w∗) in the system (1) for ǫ = 0.5,
κ = 0.9 and µ = 0.94. This spectrum crosses into the right-half plane, therefore (v∗, w∗)
is unstable; this explains the birth of the Turing patterns in Figure 1.1b. The filled red
circles indicate our starting solutions in AUTO; these are the eigenvalues of the matrix (5)
and correspond to γ = 0 in the dispersion relation (10b).

the following Fourier expansion:

ṽ(t, x) =
∞∑

n=0

vn(t, x) =
∞∑

n=0

αn(t) sin knx (11a)

w̃(t, x) =

∞∑

n=0

wn(t, x) =

∞∑

n=0

βn(t) sin knx (11b)

where kn = πn/L, n = 0, 1, ...,∞ are the corresponding wavenumbers. We substitute

(vn, wn) into (3) to obtain

dαn

dt
= (a11 − ǫk2

n)αn + a12βn (12a)

dβn

dt
= (a22 − k2

n)βn + a21αn (12b)

6



Solutions of (12) have the form C1 exp(λ1t) + C2 exp(λ2t) with C1, C2 constant. Here λ1

and λ2 are the eigenvalues of the matrix

B =

(

a11 − ǫk2
n a12

a21 a22 − k2
n

)

In other words, λ1 and λ2 solve the quadratic equation

λ2 − (b11 + b22)λ+ (b11b22 − a21a12) = 0, (13)

where b11 = a11 − ǫk2
n and b22 = a22 − k2

n.

• On the other hand, if the system (1) is considered in an unbounded domain −∞ <

x < ∞ then we expand the perturbations (ṽ, w̃) into the following Fourier integrals:

ṽ(x, t) =
1

2π

∫

v̄(k, t)eikxdk,

(14)

w̃(x, t) =
1

2π

∫

w̄(k, t)eikxdk,

where v̄(k, t) and w̄(k, t) are the corresponding Fourier transforms. Substituting (14) into

(3) yields the same equation (13).

The condition for stability of the steady state with respect to a perturbation with

wavenumber k is then the following:

b11 + b22 < 0 (15a)

b11b22 − a12a21 > 0 (15b)

Comparing (5) and (15), we conclude that:

• (15a) follows from (5a). Thus, if a change in stability occurs, it stems from (15b)

only.

• For a change in stability to be possible, a11 and a22 have to be of different sign; in-

deed, if a11 and a22 are both negative, (15b) follows from (5b).

• a11a22 < 0 combined with (5b) then implies a12a21 < 0.

7



Substituting b11 and b22 into (15b), we obtain the inequality

Q(k2) = ǫk4 − (ǫa22 + a11)k
2 + (a11a22 − a12a21) > 0. (16)

If the equilibrium (v∗, w∗) is stable with respect to a perturbation with wavenumber k

then (16) holds. Correspondingly, the stable equilibrium becomes unstable with respect

to a perturbation with wavenumber k in the diffusive system (1) if Q(k2) < 0. It follows

from (5b) that Q(k2) < 0 is satisfied only when

ǫa22 + a11 > 0 (17)

Assuming that (17) holds, a change in stability will occur if Q(k2
min) < 0 where kmin

is the minimum of Q and is given by

kmin =
ǫa22 + a11

2ǫ
.

Substituting these into the expression of Q(k2), we obtain the condition:

2
√

ǫ(a11a22 − a12a21)− ǫa22 + a11 < 0. (18)

In conclusion, the condition for (Turing) pattern formation is defined by (5) and (18).

Recalling the values of a11, a22, a12 and a21, we obtain that Turing instability occurs in

the Segel-Jackson system (1) if

κ < 1 (19a)

µ > κ (19b)

µ < hǫ(κ) = (ǫ− κ)2/(4ǫ) + κ. (19c)

Figure 1.3 shows a plot of the region in the parameter plane (κ, µ) of the system (1)

for ǫ = 0.5 where Turing patterns exist. These patterns are not the only interesting spa-

tiotemporal dynamics that arise in reaction-diffusion systems. Others include spatiotem-

poral chaos, self-organised patchiness, dynamical stabilisation and semi-arid vegetation

patterns. This thesis focuses on dynamical stabilisation and semi-arid vegetation patterns

which we now introduce.

8
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blue circle indicates the location of the pair (κ, µ) = (0.9, 0.94) used in previous examples
(Figures 1.1 and 1.2).

1.2 Thesis Contents

1.2.1 Dynamical Stabilisation

We have seen in our introductory example in Section 1.1 that a steady state, stable in

a temporal system can become unstable in the corresponding reaction-diffusion system.

However, diffusion can have an opposite effect. It has been widely reported that the

addition of diffusion can have a stabilising effect on an unstable equilibrium. This is

known as dynamical stabilisation and has often been observed in mathematical models

of the invasion of a population by its predators, or in models of chemical reactions. In

particular, in the case of ecological invasions, it is common for an unstable steady state

to exist as a long term transient behind the invasion front. Chapters 2 and 3 of this

thesis are dedicated to dynamical stabilisation. Our study of the phenomenon will be

in the context of a model for a cyclic predator-prey system, in which the invasion front

and spatiotemporal oscillations of predators and prey are separated by a region in which

the coexistence steady state is dynamically stabilised. An understanding of dynamical

9



stabilisation requires the theory of convective and absolute stability. In temporal systems,

if a solution is locally stable any small perturbation decays over time. However, in a

spatiotemporal context one must consider also the propagation of growing perturbations.

A solution is “convectively unstable” if all unstable linear modes propagate as they grow.

By contrast, “absolutely unstable” solutions have stationary unstable linear modes. To

predict how the width of the stabilised region depends on parameter values, we will

combine computation and absolute stability theory.

1.2.2 Banded Vegetation Patterns in Arid/Semiarid Ecosystems

Vegetation in semideserts around the world are often organised in remarkably regular

patterns. These patterns usually appear as stripes of grass or shrubs or trees alternating

with bare ground. However, they cannot be easily detected at ground level and it was

not until the invention of aerial photography that this kind of pattern formation was

first reported by MacFadyan (1950a,b); since then vegetation patterns have been studied

extensively and it was discovered that they were usual and widespread (Beard 1967, White

1969, 1970, Bernd 1978, Greig-Smith 1979, Lefever & Lejeune 1997). The phenomenon

has attracted a lot of interest and has been widely studied. Different hypothesis on

the cause of these patterns have been made; with water being limited in semideserts

(only 50-750 mm of annual rainfall), one of the hypotheses is that vegetation patterns

are triggered by a vegetation-water interaction. In Chapter 4, we will study periodic

travelling wave solutions of a well-known vegetation model, the Rietkerk et al. (2002)

model. For this model, we will firstly be investigating the existence and the stability

of pattern solutions and we focus on the effects that rainfall variations have on banded

vegetation patterns. Our main tool in this study is WAVETRAIN, a software package for

investigating periodic travelling wave solutions of partial differential equations which is

freely available for download at (www.ma.hw.ac.uk/wavetrain). We will be making

extensive use of the Hopf bifurcation theorem and our search for a periodic travelling

wave in WAVETRAIN will often begin with locating a Hopf bifurcation point. We now give

a brief definition of Hopf bifurcations and their link to limit cycles.

Hopf Bifurcations and Limit Cycles A bifurcation point is a location where the

asymptotic structure of a dynamical system changes qualitatively. There is a rich variety

of different bifurcations but they can be roughly divided into being either stationary when

they involve a change in the number and/or the stability of steady states or periodic when

there is a change in the number and/or the stability of periodic solutions.
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Consider the following system

∂v

∂t
= F (v, µ) (20)

where v is two dimensional vector and µ is a parameter. Let v̄ be a steady state of (20).

Linearising (20) about the steady state v̄, we obtain two eigenvalues Re(λ)±iIm(λ), where

i is the imaginary unit. A Hopf bifurcation occurs when these two eigenvalues cross the

imaginary axis due to a change in µ. Let µc be the value of µ where the eigenvalues

are pure imaginary then there is a Hopf bifurcation at µ = µc. At a Hopf bifurcation, a

stationary solution gives birth to a limit cycle; this stationary solution switches stability

as the limit cycle is born. The Hopf bifurcation theorem implies that the limit cycle has

0 amplitude at µc and this amplitude grows proportionally to
√

|µ− µc| as µ moves from

µc. The period of the limit cycle is T =
2π

Im(λ)
.

Throughout this PhD work, we investigated stability in reaction-diffusion systems

using two theories: the theory of (essential) stability and the theory of convective and

absolute stability. This thesis is organised as follows: the goal of Chapters 2 and 3 is to

provide a better understanding of dynamical stabilisation using the theory of convective

and absolute stability. In Chapter 4, we explore semi-arid vegetation patterns and cal-

culate the stability of pattern solutions through numerical continuation of their essential

spectra. Chapter 5 is the discussion where we apply the theory of convective and absolute

stability to semi-arid vegetation patterns.
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Part II

Absolute Instability vs Convective

Instability of a Homogeneous Steady

State
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Chapter 2

A Mathematical Biologist’s Guide to Abso-

lute and Convective Instability

This chapter is based on our review paper Sherratt, Dagbovie & Hilker (2013).

2.1 Introduction

Almost all undergraduate courses in mathematical biology include a section on ordinary

differential equation (ode) models. The central player in the course material is the stabil-

ity of steady states. Students learn that only (locally) stable steady states are biologically

significant. Later in their careers, students are introduced to partial differential equation

(pde) models. Again, the stability of (homogeneous) steady states plays a central role. In

particular, the first exposure that many students receive to biological pattern formation is

the Turing mechanism, in which a steady state that is stable in the kinetic odes is desta-

bilised by the addition of diffusion terms. However steady states that are unstable in the

kinetic odes are almost never mentioned. As a result, there is a widespread assumption

that unstable steady states are not biologically significant as pde solutions. This is not

true. In fact, such steady states fall into one of two categories. If they are “absolutely un-

stable”, then they are indeed not biologically significant, except perhaps as providing the

mathematical origin of spatial or spatiotemporal patterns. But “convectively unstable”

steady states can be an important and persistent feature of pde solutions. The objective

of Sherratt, Dagbovie & Hilker (2013) is to explain the concepts of absolute and convec-

tive instability and the related concepts of remnant and transient instability, to illustrate

their implications for pde models of biological systems, and to summarise methods for

distinguishing different types of instability in practice.

We begin with an illustrative example: the invasion of a prey population by predators.
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This problem has been addressed in many modelling studies. Simple invasions correspond

to a standard transition front (e.g. Owen & Lewis 2001), but there is now a considerable

body of work on invasions that leave more complex spatiotemporal phenomena in their

wake: see for example Sherratt et al. (1995), Petrovskii & Malchow (2000), Morozov

et al. (2006), Merchant & Nagata (2010, 2011). We will focus on the spatially extended

Rosenzweig & Macarthur (1963) model for predator-prey interaction, and for clarity all

of the numerical simulations in this chapter will use this model. We give the equations in

a dimensionless form:

predators
∂p

∂t
=

dispersal
︷ ︸︸ ︷

d
∂2p

∂x2
+

advection
︷︸︸︷

c
∂p

∂x
+

benefit from
predation

︷ ︸︸ ︷

(µ/b)hp/(1 + µh)−
death
︷︸︸︷

p/ab (1a)

prey
∂h

∂t
=

∂2h

∂x2
︸︷︷︸

dispersal

+ c
∂h

∂x
︸︷︷︸

advection

+ h(1− h)
︸ ︷︷ ︸

intrinsic
birth & death

− µph

1 + µh
.

︸ ︷︷ ︸

predation

(1b)

Here p and h denote predator and prey densities, which depend on space x and time t.

Here and throughout this chapter we restrict attention to one space dimension: the theory

of absolute stability is not yet fully developed in higher dimensions. Most predator-prey

studies do not include advection terms, but allowing c 6= 0 enables a clearer illustration

of some of the concepts we will be discussing. Advection of this type arises naturally

in river-based predator-prey systems (Hilker & Lewis 2010). The prey consumption rate

per predator is an increasing saturating function of the prey density with Holling type II

form: µ > 0 reflects how quickly the consumption rate saturates as prey density increases.

Parameters a > 0 and b > 0 are dimensionless combinations of the birth and death rates;

details of the nondimensionalisation are given in Appendix A of Smith et al. (2008),

and in many textbooks. The parameter d > 0 is the ratio of predator to prey dispersal

coefficients. Most terrestrial systems will have d significantly greater than one, while for

aquatic and host-parasite systems d is typically close to one. Provided a > 1 + 1/µ,

equations (1) have a unique homogeneous coexistence steady state (hs, ps) where hs =

1/(aµ−µ) and ps = (1−hs)(1+µhs)/µ, which is stable as a solution of the kinetic odes

only if µ < µcrit = (a+ 1)/(a− 1).

Figure 2.1 illustrates simulations of the invasion of a prey population by predators

using (1) with no advection, i.e. c = 0. For µ < µcrit, invasion takes the form of a

simple transition wave, with the prey-only state (1, 0) ahead of the wave and the stable

coexistence state (hs, ps) behind it (see Figure 2.1a). But as µ is increased above µcrit, so

that the coexistence steady state becomes unstable, this steady state does not suddenly

disappear (see Figure 2.1b,c). Rather, for a range of µ values above µcrit there is plateau
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Figure 2.1: Numerical simulation of predators invading prey using the Rosenzweig &
Macarthur (1963) model (1) without advection. At time t = 0 the system was in the prey-
only steady state (1, 0) except for a small predator density near the left hand boundary.
The solution is plotted at t = 4000. In (a) the parameters are such that the coexistence
steady state is stable, and the invasion consists of a simple transition front, connecting
the prey-only state and the coexistence state. In (b) the coexistence state persists in a
plateau behind the leading front, with spatiotemporal oscillations further back. In (c)
there is a periodic travelling wave immediately behind and moving at the same speed as
the leading front, with more irregular oscillations further back. Note that for Eq. (1), the
existence of both steady state to steady state and steady state to wavetrain transition
fronts has been proved by Dunbar (1986) in the limit as d → ∞, with extensions to d
finite and sufficiently large by Fraile & Sabina (1989) in the latter case. The parameter
values were a = 1.3, b = 4, c = 0, d = 2 and (a) µ = 7; (b) µ = 8; (c) µ = 9. The
equations were solved numerically using a semi-implicit finite difference method with a
grid spacing of 0.5 and a time step of 0.01. We solved on the domain 0 < x < 2500, with
zero flux conditions px = hx = 0 at both boundaries.
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behind the front in which the solution is at the coexistence state, with spatiotemporal

oscillations further back. This plateau is a persistent feature of the invasion profile, despite

the fact that the coexistence steady state is unstable. Malchow & Petrovskii (2002) termed

this phenomenon “dynamical stabilization”, and the key to understanding it is the concept

of absolute vs. convective instability. In §2.2 we explain these terms, and in §2.3 we give

an example of their use in explaining qualitative transitions in solution behaviour. In

§2.4 we summarise the historical development of the theory, and in §2.5 we describe

how to distinguish different types of instability using the relatively new approach of the

“absolute spectrum”. In §2.6 we explain how the theory can be used to make quantitative

predictions on how aspects of spatiotemporal behaviour change with model parameters,

and in §2.7 we summarise our discussion and consider its application to a wider class of

solutions.

2.2 Absolute and Convective Stability

In a temporal system, stability is a relatively simple concept: a solution is (locally) stable if

any small perturbation decays. The same is true in a spatiotemporal system: an unstable

steady state is defined as one for which some small perturbations grow over time. However

the situation is complicated by the fact that spatially localised perturbations may move

while they are growing. Consequently it is possible that a perturbation may decay at the

location at which it is applied, even though it is growing overall (Figure 2.2a,b). This

behaviour defines “convective instability”. In contrast, “absolute instability” denotes the

situation in which there are perturbations (linear modes) that grow at the location at

which they are applied (Figure 2.2c).

In Figure 2.3 we illustrate these two types of instability using simulations of (1). We

apply a small perturbation, localised around the centre of the domain, to the coexistence

steady state (hs, ps). For µ < µcrit = 7.67 the steady state is stable and the perturbation

decays. For µ = 9 the perturbation grows but moves in the positive x direction, decaying

at its original location, while for µ = 20 the perturbation grows at its original location.

This illustrates the fact that for the values of a, b, c and d used in the figure, the coexistence

steady state is convectively unstable for µ = 9 and absolutely unstable for µ = 20.

Practical applications of pde models in mathematical biology almost always occur on

finite domains, and then boundary conditions must be considered when drawing conclu-

sions about stability. If one considers (1) on a domain with periodic boundary conditions,

and with a value of µ giving convective instability, a moving growing perturbation will

eventually reach the right hand boundary. It will then re-enter at the left hand boundary
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Figure 2.2: A schematic illustration of different types of instability. (a) In transient
convective instability, all unstable linear modes move in a single direction while they are
growing. (b) In non-transient convective instability, all unstable linear modes move while
they are growing, but in both directions. (c) In absolute instability, there is a stationary
unstable linear mode, so that there are perturbations that grow at the location at which
they are applied. The figure is adapted from Figure 1 of Sandstede & Scheel (2000a).

and continue growing (and moving) (Figure 2.4a). Therefore the steady state is unsta-

ble in this case. In fact it is a general result that a steady state that is unstable as a

solution of the kinetic odes is also unstable as a pde solution on a finite domain with

periodic boundary conditions (Sandstede & Scheel 2000a). However, for the same pa-

rameter values as used in Figure 2.4a but with separated boundary conditions such as

Neumann, Dirichlet or Robin, the coexistence steady state of (1) is stable. This is because

the growing perturbation moves in the positive x direction until it reaches the right hand

boundary, where it is absorbed (Figure 2.4b). Note that in the context of a river-based

system (c 6= 0 in (1)), a Dirichlet boundary condition corresponds to a hostile boundary

such as a waterfall or a region containing toxic waste water, while a zero-flux condition is

of Robin type. A zero Neumann boundary condition is known as a Danckwert boundary

condition and corresponds to a long river in which the downstream boundary has little

influence (Lutscher et al. 2006, Nauman 2008 §9.3.1, Hilker & Lewis 2010).

For most equation systems, a convectively unstable steady state is stable on a finite

domain with separated boundary conditions, as is the case for (1). However this will not

be the case if there are growing perturbations that travel to the left and right simultane-
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Figure 2.3: Numerical simulations of the Rosenzweig-MacArthur model (1) following a
small perturbation to the coexistence steady state. (a) For µ = 7 the steady state is
stable and the perturbation decays. (b,c) For µ = 9 and µ = 20 the steady state is
unstable. In the former case the perturbation grows but simultaneously moves across the
domain, while in the latter case it grows at the point at which it was initially applied.
The other parameters were a = 1.3, b = 4, c = −1, d = 2. The initial condition in each
case was (h, p) = (hs, ps) · [1 + 0.05 sin(πx/1000)] if 1000 < x < 1500 and (h, p) = (hs, ps)
otherwise. The equations were solved numerically as in Figure 2.1, on 0 < x < 2500 with
Danckwert’s (zero Neumann) boundary conditions at both ends.
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Figure 2.4: Numerical simulations of the Rosenzweig-MacArthur model (1) following a
small perturbation to the coexistence steady state for a = 1.3, b = 4, c = −1, d = 2, µ = 9
with (a) periodic boundary conditions; (b) Dirichlet conditions (h, p) = (hs, ps) at both
boundaries. In both cases the perturbation grows but travels in the positive x direction.
In (a), when the growing perturbation reaches the right hand boundary it re-enters the
domain at the left hand boundary and continues to move, reaching the original site of
perturbation with a greater amplitude than it had initially. The repetition of this process
results in the steady state being unstable. However in (b), when the growing perturbation
reaches the right hand boundary it is absorbed, so that the steady state is stable. The
initial conditions and the values of the other parameters were as in Figure 2.3, and the
numerical method was as in Figure 2.1.
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ously, while decaying at their original location: this is known as “non-transient convective

instability” (Sandstede & Scheel 2000a; Figure 2.2). Then on a finite domain the growing

perturbations will typically be reflected by the boundaries rather than being absorbed,

so that the steady state is unstable. The distinction between transient and non-transient

convective instabilities was first recognised by Proctor and coworkers (Worledge et al.

1997, Tobias et al. 1998, Fox & Proctor 1998), and Sandstede & Scheel (2000a) argue

that it is more instructive to distinguish between transient and remnant instabilities than

between convective and absolute instabilities. Here the term “remnant instability” means

an instability that is either absolute or non-transient convective. One therefore has the

following result:

on a large finite domain with separated boundary conditions, transiently unstable

steady states are stable, while remnantly unstable steady states are unstable

(see Sandstede & Scheel (2000a) for a more precise statement). Examples of non-transient

convective instabilities are given in Sandstede & Scheel (2000a, example 2 in §3.3) and

Rademacher et al. (2007, §5.2). However, we are not aware of an example from a biological

application. This means that the distinctions between absolute and convective instabilities

is the same as that between transient and remnant instabilities in all mathematical biology

models in which these issues have been investigated.

2.3 An Illustrative Example

We now present an illustration of different qualitative solution forms resulting from a

steady state being convectively or absolutely unstable. We consider (1) on a finite do-

main with the zero flux condition hx + ch = dpx + cp = 0 at the left hand boundary and

the Danckwert condition hx = px = 0 at the right hand boundary. An example situation

in which such end conditions would be relevant is a long section of river in which the left

hand boundary corresponds to the river’s source (Lutscher et al. 2006). Initially we set

the populations to their coexistence steady state levels in the interior of the domain. This

steady state is incompatible with the zero flux boundary condition, and the predators

are gradually washed out of system (Figure 2.5; Hilker & Lewis 2010). This occurs via a

transition front moving across the domain, so that the prey-only steady state appears to

“invade” the coexistence steady state. In Figure 2.5a the coexistence steady state is sta-

ble, and the transition front is of a simple type. However in Figure 2.5b the steady state

is (transiently) convectively unstable. The tail of the transition front applies perturba-

tions to the coexistence steady state ahead of it, and these perturbations all travel in the
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positive x direction as they grow. Therefore the solution remains at (or very close to) the

steady state immediately ahead of the front, with spatiotemporal oscillations developing

further to the right, where the perturbations have grown sufficiently large to have a sig-

nificant effect. In Figure 2.5c the steady state is absolutely unstable. Then there are both

stationary and moving linear modes in the perturbation applied to the coexistence steady

state by the transition front. Therefore spatiotemporal oscillations develop everywhere

ahead of the front (Figure 2.5c).

This simple example illustrates the way in which convective and absolute instabil-

ity lead to qualitatively different solutions. Within the convectively unstable parameter

regime the width of the region in which the populations are at the coexistence steady

state is a decreasing function of µ. Intuitively, as µ increases the perturbations imposed

on the steady state by the invasion front travel away from the front more slowly, and grow

more quickly. In §2.6 we will show how a detailed study of the movement and growth

of small perturbations can be used to calculate the dependence on µ of the width of the

steady state region.

