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A group contribution method for predicting the solubility of mercury
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Abstract

Mercury is a toxic and corrosive element, and understanding its partitioning within ecosystems and industrial pro-

cesses is of vital importance. The solubility of mercury in normal alkanes, aromatics, water and alcohols is predicted

using widely used Soave-Redlich-Kwong equation of state in combination with a group contribution method to esti-

mate binary interaction parameters. The interaction parameters between elemental mercury and seven other molecular

groups were determined in this work by fitting available solubility data for mercury. The solubility in the studied sol-

vents was accurately described. This work allows the prediction of the thermodynamic behavior of elemental mercury

in a wide variety of solvents, solvent mixtures, and operating conditions where experimental data are unavailable.
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1. Introduction

Mercury occurs naturally in the environment and can

be found in soil, air, and water. Due to its toxicity and

accumulative nature, it is considered a highly dangerous

element [1, 2, 3]. The sources of mercury in the bio-

sphere can be divided into natural and anthropogenic

sources. Both are considered to be equally important

causes of mercury accumulation in the environment.

Natural sources include volcanic activity, erosion of ter-

rain, and dissolution of mercury minerals in the oceans,

lakes and rivers [4]. Anthropogenic sources include ce-

ment manufacturing, paper milling, the combustion of

coal, oil, and gas as fuel to generate power, flared gas

from onshore and offshore oil and gas platforms, and

produced water discharged from oil and gas processing

facilities, refineries and chemical plants [5, 6, 7].

In addition to its contribution to environmental pollu-

tion, mercury has a negative impact on the production

and processing of oil and gas. As mercury is present in

many major oil fields, maintenance and operation teams

can be exposed to this highly dangerous element on a

daily basis. Activities that expose workers to mercury

include equipment cleaning, oil sampling, vessel and

tank inspections and hot work activities on restricted

areas. The risks are proportional to the concentration
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of mercury in the process facilities [8]. Mercury not

only poses health risks, it is also corrosive and can

cause equipment degradation and damage, catalyst poi-

soning, etc. [9]. It has an ability to accumulate on pri-

mary and secondary process treatment units (e.g., amine

units, glycol units, cryogenic units and heat exchang-

ers), eventually causing process failure [8].

In general, there are three ways to avoid mercury

emissions from industrial sources to the environment:

preventive measures, primary control measures and sec-

ondary control measures. Preventive measures can be

achieved only if the source of emissions is prevented;

this means fuel substitution, such as use of renewable

energy or biofuels instead of mercury containing en-

ergy sources. However, this option is not popular as oil

and gas are still the main source of energy. In primary

control measures, Hg emissions are still generated but

reduced to a certain value. In secondary control mea-

sures, Hg emissions exist but are removed later from

exhaust gases [10]. The selection of the best measures

requires a good understanding of the behavior of mer-

cury and its pathways through the process and the envi-

ronment. Consequently, mercury exposure risks can be

mitigated by determining the concentration and under-

standing the exposure pathways in work locations and

adopting effective health and safety policies and proce-

dures accordingly. Understanding mercury pathways in

industrial processes and the ecosystem requires knowl-

edge of the thermodynamic behavior of mercury and its
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interactions with other compounds, such as process flu-

ids (e.g., water, hydrocarbon mixtures, etc.).

Many physical properties of mercury, such as density,

thermal expansion and compressibility as a function of

temperature and pressure have been measured [11]. Va-

por pressure is one of the most important properties, as

it indicates the state of mercury and its concentration

in vapor, liquid, and solid phases. Several experimen-

tal measurements and correlations have been published

for the calculation of mercury vapor pressure over wide

range of temperatures [12, 13].

Predicting the solubility of mercury in liquids and

gases gives an indication of mercury pathways from one

phase to another. Accurate prediction of mercury solu-

bility plays an important role in developing a risk mit-

igation strategy. In general, however, the available ex-

perimental data are limited, in part, due to the difficulty

in working with mercury. Experiments involving mer-

cury can be time consuming and costly, and it is difficult

to anticipate the wide range of process conditions and

fluids that may be encountered.