2.4 A Brief History of Absolute Stability

The concept of absolute stability was initially developed in the context of plasma physics,

with the first detailed presentation being the monograph by Briggs (1964). In the sub-

sequent decades the ideas have come into common usage in fluid dynamics (reviewed by

Huerre & Monkewitz (1990) and Chomaz (2005)) and spiral wave break-up (e.g. Aranson

et al. 1992, Sandstede & Scheel 2000b, Wheeler & Barkley 2006). However they remain

almost entirely absent from the literature on applications of mathematics to chemistry,

ecology, biology and medicine.

A fundamental issue is how one calculates whether an unstable steady state is con-

vectively or absolutely unstable. The original approach of Briggs (1964) was to solve the

linear equations governing small perturbations by Fourier and Laplace transforms, and to

consider the large time asymptotics of the inverse transforms. Eigenvalues satisfying a cri-

terion known as the “pinching condition” play a special role in this asymptotic behaviour,

because they prevent appropriate deformation of the Fourier integration contour. Briggs

(1964) showed that the condition for convective instability was that all eigenvalues satis-

fying the pinching condition have negative real part. Briggs’ (1964) work assumed that

the integrand in the inverse Fourier transform has only first order poles; his results were

extended to include higher order poles by Brevdo (1988), and to spatially and temporally

periodic solutions by Brevdo & Bridges (1996, 1997).
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Figure 2.5: Numerical simulations of the Rosenzweig & Macarthur (1963) model (1) with
the zero flux condition hx + ch = dpx + cp = 0 at the left hand boundary and the
Danckwert condition hx = px = 0 at the right hand boundary. Initially the solution
is at the coexistence steady state, but this is incompatible with the left hand boundary
condition, and a transition front develops that replaces the coexistence steady state with
the prey-only state. The coexistence steady state is stable in (a) and unstable in (b,c).
Therefore the transition front is of a simple type in (a) while in (b,c) spatiotemporal
oscillations develop, either some distance downstream (b) or immediately ahead of the
front (c). The parameter values were a = 1.3, b = 4, c = −0.5, d = 2 and (a) µ = 7, (b)
µ = 8, (c) µ = 8.6. The numerical method was as in Figure 2.1.
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Numerical implementation of the Briggs-Brevdo-Bridges criterion is relatively difficult.

Brevdo and coworkers (Brevdo 1995, Brevdo et al. 1999) developed a procedure based

on numerical continuation of the location of a saddle point of a particular function of

the eigenvalues; this saddle point gives the leading order contribution to the long-time

asymptotics of the inverse Fourier transform. More recently Suslov ((2001, 2006, 2009);

Suslov & Paolucci 2004) extended this approach to give an automatic search algorithm

for calculating the convective–absolute stability boundary in parameter space. Brevdo’s

method is complicated, and Suslov’s (highly ingenious) method is extremely complicated;

neither is really suitable for non-specialists.

Fortunately, a new approach to the determination of convective/absolute instability

has been developed by Sandstede & Scheel (2000a). Building on the work of Beyn &

Lorenz (1999) on exponential dichotomies, Sandstede & Scheel (2000a) introduced the

notion of the “absolute spectrum”. This term is a slight misnomer, since the absolute

spectrum is not the set of eigenvalues of any linear operator. However it serves a sim-

ilar purpose in practice: it is a set of eigenvalues, and different types of instability can

be distinguished by whether the absolute spectrum does / does not cross into the right

hand half of the complex plane. In practice the absolute spectrum provides a relatively

straightforward means of calculating absolute stability, even for the non-specialist.

2.5 The Absolute Spectrum

The first step in considering stability of a homogeneous steady state is to linearise the

governing pdes about the steady state. In the standard way, one then looks for solutions

of these linear equations that are proportional to eλt+ikx; for non-trivial solutions, this

leads to a dispersion relation D(λ, k) = 0 to be satisfied by λ and k. We denote by N the

order of D as a polynomial in k; thus for (1), N = 4. To calculate stability of the steady

state, one considers values of λ satisfying D(λ, k) = 0 with k ∈ R; the steady state is

stable if and only if all such λ’s (except possibly λ = 0) have Reλ < 0. This procedure is

familiar from calculations of the conditions for Turing patterns seen in Chapter 1.

When considering absolute stability, it is necessary to allow both k and λ to be

complex-valued. For any given λ, we denote the roots for k of the dispersion relation

by k1(λ), k2(λ), . . . , kN(λ), repeated with multiplicity, and labelled so that

Im(k1) ≤ Im(k2) ≤ . . . ≤ Im(kN).

For absolute stability, one must consider a particular root kn∗ . A formal definition of
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n∗ is given in Sandstede & Scheel (2000a, §2.1), but it is most easily understood in the

following intuitive way: for the pde to be well-defined on a finite domain with separated

boundary conditions, n∗ boundary conditions are required at the right hand boundary,

with N − n∗ conditions at the left hand boundary. Thus for (1), n∗ = 2 (and N = 4). As

a different example, consider the model of Klausmeier (1999) for vegetation patterning

on gentle slopes in semi-arid environments. This model involves equations for the plant

biomass m(x, t) and the water density w(x, t), with the spatial coordinate x increasing in

the uphill direction:

∂m/∂t =

plant
growth
︷︸︸︷

wm2 −

plant
loss
︷︸︸︷

Bm +

plant
dispersal
︷ ︸︸ ︷

∂2m/∂x2 (2a)

∂w/∂t = A
︸︷︷︸

rain-
fall

− w
︸︷︷︸

evapo-
ration

− wm2
︸︷︷︸

uptake
by plants

+ ν ∂w/∂x
︸ ︷︷ ︸

flow
downhill

. (2b)

Here the parameters A, B and ν are all positive. For these equations, conditions on m

would be required at both boundaries, but a condition on w is required only at the right

hand (upslope) boundary: therefore n∗ = 2 (and N = 3).

The “absolute spectrum” is the set of values of λ such that Im kn∗ = Im kn∗+1. It is

also useful to have a name for the more general set of λ’s for which Im ki = Im ki+1 for any

i, and this is known as the “generalised absolute spectrum”. This latter set of eigenvalues

was considered (without the name) in the original monograph of Briggs (1964), but the

special significance of the case i = n∗ was not realised until Sandstede & Scheel’s (2000a)

work. Two final pieces of terminology are also useful: values of λ for which kn = kn+1

are known as “branch points of index n”, and “branch points in the absolute spectrum”

are simply those with index n∗. Figures 2.6-2.8 show absolute spectra and the generalised

absolute spectra for b = 4 and b = 1.2 with various c values. The parameter values used

in Figure 2.7c are the same as in Figure 2.3b.

For a spatially homogeneous steady state that is unstable as a solution of the kinetic

odes, Sandstede & Scheel (2000a) showed that the absolute spectrum determines the

nature of its instability in the pdes as follows:

• the steady state is absolutely / convectively unstable according to whether there

are/are not branch points of the absolute spectrum in the right hand half of the

complex plane;

• the steady state is remnantly / transiently unstable according to whether the abso-
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Figure 2.6: Illustrations of the absolute spectrum and generalised absolute spectrum for
the Rosenzweig-MacArthur model (1). Branch points are indicated by filled circles and
filled squares. The values of µ, a, b and d are fixed as follows: µ = 7.7, a = 1.3, b = 4 and
d = 2. The numerical method was as described in the text: we first calculated the branch
points (see Appendix A.1), then use these as starting points for the calculation of the
generalised absolute spectrum, monitoring all of the ki’s during the continuation in order
to determine which sections constitute the absolute spectrum. In green, we plot stable
absolute spectra while unstable absolute spectra are represented by cyan curves. The red
curves correspond to Im k1 = Im k2, while on the blue curves Im k3 = Im k4. On Panel (a),
the advection constant is c = 0.01 and the absolute spectra is unstable. The inserts show
details of behaviour near branch points; −0.5 < Reλ < −0.433 and −0.03 < Imλ < 0.03
for the top insert while 0.42 < Reλ < 0.47 and −0.01 < Imλ < 0.01 for the bottom
insert. Panels (b) and (c) both show stable absolute spectra and correspond respectively
to c = 0.2 and c = 1.
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Figure 2.7: Illustrations of the absolute spectrum and generalised absolute spectrum for
the Rosenzweig-MacArthur model (1). Branch points are indicated by filled circles and
filled squares. The values of µ, a, b and d are fixed as follows: µ = 9.0, a = 1.3, b = 4
and d = 2. The meaning of the colours is the same as on Figure 2.6. On Panel (a), the
advection constant is c = 0.01 and the absolute spectra is unstable. The inserts show
details of behaviour near branch points; −0.35 < Reλ < −0.2 and −0.03 < Imλ < 0.03
for the top insert while 0.64 < Reλ < 0.73 and −0.01 < Imλ < 0.01 for the bottom insert.
Note that a complex conjugate pair of triple points were found at λ = −0.273 ± 0.005i
where the corresponding spatial eigenvalues satisfy Im k1 = Im k2 = Im k3; portions of the
absolute spectrum emanate from these triple points. Panel (b) shows an unstable absolute
spectrum for c = 0.1 while the absolute spectrum on Panel (c) is stable and corresponds
to c = −1.
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Figure 2.8: Illustrations of the absolute spectrum and generalised absolute spectrum for
the Rosenzweig-MacArthur model (1). Branch points are indicated by filled circles and
filled squares. The values of µ, a, b and d are fixed as follows: µ = 15, a = 1.3, b = 4
and d = 2. The meaning of the colours is the same as on Figure 2.6. On Panel (a), the
advection constant is c = 0.01 and the absolute spectra is unstable. The inserts show
details of behaviour near branch points; the range on the vertical axis is −0.012 < Imλ <
0.012 for the top insert while the range on the vertical axis is −0.01 < Imλ < 0.01 for
the bottom insert. Panels (b) and (c) both show stable absolute spectra and correspond
respectively to c = 5 and c = 10; the range on the vertical axis on the insert on Panel
(b) is −2 < Imλ < 2. In all three cases, triple points were found and portions of the
corresponding absolute spectra emanate from them.
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lute spectrum does / does not extend into the right hand half of the complex plane.

More precise versions of these statements, including the required technical assumptions,

are given in Sandstede & Scheel (2000a). Note that the “pinching condition” of Briggs

(1964) translates to the condition that λ is a branch point in the absolute spectrum. Note

also that in Chapter 1 we presented an intuitive argument motivating the relationship

between the absolute spectrum and absolute stability.

Branch points are the key to numerical calculation of the absolute spectrum. Since D

has a repeated root for k at a branch point, we have

D(λ, k) = 0 and (∂/∂k)D(λ, k) = 0 . (3)

Now D is a polynomial in both λ and k, and thus it is usually relatively straightforward

to solve (3) for the branch points. For example, for (1) one can eliminate λ between the

two equations in (3) to give a sixth order polynomial in k. This can be solved numerically

and then each of the solutions can be substituted back into (3) to get the corresponding

values of λ (see Appendix A.1 for further details).

Branch points will be in the absolute spectrum if their index is n∗. To check this for

a given branch point, one substitutes the calculated value of λ back into D(λ, k) = 0

and solves the resulting polynomial in k. Two of the roots will be the repeated pair

corresponding to the branch point. If these are kn∗ and kn∗+1 then the branch point is in

the absolute spectrum; otherwise it is not.

The above procedure may seem a little involved at first sight, but in practice it is very

straightforward and very quick, involving just the numerical solution of polynomials. In

the Appendix we demonstrate the calculation of the branch points for the Rosenzweig &

Macarthur (1963) model (1) and the Klausmeier (1999) model (2).

Having calculated the branch points, one can proceed to calculate the entire generalised

absolute spectrum via numerical continuation. Using a branch point of index j as a

starting point, one performs a numerical continuation of the polynomial D(λ, k), using

Re kj−Re kj+1 as a continuation variable. This method was proposed by Rademacher et al.

(2007), and it is also described in detail in Smith et al. (2009); the latter paper includes

an online supplement with a detailed tutorial guide and sample code. Repeating this

procedure for each branch point generates the entire generalised absolute spectrum, since

for constant coefficient problems all curves of generalised absolute spectrum emanate from

a branch point, at least for a wide class of equations including reaction-diffusion systems

(Rademacher et al. 2007). The same statement does not necessarily hold for the absolute

spectrum itself; instead, curves of absolute spectrum can emanate from “triple points”,
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defined by Im ki = Im ki+1 = Im ki+2 for some i (Rademacher et al. 2007, Smith et al.

2009). Therefore it is not possible to calculate the absolute spectrum directly using this

approach. Rather it is necessary to calculate the generalised absolute spectrum, and to

monitor all four roots for k of D(λ, k) = 0 as one moves along it. The absolute spectrum

is simply the part of the generalised absolute spectrum for which Im kn∗ = Im kn∗+1. See

Figures 2.8a-c for examples of parts of absolute spectra emanating from triple points.

In practice one is interested in the most unstable point in the absolute spectrum, and

also its most unstable branch point. Usually these are the same: this will be the case

unless there is a non-transient convective instability (see §2.2). For some systems it has

been proved that the most unstable point in the absolute spectrum is a branch point

(Smith et al. 2009), but the complexity of most models of biological phenomena puts

them outside the compass of these results. Therefore when considering absolute stability

in a model for the first time, it is good practice to calculate the full absolute spectrum

for a selection of parameter sets; usually these will show that the most unstable point in

the absolute spectrum is a branch point in each case. One can then have confidence in

making statements about absolute / convective / remnant / transient stability on the basis

of branch points, which is usually a very simple calculation. In fact in the physics liter-

ature, where different types of instability are often considered, many authors draw their

conclusions based only on calculations of branch points. As an example of a calculation

done in this way, Figure 2.9 shows the boundary between convective and absolute stabil-

ity of the coexistence steady state in the µ–c plane for (1), based simply on numerically

solving a polynomial to determine the branch points, as described in Appendix A.1.

2.6 Quantitative Calculations Using Absolute Stabil-

ity

The example in §2.3 illustrates how determination of the type of instability can be used

to understand and predict important qualitative features of spatiotemporal behaviour.

However the theory is in fact much more powerful than this. Quantitative information

can also be obtained, by investigating stability in different frames of reference. We will

demonstrate this for the solutions presented in §2.3, by adapting the method proposed

by Sherratt et al. (2009) for invasions in reaction-diffusion systems of λ–ω type.

Given a pde with space variable x and time variable t, one changes to a moving frame

of reference in the usual way, by changing coordinates to z = x − V t and t. The frame

velocity V is an additional parameter. For any given V , one can use the methods in

§2.5 to calculate the most unstable point in the absolute spectrum, say λ∗(V ). This is
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Figure 2.9: An example of stability boundaries in the (µ, c) plane for (1). The vertical red
line marks the transition between the coexistence steady state being stable and unstable,
while the blue curve shows the transition between convective and absolute instability. The
latter curve was plotted via the calculation of branch points, as described in Appendix A.1.
The parameter values were a = 1.3, b = 4, d = 2.

the eigenvalue associated with the most unstable linear mode moving with velocity V .

We denote by k∗ the corresponding value of k. Figure 2.10 shows a typical plot of Reλ∗

against V , for the model (1). There is a finite range of velocities for which there are

growing linear modes: all linear modes moving with speed (= V ) less than VL or greater

than VR are decaying.

A plot such as Figure 2.10 is quite instructive in its own right. For example, we

presented simulations in §2.1 showing that there can be a plateau region ahead of the

invasion front in which the (unstable) coexistence steady state is “dynamically stabilised”.

Denoting the invasion velocity by Vfront, the condition for such a plateau is Vfront > VR, so

that the invasion can outrun all growing linear modes (Dagbovie & Sherratt 2013). But

the curve λ∗(V ) can also form the basis of calculations. For example, a natural question

arising from the simulations shown in §2.3 is how the width of the steady state region

depends on parameters. To determine this, note that the amplitude of a linear mode

travelling with velocity V will double over the time period log(2)/Reλ∗(V ). During this

time, the linear mode moves a distance V log(2)/Reλ∗(V ) while the transition front moves

a distance Vfront log(2)/Reλ
∗(V ). Recall that Vfront is the speed of the front, which can be

found using the theory of minimal spreading speeds (van Saarloos 2003); in the absence
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Figure 2.10: An example of the dependence of Reλ∗ against V . For a given velocity V ,
λ∗(V ) is the most unstable point in the absolute spectrum, meaning that Reλ∗(V ) is
the maximum growth rate of perturbations moving with velocity V . The example shown
is for the Rosenzweig & Macarthur (1963) model (1) with parameters a = 1.3, b = 4,
c = 0, d = 2, µ = 9. Calculation of the absolute spectrum for this case, with a variety of
different V values, showed that the most unstable point in the absolute spectrum was a
branch point in all cases. Therefore we determined λ∗(V ) by calculating branch points,
as described in Appendix A.1.

of advection, this speed is given by Vfront0 = 2

√

d

ab

(
aµ

µ+ 1
− 1

)

but in the context of

this chapter, it is defined by Vfront = −Vfront0 − c. Therefore the linear mode doubles

in amplitude while moving a distance (V − Vfront) log(2)/Reλ
∗(V ) from the front. One

can reasonably assume that the transition front applies a perturbation to the coexistence

steady state that contains all unstable linear modes. Therefore the perturbation doubles

in amplitude over the “doubling distance”

xdbl = log(2)(Vdbl − Vfront)/Reλ
∗(Vdbl) (4)
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where Vdlb minimises (V − Vfront)/Reλ
∗(V ), i.e.

(Vdbl − Vfront)
d

dV
Reλ∗(V )

∣
∣
∣
∣
V=Vdbl

= Reλ∗(Vdbl). (5)

More specifically, let (x∗, t∗) denote a point on the invasion front. When t increases

above t∗, the perturbations applied to the steady state (u∗, v∗) by the invasion front

spread out in time and space, growing along all rays x = x∗ + (t− t∗)V with V between

VL and VR. In order to calculate precisely the width of the stabilised region, we must

give a precise definition of its ends. The left-hand end is simply the invasion front,

and we define the right-hand end to be the point at which perturbations applied to the

steady state (u∗, v∗) by the invasion front first become amplified by a factor of 2. This

occurs at time tcrit(V ) = t∗ + log(2)/Re[λ∗(V )], with the corresponding location being

xcrit(V ) = x∗ + V log(2)/Re[λ∗(V )]. Perturbations that move at a speed Vdbl are the

first to be amplified by 2. Figure 3.12 shows an example of the curve (xcrit(V ), tcrit(V )),

(VL < V < VR).

Numerical solution of (5) is made relatively straightforward by the following identity

(d/dV )Reλ∗(V )|V=Vdbl
= −Im k∗(Vdbl) (Sherratt et al. 2009). In some cases (5) will have

more than one solution: then the relevant solution is the one giving the smallest value

of xdbl; an example of this is given in Figure 5 of Sherratt et al. (2009). Figure 2.12

shows a plot of Vfront, VL and Vdbl as functions of µ. The steady state changes stability

at µmin ≃ 7.667 and at this value, VL = Vdbl = −c (the perturbations are moving as

fast as the advection); below this value, Vdbl and VL do not exist. As µ increases from

7.667, VL and Vdbl both decrease from −c. Initially VL < Vdbl < −c and at µmax = 8.609,

VL = Vdbl = Vfront. For µ > 8.609, the invasion front is able to outrun the perturbations,

and there is no stabilised region. For 7.667 < k < 8.609, perturbations travel faster than

the invasion and dynamical stabilisation occurs.

The formula (4) for xdbl contains all of the parameter dependence of the width of the

steady state region in the simulations shown in §2.3. For example, Figure 2.13 plots xdbl

against estimates of the width from simulations as the parameter µ is varied, demonstrat-

ing their linear relationship.

2.6.1 Measuring the Width of the Steady State Region

To produce Figure 2.13, we needed to estimate the width of the stabilised region for each

of the values of µ shown in numerical simulations of invasion in (1). To estimate this

width in simulations, we need to determine the location of the invasion front (left-hand

edge) and of the right-hand edge of the stabilised region. We choose the left-hand edge
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Figure 2.11: An illustration of the argument on which our calculation of the width of
the stabilised region is based. The thick solid curve is a plot of calculated values, not
a sketch, and the parameters are given by b = 4, k = 8.0 and c = −0.5. Then, if we
view the point (x∗, t∗) = (10, 20) in a frame of reference moving at a velocity V , with
VL < V < VR, perturbations grow and spread out in time and space, reaching the point
(xcrit, tcrit) (thick curve) when their amplitude has doubled. Perturbations moving at the
velocity Vdbl reach the edge of stabilised region closest to the invasion front.

to be the point x1 on the invasion front that is halfway between the coexistence steady

state and the prey only steady state; that is the point at which the amplitude A equals
1
2

√

(1− u∗)2 + v∗2. Keeping in mind that the right-hand end is the first point in front of

the stabilised region, we define it as the point x2 at which A =
√

(u− u∗)2 + (v − v∗)2

equals a small value, taken as 0.005. We estimate both x1 and x2 by linear interpolation

between numerical grid points; of course they are both time-dependent. Now recall that

the width of the stabilised region is a function of time, has a growth and then reaches a

constant phase from a time value t = t1. At a certain t2 > t1, the right-hand edge of the

stabilised region reaches the right-hand boundary of the simulation domain. On Figure

2.14a, we show a space-time plot of how actual edges x1 and x2 from PDE simulations

vary with time for b = 4.0, µ = 8.1 and c = −0.5. On Figure 2.14b, we show for the same
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Figure 2.12: Plots of VL, Vdbl and Vfront against µ for c = −0.5; the other parameter values
were a = 1.3, b = 4, d = 2. At µ = µmin, the coexistence steady state becomes unstable.
This value of µ is also characterised by VL = Vdbl = −c. As µ increases, VL and Vdbl

decrease until µ = µmax. For µ ∈ (µmin, µmax), we have Vfront < VL < Vdbl, so that the
unstable steady state is dynamically stabilised for these µ values. The Vdbl curve folds at
µ = µmax while intersecting both the VL and Vfront curves. For µ > µmax, the velocity Vdbl

does not exist as Equation (5) has no solution. Meanwhile VL has now become smaller
than Vfront: the invasion overtakes the unstable linear modes and dynamical stabilisation
will no longer occur.

parameter values a space-time plot of how the estimated (as described above) edges x1

and x2 vary with time. Note that the t(x1) curve is smooth while t(x2) curve fluctuates.

We find our estimation of the width by averaging the value of x2−x1 over a time included

in (t1, t2). Here t1 ≃ 5100, t2 ≃ 72200 and the invasion front reaches the right-hand

boundary of the simulation domain at time t3 ≃ 97200.

Note however that the time values t1 and t2 increase as µ increases; for example

when µ = 8.3, t1 = 6100 and t2 = 99500. It is hence important to choose a time range

appropriate to all µ values over which the distances x2 − x1 are to be averaged. For the

calculation on Figure 2.13, the time range used was 10000 < t < 40000.
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Figure 2.13: An illustration of the correlation between the doubling distance xdbl and
the width of the steady state region in simulations of (1) with the zero flux condition
hx+ch = dpx+cp = 0 at the left hand boundary and the Danckwert condition hx = px = 0
at the right hand boundary, as in Figure 2.5. The parameter µ was varied between 7.9
and 8.5. (a) A plot of xdbl against the numerically calculated width (dots), showing a
very strong linear correlation between the two quantities (regression coefficient = 0.999).
This confirms that the dependence on parameters of the width of the steady state region
is captured by xdbl. The line is the best-fit regression line, which has slope 98.05 and
intercept 5.795; there is a non-zero intercept because our method for measuring the width
of the steady-state region excludes small portions on either side (see Sherratt et al. 2009
for further discussion). (b) A plot of the width of the steady state region (dots) against µ.
We superimpose on this a curve showing xdbl, rescaled using the regression line found from
(a). The doubling distance was calculated using (4) and (5). The width of the steady
state region was calculated using numerical simulations performed as in Figure 2.5. The
method used to measure the width in numerical simulations is described in Dagbovie &
Sherratt (2013). The parameter values were a = 1.3, b = 4, c = −0.5, d = 2.

35



(a)

(b)

0

20

40

60

80

100

 0  500  1000  1500  2000  2500

T
im

e
, 

t 
(t

h
o

u
s
a

n
d

s
)

Space, x

t=t3

t=t2

t=t1

Figure 2.14: Panel (a): space-time plot showing how the edges of the stabilised region
vary with time for b = 4.0, µ = 8.1 and c = −0.5. The space variable x varies between
0 and 2500, with t between 0 and 110000. As t increases from zero, the stabilised region
expands until t1 ≃ 5100, after which the width remains constant. The right-hand edge
of the stabilised region reaches the right-hand boundary of the domain (x = 2500) at
t2 = 72200. We have solved (1) numerically using a semi-implicit finite difference method
with a grid spacing of 0.5 and time step of 0.05. Numerical simulations of the Rosenzweig
& Macarthur (1963) model (1) with the zero flux condition hx + ch = dpx + cp = 0
at the left hand boundary and the Danckwert condition hx = px = 0 at the right hand
boundary. Initially the solution is at the coexistence steady state, but this is incompatible
with the left hand boundary condition, and a transition front develops that replaces the
coexistence steady state with the prey-only state. Panel (b) shows how the estimated
edges x1 and x2 vary with time. The invasion front is represented by the red curve while
the right-hand edge of the steady state region is represented by a green curve.
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2.7 Summary and Discussion

Biology abounds with complex spatiotemporal phenomena. Mathematical models have

been highly successful at reproducing this complexity, but currently our ability to nu-

merically simulate such phenomena far outstrips our ability to provide an underlying

mathematical understanding. As a result, models can sometimes fail to fulfil their poten-

tial for qualitative and quantitative prediction. The theory of absolute stability provides

a tool that has the potential to redress this inbalance in some cases, and whose use within

mathematical biology is currently almost non-existent. Until recently one had to overcome

a steep learning curve to make practical use of this theory, but new computational meth-

ods based on the absolute spectrum now make it easily accessible to non-specialists. We

hope that this article will encourage greater use of these methods within the mathematical

biology community.

We have focussed on the stability of spatially homogeneous solutions, for which both

the theory and methods for numerical calculation are most complete. The absolute stabil-

ity of spatially varying solutions was first considered by Brevdo & Bridges (1996), 1997b).

Most of the key concepts that we have discussed extend from homogeneous solutions to

a wide variety of non-uniform solutions, including solutions of reaction-diffusion systems

that approach either constant or spatially periodic states at infinity. One complication

is that the absolute spectrum can be augmented by discrete eigenvalues, and Wheeler

& Barkley (2006) discuss an example of spiral wave break-up in which absolute stability

is determined by discrete eigenvalues rather by than the absolute spectrum. However,

for large classes of systems it can be shown there are no such discrete eigenvalues: this

includes spatially homogeneous solutions, and wavetrain solutions of reaction-diffusion

systems (Sandstede 2002, §3.4.2).
The biggest difficulty when considering spatially varying solutions is numerical cal-

culation. Numerical continuation is still a viable method for calculation of the absolute

spectrum (Rademacher et al. 2007), but finding appropriate starting points is problematic.

In particular, branch points lose their suitability because for spatially varying solutions

there are in general infinitely many branch points (Rademacher et al. 2007, §4.3). Alter-
native approaches to the generation of starting points are discussed in §4.4 of Rademacher

et al. (2007), but in most cases the only systematic way of calculating absolute stability

for non-constant solutions is the method of Brevdo and coworkers (Brevdo 1995, Brevdo

et al. 1999; see also Suslov 2006).

The restriction to spatially uniform solutions is more inclusive than it appears su-

perficially. For example, wavetrain solutions to reaction-diffusion systems of “λ–ω type”
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are spatially uniform when the equations are written in phase-amplitude form (Kopell &

Howard 1973), and the same is true for wavetrains in the complex Ginzburg-Landau equa-

tion (Aranson & Kramer 2002). Also the absolute spectrum of wave fronts and pulses in

reaction-diffusion systems depends only on the asymptotic states behind and ahead of the

wave (Sandstede 2002, §3.4.3-3.4.4), although in this case one will also need to consider

discrete eigenvalues, and these do depend on the wave profile.

We also emphasise that our remarks only concern behaviour in one space dimension.

Absolute stability has been widely used to study spiral wave break-up (e.g. Aranson et al.

1992, Sandstede & Scheel 2000b, Wheeler & Barkley 2006), but this is effectively a one-

dimensional problem. There has been some discussion of absolute stability for genuinely

two-dimensional solutions in the hydrodynamics literature (e.g. Chomaz 2004, Biancofiore

et al. 2011), but a detailed theory is currently lacking. This, and more effective numerical

methods for spatially varying solutions, are major current objectives for the research

community working on absolute stability.

In ecology, the term ‘stability’ plays a central role. In their 1997 review of the ecological

literature, Grimm & Wissel found 163 definitions of 70 different stability concepts. Yet,

the theory of absolute stability has been, to our knowledge, absent from the ecological

literature, and it appears that the spatial dimension is generally lacking in ecological

stability concepts.

This is particularly surprising since stream ecologists (and water resource managers

alike) have long been on the quest how lotic systems respond to disturbances and spatial

variabilities. Much of the current knowledge comes from experiments in study sites that

comprise only a small fragment of the stream or river (Fausch et al. 2002). But how do

populations much further downstream, i.e. outside the study arena, respond to upstream

perturbations (Cooper et al. 1998)? This is a key question in the assessment of instream

flow needs, or how the location of wastewater treatment plants affects environmental

conditions downstream (Anderson et al. 2006). One attempt to address this question is

the concept of the response length (Anderson et al. 2005), a characteristic length scale

measuring the scale over which environmental disturbances are felt by distant populations.

Convective instabilities appear particularly intriguing in this context. The perturbed

steady state remains stable locally, but is enormously brought out of equilibrium further

downstream (cf. Figure 2.5b). Small-scale experiments and observations might only see

the local (stable) response, but miss out on the instabilities arising further away. In §6
we have shown how the width of the region where the steady state remains stable can

be calculated quantitatively (see also Dagbovie & Sherratt 2013). This may be useful

information for the design of experiments, ecological monitoring as well as environmental
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assessment.

The convective and absolute instabilities that we have described do not necessarily

need to be ‘harmful’ to the populations. On the contrary, the spatiotemporal oscilla-

tions caused by the instabilities can be beneficial. For example, they might facilitate

non-equilibrium coexistence of species that would otherwise mutually exclude each other

(Armstrong & McGehee 1980, Huisman & Weissing 1999). For example, Scheuring et al.

(2000) have shown that the chaotic flow around a cylindrical obstacle creates a small-scale

mosaic ensuring that coexisting species can coexist. Similarly, Lee (2012) has argued that

rotational flow, as caused by a rock, can increase survival probabilities of predators and

prey. Petrovskii et al. (2004) have shown, in a non-advective model, that spatiotemporal

chaos can reverse the paradox of enrichment and thus make the persistence of predators

and prey more likely.

Advective environments feature a number of spatiotemporal pattern formation mech-

anisms that cannot arise in non-advective systems. Interestingly, they do not require

activator–inhibitor type of interactions as for diffusion-driven (Turing) instabilities, but

they critically depend on either a significant difference in the flow experienced by species

(Rovinsky & Menzinger 1992, Perumpanani et al. 1995, Malchow 2000) or resource-

dependent dispersal (Anderson et al. 2012). Neither of these conditions are necessary

for the convective and absolute instabilities considered here, but it should be noted that

the steady state of the kinetic odes is unstable in the first place. This, however, is a

situation that arises frequently in nature (e.g. Turchin 2003).

Streams and river are particularly iconic examples of flow-dominated systems, but

there are many others. Marine organisms dispersed in longshore currents or plant seeds

and insects dispersed by winds with a prevailing wind direction (Levine 2003) are also

environments with a predominantly unidirectional flow. These systems are strongly char-

acterised by the importance of longitudinal transport through habitat. The theory of

absolute stability appears to have a lot to offer when there is a downstream bias that can

induce very different spatial responses to localised perturbations.
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Appendix: Examples of Calculating Branch Points

In this Appendix we show how to calculate the branch points for the Rosenzweig-MacArthur

model (1) and the Klausmeier model (2). We present these calculations in some detail.

A.1 Branch Points for the Rosenzweig-MacArthur Model

Recall that the Rosenzweig-MacArthur model (1) has a unique homogeneous coexistence

steady state (hs, ps) where hs = 1/(aµ − µ) and ps = (1 − hs)(1 + µhs)/µ. We begin by

linearising (1) about (hs, ps) giving

p̃t = αp̃+ βh̃+ cp̃x + dp̃xx

h̃t = γp̃+ δh̃+ ch̃x + h̃xx

where p̃ = p− ps, h̃ = h − hs, and α, β, γ, δ are coefficients from linearisation and are

given by

α =
µhs

b(1 + µhs)
− 1

ab

β =
µps

b(1 + µhs)2

γ = 1− 2hs −
µps

(1 + µhs)2

δ = − µhs

1 + µhs

.

Substituting (p̃, h̃) = (p̄, h̄) exp(ikx + λt) into (1) and requiring p̄ and h̄ to be non-zero

gives the dispersion relation

D(λ, k) = dk4 − cik3(d+ 1)− k2(α− λ+ dγ − dλ+ c2)

+cik(γ + α− 2λ) + (α− λ)(γ − λ)− δβ = 0 . (A.1)

Branch points are double roots of the dispersion relation for k, and satisfy (A.1) and also

0 = ∂D/∂k = 4dk3 − 3k2(1 + d)ci− 2k(γ + dα− (1 + d)λ) + c2 + ci(α + γ − 2λ)

⇒ λ =
4dk3 − 3cidk2 − 2dkγ + αci− 2c2k − 3cik2 − 2αk + ciγ

−2(k + dk − ci)
. (A.2)
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Substituting (A.2) into (A.1) gives the following hexic polynomial in k:

[
−4d(d− 1)2

]
k6 +

[
2ci(d+ 1)(d− 1)2

]
k5 +

[
(d− 1)(c2d+ 8dα− 8dγ − c2)

]
k4

+ [4ci(−α + γ)(d− 1)(d+ 1)] k3 +
[
2c2(d− 1)(γ − α)− 4βδ(d+ 1)2 − 4d(α− γ)2

]
k2

+
[
2i(4βδ + α2 − 2αγ + γ2)c(d+ 1)

]
k + c2(4βδ + α2 − 2αγ + γ2) = 0 . (A.3)

We must now proceed numerically and we fix a = 1.3, b = 4.0, c = −1, d = 2 and µ = 9.

These parameter values satisfy µ > µcrit, so that the coexistence steady state is unstable.

Substituting these values into (A.3), we obtain six roots for k, two real and two pairs of

complex conjugates. We then substitute each into (A.2) to find the corresponding value

of λ. To determine whether these branch points belong to the absolute spectrum, we

substitute each λ value into (A.1) and solve for k, giving the repeated roots found from

(A.3) and two others.

Branch point k = 0.676i. Substituting this value of k into (A.2) gives λ = 1.380. Substi-

tuting this value of λ back into (A.1) gives a quartic polynomial for k whose roots

are −1.727i, −1.125i, 0.676i, 0.676i. Recall that a branch point is in the abso-

lute spectrum if the repeated roots are k2 and k3, when the roots k1, k2, k3 and

k4 of (A.1) are labelled in increasing order of their imaginary parts. In this case

the repeated roots are k3 and k4 so that the branch point is not in the absolute

spectrum.

Branch point k = −0.473− 0.013i. Substituting this value of k into (A.2) gives λ =

−0.255 + 0.483i. Substituting this value of λ back into (A.1) gives a quartic

polynomial for k whose roots are 0.570 − 0.943i, 0.377 − 0.530i, −0.473 − 0.013i,

−0.473−0.013i Therefore the repeated roots are k3 and k4 so that the branch point

is not in the absolute spectrum.

Branch point k = 0.473− 0.013i. Substituting this value of k into (A.2) gives λ = −0.255−
0.483i. Substituting this value of λ back into (A.1) gives a quartic polynomial for

k whose roots are −0.570− 0.943i, −0.377− 0.530i, 0.473− 0.013i, 0.473− 0.013i.

the repeated roots are k3 and k4 so that the branch point is not in the absolute

spectrum.

Branch point k = 0.001− 0.334i. Substituting this value of k into (A.2) gives λ = −0.110−
0.167i. Substituting this value of λ back into (A.1) gives a quartic polynomial for

k whose roots are −0.314 − 0.816i, 0.001 − 0.334i, 0.001 − 0.334i, 0.312− 0.0165i.

Therefore the repeated roots are k2 and k3 so that the branch point is in the absolute

spectrum.
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Branch point k = −0.001− 0.334i. Substituting this value of k into (A.2) gives λ =

−0.110 + 0.167i. Substituting this value of λ back into (A.1) gives a quartic poly-

nomial for k whose roots are 0.314 − 0.816i, −0.001 − 0.334i, −0.001 − 0.334i,

−0.312 − 0.0165i. Therefore the repeated roots are k2 and k3 so that the branch

point is in the absolute spectrum.

Branch point k = −0.732i. Substituting this value of k into (A.2) gives λ = 0.000. Sub-

stituting this value of λ back into (A.1) gives a quartic polynomial for k whose roots

are −0.732i, −0.732i, 0.160− 0.017i, −0.160− 0.017i. Therefore the repeated roots

are k1 and k2 so that the branch point is not in the absolute spectrum.

Therefore of the six branch points, two are in the absolute spectrum, with the correspond-

ing eigenvalues being −0.110 ± 0.167i. Since these eigenvalues have negative real parts,

the steady state (hs, ps) is absolutely stable. To determine whether the convective insta-

bility is of transient or remnant type, it is necessary to calculate the absolute spectrum.

This can be done via numerical continuation of the generalised absolute spectrum, using

the six branch points listed above as starting points, as discussed in §2.5. This shows

that the branch points are the most unstable points in the absolute spectrum, so that the

steady state has a transient convective instability.

A.2 Branch Points for the Klausmeier Model

For all parameters, the Klausmeier model (2) has a “desert” steady state m = 0, w = A.

When A ≥ 2B there are two further steady states (m±, w±) where

m± =
2B

A±
√
A2 − 4B2

, w± =
A±

√
A2 − 4B2

2
.

Ecologically realistic values of B are relatively small, and in particular satisfy B < 2

(Klausmeier 1999, Rietkerk et al. 2002). Under this constraint, (m−, w−) is stable as

a solution of the kinetics odes, although it can be destabilised by the diffusion and

advection terms, leading to spatial patterns (Klausmeier 1999, Sherratt 2005,Sherratt

2010). However (m+, w+) is unstable as a solution of the kinetic odes, and we will

consider the nature of its instability as a solution of the pdes (2).

We begin by linearising (2) about (m+, w+), giving

m̃t = am̃+ bw̃ + m̃xx (A.4a)

w̃t = cm̃+ dw̃ + νw̃x (A.4b)
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where m̃ = m−m+, w̃ = w − w+, and the linear coefficients α, β, γ, δ are given by

α̃ = B (A.5a)

β̃ =
A−

√
A2 − 4B2

A+
√
A2 − 4B2

(A.5b)

γ̃ = −2B (A.5c)

δ̃ =
−2A

A+
√
A2 − 4B2

. (A.5d)

Substituting
(
m̃, w̃

)
=
(
m,w

)
exp(ikx+ λt) into (A.2.4,A.2.5) and requiring m and w to

be non-zero gives the dispersion relation

D̃(λ, k) = λ2 + λ
(

k2 − α̃− ikν − δ̃
)

+ (α̃− k2)(ikν + δ̃)− β̃γ̃ = 0 . (A.6)

Branch points are double roots (for k) of the dispersion relation, and satisfy (A.6) and

also

0 = ∂D̃/∂k = λ (2k − iν)−
(

3ik2ν + 2δ̃k − iνα̃
)

⇒ λ =
(

3ik2ν + 2δ̃k − iνα̃
)/

(2k − iν) . (A.7)

Substituting (A.7) into (A.6) gives a quintic polynomial in k:

(

3ik2ν + 2δ̃k − iνα̃
)2

+ (2k − iν)
(

3ik2ν + 2δ̃k − iνα̃
)(

k2 − α̃− ikν − δ̃
)

+ (2k − iν)2
[

(α̃− k2)(ikν + δ̃)− β̃γ̃
]

= 0 . (A.8)

We must now proceed numerically, and we will fix the parameter values to be A = 2,

B = 0.5 and ν = 20. These parameters satisfy the condition A > 2B but otherwise they

are chosen arbitrarily. The value ν = 20 is too small for ecological realism: the formula

for the dimensionless parameter ν involves the ratio of the advection rate of water and

the (square root of the) plant diffusion coefficient (Klausmeier, 1999; (Sherratt 2005), so

that ν is relatively large, with Klausmeier’s (1999) estimate being 182.5. However we use

the smaller value to improve the clarity of the numerical calculations. Substituting the

parameter values into (A.8) gives five distinct roots for k, two complex and three pure

imaginary. For each we substitute into (A.7) to find the corresponding value of λ. We

then substitute this value of λ into (A.6) to determine whether the branch point is in

the absolute spectrum. We performed all of the various calculations using the software

package maple with 20 decimal places, but for clarity we give results to 3 decimal places.
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Branch point k = −0.099 + i 0.012. Substituting this value of k into (A.7) gives λ =

0.473 + i 0.022. Substituting this value of λ back into (A.6) gives a cubic poly-

nomial for k whose roots are −0.099 + i 0.012, −0.099 + i 0.012, 0.199 − i 0.101.

Recall from §2.5 that the branch point is in the absolute spectrum if the repeated

roots are k2 and k3, when the roots k1, k2, k3 of (A.6) are labelled in increasing order

of their imaginary parts. Therefore in this case the branch point is in the absolute

spectrum.

Branch point k = −i 19.950. Substituting this value of k into (A.7) gives λ = 398.112.

Substituting this value of λ back into (A.6) gives a cubic polynomial for k whose

roots are −i 19.950, −i 19.950 and i 19.94. Therefore the repeated roots are k1 and

k2, so that this branch point is not in the absolute spectrum.

Branch point k = −i 19.892. Substituting this value of k into (A.7) gives λ = 396.587.

Substituting this value of λ back into (A.6) gives a cubic polynomial for k whose

roots are −i 19.892, −i 19.892 and i 19.902. Therefore the repeated roots are k1 and

k2, so that this branch point is not in the absolute spectrum.

Branch point k = −i 0.181. Substituting this value of k into (A.7) gives λ = 0.569. Sub-

stituting this value of λ back into (A.6) gives a cubic polynomial for k whose roots

are −i 0.181, −i 0.181 and i 0.281. Therefore the repeated roots are k1 and k2, so

that this branch point is not in the absolute spectrum.

Branch point k = 0.099 + i 0.012. Substituting this value of k into (A.7) gives λ = 0.473−
i 0.022. Substituting this value of λ back into (A.6) gives a cubic polynomial for k

whose roots are −0.199− i 0.101, 0.099 + i 0.012 and 0.099 + i 0.012. Therefore the

repeated roots are k2 and k3, so that this branch point is in the absolute spectrum.

Therefore of the five branch points, two are in the absolute spectrum, with the correspond-

ing eigenvalues being 0.473± i 0.022. Since these eigenvalues have positive real part, the

steady state (m+, w+) is absolutely unstable.

44



Chapter 3

Absolute Stability and Dynamical Stabilisa-

tion in Predator-Prey Systems

This chapter is based on our paper Dagbovie & Sherratt (2013).

3.1 Introduction

Ecological invasion is a widespread phenomenon with important environmental and eco-

nomic impacts (Matsumura et al. 2004, Tokarska-Guzik et al. 2008). Moreover, invasions

are occurring with increasing frequency due to climate change, which can enable pre-

viously non-invasive species to invade (Hellmann et al. 2008). This chapter concerns

one particular class of invasions: the spread of a predator into a population of its prey.

This process has been explored in many mathematical modelling studies using models

formulated as partial differential equations (pdes), integrodifference equations, cellular

automata and others (Dunbar 1984, Owen & Lewis 2001, Sherratt 2001, Sherratt et al.

1997). In simple cases, invasion takes the form of a transition wavefront, with a prey-only

equilibrium ahead of the front and constant coexistence of predator and prey behind it.

In such cases, the main question of interest is the dependence of the invasion speed on

ecological parameters.

A characteristic feature of predator-prey interactions is their ability to generate pop-

ulation cycles. This feature of predator-prey models dates back to the original work of

Lokta and Volterra (Lotka 1925, Turchin 2003, May & Mclean 2007, Volterra 1926), and

empirical studies have confirmed predation as the cause of cycling in some prey popu-

lations (Korpimäki et al. 2002). For cyclic interactions, invasion of prey by predators is

inevitably more complicated: the constant coexistence of predators and prey is unsta-

ble; therefore homogeneity cannot be expected as the only behaviour behind the invasion
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front. Instead, a number of modelling studies have predicted spatiotemporal oscillations

organised into periodic travelling waves (Garvie 2007, Petrovskii et al. 1998, Sherratt

2001). Such waves have been found in spatiotemporal data sets on a number of natural

populations (Sherratt & Smith 2008), with invasion being among the factors proposed for

their generation.

The change from a simple invasive transition wave to a periodic wave behind the in-

vasion front as parameters are varied occurs because the coexistence equilibrium becomes

unstable. However, numerical simulations show that, in many cases, the invasion front

and the periodic travelling wave are separated by a region in which the solution is ap-

proximately at the coexistence equilibrium. In the early stages of an invasion, this region

expands until it eventually reaches a maximum width which then remains constant as the

invasion proceeds (see Figure 3.1 for a typical space-time plot showing the dependence on

time of the width). The existence of a region in which the solution is approximately at

the unstable coexistence steady state is known as “dynamical stabilisation” (Petrovskii &

Malchow 2000, Malchow et al. 2008, Petrovskii et al. 2001, Malchow & Petrovskii 2002)

and it is a major feature of predator-prey invasions for a wide range of parameter values.