In situations where experimental data are unavailable,

predictive methods are required. A competitive model

should be computationally inexpensive to evaluate and

require minimal parameterization [14]. One powerful

method is molecular simulation, which requires force

fields to be parameterized between all species in the so-

lution. This work has been focused particularly on sys-

tems containing elemental mercury [15] and some mer-

cury compounds [16, 15] in water. While these methods

offer the possibility of predicting thermodynamic prop-

erties of system containing mercury, they are compu-

tationally intensive and not suitable for use in process

scale simulations (e.g., in a refinery).

Another approach is to use thermodynamic models,

such as an equations of state (EOS) or an activity coeffi-

cient model [17]. These models have been successfully

used for the estimation of physical and chemical prop-

erties of pure and multicomponent systems. The selec-

tion of a model depends on its capability of estimating

the required physical and chemical properties, and pre-

dicting the phase behavior of a specific system where

experimental data are unavailable. Equations of state,

such as cubic equations of state or the perturbed-chain

statistical associating fluid theory (PCSAFT), are char-

acterized by their simplicity, reliability and robustness

over a wide range of conditions (e.g., high pressures),

and speed of computation [18]. Therefore, they are the

model of choice for many multicomponent systems and

are widely used for practical applications.

A recent study used PCSAFT to describe the phase

behavior of elemental mercury in liquid and compressed

hydrocarbon gases [19]. While this approach works

well, it requires fitting binary interaction parameters ki j

between mercury and the specific solvents being mod-

eled to existing experimental measurements. Properly

accounting for the interactions between molecules is

vital to the accurate prediction of mixture properties.

Within the context of equations of state, this is typi-

cally achieved by introducing the binary interaction pa-

rameter ki j between different molecular species; ki j is

normally used as a fitting parameter that is adjusted to

minimize the differences between the calculated and ex-

perimentally measured system properties, such as VLE,

LLE, density, and solubility. This limits its usage to sol-

vents where measurements with mercury exist.

One approach developed in order to overcome this

issue is the group contribution method (GCM). In the

GCM, molecules are subdivided into a series of groups

which consist of individual atoms or collections of

atoms [20]. The binary interaction parameters between

two molecules is then given as the sum of the interaction

parameters between the various pairs of groups on each

of the molecules. This allows the prediction of ki j for

a large number of compounds where experimental data

are unavailable and at operating conditions outside the

range of measurements.

In this work, we parameterize a group contribution

method to estimate the binary mixing parameters for

the Soave-Redlich-Kwong (SRK) equation of state to

the estimation of the thermodynamic properties of el-

emental mercury in mixtures of water, alkanes, aro-

matics, and alcohols. The SRK EOS is used in this

work because of its simplicity, computational efficiency,

and ability to predict vapor-liquid equilibria (VLE) and

liquid-liquid equilibria (LLE) at high and low pressures.

The ki j of elemental mercury was predicted using the

GCM developed by Peneloux and co-workers [20]. This

has the advantage that the group interaction parameters

already exist [21, 22, 23] for the SRK EOS for a wide

range of molecular groups, and so the method can be

immediately used in practical calculations. Combined

with a group contribution method, the SRK EOS allows

the prediction of mercury solubility and partitioning be-

tween phases.

In the next section, we briefly review the SRK EOS

and its application to mixtures. We then present the

group contribution method that is used to predict the

binary interaction parameters required by the equation

of state. In Sec. 3, this theory is compared against ex-

perimental measurements for the solubility of mercury

in water, n-alkanes, aromatic solvents, and alcohols. Fi-

nally, the main points of this paper are summarized in

Sec. 4, and directions for future work are discussed.
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2. Methodology