Although the analysis in this chapter is quite general, all of our numerical examples are

for the Rosenzweig & Macarthur’s (1963) model which assumes logistic growth for the

prey population and a Holling type 2 response to predation:

ut = Duuxx + f(u, v) (3.1a)

vt = Dvvxx + g(u, v) (3.1b)

with f(u, v) = u(1− u)− kuv

1 + ku
(3.1c)

g(u, v) =
1

b

(
kuv

1 + ku

)

− v

ab
. (3.1d)

Here the variables u and v are prey and predator densities at time t and spatial location

x in a one dimensional domain. We will focus on two different values of b; firstly b = 3.0

and later b = 1.2. In both cases, we vary k with the other parameter values fixed as

follows:

a = 1.3, Du = 1 and Dv = 2. (3.1e)

The model (3.1a-d) has a unique coexistence steady state (u∗, v∗) with u∗ = 1/(ak − k)

and v∗ = (1 − u∗)(1 + ku∗)/k. Standard linear stability analysis indicates that (u∗, v∗)
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Figure 3.1: Space-time plot showing how the edges of the stabilised region vary with time
for b = 3.0 and k = 8.2. All other parameters are as in (3.1e). The space variable x varies
between 0 and 4000, with t between 0 and 6000. As t increases from zero, the stabilised
region expands until t ≃ 2745, after which the width remains constant. We have solved
(3.1) numerically using a semi-implicit finite difference method with a grid spacing of 0.5
and time step of 10−2. Our initial condition is given by the prey-only state u(x, 0) = 1
and v(x, 0) = 0 with a slight perturbation near x = 0; we assume that there is no flux
on both ends of the domain giving the boundary conditions ux = vx = 0 at x = 0 and
x = 4000. Note that the scale bar has been deliberately made discrete, in order to achieve
better clarity.
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is unstable for k ≥ (a + 1)/(a− 1) = kmin and stable to homogeneous perturbations for

k < kmin.

Figure 3.2 shows numerical simulations of invasions using (3.1), for four different values

of k, with the other parameters fixed (as in (3.1e), with b = 3.0). In (a), k < kmin = 7.67

and the system settles to the stable coexistence steady state (u∗, v∗) behind the invasion

front. In (b) and (c) there is a clear “stabilised region” in which the solution is very close

to (u∗, v∗), before the onset of spatiotemporal oscillations. Note that the stabilised region

is wider for (b) which has the smaller of the two k values. In (d), there is no dynamical

stabilisation, and spatiotemporal oscillations develop immediately behind the invasion

front.

The phenomenon of dynamical stabilisation has been studied in detail by Petrovskii

and coworkers (2000, 2002, 2001). Their numerical simulations were run for relatively

short times, and as a result they only observed the initial phase of the solution, in which

the width of the stabilised region grows at a constant rate. Petrovskii and coworkers

(2002, 2001) calculated the growth rate by applying linear spreading speed theory (van

Saarloos 2003) to the interface between the coexistence steady state and spatiotemporal

oscillations. The condition for dynamical stabilisation to occur at all is that this interface

moves more slowly than the invasion front. Similar calculations were done by Nozaki &

Bekki (1983) in their study of periodic wave generation in the complex Ginzburg-Landau

equation.

The objective of our paper Dagbovie & Sherratt (2013) is an improved mathematical

understanding of dynamical stabilisation. In contrast to Petrovskii and coworkers (2002,

2001), our focus is on the width of the stabilised region once it has become constant, after

the initial growth phase. In particular, we present a method that enables calculation of

the dependence on parameter values of the width of the stabilised region. Our approach

is based on the theory of absolute stability. In Section 3.2, we discuss the notions of

absolute and convective stability for spatiotemporal systems, which will be our key tools

for determining the extent of dynamical stabilisation in Sections 3.3 and 3.4.

3.2 Convective and Absolute Stability

The phenomenon of “dynamical stabilisation” illustrated in Figure 3.2b, c is an intuitively

surprising one: the coexistence steady state is unstable even to spatially homogeneous

perturbations and yet it appears as a long term feature of the solution. An understanding

of this behaviour requires the theory of convective and absolute stability, which we now

summarise. In temporal systems, if a solution is locally stable any small perturbation
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Figure 3.2: Numerical simulations of invasion in (3.1) for four different values of k. Here
b = 3.0 and the other parameters are given in (3.1e). At time t = 0, the unstable steady
state (1, 0) is slightly perturbed near x = 0. Panel (a) illustrates the structure of a stable
solution: it simply consists of an invasion front followed by the coexistence steady state.
Panels (b)-(c) show a prey-only region followed by an invasion front, itself followed by a
stabilised region which then gives way to oscillations. These plots also suggest that the
width of the stabilised region decreases as k increases. For bigger values of k, that region
is absent as we can observe in Panel (d). In each case, x ∈ (0, 4000) and the details of
the numerical method were as in Figure 3.1.

decays over time. However, in a spatiotemporal context one must consider also the prop-

agation of growing perturbations. A solution is “convectively unstable” if all unstable

linear modes propagate as they grow. By contrast, “absolutely unstable” solutions have

stationary unstable linear modes. A more detailed discussion of these concepts is given

in Sandstede & Scheel (2000a). Our investigation of dynamical stabilisation is based on

the absolute stability of the coexistence steady state in a frame of reference moving with

an arbitrary velocity V . Therefore we rewrite (3.1) as

ut = Duuzz + V uz + f(u, v) (3.2a)

vt = Dvvzz + V vz + g(u, v) (3.2b)

where z = x− V t.
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We now summarise a numerical method for calculating whether the coexistence equi-

librium (u∗, v∗) of (3.2) is absolutely stable; the method is discussed at greater length by

Rademacher et al. (2007). The first step is to compute the equations satisfied by small

perturbations to the steady state (u∗, v∗). We obtain these by linearising (3.2) about

(u∗, v∗). We look for solutions of the form

(u, v) = (u∗, v∗) + (ū, v̄)eλt+νz (3.3)

where λ is the temporal eigenvalue and ν is the corresponding spatial eigenvalue (λ, ν ∈
C); ū and v̄ are complex valued constants. Substituting (3.3) into (3.2) and neglecting

terms that are nonlinear in ū and v̄ gives

A(λ, ν)y = 0 (3.4)

where

A(λ, ν) =






Duν
2 + V ν +

∂f

∂u

∣
∣
∣
(u∗,v∗)

− λ
∂f

∂v

∣
∣
∣
(u∗,v∗)

∂g

∂u

∣
∣
∣
(u∗,v∗)

Dvν
2 + V ν +

∂g

∂v

∣
∣
∣
(u∗,v∗)

− λ






and y =

(

ū

v̄

)

The dispersion relation D(λ, ν) = det[A(λ, ν)] must be zero for non-trivial solutions. For

fixed λ, D is a fourth order polynomial in ν and we denote its four roots by ν1(λ), ν2(λ),

ν3(λ) and ν4(λ), repeated with multiplicity and indexed such that

Re(ν1) ≥ Re(ν2) ≥ Re(ν3) ≥ Re(ν4).

Then the “absolute spectrum” of (u∗, v∗) is Σabs = {λ
∣
∣Re[ν2(λ)] = Re[ν3(λ)]}, and (u∗, v∗)

is absolutely stable if and only if Σabs only contains eigenvalues with negative real part

(Sandstede & Scheel 2000a).

The larger set {λ|Re[νi(λ)] = Re[νj(λ)], for some i 6= j} is known as the “gene-

ralised absolute spectrum” (Rademacher et al. 2007). We calculate the absolute spectrum

using the method of Rademacher et al. (2007) which involves first calculating the entire

generalised absolute spectrum and then determining which parts of it form the absolute

spectrum.
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Calculation of the Generalised Absolute Spectrum To calculate the generalised

absolute spectrum, we first compute the pairs (λ∗, ν∗) that solve

D(λ, ν) = 0 (3.5a)

∂νD(λ, ν) = 0; (3.5b)

these are known as branch points. Note that ν∗ is a repeated root of D(λ∗, ν) = 0

and therefore any branch point is in the generalised absolute spectrum. The approach in

Rademacher et al. (2007) is to calculate the generalised absolute spectrum by continuing it

numerically using the branch points as starting points. General theory (Rademacher et al.

2007) implies that the generalised absolute spectrum is a union of connected components,

each of which emanates from a branch point. Therefore this numerical continuation

procedure calculates the whole generalised absolute spectrum, and the part of this that

is absolute spectrum can be determined by monitoring all four roots for ν at each point.

Full details of this numerical approach and its practical implementation are given in

Rademacher et al. (2007), Smith et al. (2009).

Figures 3.3-3.5 show examples of generalised absolute spectra, calculated in this way.

A key feature of these plots is that the most unstable points of the absolute spectrum

are branch points. This property has been proved for some simpler equations (Smith

et al. 2009), although it does not hold in general: there are some equations for which the

absolute spectrum extends to the right of the most unstable branch point (Rademacher

et al. 2007). Our study of dynamical stabilisation will depend fundamentally on the most

unstable point in the absolute spectrum. Therefore we calculated the absolute spectrum

of (3.2) for a range of values of k and V . In every case, the most unstable points in

the absolute spectrum were branch points, and in our subsequent calculations we will

assume that this property holds. Calculations of the most unstable points in the absolute

spectrum then reduces to a straightforward solution of polynomials. Elimination of λ

from (3.5a) and (3.5b) gives a sixth order polynomial in ν. For each of the six roots, we

calculate the corresponding λ. We then substitute this λ value back into D(λ, ν) = 0,

giving a quartic polynomial for ν. Two of the roots of this quartic will be the repeated

root for ν that has already been calculated; a comparison of the real parts of this repeated

root and the real parts of the other two roots enables us to determine whether or not the

repeated roots are ν2 and ν3, which is the condition for the branch point to be in the

absolute spectrum.
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Figure 3.3: Illustrations of the absolute spectrum and generalised absolute spectrum for
the Rosenzweig-MacArthur model (3.1). Branch points are indicated by filled circles and
filled squares. The value of k is 8 and the values of a, b, Du and Dv are fixed as in (3.1e).
We use V = 0.01, 0.5, 2 on panels (a), (b) and (c) respectively. In green, we plot stable
absolute spectra while unstable absolute spectra are represented by cyan curves. The red
and blue curves represent the rest of the generalised absolute spectrum. On Panel (a)
the λ range is −0.56 < Reλ < −0.42 and −0.035 < Imλ < 0.035 on the top insert and
0.55 < Reλ < 0.6 and −1 < Imλ < 1 on the bottom insert.
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Figure 3.4: Illustrations of the absolute spectrum and generalised absolute spectrum for
the Rosenzweig-MacArthur model (3.1). Branch points are indicated by filled circles and
filled squares. The value of k is 9 and the values of a, b, Du and Dv are fixed as in
(3.1e). We use V = 0.05, 0.09, 1.5 on panels (a), (b) and (c) respectively. In green,
we plot stable absolute spectra while unstable absolute spectra are represented by cyan
curves. The red and blue curves represent the rest of the generalised absolute spectrum.
On panel (a) the λ range is −0.35 < Reλ < −0.314 and 0.02 < Imλ < 0.05 on the top
insert and 0.65 < Reλ < 0.84 and −0.01 < Imλ < 0.01 on the bottom insert. On Panel
(b) the λ range is −0.4 < Reλ < −0.25 and 0.03 < Imλ < 0.09 on the top insert and
0.55 < Reλ < 0.86 and −0.01 < Imλ < 0.01 on the bottom insert.
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Figure 3.5: Illustrations of the absolute spectrum and generalised absolute spectrum for
the Rosenzweig-MacArthur model (3.1). Branch points are indicated by filled circles and
filled squares. The value of k is 10 and the values of a, b, Du and Dv are fixed as in (3.1e).
We use V = 0.001, 1, 2 on panels (a), (b) and (c) respectively. In green, we plot stable
absolute spectra while unstable absolute spectra are represented by cyan curves. The red
and blue curves represent the rest of the generalised absolute spectrum. On Panel (a)
the λ range is −0.269 < Reλ < −0.19 and −0.02 < Imλ < 0.02 on the top insert and
0.916 < Reλ < 0.923 and −0.01 < Imλ < 0.01 on the bottom insert.
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Figure 3.6: Plot of Re[λmax(V )], the maximum growth rate of perturbations to the steady
state in a frame of reference moving with velocity V , for b = 3.0, k = 8.0. Here cinv > V ∗

which means that the invasion front is moving faster than all growing linear modes so
that dynamical stabilisation will occur for these parameter values.

3.3 Calculating the Extent of Dynamical Stabilisa-

tion

We denote by λmax the most unstable point in the absolute spectrum of (u∗, v∗). Figure

3.6 illustrates Re[λmax] as a function of the reference frame velocity V for one value of

k; the qualitative form remains the same as k is varied. In particular, Re[λmax] > 0

on an interval of V values, say −V ∗ < V < V ∗, with Re[λmax] < 0 otherwise. Note

that VL and VR from the previous chapter are the same as −V ∗ and V ∗ respectively.

Re[λmax] is symmetric about V = 0: this is due to the directional symmetry of (3.1).

The plot of Re[λmax] against V provides the basis for our calculation of the width of

the stabilised region. Our arguments follow directly those used to calculate the width of

wavetrain bands in Sherratt et al. (2009), Smith & Sherratt (2009), and the description

below is deliberately brief. The coexistence steady state that develops immediately behind

the invasion front will be perturbed by the front. We make the reasonable assumption

that this perturbation contains all unstable linear modes. To understand the subsequent
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behaviour of these perturbations, we will visualise the dynamics in the space-time plane

(Figure 3.7). We denote by (x∗, t∗) a point on the invasion front. When t increases above

t∗, the perturbations applied to the steady state (u∗, v∗) by the invasion front spread

out in time and space, growing along all rays x = x∗ + (t − t∗)V with V between −V ∗

and V ∗. In order to calculate precisely the width of the stabilised region, we must give

a precise definition of its ends. The right-hand end is simply the invasion front, and we

define the left-hand end to be the point at which perturbations applied to the steady state

(u∗, v∗) by the invasion front first become amplified by a factor F. This occurs at time

tcrit(V ) = t∗+log(F)/Re[λmax(V )], with the corresponding location being xcrit(V ) = x∗+

V log(F)/Re[λmax(V )]. Note that F > 0 can be chosen arbitrarily, but we will show that

the parameter dependence of the width of the stabilised region is independent of the choice

of F. Figure 3.7 shows an example of the curve (xcrit(V ), tcrit(V )), (−V ∗ < V < V ∗). The

left-hand edge of the stabilised region occurs at the point on this curve that is closest to

the invasion front x = x∗ + (t− t∗)cinv, where cinv is the invasion speed.

A straightforward calculation shows that this closest approach occurs when V satisfies

(V − cinv)Re[νmax(V )] = Re[λmax(V )], −V ∗ < V < V ∗. (3.6)

Numerical calculations indicate that (3.6) has a unique solution for V , which we denote by

Vstab. Figure 3.10 shows a plot of Vstab and V ∗ as functions of k. The steady state (u∗, v∗)

changes stability at kmin ≃ 7.67 and below this value, V ∗ and Vstab are not defined. As

k increases from 7.67, V ∗ and Vstab both increase from zero. Initially V ∗ > Vstab > 0 and

at kmax = 9.027, V ∗ = Vstab = cinv. For k > 9.027, perturbations are able to outrun the

invasion front, and there is no stabilised region. Note that the condition V ∗ > Vstab for

dynamical stabilisation to occur matches the condition of Petrovskii et al. (2001), which

is based on linear spreading speeds, because of the known relationship between spreading

speeds and absolute stability (van Saarloos 2003). For 7.67 < k < 9.027, perturbations

travel more slowly than the invasion and dynamical stabilisation occurs (Figure 3.8).

The width of the stabilised region is the spatial distance between the invasion front

and (xcrit(Vstab), tcrit(Vstab)), which can be simplified to

L(k) =
−1

Re[νmax(Vstab)]
log(F) (3.7)

(see Sherratt et al. (2009) for more details). Of course, this width depends on the arbitrary

factor F, but crucially all of the parameter dependence decouples from F and appears only
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Figure 3.7: An illustration of the argument on which our calculation of the width of the
stabilised region is based. The thick solid curve is a plot of calculated values, not a sketch,
and the parameters are given by (3.1e) with b = 1.2, k = 9.0 and F = 2; this value of F
is very much smaller than any suitable real value, but is useful for illustration purposes.
Then, if we view the point (x∗, t∗) = (1, 2) in a frame of reference moving at a velocity V ,
with −V ∗ < V < V ∗, perturbations grow and spread out in time and space, reaching the
point (xcrit, tcrit) (thick curve) when their amplitude has doubled. Perturbations moving
at the velocity Vstab reach the edge of stabilised region closest to the invasion front.

in the coefficient

W(k) =
−1

Re[νmax(Vstab)]
. (3.8)

As a test of our theory, we estimated the width L(k) of the stabilised region for a

number of different values of k in numerical simulations of invasion in (3.1), and compared

these with the calculated values of W(k). To estimate L(k) in simulations, we need to

determine the left- and right-hand edges of the stabilised region. Keeping in mind that

the left-hand end is the first point behind the stabilised region, we define it as the point

x1 at which A =
√

(u− u∗)2 + (v − v∗)2 equals a small value, taken as 0.005. We choose

the right-hand edge to be the point x2 on the invasion front that is halfway between
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Figure 3.8: Plots of V ∗, Vstab and cinv against k for b = 3.0; a, Du, Dv are given by
(3.1e). At k = kmin, the coexistence steady state becomes unstable. This value of k
is also characterised by V ∗ = Vstab = 0. V ∗ and Vstab increase with k until k = kmax.
For k ∈ (kmin, kmax), we have Vstab < V ∗ < cinv, so that the unstable steady state
is dynamically stabilised for these k values. The Vstab curve folds at k = kmax while
intersecting both the V ∗ and cinv curves. For k > kmax, the velocity Vstab does not exist
as Equation (3.6) has no solution. Meanwhile V ∗ has now become bigger than cinv: there
are unstable linear modes that overtake the invasion and dynamical stabilisation will no
longer occur.

the coexistence steady state and the prey only steady state; that is the point at which

A = 1
2

√

(1− u∗)2 + v∗2. We estimate both x1 and x2 by linear interpolation between

numerical grid points; of course they are both time-dependent. Now recall that the width

of the stabilised region is a function of time and has a growing and then a constant phase.

Here is an intuitive reason why this is the case: initially the spatio-temporal oscillations

invade the uniform (coexistence) steady state but more slowly than the invasion of the

prey-only state, leading to a growing stabilised region. However, the leading front of the

invasion by predators generates a perturbation of the coexistence steady state which grows

sufficiently large to become visible over a fixed distance. At larger times, this distance is

the width of the stabilised region. We calculated the average value of x2 − x1 over the

time interval of (8000, 11000), which is during the constant phase for all the parameter

sets we considered. Numerical details are the same as in Figure 3.1 except that we now

take a larger domain (0, 8000) and that the time variable varies between 0 and 11000.

Figure 3.9a plots the value of L(k), estimated in this way, against calculated values
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Figure 3.9: (a) plots the numerically calculated width of the stabilised region L(k) against
W(k) (dots); the straight line is the best fit line, given by linear regression. In (b) we plot
our measured width against the parameter k ∈ [kmin, 8.8]. The curve shows the calculated
width vs k; we obtained the calculated width as a function of W(k) using the best fit line
in (a).

for W(k). Our theory predicts that these should be linearly related, and this is confirmed

by the figure. The slope of the best fit line provides an estimate for log(F). Note that

the best fit line has a small but non-zero (positive) intercept: this corresponds to the

edges of the numerically estimated stabilised region being excluded from the theoretical

calculations. Combining the best fit line with our formula (3.8) for W(k), we can predict

actual widths of the stabilised region. Figure 3.9b demonstrates the very good comparison

between these predictions and the stabilised width measured from simulations, across a

wide range of values of k.

3.4 Point-to-Limit Cycle Invasions

For smaller values of b, the behaviour described in Section 3.3 is augmented by an addi-

tional complicating factor. To describe this, we consider in detail the case of b = 1.2, with

k varying and the other parameters given by (3.1e). Calculations as in Section 3.3 show

that kmax = 14.56 (Figure 3.10). However, in numerical simulations, dynamical stabilisa-

tion is only observed for k between kmin = 7.67 and about 10.5; above this, spatiotemporal

oscillations occur immediately behind the invasion front (illustrated in Figure 3.11d). In-

sight into this is given by comparing space-time plots for values of k above the upper limit

for dynamical stabilisation, for b = 3.0 and b = 1.2 (Figure 3.12). In both cases there are

spatiotemporal oscillations immediately behind the invasion front. For b = 3.0 these are

somewhat disordered, and move in the opposite direction to the invasion. However, for
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Figure 3.10: Plots of V ∗, Vstab, cHB and cinv against k for b = 1.2. The steady state
(u∗, v∗) is unstable for values of k above kmin. For k in this range, (u∗, v∗) has a Hopf
bifurcation in the travelling wave equation corresponding to (3.1) at a critical value of V .
On this picture, we also show cHB, the wave speed at which this Hopf bifurcation occurs,
as a function of k. Note that the intersection between the cHB and cinv curves occurs at
a value kHB ≃ 11.1, which is less than kmax.

b = 1.2, they have the form of periodic travelling waves moving with the invasion front;

further back, there is a transition to more disordered oscillations moving in the opposite

direction. Thus for b = 1.2, the invasion itself consists of a point-to-periodic orbit connec-

tion in the travelling wave ODEs, rather than the heteroclinic connection seen for b = 3.0.

When the invasion is of the former type, the solution does not approach the coexistence

steady state, and thus dynamical stabilisation of this steady state cannot occur.

General theory (Kopell & Howard 1973) implies that in the travelling wave ODEs

corresponding to (3.1a-d), for k > kmin, the coexistence steady state undergoes a Hopf

bifurcation as the wave speed c > 0 is increased, at c = cHB say. Calculations of the

eigenvalues at this steady state show that they all have negative real parts for c > cHB,

implying that there cannot be an invasion front of heteroclinic connection type, and

numerical simulations indicate that there is instead a point-to-limit cycle invasion front.

Note that the existence of this type of front solution of (3.1a-d) has been proved in Dunbar

(1986) for Du = 0 and in Fraile & Sabina (1989) for Du > 0 sufficiently small. For the

case b = 3.0 considered in Section 3.3, cHB is significantly greater than cinv for all values

of k ∈ [kmin, kmax], so that this change in the form of the invasion front does not have any

60



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500  3000  3500  4000

P
re

y 
de

ns
ity

, u

Space, x

a) k=7.5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500  3000  3500  4000

P
re

y 
de

ns
ity

, u

Space, x

a) k=7.5

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500  3000  3500  4000

Space, x

b) k=8.0

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500  3000  3500  4000

Space, x

b) k=8.0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

P
re

y 
de

ns
ity

, u

Space, x

c) k=8.5

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

P
re

y 
de

ns
ity

, u

Space, x

c) k=8.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

Space, x

d) k=11.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

Space, x

d) k=11.5

Figure 3.11: Numerical simulations of invasion in (3.1) for b = 1.2 and four different values
of k. The other parameters are given by (3.1e). Panel (d) corresponds to k = 11.5; even
though this value is less than kmax, there is no dynamical stabilisation. Initial conditions,
boundary conditions and the numerical method were as in Figure 3.2.

effect on dynamical stabilisation. However for b = 1.2, cHB < cinv for k > 11.1 (see Figure

3.10), implying that dynamical stabilisation will only occur for kmin < k < kHB = 11.1.

Here we define by kHB the value of k at which cHB = cinv. In fact, as mentioned earlier,

we observe stabilisation only up to about k = 10.5. A close look at numerical solutions

for k ∈ (10.5, 11.1) reveals that the solution behind the invasion front decays relatively

slowly and does not get sufficiently close to the coexistence steady state before giving way

to the spatiotemporal oscillations. For values of k in the range kmin < k < 10.5, there is

a very close agreement between the predicted width of the stabilised region, calculated as

described in Section 3.3, and the width measured in numerical simulations (Figure 3.13).

3.5 Extension to Other Parameter Values

The main results of Dagbovie & Sherratt (2013) are the determination of the parameter

region in which dynamical stabilisation occurs, and of the parameter dependence of the

width of the stabilised region. For k < kmin the invasion consists of a simple transition
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Figure 3.12: Plots of prey densities for t ∈ [0, 1070] with x ∈ [0, 4000]. The left panel
corresponds to b = 3.0, k = 9.5 and shows that the waves behind the invasion front are
moving in a direction opposite to that of the front. However in the right panel (b = 1.2,
k = 15) we see the waves initially moving in the same direction as the front; further back
there is a transition to waves moving in the opposite direction. Numerical details are the
same for Figure 3.1, and the other parameter values are given by (3.1e).
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Figure 3.13: (a) The variation in the width L(k) in numerical simulations of (3.1) with
the width coefficient W(k) (dots); the straight line is the best fit line, given by linear
regression. In (b) we plot our measured band width against the parameter k ∈ [kmin, 10.5].
The black curve shows the calculated bandwidth vs k.

wave. When kmax < kHB, dynamical stabilisation occurs for k ∈ (kmin, kmax); for k just

above kmax there are spatiotemporal oscillations immediately behind the invasion front, in

the opposite direction. When kmax > kHB, dynamical stabilisation occurs for most of the

interval kmin < k < kHB; it is lost for k just below kHB because of the slow decay behind

the invasion front, as discussed in Section 4. For k just above kHB there are spatiotemporal

oscillations immediately behind the invasion that move with the same speed and direction

as the invasion. Our results indicate that there is a critical value of b ∈ (1.2, 3.0) at

which there is switch between these behaviours. We calculated this critical value by first

computing kHB and cHB(kHB) = cinv(kHB) for a range of b values; this can be done by

numerical continuation of the travelling wave equations. For this grid of b values, we then

calculated V ∗(kHB) using the methods described in Section 3.3; recall that (−V ∗, V ∗) is

the range of velocities for which the coexistence steady state has growing linear modes.

Now kmax is defined by V ∗ = cinv. Therefore kmax > kHB ⇔ V ∗(kHB) < cHB(kHB).

Figure 3.14a shows a plot of V ∗(kHB) and cHB(kHB) against b; in Figure 3.14b, we see

how the upper limit of the extent of dynamical stabilisation varies with b by plotting kHB

and kmax as functions of b. The curves cHB(kHB) and V ∗(kHB) in Figure 3.14a, and kHB

and kmax in Figure 3.14b, intersect at the critical value of b = 1.758.

Other values of b do not give any behaviour that differs qualitatively from that des-

cribed for b = 1.2 and b = 3.0, and the methods that we have presented can be used

to determine the occurrence and extent of dynamical stabilisation. As an example, Fig-

ure 3.15 illustrates the variation in the width coefficient W, which is proportional to the

width of the stabilised region, for 1.2 < b < 2.1 and 7.8 < k < 8.7. Dynamical stabilisa-
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Figure 3.14: Panel (a) shows plots of cHB(kHB) (dotted) and V ∗(kHB) (solid) against b.
The two curves intersect at 1.758 as do the curves kHB (dotted) and kmax (solid) shown
on Panel (b). For values of b below this, kHB < kmax implying a point-to-periodic cycle
invasion front. However, kHB > kmax for b > 1.758, meaning that there is a heteroclinic
connection behind the invasion front.

tion occurs throughout this parameter region, with no point-to-periodic waves, and the

width of the stabilised region is a decreasing function of both b and k.

3.6 Application to Vole-Weasel interactions

As an example application of our approach to a specific ecological system, we consider the

invasion of Microtus voles by their specialist predator the least weasel (Mustela nivalis).

Multi-year cycles in the abundance of these voles is a classic and much-studied aspect of

the ecology of northern Fennoscandia. The cause of these cycles has been the subject of

extensive debate, but a significant volume of data from predator exclusion experiments

now points to predation as a leading cause of vole cycling (Korpimäki et al. 2002, Kor-

pimäki & Norrdahl 1998). However it should be noted that vole cycles in other locations,

such as Northern UK, appear to result from different mechanisms (Graham & Lambin

2002, Oli 2003, Reynolds et al. 2012).

Parameterisation of the equations (3.1a-d) for the case of the vole-weasel interaction

in Northern Fennoscandia is made possible by the large volume of relevant field and

laboratory data. The reproductive rate of Microtus voles is relatively uniform across

different locations in Northern Europe. We take the maximum per capita birth rate to

be 3.3 year−1, following Sherratt et al. (2002). This is based on an average litter size of 5,

with six litters per season in optimal conditions, and with early-born females breeding

themselves in the same season (Dyczkowski & Yalden 1998, Norrdahl & Korpimäki 2002).
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Figure 3.15: On Panel (a), we show a three-dimensional plot of the width coefficient W as
a function of b and k. Featured on Panel (b) are contour plots ofW at levels 20, 30, 50, 70
and 100 in the k, b plane. The plots are based on calculations of W, using the method
described in the main text, for 1.2 < b < 2.1 and 7.8 < k < 8.7.

However it should be noted that other authors have proposed higher estimates (Turchin

& Hanski 1997).

For weasels, the corresponding numbers are a mean litter size of 6, with two litters

per season when prey is abundant, and with the females from the first litter breeding

themselves in the same season (King 1989, McDonald & Harris 2002). This implies a

maximum annual productivity of 30 per adult female weasel, and hence a maximum per

capita productivity of 15 year−1. The corresponding per capita birth rate is loge 15 =

2.7 year−1. Annual mortality for weasels is 77.5% (King 1989), implying a mean annual

death rate of − loge 0.225 = 1.5 year−1. Using standard nondimensionalisation rescalings

for the Rosenzweig-MacArthur model (e.g. Sherratt et al. 2002), these estimates imply

a = 1.8 and b = 1.2. Given these values, the dimensionless parameter k can be estimated

based on the amplitude of the vole population cycles. For a = 1.8 and b = 1.2, the

kinetics of (3.1a-d) have a Hopf bifurcation at k = 3.5, and the cycle amplitude increases

monotonically with k above this value. Field data shows that vole cycle amplitude varies

significantly between locations in Northern Fennoscandia (Turchin 2003, §12.2), and we

take k = 4.5; this implies a ratio of maximum to minimum vole densities of about 21,

which is a reasonable representative value.

In comparison with the large volume of data on demographic parameters, there is

very limited information on vole dispersal. The mark-capture data of Sherratt et al.

(2002) suggests 0.2 km2year−1 as a reasonable estimate of the vole diffusion coefficient.

For weasels we are not aware of any relevant data, although the diffusion coefficient will
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certainly be larger than that for voles. Therefore we varied the dispersal ratio δ (> 1) with

a = 1.8, b = 1.2 and k = 4.5 fixed. Figure 3.16a shows that the width of the stabilised

region is an increasing function of δ, and that even for the relatively modest estimate

δ = 2, the width is significant in comparison to the length scale of typical vole habitats in

Northern Europe (10’s of km). This implies that the dynamical stabilisation phenomenon

would be of major significance in the aftermath of an invasion of Microtus voles by least

weasels. Figure 3.17a-c show simulations of invasions for δ =2, 5 and 8, which confirm

these trends.
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Figure 3.16: Panel (a) plots (in dots) the width L (in km) of the stabilised region against
the dispersal ratio δ with the other ecological parameters fixed as stated in Section 3.6.
For each δ in the range (2, 8), we calculated L in numerical simulations of 3.1 by averaging
the widths measured on PDE simulations on the domain (0, 8000) at times between 1000
and 3000 as described in Section 3.3; according to Sherratt et al. (2002), this time range
corresponds to a period of 303-909 years after the beginning of invasion. The dimensionless
width obtained is then converted into kilometers through multiplication by a factor of
0.246 (see Sherratt et al. 2002). We also calculated the coefficient W as function of δ then
fitting the converted width L with W through linear regression, we plotted the obtained
expression of the width in terms of W as a function of δ (straight line). Panel (b) shows
cHB and V ∗ as functions of δ. This indicates that for δ in the range considered, when k
rises above kHB(δ), point-to-periodic invasions occur and there is no stabilised region; for
all δ ∈ (2, 8), kHB(δ) is bigger than 4.5, our chosen k value for vole-weasel simulations.

Dynamical stabilisation occurs for all of the values of δ considered in Figures 3.16a

and 3.17a-c; in particular there are no point-to-periodic waves. This is confirmed in Fig-

ure 3.16b, which shows that cHB is greater than V ∗ throughout this parameter region.

However, this result depends on the value of k, which is expected to vary between geo-

graphical locations in view of the observed variations in cycle amplitude. To illustrate

this, we show in Figure 3.17d a simulated invasion for k = 5, with other parameters as

in Figure 3.17c. In this case there is a point-to-periodic invasion, and thus no dynamical
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Figure 3.17: PDE simulations for various values of δ. For panels (a)-(c), the parameter
k is fixed at 4.5 while δ is respectively 2, 5 and 8. These pictures show that the width of
the stabilised region grows with the dispersal ratio δ, as predicted by Figure 3.16a. Panel
(d) corresponds to a simulation for δ = 8 with k = 5 which is slightly above the upper
limit of the extent of stabilisation (kHB = 4.945); the slow decay seen on Panel (c) behind
the invasion front has now given way to oscillations of relatively bigger amplitude. Initial
conditions, boundary conditions and the numerical method are the same as in Figure 3.2.

stabilisation.

3.7 Future Mathematical Challenges

We have focussed on the existence and extent of the coexistence steady state as a spa-

tiotemporal transient. The invasion of a prey population by predators can also involve

other spatiotemporal transients. In many cases, periodic travelling waves develop, mov-

ing in the opposite direction to the invasion, and in some cases these appear in a moving

band (Figure 3.2c, d). Additionally the periodic travelling waves moving with the inva-

sion for k > kHB typically occur in a spatiotemporally transient band (Figures 3.11d and

3.17d). We expect that both of these phenomena could be investigated using the same

methodology as in this chapter. However, there is one very fundamental practical diffi-

culty: there is currently no systematic algorithm for computing the absolute spectrum for
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a non-constant solution of a partial differential equation. There is no particular difficulty

in performing a numerical continuation of the absolute spectrum; the problem lies in the

identification of appropriate starting parts (Rademacher et al. 2007). Our work highlights

the importance of research on the calculation of the absolute spectrum for non-constant

solutions.
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Part III

Stability of a Nonhomogeneous

Steady State
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Chapter 4

Pattern Formation in Arid Landscapes

4.1 Introduction

Vegetation patterns are widespread in semi-deserts. They can be found all over the world

(in particular Sub-Saharan Africa, Australia and Mexico) and are detectable through

aerial photography. Aerial photographs of arid and semi-arid ecosystems exhibiting these

patterns have shown several kilometers square of bare soil with the presence of spots of

vegetation; spots are best described as round-shaped groups of vegetation within bare soil.

‘Gaps’ are another type of patterns and can be considered as the complements of spots

as they consist of round-shaped bare soil areas surrounded by vegetated areas (see Figure

4.1). ‘Labyrinths’ of bare soil alternating with vegetation have also been observed. These

patterns can arise on various soil types and many vegetation species, including grasses,

shrubs and trees (See Table 2 in Valentin et al. (1999)). One of the most widely reported

types of organised vegetation is the ‘tiger bush’ which is characterised by patterns that

seem to mimic the pelt of tiger. It was first described in Niger (Clos-Arceduc 1956) and

Sudan (MacFadyan 1950b, Worrall 1960).

Spatial patterns on the landscape scale are observed not only in vegetated semi-deserts.

They have been noticed in a variety of other ecosystems. Examples include patterns

consisting of regular strings in wetland ecosystems in Labrador and Northern Minnesota

(Foster et al. 1983), and regular and isolated spots of trees and shrubs in savanna with

scarce nutrients (Lejeune et al. 2002, Belsky 1994). In the Wadden Sea, the Netherlands,

mussel beds lying on sediments have been found to exhibit regular stripes (Bertness &

Grosholz 1985, Wang et al. 2009, Liu et al. 2012). Also in western North America, some

alpine trees in the Rocky Mountains are organised in narrow parallel rows perpendicular

to the direction of the winter wind. These stripe patterns are called ‘ribbon forests’

and are the result of the interaction between the wind, the trees and snow accumulation
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Figure 4.1: Aerial photograph of a gaped vegetation pattern in the W National Park of
Niger. The distance between two neighboring gaps is 50 m in average. Source Wikipedia.

(Hiemstra et al. 2002, 2006).

The study of patterned landscapes has attracted the attention of many scientists in

recent decades. In fact, human activities have caused soil degradation and a decline in

fertility, which tends to promote patterns rather than uniform vegetation. Before the

invention of aerial photography, these patterns were often viewed as a type of landscape

degradation. However, research on vegetation patterns over the last past years has shed

some light on the phenomenon and brought a better understanding of the underlying

mechanisms. As a result, changes have been made to the way vegetation patterns are

managed (Tongway et al. 2001).

The width of banded patches increases with annual rainfall. For example, regions

like Nigeria and Somalia have higher average rainfall and hence wide vegetated patches.

These landscapes are seasonal. On the other hand, Jordan and eastern Australia, for

example, have lower rainfall and display aseasonal patterns with smaller vegetated patches

(Tongway & Ludwig 1990). Furthermore, previous research has shown that vegetation

patterns adapt very well to rainfall variation and suggest that the type of pattern could

even change as a result of climate change. This research has included both field studies

and mathematical modelling. In this study, we will focus on banded vegetation patterns in

arid and semi-arid ecosystems. Banded landscapes consist alternating bands of vegetation
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Figure 4.2: Aerial view of a banded vegetation in New South Wales, Australia. This
vegetation consists of Mitchell grass, a plant that is mainly found in the North of Australia
where summer rainfall is dominant with annual rainfall ranging from 250-550 mm. The
plant is very well adapted to these harsh conditions and lives for 20-30 years. The darker
pixel on the picture represents vegetation while the lighter pixel shows bare soil and the
horizontal line in the middle of the photograph is a road.

and bare ground aligned along the contours in arid and semi-arid regions (50-750 mm

rainfall) on very gentle and uniform slopes (0.2-2%). Many mathematical models have

been used in the study of this particular type of vegetation patterns. The main ones are

those first introduced by Lefever & Lejeune (1997), Klausmeier (1999), HilleRisLambers

et al. (2001), Gilad et al. (2007) and have many variants. Recall that Klausmeier’s (1999)

model was used as an example in Chapter 2. In this study, we will use a variant of the

HilleRisLambers et al.’ (2001) model introduced by Rietkerk et al. (2002).

The Rietkerk model is an extension of a model first presented in HilleRisLambers et al.

(2001) and describes three state variables: plant density P (g/m2), soil water density W

(mm) and surface water density O (mm).

• plant growth is a function of W and will be described by a Holling function of type II.

Plant death is proportional to P and plant dispersal is represented by a diffusion term;
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• soil water gain occurs through the infiltration of surface water which is a function

of surface water and plant density. The rate of this infiltration increases to a maximum

as P increases. Soil water loss through water uptake by plants is proportional to plant

growth (Holling type II function of P and W). Loss also occurs during evaporation and

will be represented through a single term proportional to W. We add diffusion to model

water dispersal;

• rainfall provides surface water O which is lost through infiltration into the soil. Surface

water flows downhill due to the slope of the soil’s surface and this flow is described by an

advection term.

Therefore the model consists of the following system of partial differential equations:

Pt = DPPxx + f(P,W,O) (4.1a)

Wt = DWWxx + g(P,W,O) (4.1b)

Ot = νOx + h(P,W,O) (4.1c)

with

f(P,W,O) = cgmax

W

W + k1
P − dP,

g(P,W,O) = αO
P + k2W0

P + k2
− gmax

W

W + k1
P − rwW,

h(P,W,O) = R − αO
P + k2W0

P + k2

We use the following parameter values:

c = 10, gmax = 0.05, k1 = 5, Dp = 0.1, α = 0.2, k2 = 5, W0 = 0.2,

rw = 0.2, Dw = 0.1, d = 0.25, ν = 10.

All these parameter values except for d are taken directly from (Rietkerk et al. 2002).

According to Rietkerk et al. (2002), d ranges between 0 and 0.5. Throughout this study,

we fix d at 0.25; the rainfall R on the other hand will be varied. In the remainder

of this study, we will study periodic travelling wave solutions of the system (4.1) using

the software package WAVETRAIN (Sherratt 2012a,b). In Section 4.2, we briefly discuss

simulation results of the model (4.1) and we give a short introduction to WAVETRAIN

in Section 4.3. Sections 4.4 and 4.6 consist of the investigation in WAVETRAIN of the
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existence and the stability of pattern solutions, and in Section 4.7, we focus on the effects

that rainfall variations have on banded vegetation patterns.

4.2 The Rietkerk Model for Arid Landscapes

The system (4.1) has the following equilibria:

a ‘desert’ steady state

(P1,W1, O1) = (0, R/rw, R/(αW0)) (4.2)

and a ‘vegetated’ steady state (P2,W2, O2) where

W2 =
dk1

cgmax − d
, P2 =

R− rwW2

gmaxW2

(W2 + k1), O2 =
R

α

P2 + k2
P2 + k2W0

(4.3)

For R > 1 the vegetated steady state is unstable to homogeneous perturbations while

the desert steady state is stable. For R < 1 the desert steady state is unstable while the

vegetated steady state is stable; also P2 < 0 for R < 1 so that this state is not ecologically

relevant.

The goal of this study is to investigate pattern solutions of the system (4.1). First we

explore the existence of banded vegetation pattern solutions of the Rietkerk model in a

two-dimensional space. To do this, we rewrite 4.1 to obtain the 2-dimensional Rietkerk

model

Pt = DP (Pxx + Pyy) + f(P,W,O) (4.4a)

Wt = DW (Wxx +Wyy) + g(P,W,O) (4.4b)

Ot = ν(Ox +Oy) + h(P,W,O) (4.4c)

We then did PDE simulations of (4.4) for R = 1.05, 1.1, 1.25 on the domain 0 < x <

500, 0 < y < 500 using periodic boundary conditions. Our initial solutions were set at the

steady state (P2,W2, O2) with a slight perturbation through random numbers no more

than 5% of (P2,W2, O2) in amplitude. In all three cases, simulations were run over a

period t = 125000 and banded vegetation patterns were found (Figure 4.3 left column).

These patterns move in the positive x and the positive y directions. We see this in Panel

(b) where we compare the solution at t = 125000 (left) and the solution at t = 125400

(right) for R = 1.1. Note that for R = 1.05, the patterns obtained at t = 125000 are

regular (Figure 4.3a) while the patterns for R = 1.1 (Figure 4.3b) and R = 1.25 (Figure

4.3c) are not. However, with longer run times, we can obtain regular patterns for these
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R values too; for example for R = 1.25, the PDE solution obtained at t = 200000 (Panel

(c) right) is more regular than that obtained at t = 125000 (Panel (c) left).

In the remainder of this study, we will view banded vegetation patterns as periodic

travelling wave solutions; therefore we will be studying periodic travelling wave solutions

in the one-dimensional Rietkerk model (4.1). Our main tool in investigating the existence

and stability of such solutions is the software package WAVETRAIN. This package requires

the selection of one of the ecological parameters of the PDE system, and the investigation

of periodic travelling wave solutions in WAVETRAIN will then be done for various values of

this parameter which we call the control parameter. Since in a semi-arid ecosystem, plant

density is highly related to annual rainfall, we choose R as our control parameter. Our first

step is to perform numerical simulations of (4.1) for various values of R. It has been very

useful to do these simulations before starting up in WAVETRAIN as they offered an insight

into R values at which to expect pattern solutions. These simulations were run on the

domain 0 < x < 500 using periodic boundary conditions at both ends. Starting solutions

were set at the steady state (P2,W2, O2) with a slight perturbation through random

numbers no more than 5% of (P2,W2, O2) in amplitude. Our computations yielded a

periodic travelling wave solution at time t = 200000 for R = 1.05 and for R = 1.1

and R = 1.25, periodic travelling wave solutions were found much later at t = 800000.

We found that pattern solutions exist at R = 1.05, R = 1.1 and R = 1.25 but not at

R ≥ 1.28 and at R ≤ 1 (note that P2 ≤ 0 for R ≤ 1). Estimates of the wave speed

are c = 0.053, c = 0.052 and c = 0.039 and the wavelength was 83.33 in all three cases.

These results suggest that pattern solutions exist when the steady state (4.3) is unstable

to inhomogeneous perturbations. Figure 4.4 shows a plot, against the space variable x,

of the plant density, and the soil and surface water densities found at each of these R

values. Having located a few pattern solutions through PDE simulations, we would like

to identify the range of (R, c) values for which these patterns exist. To do this, we will

need the software tool WAVETRAIN that helps calculate these patterns in a more systematic

way. First, we give a short introduction on the software in the next section.

4.3 Getting Started with WAVETRAIN

A travelling wave solution of (4.1) is any solution of the form u(x, t) = ũ(x− ct), where c

is constant and is called the speed of the wave. Let z denote the variable x− ct. Then the

existence of periodic travelling waves can be studied using the travelling wave equations

which are obtained by substituting the solution forms P (x, t) = P̃ (z), W (x, t) = W̃ (z)

and O(x, t) = Õ(z) into (4.1). The corresponding travelling wave equations are given by
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(b) R=1.1

(c) R=1.25

Figure 4.3: Spatial patterns for the rainfall amounts R = 1.05, 1.1, 1.25 on panels (a),
(b) and (c) respectively. The domain range is 500 × 500. Green represents vegetation
bands and tan represents bare soil. On the left column of each panel, we show vegetation
patterns after t = 125000. On the right column of Panel (a) is a 3D plot of the PDE
solution at t = 125000 for R = 1.05. Each of these patterns move in both the positive x
and the positive y directions; we see an illustration of this on Panel (b) where we show
spatial patterns for R = 1.1 after t = 125000 (left) and t = 125400 (right) respectively.
Note that the spatial patterns for R = 1.05 exhibit regular stripes. As t is increased
above 125000, the patterns for R = 1.1, 1.25 become more and more regular; compare
the solutions for R = 1.25 at t = 125000 (Panel (c) left) and that at t = 200000 (Panel
(c) right). Equations (4.4) were solved numerically using a semi-implicit finite difference
method with periodic boundary conditions; the grid spacing on both x− and y−axis was
dx = dy = 2 with a time step of dt = 0.05 so that the CFL number 2νdt/dx equals 0.5.
The grid points for our starting solutions were set at the steady state (4.3), perturbed
randomly by ±5%.
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(b) R=1.1
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(c) R=1.25
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Figure 4.4: Plots against x of periodic travelling wave solutions of (4.1) for R = 1.05, 1.1
and 1.25 found through PDE simulations. We plot plant density in red, soil water in green
and surface water in blue. These wave solutions show that the vegetation on the domain
consists of regions covered with plants alternating with bare soil. As R increases from
1.05 to 1.25, the width of these vegetation bands grows larger and the bare interbands
become narrower. The grid points for our starting solutions were set at the steady state
(4.3), perturbed randomly by ±5%. The system was solved on the domain 0 < x < 500
for a time range of t = 200000 for R = 1.05 and of t = 800000 for R = 1.1, 1.25.
Estimates of the wave speed are c = 0.053, c = 0.052 and c = 0.039 and the wavelength is
83.33 for all three values. These equations were solved numerically using a semi-implicit
finite difference method with periodic boundary conditions at both ends; we chose a grid
spacing of dx = 0.5 and a time step of dt = 0.025 so that the CFL number νdt/dx equals
0.5.
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the following ODE system:

0 = DP

d2P̃

dz2
+ c

dP̃

dz
+ f(P̃ , W̃ , Õ) (4.5a)

0 = DW

d2W̃

dz2
+ c

dW̃

dz
+ g(P̃ , W̃ , Õ) (4.5b)

0 = (c+ ν)
dÕ

dz
+ h(P̃ , W̃ , Õ). (4.5c)

Periodic travelling waves are limit cycle solutions of these equations.

WAVETRAIN is a software package for investigating periodic travelling wave solutions of

partial differential equations and is freely available for download at

www.ma.hw.ac.uk/wavetrain. To explore periodic travelling wave solutions for the PDE

system (4.1), we enter into WAVETRAIN the steady state (4.3) as well as three sets of dif-

ferential equations:

• the travelling wave equations (4.5). These will be needed for various operations, for

instance in locating limit cycles and loci such as a Hopf bifurcation locus or a contour of

constant period;

• the linearised partial differential equations. Determining whether a travelling wave

solution is stable involves the calculation of the eigenvalue spectrum. The linear partial

differential equations given by linearising (4.1) about a periodic travelling wave solution

are needed in the first steps of this calculation;

• the eigenfunction equations are another set of equations that WAVETRAIN uses during

the calculation of the eigenvalue spectrum and they correspond to the periodic travelling

wave equations derived from the linearised partial differential equations mentioned above.

WAVETRAIN also requires some computational inputs from the user. This includes the

number of mesh intervals used for discretisation of periodic travelling waves, eigenfunc-

tions and their derivatives. Another required computational value is the various step sizes

used in numerical continuations of loci, spectra, bifurcation diagrams etc.

The user also needs to specify a wave search method for existence and stability calcu-

lation of waves. The wave search method specifies the solution branch along which waves

should be searched for. There are three different types of wave search method which we

will briefly discuss later in Section 4.5. Now, given an (R, c) pair, WAVETRAIN can inves-

tigate whether the corresponding pattern solution exists. More generally, it also has the

ability to investigate whether waves exist in a particular region; to do this the user will
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need to define that region through a set of grid points and the software will perform a

wave search over this grid investigating each individual grid point. In the next section,

we will investigate in WAVETRAIN the existence of pattern solutions of (4.1) for a range of

(R, c) values.

4.4 Locating Periodic Travelling Wave Solutions in

WAVETRAIN

We find periodic travelling wave solutions of (4.1) by computing limit cycles in the ODEs

(4.5). Steady states give birth to small limit cycles in the neighbourhood of a Hopf

bifurcation point. Hence intuitively, our starting point for computing limit cycles in

WAVETRAIN is to find the locus of Hopf points. Note that this does not mean that the

existence of a limit cycle is necessarily related to a Hopf bifurcation point; for example,

we show on Figure 4.17 an example of a solution branch starting and ending at homoclinic

solutions. Since previous PDE simulations have shown the existence of pattern solutions

for R = 1.05, 1.1, and 1.25 (Figure 4.4) we use WAVETRAIN to search the range [1, 1.3]

for Hopf bifurcation points in the (R, c) plane. Once one such point is found, WAVETRAIN

uses numerical continuation to compute the entire locus of Hopf bifurcation points to

which the point belongs. We found two loci: one containing Hopf points with c ≤ 0

and the other containing Hopf points with c ≥ 0 (see Figure 4.5). Note that the plant

steady state P2, defined in (4.3), is negative for all values of R less than 1; in addition we

intuitively expect to find periodic travelling wave solutions with positive wave speed; this

is because past research has shown vegetation moving uphill. This can be explained by

the fact that plants compete for the space on the uphill side of a vegetation band which

has higher moisture. Hence in the remainder of this study, we will focus on the existence

and stability of periodic travelling wave solutions that originate from the second Hopf

bifurcation locus.

The next step is to choose a domain containing part of (or all of) the Hopf locus

through which WAVETRAIN will check for the existence of periodic travelling waves. We

then define this domain in the software as a grid of (R,c) parameters. For a better

understanding of the existence of periodic travelling wave solutions of (4.1), we start with

the relatively small domain [0.9, 1.3]× [0.16, 0.7] with 21× 19 grid points. Because of the

numerical cost of this type of search, it is important, before starting a loop through these

399 grid points, to make sure our numerical parameters are suitable; these include values

such as the number of intervals used in the discretisation of solutions and the step size

used during numerical continuations (see Section 4.3). A natural way to check this is to
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Figure 4.5: Two loci of Hopf bifurcation points computed in WAVETRAIN. The first one we
found lies below the c = 0 axis (purple) and was calculated by doing a Hopf point search
in the (R,c) domain [0, 1] × [−1, 5]. A second search of the range [1, 2] × [−1, 5] yielded
the second one (orange) which is above the axis.

confirm the existence of the three periodic travelling waves found previously through our

PDE simulations at the (R,c) locations (1.05, 0.053), (1.1, 0.052) and (1.25, 0.039) (see

Figure 4.4). We enter these pairs in WAVETRAIN and at each of them we found periodic

travelling waves of periods approximately equal to 83.333(500/6). See Figure 4.6 for a

plot of the periodic travelling wave found at (1.25, 0.039). Note that this solution is very

similar to that of the solution in Figure 4.4(c); a slight difference is expected because

there will be numerical errors in the calculation of the speed in the simulations used for

Figure 4.4(c).

Periodic travelling wave regions

Having confirmed the suitability of our various computational constants, we can now

proceed in WAVETRAIN by investigating each grid point previously defined on the domain

D = [0.9, 1.3]× [0.16, 0.7]. WAVETRAIN loops through the grid and for each corresponding

pair of rainfall and wave speed, the search starts at a specified Hopf bifurcation point and

follows along the solution branch by numerical continuation, looking for the existence of
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Figure 4.6: A plot of the periodic travelling wave found at (1.25, 0.039) in WAVETRAIN.
It has a period of 0.8297 which is close to the value of 83.333 previously estimated by
simulations of the PDEs (4.1). To be compared with Figure 4.4c.

a wave at the current (R, c) pair. When the search is complete, we can use WAVETRAIN’s

integrated plotting package to explore the result. The result for our search is shown on

Figure 4.7a. Grid points corresponding to parameter values at which a periodic travelling

wave has been found are marked with orange dots; WAVETRAIN also records the period of

the limit cycles located at these points. Notice there are two purple points on the grid.

These indicate parameter values (R, c) where a wave solution has not been found even

though convergence was successfully reached; this simply means that a periodic travelling

wave does not exist at this location. A green dot indicates that the software failed to

find a periodic travelling wave at the corresponding coordinates due to the occurrence

of a convergence problem during the run. Convergence failures usually occur when the

solution branch terminates at a homoclinic solution before the specific (R, c) point has

been reached.

Figure 4.7a shows two regions of orange coloured grid points separated by green

coloured ones. This suggests that there are two wave regions on our chosen domain

D. Assuming this is the case, we can investigate how these regions are bounded. Let

Region I denote the upper wave region and Region II, the lower. In theory, such regions

are bounded by either a locus of Hopf bifurcation points, a locus of homoclinic solutions or

a locus of folds or some combination of the three. This is because Hopf bifurcation points
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correspond to limit cycles of zero amplitude; the period grows along the solution branch

born at the Hopf bifurcation point. If the period tends to infinity along the branch, the

periodic travelling wave tends toward a homoclinic solution. Alternatively the solution

may connect two different Hopf bifurcation points. For these reasons, Hopf bifurcation

loci and homoclinic solution loci are usual wave boundaries. However, a solution branch

that originated from a Hopf point may fold at a certain value of R; hence loci of folds in

solution branches can also constitute a boundary between regions of waves. See Figure

4.10 for an example of such folds.

The boundaries of Region II were fairly easy to find. Figure 4.7a shows that it is

bounded below by the Hopf bifurcation locus. One advantage in finding the upper bound-

ary was the fact that WAVETRAIN recorded the wavelengths of all periodic travelling waves

that have been found during the previous wave search loop; this allowed us to quickly

notice that the wavelengths for periodic travelling waves near the upper boundary are

very large: close to 1000. This suggests that Region II is bounded above by a locus of

homoclinic solutions. The way to find a locus of homoclinic solutions in WAVETRAIN is to

calculate the locus of solutions with a fixed (relatively) big wavelength. These solutions

are an approximation to homoclinic solutions. In the case of Region II’s upper boundary,

we use the contour of period fixed at 1000 as the locus of homoclinic solutions (see Figure

4.7b).

While searching for the lower boundary of Region I, we noticed that this region is

characterised by periodic travelling waves of big wavelengths in general; in fact less than

2.5% of the wave solutions in this region have a period less than 1000. This period

increases rapidly as R decreases and the highest period we recorded is 35000. Plotting

a network of period contours of this region shows that each contour intersect the upper

boundary of Region II at a single point. Since Region I is made of an infinite number of

such period contours, we take the upper boundary of Region II (homoclinic set) as the

lower boundary of Region I. Figure 4.7b shows a few of these loci of homoclinic solutions.

Note that only the lower parts of these loci are featured on the plot. This reveals that

our chosen domain is too small to investigate the upper boundary of Region I. For this

purpose we extend the domain D to [0.9, 1.3]× [−0.5, 15] so that the whole locus of Hopf

bifurcation points is included, and we notice that Region I is in fact bounded above by

the Hopf locus.

Remark In Figure 4.7(a) we see that WAVETRAIN failed to find wave solutions at some

grid points in Region I. This is because the homoclinic solutions in this region caused

convergence failures in WAVETRAIN. As we mentioned earlier, for a fixed value of the speed
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c, the period of the pattern solutions gets bigger as rainfall R decreases; this explains the

fact that more convergence failures occurred for the smaller values of R. The upper region

(Region I) contains the majority of the periodic travelling wave solutions we found. See

Figure 4.8 for a representation of the proportion that the two regions occupy within the

set of all computed periodic travelling solutions.

Folds in the Solution Branch Note that on Figure 4.8, the period contours of values

2000 (blue) and 1400 (green) extend to the right of the Hopf bifurcation locus. This

suggests that there is a region of periodic travelling waves at the right hand side of the

Hopf locus. This region is very thin and is bounded by the Hopf locus on the left and by

a locus of folds on the right. Computing bifurcation diagrams in WAVETRAIN for fixed R

values and varying c (and vice versa) helps in understanding the location of these folds.

See Figure 4.9 for an example of the bifurcation diagram for c = 0.025 with varying

rainfall. There are two Hopf bifurcation points for that c value. The solution branch

shown on Figure 4.9 is the one emanating from the Hopf bifurcation with the largest R

value and folds occur several times on this branch. WAVETRAIN can be used to compute

the locus of folds; one simply enters two pairs of (R, c) values (with either the same R

values or the same c values) between which the software will search for a fold and when

such a point is found, it is used as a starting point to numerically trace the whole locus

of folds. The choice of the (R, c) pairs is made easy by bifurcation diagrams such as that

on Figure 4.9. We will discuss the computation of loci of folds further in Section 4.5.

4.5 Wave Search Method

The search in WAVETRAIN for a periodic travelling wave for a certain (Rs, cs) pair can be

done in three different ways. The ‘direct’ method consists of searching for a Hopf point

for a range of R values with c fixed at cs. When such point is found for an R value

RHP , a solution branch is traced from (RHP , cs) to (Rs, cs). In complicated cases, an

‘indirect’ method can be helpful. It consists of starting from a certain Hopf point located

at (Ri, ci), and then the solution branch is traced out in two steps: first c is varied from ci

to cs with R fixed at Ri and then R is varied from Ri to Rs. There is a third method, ‘the

file’ method, where WAVETRAIN numerically continues the solution branch starting from a

user-specified solution saved into an input file. This method differs from the other two in

the fact that it can help compute periodic travelling waves belonging to a solution branch

that does not contain a Hopf bifurcation point.
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Figure 4.7: Panel (a) shows the sections of the domain D = [0.9, 1.3]× [0.16, 0.7] in which
periodic travelling wave solutions have been detected. Such solutions are indicated by
dark orange grid points. Green indicates that a periodic travelling wave has not been
detected at the corresponding location due to a convergence failure. At the few grid
points shown in purple, no periodic travelling wave was found even though convergence
occurred along the whole solution branch. On both panels, the Hopf bifurcation locus
is plotted in orange. Panel (b) shows the actual boundaries of the two wave existence
regions. Inside Region I ( shown in light blue) we plot a few loci of solutions with large
periods; in the increasing R direction, these are the contours of period fixed at 11000,
4000, 2500, 2000 and 1400 respectively. Note that these do not intersect Region II which
is bounded by the Hopf bifurcation locus and the contour of period fixed at 1000 (shown
in red).
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Figure 4.8: Plot of Region II as well as the entire Region I. The latter is bounded above
by the Hopf bifurcation locus (plotted in orange). The remaining boundary is the union
of the lower part of various contours of (large) fixed period; in the increasing R direction,
these are the contours of period fixed at 11000, 4000, 2500, 2000 and 1400 respectively.
Region II is bounded by the Hopf bifurcation locus and the contour of period fixed at
1000 (shown in red).
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Figure 4.9: Bifurcation diagram for c = 0.025; this diagram has been truncated at period=
30 on purpose for better picture quality. The filled red square represents a Hopf bifurcation
point while the filled red circles are folds.
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4.5.1 Direct method

When we do a stability calculation for a grid representing Region II, waves seem not to

exist for some small values of c (Figure 4.14a). Computing bifurcation diagrams for some

of those c values reveals that the corresponding solution branches fold multiple times over

a thin range of R values at the right of the Hopf bifurcation locus (see Figure 4.10). This

explains the absence of periodic travelling waves for c ∈ [0.01, 0.04] in Figure 4.14a. To

overcome this problem, we can use an indirect or a file search method for c < 0.04.

The existence of folds in the solution branch means that for some (R,c) pairs, multiple

waves will exist. WAVETRAIN offers the tools to calculate stability for these multiple waves.

In some cases, wave stability changes at the fold. We show an example of this in Figure

4.11. Figure 4.11a shows a plot of the bifurcation diagram for c = 0.04; there is a fold in

the solution branch such that there are two waves located at (R, c) = (1.29, 0.04). The

first one has wavelength 133 and is unstable and the other has wavelength 104 and is

stable (see Figure 4.11b for a plot of the respective eigenvalue spectra). The (truncated)

bifurcation diagram for c = 0.02 shows a solution branch that folds in multiple points

(Figure 4.12a); for this value of c and for the rainfall value R = 1.286 for example, there

are six different waves and stability calculations showed that they are all unstable (Figure

4.12b).

These folds lay at the right of the Hopf bifurcation locus. This means that there exist

a thin region of waves at the right of the Hopf bifurcation locus and this region is bounded

on the right by a locus of folds. Next we compute this locus using the direct method.

To do this, we enter into WAVETRAIN to pairs of (R, c) values where either the rainfall

values or the wave speed values are the same. The software then searches this range for

a fold to use as starting point in the continuation of the locus of folds. Since the solution

branches in thin region have several folds, WAVETRAIN takes the first fold to occur in the

solution branch starting from the Hopf point. Continuation then proceeds, tracing out

the locus of folds. See Figure 4.13 for a picture of the fold locus obtained through the

direct search. This locus extends between 0.015 and 0.04 on the c-axis. Hence, in order to

avoid situations where WAVETRAIN fails to find an existing wave (Figure 4.14a), we need

to amend the search method for wave speed values between 0.015 and 0.04.

4.5.2 Indirect method

We use the indirect method to compute waves with wave speed between 0.015 and 0.04.

Specifically, when computing for waves with speed in this range, we started from the Hopf

point located at (R, c) = (1.1, 0.001). Then c is varied while the rainfall stays fixed at 1.1
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Figure 4.10: Bifurcation diagrams for wave speed values in the range [0.01, 0.04]; (a) c =
0.02, (b) c = 0.025, (c) c = 0.03 and (d) c = 0.035. These diagrams have been truncated
on purpose for better picture quality and we see that the corresponding solution branches
fold multiple times over a thin range of R values to the right of the Hopf bifurcation
locus. This explains the absence of periodic travelling waves for c ∈ [0.01, 0.04] in Figure
4.14a. The filled red squares represent Hopf bifurcation points while the filled red circles
are folds.
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Figure 4.11: Panel (a) shows the bifurcation diagram at c = 0.04; the filled red square is
a Hopf bifurcation point. There is a fold in the solution branch such that for the rainfall
amount R = 1.29 for example, there are two different waves, wave1 (wavelength = 133)
and wave2 (wavelength = 104). The eigenvalue spectra of wave1 and wave2 are shown
on Panel (b); the first is unstable (blue curve) while the the second is stable (red curve).

until the required speed is attained. Next, the rainfall will be varied and the search stops

when the appropriate R value is reached. This solves the problem of the ‘missing waves’

seen on Figure 4.14(a). Figure 4.14(b) shows the results of a combination of the direct

and indirect methods.

The bifurcation diagram in Figure 4.17c indicates that there is a region of waves at

the right of the Hopf bifurcation locus with rainfall value as high as R = 1.376. To find

the boundary at the right of this region, we attempt to compute the locus of folds using

the indirect method. We computed this locus in three different parts due to continuation

problems. First, we used the two (R, c) pairs (1.27, 0.017) and (1.4, 0.017) as a search

range for the starting solution. AUTO found a fold at (1.317, 0.017), and starts tracing out

the locus but then drifts away into joining homoclinic solutions. When the wavelength

gets increasingly big, it then changes direction but again it ends up computing homoclinic

solutions. It is understandable how this ‘error’ could have occurred: indeed, there are

homoclinic solutions in the region where we are performing the fold locus search (see
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Figure 4.12: Panel (a): bifurcation diagram at c = 0.02. We truncated the solution branch
to show waves of wavelength between 20 and 130 and in this range, there are six different
waves wave1, wave2, ..., wave6 at the R value 1.286. Panel (b): eigenvalue spectra of
wave1, wave2, ..., wave6; these spectra indicate that all six waves are unstable.

Figure 4.17c). It is possible that a solution branch containing such homoclinic solutions

folds slightly at some point. While continuing the fold locus, AUTO might have detected

such a point; continuation would have then carried on from that point, thus tracing the

locus of homoclinic solutions. The result of this computation is shown by the purple

curve on 4.16a. Using the file method described below, we have been able to calculate the

set of homoclinic solutions in this wave region and it is similar to this purple curve. A

genuine portion of the actual locus of folds we are looking for is included in this curve; to

obtain the whole locus, we just need to do two more fold locus searches on either side of

the previously obtained portion (green and pink curves on 4.16a). With the three search

results, we obtain a connected curved from which we eliminate the homoclinic parts to

obtain the locus of folds, which is shown on Figure 4.16b.
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Figure 4.13: Fold locus computed with the direct search method (blue curve). We also
show part of the Hopf bifurcation locus (orange curve).

4.5.3 File method

The file method computes solution branches starting from a specified pattern solution.

The latter can be a solution obtained from previous PDE simulations or a solution pre-

viously computed in WAVETRAIN. The advantage with this method is that it can find

waves even when a Hopf point has not been found. The search for a bifurcation diagram

for c = 0.02 using the file method starting with a periodic travelling wave solution at

(R, c) = (1.22, 0.02) yields two bifurcation diagrams; one is the same as the diagram on

Figure 4.10a (and the same as Figure 4.12) obtained through the direct search. The sec-

ond one does not contain any Hopf bifurcation point and joins two homoclinic solutions

(Figure 4.17).

We have previously seen that there are multiple waves corresponding to the (R, c)

value (1.286, 0.02) and we have shown that the first six of these waves along the solution

branch are all unstable (Figure 4.12). Taking a close look at Figure 4.17b, we see that

there is another periodic travelling wave at (1.286, 0.02) which belongs to the solution

branch joining the two homoclinic solutions. We calculate stability for this new wave and

found that it is stable. See Figure 4.18 for the eigenvalue spectra of this solution.
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Figure 4.14: Panel (a): a grid of 51× 11 points on the domain [0.3, 1.3]× [0, 0.2] showing
results of a wave search run on Region II using the direct method only. The filled dark
orange circles indicate the existence of periodic travelling waves at the corresponding (R, c)
locations. Green triangles indicate that a periodic travelling wave has not been detected
at the corresponding location due to a convergence failure. Purple squares correspond to
locations where no periodic travelling wave was found even though convergence occurred
along the whole solution branch. WAVETRAIN could not find waves around c = 0.02 due
to the fact that for some values of c below 0.04, the solution branch starts from the Hopf
point with the biggest R value and continues into a thin region of waves to the right
of this Hopf point (see Figure 4.10). This is fixed on Panel (b) using a combination of
both direct and indirect methods: the direct method was used at locations with c ≤ 0.04
and the indirect method (illustrated in Figure 4.15), elsewhere. A portion of the Hopf
bifurcation locus is plotted with a thick orange curve.
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Figure 4.15: Illustration of the indirect wave search method. First, we specify in
WAVETRAIN a Hopf point to start from; we fix the rainfall value at R = 1.1 and choose the
Hopf point at c = 0.001 as starting point. When searching for a wave of speed c = 0.02
and a certain rainfall value Ri with this indirect method, WAVETRAIN firstly increases c
from 0.001 until it reaches c = 0.02 while R is kept constant at 1.1 (Panel (a)). The
second step, illustrated by Panel (b), then consist of either increasing or decreasing R
starting from 1.1 (see arrows) until the required rainfall value Ri is reached; the search
stop at this point.
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Figure 4.16: Panel (a) shows results of the fold locus computation using the indirect
method. We had to compute this locus in three different steps shown in purple, green
and pink curves. The green and pink curves are genuine portions of the fold locus while
the purple curve starts as part of the fold locus but then drifts away into continuing
homoclinic solutions. On Panel (b), we show the two fold loci side by side: in blue,
we plot the locus obtained through the direct method and in purple we show the locus
computed with the indirect search. We have removed the homoclinic parts from this locus
to obtain a continuous curve. On both panels, we show part of the Hopf bifurcation locus
in orange.
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Figure 4.17: Portions of the bifurcation diagram for c = 0.02 computed using the file
method with starting solution at 1.25, 0.02. In fact, two bifurcation diagrams have been
computed; one is the same as the diagram obtained for c = 0.02 using the direct search.
The second one does not contain any Hopf bifurcation point and joins two homoclinic
solutions; we include panels (a) and (c) to show the solution branch near these end
points. On Panel (b), we can see the two different solution branches. The filled red square
indicates a Hopf bifurcation point, the empty red circles indicate homoclinic solutions and
the filled red circles are folds in the solution branch.

4.6 Stability Calculation of Periodic Travelling Wave

solutions

Given a rainfall value R and a wave speed c, through a single command (the stability

command) in WAVETRAIN we can check for the existence of a periodic travelling wave and

if a wave is found, its stability will be calculated. Hence just like in the investigation of

existence in the previous section, we can investigate wave stability on a domain using the

stability command and a grid of points.

To determine stability for a periodic travelling wave, WAVETRAIN calculates the eigen-

value spectrum via numerical continuation. For a periodic travelling wave, eigenfunctions

are solutions of a system of equations with coefficients that are periodic in the travelling

wave coordinate. The eigenfunctions themselves do not need to be periodic: their am-

plitude needs to be periodic but there is no constraint on their phase shift γ across one
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Figure 4.18: Eigenvalue spectrum for the stable wave obtained at (R, c) = (1.286, 0.02)
through the file search method. This result is to be compared with Figure 4.12b where
we show the eigenvalue spectra of six waves obtained at the same location through the
direct search method; in that case, all the waves were unstable.

period. Starting points for the numerical continuation of the spectrum are eigenvalues

corresponding to periodic eigenfunctions; those correspond to γ = 0. Calculation of each

eigenvalue is done by replacing derivatives with respect to R in the eigenvalue equation

with γ = 0 by finite difference approximations. WAVETRAIN then uses incorporated lin-

ear algebra packages such as LAPACK and BLAS to solve the resulting matrix eigenvalue

problem. However, while computing the eigenvalues, errors are made in the calculation of

matrix eigenvalues and in the discretisation of eigenfunction equations. WAVETRAIN then

provides for information purposes the error bounds in the calculation of the matrix eigen-

values. This information helps the user in choosing a suitable number of discretisation

points (also called mesh points). This suitable number is found through a convergence

test which consists of calculating eigenvalues for various numbers of mesh points and mon-

itoring their convergence. Usually, increasing the number of mesh points helps to reduce

the error in the discretisation of the eigenvalue equation. Once the periodic eigenfunctions

and their corresponding eigenvalues are computed, WAVETRAIN uses each eigenfunction as

a starting point to numerically continue the spectrum in the phase shift γ; completing

this continuation for all eigenfunctions traces out the eigenvalue spectrum. Note that

errors in matrix eigenvalues do not lead to errors in the computed spectra. Rather, they

lead to poorer quality starting points which may prevent the numerical continuation of

the spectrum from succeeding.
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4.6.1 Stability of Periodic Travelling Waves in Region II

Convergence tests on Region II were all successful and having found a suitable mesh

value, we calculated the (existence and) stability of periodic travelling waves. We use the

domain size [0.3, 1.3] × [0, 0.2] and 51 × 11 grid points. Figure 4.23a shows two distinct

regions: one is the set of stable solutions which are represented with filled red triangles on

the grid; Figure 4.19a shows pictures of eigenvalue spectra corresponding to waves from

this region. The other region represented by filled blue triangles is the set of unstable

solutions; see Figure 4.19b for unstable eigenvalue spectra from this region.

4.6.2 Stability of Periodic Travelling Waves in Region I

We did a variety of convergence tests on Region I and in most cases, the matrix eigenvalues

did not converge. This makes it difficult to choose a mesh number to use in investigating

stability in Region I. These convergence failures suggest that Region I may be composed

entirely of unstable waves. We were able to compute eigenvalue spectra at 27 different

(R, c) pairs throughout the region and each spectrum crossed the c-axis meaning the

corresponding periodic travelling waves are unstable. On Figure 4.20, we indicate with

blue dots the location of the waves that tested unstable in Region 1. See Figures 4.21

and 4.22 for a picture of parts of the eigenvalue spectra at 24 of these locations. Due to

convergence problems, these 27 waves are the only waves in Region I for which WAVETRAIN

was able to calculate stability and they are all unstable. We are not interested in unstable

solutions because they cannot be ‘seen’; in other words, unstable periodic travelling wave

solutions of (4.1) do not represent vegetation patterns. In addition to the fact that we

were not able to locate any stable wave in wave region I, the three periodic travelling

waves initially found through PDE simulations of (4.1), all belong to Region II. We will

therefore focus on Region II in the remainder of this study.
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Figure 4.19: Eigenvalue spectra for ten periodic travelling wave solutions belonging to
Region II. Panel (a) corresponds to five stable waves and Panel (b) shows the eigenvalue
spectra of five unstable waves. In each of these cases, the change in stability occurs via a
change in the sign of the curvature of the spectrum at the origin. Such a stability change
is referred to as being of Eckhaus type.
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Figure 4.20: Plot showing various locations of unstable periodic travelling waves in Re-
gion I. The orange curve is the Hopf bifurcation locus and blue dots represent 27 different
periodic travelling waves in Region I. Despite convergence problems during the continu-
ation of eigenvalue spectra of waves in this region, we were able to compute portions of
the spectra for these 27 waves and found that they are all unstable.
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Figure 4.21: Parts of various spectra calculated for 12 different (R, c) locations within
Region I. In each plot, the real part of the eigenvalue is positive. The entire spectra could
not be obtained due to convergence failures, nevertheless each of these portions shows
that the corresponding pattern solutions are unstable.
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Figure 4.22: Parts of various spectra calculated for 12 different (R, c) locations within
Region I. In each plot, the real part of the eigenvalue is positive. The entire spectra could
not be obtained due to convergence failures, nevertheless each of these portions shows
that the corresponding pattern solutions are unstable.
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4.6.3 Calculation of the Stability Boundary

There are two different types of stability change in periodic travelling wave solutions: a

change of Eckhaus characterised by the change of sign in the curvature of the spectrum

at the origin; then there is the stability change of Hopf type where the spectrum passes

through the imaginary axis away from the origin. The algorithm used by WAVETRAIN

to calculate the stability boundary involves many steps. At first, the user enters two

pairs of rainfall and wave speed values (R1, c1) and (R2, c2), where either R1 = R2 or

c1 = c2. The software starts by computing the periodic travelling wave corresponding to

the first pair (R1, c1). For the same parameter pair, the eigenfunction corresponding to

the zero eigenvalue is calculated, and this is followed by the calculation of the first and

second derivatives of this eigenvalue and of the corresponding eigenfunction with respect

to γ. Here γ denotes the phase difference in the eigenfunction across one period of the

periodic travelling wave. Next, WAVETRAIN continues numerically the periodic travelling

wave in the travelling wave equations; eigenfunction equations will also be used to continue

the eigenfunction for the zero eigenvalue, as will the first and second derivatives of this

eigenvalue and eigenfunction with respect to γ by varying R and c values between (R1, c1)

and (R2, c2), the two pairs entered by the user. During this continuation, the value of

the real part of the second derivative of the eigenvalue with respect to γ is monitored

in the search of a zero. If such a zero is found, this corresponds to a stability change of

Eckhaus type and this zero will be used as a starting point for tracing the entire stability

boundary. See Figure 4.23 for an example of the stability boundary computed using these

steps.

If a stability change of Eckhaus type is not found, then WAVETRAIN proceeds to look

for a stability change of Hopf type. First, the eigenvalue spectrum for wave (R1, c1) is

computed; provided that (R1, c1) is sufficiently close to the stability change, this spectrum

will fold at a point λ with strictly positive imaginary part. The fold with largest real part

is then computed and tracked between R1 and R2 (c1 and c2) if c1 = c2 (R1 = R2). During

this computation, the real part of the fold is monitored for its zero, which corresponds to

a stability change of Hopf type. This zero is then continued numerically, tracing out the

stability boundary.
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In summary, to investigate in WAVETRAIN the existence of pattern solutions of (4.1) in

a domain D of R, c values, it is helpful to firstly locate a few of these solutions through

PDE simulations of (4.1) using perturbations of the unstable steady state (P2,W2, O2)

as starting solutions. Having obtained a rough idea of the location of pattern solutions

through these simulations, and given that these pattern solutions might belong to a so-

lution branch emanating from a Hopf bifurcation point, we can then define a region in

which a Hopf bifurcation locus search is performed. Once this locus is found, we define

grid points on the domain D and we run a loop through these points to investigate wave

existence using the direct method in simple cases and the indirect/file method in more

complicated cases. The completion of this loop will reveal a region or regions of waves in

the domain D (see Figure 4.7) and we will calculate the boundaries of of this/these re-

gion(s); these boundaries can be either a Hopf bifurcation locus, a locus of folds or a locus

of homoclinic solutions (see Figure 4.23). Once wave regions are found and delimited, we

then proceed to investigating the stability of the waves in each region. When both stable

and unstable waves are found in a region, we calculate the stability boundary (see Figure

4.23b). In the next section, this stability boundary will play a key role as we investigate

the effects of environmental changes on pattern solutions.

4.7 The Effect of Variations in Rainfall on Pattern

Solutions

Patterns that are observed in aerial photographs and satellite images of arid ecosystems

in reality change slowly over time due to environmental changes. In this section, we take

a closer look at the effects of environmental changes on the way vegetation patterns form.

We do this by studying how variations in the rainfall parameter R affect PDE solutions

of (4.1). We compute numerical solutions of (4.1) with periodic boundary conditions

for (R,c) pairs in Region II, using the results from WAVETRAIN to guide and explain our

simulations.

With the domain fixed at 500, we undertook a simulation study of how pattern solu-

tions of initial wave numbers 7, 8, 9 and 10 (Figures 4.24-4.27 respectively) evolve as we

slowly change R. On each figure, contours of constant pattern wavelength are shown in

red (initial wavelength), blue and purple (other wavelengths). The green curve shows the

stability boundary. In each case, the period contour intersects the stability boundary at

four points which represent stability thresholds; here we focus on the thresholds at the

smallest and the largest rainfall values. To study the behaviour of patterns as rainfall

decreases/increases below or above a particular threshold, we start PDE simulations with
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Figure 4.23: Panel (a): a grid of 51× 11 points on the domain [0.3, 1.3]× [0, 0.2] showing
the stability calculation results. The filled red circles are stable wave solutions while the
filled blue circles are unstable solutions. Green triangles indicate that a periodic travelling
wave has not been detected at the corresponding location due to a convergence failure.
Purple squares correspond to locations where no periodic travelling wave was found even
though convergence occurred along the whole solution branch. We show the stability
boundary in green and the pink curve is the set of homoclinic solutions; the locus of folds
and a portion of the Hopf locus are shown in blue and orange respectively. Panel (b)
shows the same stability calculation results without the grid points; contours of constant
periods 125, 250 and 375 have been added (grey curves). Here the R range has been
extended to [0.3, 1.4] in order to display the entirety of stability boundaries and loci of
folds.
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Figure 4.24: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 71.429 (= 500/7). The insert shows details of how patterns are affected as the
rainfall increases above the stability threshold; the range on the vertical axis is 0.01 <
c < 0.04 while that on the horizontal axis is 1.27 < R < 1.38. As R is increased
through a change in wave stability, the wavelength switches to 153; the contour of constant
wavelength 153 was calculated through the file method (blue curve). The black dots
represent the wavelength and speed obtained as R is varied, and arrows indicate the
direction of this variation. The PDE solutions were computed using a finite difference
scheme with periodic boundary conditions. We used a spatial grid spacing of 0.25 and
fixed the CFL number at 0.8 by using a time step of 0.04.

a stable solution belonging to the period contour. We can easily obtain these starting

stable solutions from WAVETRAIN. Then R is changed slowly and as the corresponding

threshold is crossed, the wave becomes unstable as a PDE solution. Before each change

of R value, the wave speed and wavelength are recorded. There is an abrupt change in

the speed of the pattern as the wave stability changes; and the form of the pattern also

changes abruptly. For example, in the case of periodic travelling waves of initial wave-

length 71.428 (= 500/7), the two stability thresholds considered are located at R = 0.583

and R = 1.354. As R is decreased below R = 0.583, the wavelength shifts from 71.428 to

250; similarly, as R increases above R = 1.354, we see a shift in wavelength from 71.428

to 150 (Figure 4.24).

We do not know how to predict the value of the new wavelength after these shifts

occur; calculating basins of attraction for different periodic travelling waves could help

answer this question but this would be very difficult. However, we have noticed that the

new wavelength value depends closely on the gap between the R values used right before

and right after the rainfall value at the stability threshold. For example, in the case of the
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Figure 4.25: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 62.5 (= 500/8). The insert shows details of how patterns are affected as the
rainfall increases above the stability threshold; the range on the vertical axis is 0.012 <
c < 0.04 while that on the horizontal axis is 1.268 < R < 1.381. The black dots represent
the wavelength and speed obtained as R is varied and arrows indicate the direction of
this variation. The numerical details for the PDE simulations are the same as in the case
of Figure 4.24

contour of pattern wavelength 50, we have a stability threshold at R = 0.705. When we

go from one side of the stability boundary to the other by changing R from 0.73 to 0.64,

at first there is no shift in wavelength (Figure 4.28a shows a plot of the PDE solution

at R = 0.64). It takes a second change in R to see a shift in wavelength from 50 to

500/3 ≃ 166.667 (Figure 4.27). However, when a bigger change in R is done from 0.73

to 0.61, the shift in wavelength from 50 to 166.667 (= 500/3) occurs immediately. See

Figure 4.28b for a picture of the the PDE solution at R = 0.61. When we attempted

an even bigger change going from 0.73 to 0.57, the computations yield the desert state

(Figure 4.28c).

Also, the value of the new wavelength is highly influenced by the period of time over

which a change in rainfall occurs. We investigated this through PDE simulations with

the pattern solution for rainfall value R = 0.73 (with wavelength 50) as starting solution.

In each case, we vary R from 0.73 to 0.64 then to 0.61 and finally to 0.57 over different

decreasing time intervals. Our results show that if environmental changes occur quickly,

then vegetation patterns do not change. Table 4.1 shows simulations results for time

intervals decreasing from 20000 to 100.
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Figure 4.26: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 55.556 (= 500/9). The insert shows details of how patterns are affected as the
rainfall increases above the stability threshold; the range on the vertical axis is 0.01 < c <
0.044 while that on the horizontal axis is 1.25 < R < 1.381. When R is increases until
a change in wave stability, the wavelength switches to 166.667; the contour of constant
wavelength 166.667 was calculated through the file method (blue curve). The black dots
represent the wavelength and speed obtained as R is varied and arrows indicate the
direction of this variation. The numerical details for the PDE simulations are the same
as in the case of Figure 4.24

A variety of other results from simulations of variations in rainfall R are shown in

Figures 4.29-4.34. In the next section, we briefly look at the dynamics of system (4.1)

when diffusion is added to the surface water equation and soil gradient is varied.
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Figure 4.27: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 50. The insert shows details of how patterns are affected as the rainfall increases
above the stability threshold; the range on the vertical axis is 0.01 < c < 0.056 while that
on the horizontal axis is 1.21 < R < 1.38. The black dots represent the wavelength and
speed obtained as R is varied and arrows indicate the direction of this variation. The
numerical details for the PDE simulations are the same as in the case of Figure 4.24

R time= time= time= time= time=
20000 10000 5000 200 100

0.64 50 50 50 50 50
0.61 166.67 166.67 50 50 50
0.57 166.67 166.67 166.67 166.67 50

Table 4.1: Table showing that depending on how quickly environmental changes occur,
vegetation patterns may or may not change. We start with the wave of period 50 at
R = 0.73 as initial solution and compute PDE solutions of 4.1 gradually decreasing R
through 0.64, 0.61 and 0.57. This is done in a single run and we use a fixed time interval
at each of these rainfall values. These PDE solutions are highly influenced by the width of
the time interval. The tabulated values are the wavelengths of the PDE solutions obtained
at the different amounts of rainfall using time intervals fixed between 50 and 20000.
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Figure 4.28: PDE solutions showing how the gap between rainfall values while crossing
the stability threshold can affect vegetation patterns. We start with a PDE solution for
rainfall value R = 0.73 with wavelength 50. This solution is stable and the change in
stability occurs when R falls below 0.705. When we change R from 0.73 to 0.64, hence
switching to an unstable pattern solution, the wavelength stays the same; see Panel (a)
for the PDE solution for rainfall value R = 0.64 with wavelength 50. However, when we
take a bigger step from 0.73 to 0.61, the wavelength changes from 50 to 166.667; this
solution is shown on Panel (b). When we attempted an even bigger change going from
0.73 to 0.57, the computations yield the desert state shown on Panel (c).
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Figure 4.29: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 500. The insert shows details of how patterns are affected as the rainfall decreases
until falling below the stability threshold; the range on the vertical axis is 0 < c < 0.087
while that on the horizontal axis is 0.37 < R < 0.53. The black dots represent the
wavelength and speed obtained as R is varied and arrows indicate the direction of this
variation. The numerical details for the PDE simulations are the same as in the case of
Figure 4.24.
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Figure 4.30: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 250. The insert shows details of how patterns are affected as the rainfall decreases
until falling below the stability threshold; the range on the vertical axis is 0 < c < 0.1
while that on the horizontal axis is 0.37 < R < 0.57. The black dots represent the
wavelength and speed obtained as R is varied and arrows indicate the direction of this
variation. The numerical details for the PDE simulations are the same as in the case of
Figure 4.24.
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Figure 4.31: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 166.667 (= 500/3). The insert shows details of how patterns are affected as the
rainfall decreases until falling below the stability threshold; the range on the vertical
axis is 0 < c < 0.1 while that on the horizontal axis is 0.37 < R < 0.59. The black
dots represent the wavelength and speed obtained as R is varied and arrows indicate the
direction of this variation. The numerical details for the PDE simulations are the same
as in the case of Figure 4.24.
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Figure 4.32: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 125. The black dots represent the wavelength and speed obtained as R is varied
and arrows indicate the direction of this variation. The numerical details for the PDE
simulations are the same as in the case of Figure 4.24.
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Figure 4.33: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 100. The black dots represent the wavelength and speed obtained as R is varied
and arrows indicate the direction of this variation. The numerical details for the PDE
simulations are the same as in the case of Figure 4.24.
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Figure 4.34: Numerical solutions of (4.1) solved with a wave initially on the period contour
of period 83.333 (= 500/6). The black dots represent the wavelength and speed obtained
as R is varied and arrows indicate the direction of this variation. The numerical details
for the PDE simulations are the same as in the case of Figure 4.24.
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4.8 Diffusion in Surface Water

The Rietkerk model (4.1) is a variant of the HilleRisLambers’ (2001) model in which

propagation of surface water O was originally modelled with a diffusion term DOOxx.

Rietkerk et al. (2002) extended this model by replacing the diffusion by the flow downhill

νOx. Here we reintroduce the diffusion term so that surface water motion is a result of

both diffusion and downhill flow. In other words, Equation (4.1) becomes:

Pt = DPPxx + f(P,W,O) (4.6a)

Wt = DWWxx + g(P,W,O) (4.6b)

Ot = DOOxx + νOx + h(P,W,O) (4.6c)

where DOOxx represents surface water diffusion; Rietkerk et al. (2002) suggest DO = 100

although there is no conclusive empirical data on which the value can be based. In this

section, both ν and DO will be varied while all the other parameter values are fixed as in

Section 4.1.

4.8.1 Gradually Increasing DO

Firstly, we keep ν = 10 and investigate periodic travelling wave existence and stability

using this extended model 4.6 for DO = 1, 25, 50 and 100. In all four cases, use of

WAVETRAIN as described previously reveals two wave regions Region I and Region II similar

to those discussed in Section 4.4 (see Figure 4.7). For each DO value, WAVETRAIN again

experienced convergence failures in Region I but managed to calculate stability for a few

waves and they were all unstable; in Region II, both stable and unstable waves were

found and we traced the stability boundaries. Here we show only results in each Region

II and these are presented in Figures 4.35 and 4.36. On one hand, the stability change

is of Eckhaus type for DO = 1 and DO = 25 and the region of stable/unstable waves

(Figure 4.35(a) for DO = 1 and Figure 4.35(b) for DO = 25) looks similar to the region of

stable/unstable waves previously obtained in the DO = 0 case (Figure 4.23). On the other

hand, the stability boundary for DO = 50 (Figure 4.36(a)) looks slightly similar to that

for DO = 100 (Figure 4.36(b)), however the stability change is of Eckhaus type in the first

case and of Hopf type in the second. We also investigated wave stability for DO = 34; the

results show that the stability boundary is pinching (Figure 4.37). This helps understand

how the change in shape of the stability boundary occurs between DO = 25 (Figure 4.35b)

and DO = 50 (Figure 4.36). See Figure 4.38 for illustration of various eigenvalue spectra

for both DO = 50 and DO = 100.
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Figure 4.35: Top row: a grid of 51× 11 points on the domain [0.3, 1.3]× [0, 0.2] showing
the stability calculation results for DO = 1 (a) and DO = 25 (b). The filled red circles
are stable wave solutions while the filled blue circles are unstable solutions. Green trian-
gles indicate that a periodic travelling wave has not been detected at the corresponding
location due to a convergence failure. Purple squares correspond to locations where no
periodic travelling wave was found even though convergence occurred along the whole
solution branch. The stability change is of Eckhaus type in both cases and stability
boundaries are shown in green. In pink, we plot the set of homoclinic solutions; the locus
of folds and a portion of the Hopf locus are shown in blue and orange respectively. The
bottom row shows the same stability calculation results without the grid points; contours
of constant periods 100, 250 and 500 have been added (grey curves). Here the R range
has been extended to [0.3, 1.4] in order to display the entirety of stability boundaries and
loci of folds.
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Figure 4.36: Top row: a grid of 51× 11 points on the domain [0.3, 1.3]× [0, 0.2] showing
the stability calculation results for DO = 50 (a) and DO = 100 (b). The filled red circles
are stable wave solutions while the filled blue circles are unstable solutions. Green trian-
gles indicate that a periodic travelling wave has not been detected at the corresponding
location due to a convergence failure. Purple squares correspond to locations where no
periodic travelling wave was found even though convergence occurred along the whole
solution branch. The stability change is of Eckhaus type in the DO = 50 case; we show
the stability boundary in green. In the DO = 100 case, we plot the stability boundary
in cyan to indicate that it is of Hopf rather than Eckhaus type. In pink, we plot the set
of homoclinic solutions; the locus of folds and a portion of the Hopf locus are shown in
blue and orange respectively. The bottom row shows the same stability calculation results
without the grid points; contours of constant periods 100, 250 and 500 have been added
(grey curves). Here the R range has been extended to [0.3, 1.4] in order to display the
entirety of stability boundaries and loci of folds.
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Figure 4.37: Stability calculation results for DO = 34. The meaning of the curves is the
same as in Figure 4.36. Here the stability boundary is pinching; this helps understand
how the change in shape of the stability boundary occurs between DO = 25 (Figure 4.35b)
and DO = 50 (Figure 4.36a).
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Figure 4.38: Eigenvalue spectra of waves near the stability boundary in the cases DO = 50
and DO = 100. Panel (a) displays stable spectra and Panel (b), unstable spectra. The
first three rows represent waves at c = 0.04, 0.06 and 0.07 for DO = 50; each time, a
change of sign in the curvature of the spectrum at the origin occurs (stability change of
Eckhaus type). In the last three rows, c = 0.06, 0.08 and 0.14 for DO = 100 and we
see the spectrum passing through the imaginary axis away from the origin: the stability
change is of Hopf type.
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Figure 4.39: Hopf bifurcation loci for ν = 0.1, 0.2, 0.5 and 1 with DO fixed at 100. The
region enclosed by these loci decreases in area as ν decreases.

In summary, we investigated, in Sections 4.4 and 4.6, periodic travelling wave existence

and stability when the exchange of surface water with surrounding areas occurs only

through its flow downhill; in this section, we have done the same investigation, this time

with added diffusion in surface water. A natural question now is: what happens when

there is diffusion of surface water but on either a very slight slope or bare ground, so that

the advection coefficient ν is small or zero?

4.8.2 Gradually Decreasing ν

With DO now fixed at 100, we investigate how wave regions vary as ν decreases. First

we compute various Hopf bifurcation loci as ν is decreased between 10 and 0. The region

enclosed by these loci decreases in area as ν is decreased. This suggests that wave regions

become smaller as ν decreases, though a more detailed study would be required to confirm

this. See Figure 4.39 for a plot of the Hopf bifurcation loci for ν = 0.1, 0.2, 0.5 and 1

To explore how patterns are affected as advection becomes small, we investigate wave

existence for ν = 0.01. The wave search loop reveals, contrary to previous results, a single

wave region much bigger in size than the region enclosed by the Hopf bifurcation locus;

see Figure 4.40a for the wave search results on the domain [0.55, 1.27]×[0, 0.1] represented

with a 19 × 26 grid. A stability loop reveals that all the waves in this wave region are

unstable (see Figure 4.40b)

When ν = 0, we are unable to find a Hopf bifurcation locus in WAVETRAIN. PDE
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Figure 4.40: Results of the wave search (a) and stability (b) loops for DO = 100 and
ν = 0.01 on the domain [0.55, 1.27] × [0, 0.1] defined as a grid of 19 × 26 points. Green
triangles indicate that a periodic travelling wave has not been detected at the correspond-
ing location due to a convergence failure. Purple squares correspond to locations where
no periodic travelling wave was found even though convergence occurred along the whole
solution branch. On Panel (a), filled orange circles indicate the existence of periodic
travelling waves at the corresponding (R, c) locations; we see a single wave region that
extends far beyond the Hopf bifurcation locus shown in its entirety in the orange curve.
On Panel (b), filled blue circles indicate unstable periodic travelling waves: all the waves
we found are unstable. The pink curve is the set of homoclinic solutions while the grey
curves are contours of constant period, with period = 90, 120, 160, 230 and 300 from
bottom to top.
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Figure 4.41: Periodic stationary solution of the extended Rietkerk model (4.6) for R = 1.1,
DO = 100 and ν = 0 at time = 12000. We plot plant density in red, soil water in green
and surface water in blue. The grid points for our starting solutions were set at the
steady state (4.3), perturbed randomly by ±5%. The system was solved numerically on
the domain 0 < x < 500 using a semi-implicit finite difference method with periodic
boundary conditions at both ends; we chose a grid spacing of dx = 0.5 and a time step of
dt = 0.001 so that the CFL condition dt ≤ dx2/(2DO) is satisfied.

simulations did not yield periodic travelling waves; however, (stationary) spatial patterns

were found. These stationary patterns occur via a Turing bifurcation (see Section 1.1 for

a discussion on Turing patterns). In Figure 4.41, we plot the stationary spatial pattern

obtained for R = 1.1 through PDE simulations.

4.9 Discussion

In this chapter, we have investigated banded vegetation patterns in semi-deserts. We have

studied the existence and stability of these patterns by using the Rietkerk model (2002).

Since the limiting resource in these ecosystems is water, these pattern solutions depend

greatly on annual rainfall and we have seen how they vary when rainfall changes. These re-

sults indicate that environmental changes affect vegetation patterns. As one would expect,

as rainfall changes, the average plant density also changes; vegetation patterns however

conserve their wavelength until the rainfall value crosses a stability threshold. This means
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that the wavelength and other properties of the vegetation patterns seen around the world

vary in a history dependent manner. This dependence has been previously reported in

other studies of patterns in semi-arid vegetation and in other landscape-scale patterns; for

example, Sherratt (2013), Sherratt & Lord (2007) demonstrated the existence of history-

dependence for patterns in banded vegetation in semi-arid environments using the simpler

Klausmeier model and also for patterns in young mussel beds. A possible future project

would be to investigate history-dependence in other models for semi-arid vegetation pat-

terns. Two main such models are those introduced by Lefever & Lejeune (1997) and

Gilad et al. (2007). Gilad et al.’s (2007) model consists of PDE equations corresponding

to the three dynamical variables P (plant density), W (soil water density) and O (surface

water density); the main difference with the Rietkerk model is that, here, the rate of plant

growth and that of soil water infiltration are nonlocal functions of the model variables.

The Lefever & Lejeune’s (1997) model consists of a single kinetic equation for plant den-

sity where both the rates of plant growth and of plant death are nonlocal functions of

the model variables. These integro-differential equations make the Gilad et al.’s model,

and the Lejeune and Lefever’s model difficult to study: analytical investigation would

be complicated and numerical integration is costly in terms of computer time. However,

Lejeune and Lefever provide an approximation of their model by a partial differential

equation (Lefever & Lejeune 1997); this could be investigated in PDE simulations and

WAVETRAIN.

Vegetation patterns in semi-deserts have arisen in many different parts of the globe.

One potential application of studying these patterns is that lessons could be learnt from

this ‘survival mechanism’ seen in vegetation that grows in difficult environmental condi-

tions. These patterns could possibly form the basis for improved approaches to growing

crops in regions affected by droughts or could possibly be used to improve harvest even in

regions with relatively favourable environmental conditions. For instance, farmers might

obtain better results by growing crops in a patterned way instead of uniform planting.
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Part IV

Absolute Instability vs Convective

Instability of a Nonhomogeneous

Steady State and Conclusion
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Chapter 5

On the Absolute and Convective Instabilities

of Spatially-Varying Solutions

5.1 Introduction

The mathematical concept of stability is the same in both temporal and spatiotemporal

systems: a solution is locally stable when any small perturbation decays. However in

spatiotemporal systems, the story does not end there: an unstable solution can either

be convectively unstable or absolutely unstable. In the first case, the perturbation may

decay at which it is applied, even though it is growing over all. In contrast, a solution is

absolutely unstable when there are perturbations growing at the location at which they

are applied. Using the classical example of Turing pattern formation, we first started this

thesis by introducing the concept of stability of homogeneous steady states in spatiotem-

poral systems (Chapter 1). We investigated the homogeneous steady state case further

in Chapters 2 and 3 where we explore absolute and convective instabilities arising in a

predator-prey invasion scenario. Then in Chapter 4, we move on to investigate the stabil-

ity of periodic travelling wave solutions of a PDE system for banded vegetation patterns

in arid/semiarid ecosystems, the Rietkerk et al.’s (2002) model. In this brief chapter,

we revisit periodic travelling wave solutions of the Rietkerk model (4.1), and we discuss

absolute and convective instabilities.
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5.2 Absolute and Convective Instabilities of a Peri-

odic Travelling Wave

Let us consider a reaction-diffusion system

Ut = DUxx + F (U), (5.1)

with U ∈ RN . With a change of variable z = x− ct, (5.1) becomes

Ut = DUzz + cUz + F (U) (5.2)

Solutions to the ODE

DUzz + cUz + F (U) = 0 (5.3)

are steady states of (5.2) and are called periodic travelling waves if U(z + L) = U(z) for

all z and some L > 0. In this chapter, we are interested in the absolute and convective

instabilities of such solutions.

5.2.1 Calculation of the Generalised Absolute Spectrum

Let U∗ be a periodic travelling wave solution of (5.1). Linearising (5.2) about U∗, we

obtain the operator

L := D∂zz + c∂z + a(z), (5.4)

where a(z) = ∂UF (U∗). The eigenvalue problem

LU = DUzz + cUz + a(z)U = λU (5.5)

is equivalent to

Vz = A(z, λ)V, (5.6)

where V = (U, Uz) and

A(λ) =

(

0 Id

D−1λ−D−1a(z) −D−1c

)

(5.7)
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Since U∗ is a periodic travelling wave, this matrix has periodic coefficients. Floquet

theory states that the evolution of linear time-varying differential equations with periodic

coefficients can be represented as the product of a periodic matrix and an exponential

matrix containing the so-called ‘Floquet exponents’. Let φλ(z, t) denote the evolution of

(5.6). Then it has a Floquet representation with L-periodic matrix Sλ(z) (Sλ(0) = Id) of

the form

φλ(z, 0) = Sλ(z)e
(R(λ)z). (5.8)

Definition Similarly to the homogeneous steady state case (Chapters 2 and 3), we need

the dispersion relation in order to compute the generalised absolute spectrum. Here this

relation is defined by

d(λ, ν) = det(R(λ)− ν) = 0. (5.9)

• A branch point λ ∈ C at ν ∈ C satisfies d(λ, ν) = ∂νd(λ, ν) = 0.

• Eigenvalues ν(λ) of R(λ) are called spatial Floquet exponents.

• The essential spectra
∑

ess is the set of λ’s such that ∃k ∈ R : d(λ, ik) = 0

• The generalised absolute spectrum of Morse index j is

∑j

abs
:= {λ ∈ C|Re(νj) = Re(νj+1)}.

• The absolute spectrum is the generalised absolute spectrum of Morse index N , where

N is the number of equations.

The calculation of the generalised absolute spectrum as defined above is very compli-

cated; the problem lies in the fact that branch points (starting solutions) are hard to find.

Recall that in the case of homogeneous steady states in the Rosenzweig & Macarthur

(1963) model, we showed through examples that to determine absolute stability in the,

we do not need to compute the entire absolute spectrum and absolute stability is then

easily determined only by considering the real parts of the branch points. Luckily, for

spatially varying steady states, Rademacher (2006) discusses a special case where we can

determine absolute instability without computing the absolute spectrum. Indeed, let Ω∞

denote the connected component of C \
∑

ess that contains an unbounded interval of

R+. Let us assume that the essential spectrum contains an isola ι. Then according to

Rademacher (2006), if ι ∈ ∂Ω∞ then ι contains parts of the absolute spectrum. The

steady state is then absolutely stable if Re(λ) < 0, ∀λ ∈ ι and is absolutely unstable if

Re(λ) > 0, ∀λ ∈ ι. In the previous chapter, we have shown various pictures of essential

126



spectra for different periodic travelling wave solutions of the Rietkerk model. Based on

the results in Rademacher (2006), a few of these waves are absolutely unstable; that is the

case, for example, of the six waves wave1, wave2, ..., wave6 shown in Figure 4.12a along

with their essential spectra in Figure 4.12b. We recall these pictures below in Figure 5.1.
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Figure 5.1: Panel (a): bifurcation diagram at c = 0.02. We truncated the solution branch
to show waves of wavelength between 20 and 130 and in this range, there are six different
waves wave1, wave2, ..., wave6 at the R value 1.286. Panel (b): eigenvalue spectra of
wave1, wave2, ..., wave6. Each of these spectra has at least one isola in ∂Ω∞ ∩ R+ × R;
therefore, wave1, wave2, ..., wave6 are all absolutely unstable.

In the next section, we investigate the dynamics of an absolutely unstable periodic

travelling wave.
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5.2.2 Perturbing an Absolutely Unstable Periodic Travelling Wave

Here we would like to explore how an absolutely unstable periodic travelling wave is

affected by small perturbations. The fact that all six waves shown on the bifurcation

diagram in Figure 5.1 are absolutely unstable suggests that all the waves along this so-

lution branch are absolutely unstable. We would like to run simulations on the domain

(0, 200) and we choose the wave Uabs = (Pabs,Wabs, Oabs) along this solution branch that

has period 50 so that the wave number is four; it corresponds to the rainfall parameter

R = 1.287 and is also absolutely unstable (Figure 5.2).
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Figure 5.2: Essential spectra
∑

ess of an unstable wave at (R, c) = (1.287, 0.02). One of
the curves in

∑

ess is the isola ι which is included in ∂Ω∞, therefore it contains absolute
spectrum. Moreover ∀λ ∈ ι, Reλ ∈ R+, hence the wave is absolutely unstable.

Setting the initial solution at Uabs, we first run PDE simulations of the Rietkerk

equations (4.1) without adding any perturbation to Uabs and we notice that the ampli-

tude of the PDE solution slowly decreases over time and collapses at the steady state

(P2,W2, O2) after t = 6000; for this reason, to study how perturbations vary as time

increases, we limit our simulations to the time range (0, 100). We denote by Uunpert the

PDE solution obtained in the absence of perturbations. For t in the same time interval,

we then perturbed the initial solution by an increase of 10% in the water densities Wabs

and Oabs for x ∈ (95, 105) and we denote the PDE result of this simulation by Upert.

Results for the plant density are shown in Figure 5.3 and illustrate how perturbations

vary as the time t variable increases. The PDE solutions Uunpert and Upert are shown in
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the first and second columns respectively. The difference Upert −Uunpert gives the pertur-

bations to the absolutely unstable solution Uabs (third column). Solutions are shown for

t = 0, 5, 10, 20, 40, 70 and 100 and we see that without moving the initial perturbation

grows.

To see the long-term behaviour of the solution Upert, we carried our PDE simulations

with perturbations for longer time intervals; solutions are shown on Figure 5.4. On panels

(e)-(g), we see that the homogeneous steady state P2 exists as long-term transients of the

solution. We obtain similar results when we perturb the water densities Wabs and Oabs:

the unstable steady state (P2,W2, O2) becomes dynamically stabilised.

The above results show that perturbing an absolutely unstable spatially varying so-

lution can yield dynamical stabilisation of an unstable homogeneous steady state; this

is similar to the homogeneous steady state case studied in Chapters 2 and 3. Next, we

would like to know if perturbed convectively unstable waves also exhibit any form of

stabilisation.

5.2.3 Perturbation a Convectively Unstable Periodic Travelling

Wave

Contrary to the absolutely unstable case, we do not know how to tell, from looking at

the spectrum of an unstable wave, if the wave is convectively unstable or not. For our

simulations in this section we simply chose an unstable solution Uconv with no isola in

its essential spectrum; it has a period = 50 and is located at (R, c) = (1.08, 0.028) (see

Figure 5.5 for the spectrum).

We define Uunpert and Upert, and calculate the perturbations as described in the previ-

ous section; here the water densities are pertubed by an increase of 10% at the location

x = 100. In the absence of perturbations, Uconv travels across the domain as time increases

and does not collapse at U2, as Uabs did. We first run our simulations for increasing time

ranges t ∈ (0, 10000) and the solutions show that the initial perturbation moves away

from x = 100: this means that the solution Uconv is convectively unstable. We then did

simulations for bigger t values and at time 1500000, we obtained a periodic travelling

wave solution of period 63.333 (200/3) (Figure 5.7); its speed is estimated about 0.0385.

Further PDE simulations reveal that this new wave is stable; moreover, computations in

WAVETRAIN confirm that the wave located at (R, c) = (1.08, 0.0385) is stable and its period

is 63.36.

We conclude that perturbing an unstable pattern solution could yield a stable pattern

of different wavelength and speed. We have seen many examples of this switch from
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Figure 5.3: Illustration of the dynamics of the perturbations in the plant density Pabs.
The absolutely unstable solution Uabs = (Pabs,Wabs, Oabs) at (R, c) = (1.287, 0.02) was
perturbed by an increase of 10% in the water densities Wabs and Oabs for x ∈ (95, 105).
The first column shows solutions in the absence of perturbations while the second column
shows solutions after perturbations have been added. The third column, which is the
difference between the first two, represents the perturbations. As time increases, the
initial perturbations grow at the site of perturbation. Similar simulations results were
obtained for the water densities Wabs and Oabs. These results confirm that the wave Uabs

is absolutely unstable.
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Figure 5.4: Numerical simulations of the Rietkerk model (4.1) for the plant density Pabs

following a small perturbation to the absolutely unstable wave Uabs = (Pabs,Wabs, Oabs)
at (R, c) = (1.287, 0.02). We plot in purple the line P = P2 ≃ 11.5; on panels (e)-(g), we
see that the homogeneous steady state P2 exists as long-term transients of the solution.
We obtained similar results when we perturbed the water densities Wabs and Oabs: the
unstable steady state (P2,W2, O2) became dynamically stabilised. The initial condition
was U0 = 110%Uabs for x ∈ (95, 105) and U0 = Uabs otherwise. The equations were solved
numerically with a finite-difference scheme, on 0 < x < 200 with periodic boundary
conditions at both ends.
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Figure 5.5: Essential spectra
∑

ess of the unstable wave of period 50 at (R, c) =
(1.08, 0.028).

unstable solution to stable solution earlier in Chapter 4 when we investigated the effect

that a change in rainfall could have on vegetation patterns (Figures 4.24-4.27 and 4.29-

4.34).
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Figure 5.6: Numerical simulations of the Rietkerk model (4.1) for the plant density follow-
ing a small perturbation to the unstable wave Uconv of period 50 at (R, c) = (1.08, 0.028)
which spectrum is shown on Figure 5.5. This wave is locally perturbed by an increase
of 10% in the water densities at x = 100. The first column shows PDE solutions in the
absence of perturbations, the second column shows solutions in the presence of perturba-
tions while the third shows the dynamics of the perturbations; these perturbations move
away from the site of perturbation x = 100 implying that the solution Uconv is convec-
tively unstable. The equations were solved numerically with a finite-difference scheme,
on 0 < x < 200 with periodic boundary conditions at both ends.
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Figure 5.7: Numerical simulations of the Rietkerk model (4.1) for the plant den-
sity Pconv following a small perturbation to the convectively unstable wave Uconv =
(Pconv,Wconv, Oconv) at (R, c) = (1.08, 0.028). As perturbations grow throughout the do-
main, Pconv evolves into a stable periodic travelling wave at time 1500000. The equations
were solved numerically with a finite-difference scheme, on 0 < x < 200 with periodic
boundary conditions at both ends.
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5.3 Conclusion

In this chapter, we defined the concept of absolute and convective instability for periodic

travelling waves. We then selected and perturbed two periodic travelling wave solutions;

one, absolutely unstable and the other, convectively unstable. In the absolutely unstable

case, dynamical stabilisation of the unstable homogeneous steady state U2 occurred while

in the convectively unstable case, we obtained a new pattern solution that is stable.
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Chapter 6

Conclusion

Our mathematical journey in the course of this thesis work took us through two impor-

tant real life ecological phenomena: the invasion of a population by its predators and

self-organisation of vegetation in water-limited ecosystems into banded patterns. Even

though these may sound like two different topics, all the results in this research work point

to one conclusion: unstable solutions to a given PDE are not automatically insignificant.

We have investigated unstable PDE solutions in each of the previous chapters as follows:

• In Chapters 2 and 3, we used the Rosenzweig & Macarthur (1963) model for predator-

prey interaction to study ecological invasion. We focussed on the existence of the coex-

istence steady state as spatiotemporal transient (dynamical stabilisation). We used the

concepts of absolute and convective instabilities to understand this type of stabilisation

and calculated its extent; we then studied the effect that variations in ecological param-

eters have on the width of the stabilised region.

• In Chapter 4, we investigated banded vegetation patterns in semi-deserts using the

Rietkerk et al. (2002) model. We performed a systematic study of the existence and

stability of pattern solutions. Investigating the effects of rainfall variation on vegetation

patterns showed that a small change in rainfall at an unstable periodic travelling wave

can yield a stable periodic travelling wave; this result is very significant ecologically as

it suggests that unstable vegetation patterns can become stable thanks to environmental

changes. We also classified patterns into those that are unstable/stable for different values

of the soil gradient and of the surface water dispersion.

• It would have been interesting to classify the unstable patterns into those that are
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convectively unstable/absolutely unstable. Unfortunately the numerical procedures cur-

rently available to distinguish convective and absolute instabilities for spatially-varying

solutions apply only to very special types of partial differential equations that do not

include the Rietkerk model. However, it is known that if the spectrum of the pattern

contains an isola to the right of its unbounded part and in the right-hand half of the

complex plane, then the solution is absolutely unstable Rademacher (2006). We found

that both types of instability do occur in the Rietkerk model.

In Chapter 5, we see that perturbations to an absolutely unstable pattern solution of

the Rietkerk model can yield a solution where the (homogeneous) vegetated steady state

exists as long-term transient; this dynamical stabilisation result is similar to that for the

homogeneous steady state case seen in Chapters 2 and 3.

We also perturbed a convectively unstable pattern solution of the model and this evolved

into a stable pattern with new characteristics (wavelength, speed, amplitude). This is sim-

ilar to the results we obtained in Chapter 4 when we investigated the history-dependence

of the patterns.

Future Directions In our investigation of dynamical stabilisation in Chapters 2 and

3, we have focussed on the existence and extent of the coexistence steady state as a

spatiotemporal transient. The invasion of a prey population by predators can also involve

other spatiotemporal transients. For example, periodic travelling waves may develop

and move in the opposite direction to the invasion. In the future, we could investigate

this phenomena using the same methodology as in Chapters 2 and 3. However, there

is one very fundamental practical difficulty: identifying appropriate starting points for

the numerical continuation of the absolute spectrum for non-constant solutions is very

complicated.

In the case of vegetation patterns, a project of interest would be to investigate history-

dependence in the Lefever & Lejeune (1997) and Gilad et al. (2007) models. Also the

results in Sections 5.2.2 and 5.2.3 raised an interesting question: in our results on the

effects of varying rainfall on pattern solutions in Section 4.7, we saw that a small change

in rainfall can make an unstable pattern solution evolve into a stable pattern solution. In

the figure below, we recall simulation results for the case where the initial solution has a

wavelength = 50. This solution is stable and corresponds to (R, c) = (0.83, 0.025). As R

decreases, the pattern solutions maintain the same wavelength until an unstable solution

is found at the location (R, c) = (0.64, 0.0133) (shown with a blue dot).

A change in rainfall at this location yields a stable pattern solution. This is similar to

the results in Section 5.2.3 where local perturbations to a convectively unstable periodic
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travelling wave yield a stable periodic travelling wave. This suggests that the unstable

periodic travelling waves in the rainfall variation investigation (see Figures 4.24-4.27 and

4.29-4.34) might all be convectively unstable. Furthermore, the essential spectrum of

each of these waves is similar to that in Figure 5.5. A topic of interest for the future is

to investigate the type of instability in these waves. If indeed they are all convectively

unstable, a question then is how an absolutely unstable pattern solution evolves after a

change in rainfall; and if (similarly to the example in Section 5.2.2) it does not yield a

new pattern solution, what are the ecological implications for banded vegetation patterns

in water-limited ecosystems?
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