The SRK EOS is a modification of a cubic equation

of state proposed by Redlich and Kwong [24] developed

by Soave [25] by studying the behavior of pure com-

pounds:

p =
ρRT

1 − ρb
− aρ2

(1 + ρb)
(1)

where p is the system pressure, T is the absolute tem-

perature, and R is the universal gas constant, ρ is the

molar density of the system, and a and b are parame-

ters of the model. The first term of Eq. (1) corresponds

to the repulsive force and the second term corresponds

to the attraction force. The parameters ai and bi for a

pure component i can be expressed in terms of its criti-

cal temperature Tci and critical pressure pci

ai = 0.42747
R2T 2

ci

pci

αi(T ) (2)

αi(T ) =













1 + (0.480 + 1.57ωi − 0.176ω2
i )













1 −
√

T

Tci

























2

(3)

bi = 0.08664
RT 2

ci

pci

(4)

where ωi is the acentric factor for component i, intro-

duced by Pitzer [17].

To extend the SRK EOS to multi-component systems,

mixing rules are required to obtain the parameters a and

b for the solution from the ai’s and bi’s from the indi-

vidual pure components. Many mixing rules have been

proposed for cubic EOS [26, 27]. In this work, we use

the van der Waals mixing rules, which are given by

a =
∑

i j

xix j
√

aia j(1 − ki j) (5)

b =
∑

i

xibi (6)

where ki j in Eq. (5) is the binary interaction parameter,

xi is the mole fraction of component i in the mixture,

and ai and bi are calculated from Eqs. (2) and (4).

2.1. The Helmholtz Energy

From knowledge of the Helmholtz energy as a func-

tion of the temperature, volume, and component densi-

ties, all thermodynamic properties of a system can be

determined. For an ideal gas, the molar Helmholtz en-

ergy Aig is given by

Aig(T, ρ) =
∑

i=1

xiµ
◦
i + RT

∑

i=1

xi(ln ρibi − 1) (7)

where ρi is the molar density of component i, and µ◦
i

is

the standard state chemical potential.

In order to consider real systems, we define a resid-

ual property as the difference between the property of

the actual system and that of an ideal gas at the same

total volume, temperature and number of moles of each

species [18]

Mres(T,V, n) = M(T,V, n) − Mig(T,V, n) (8)

where Mres is any residual property.

The molar residual Helmholtz energy Ares can be di-

rectly determined from the equation of state by

Ares = RT

∫ ρ

0

dρ

ρ
(Z − 1) = I (9)

where Z = p/(ρRT ) is the compressibility factor, and ρ

is the molar density of the system.

The compressibility factor for the SRK equation of

state can be written as:

Z =
1

1 − ρb
− a

b2RT

ρb

1 + ρb

= Zexc + Zatt (10)

where Zexc accounts for excluded volume interactions,

and Zatt accounts for attractive interactions. Substituting

Eq. (10) into Eq. (9), Ares can be written as:

Ares = Iexc(ρb) − E(T, x)Q(ρb) (11)

where Iexc is the contribution from excluded volume in-

teractions, E characterizes the dependence of the attrac-

tive interactions in the system on the composition and

temperature, and Q captures the influence of density

(which is related to the “frequency” of the interactions).

For the SRK EOS, these terms are explicitly given by

Iexc(ρb) = −RT ln(1 − ρb), (12)

E(T, x) =
a

b2
, (13)

Q(ρb) = ln(1 + ρb). (14)

In order to characterize the influence of mixing on

a system, we first define an ideal solution, where the

Helmholtz energy is defined as:

Aid =
∑

i=1

xiA
◦
i + RT

∑

i=1

xi ln xi (15)

where A◦
i

is the molar Helmholtz energy of pure com-

ponent i, which is given by

A◦i = µ
◦
i + RT (ln ρbi − 1) + I◦i (16)
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where I◦
i

is the molar residual Helmholtz free energy of

pure i at packing fraction ρbi and temperature T . We

also define an excess property as the difference between

the actual value of the property of the system and the

value of an ideal mixture at the same temperature, total

moles of each species and packing fraction [18]:

ME(T, n, ρb) = M(T, n, ρb) − Mid(T, n, ρb) (17)

where ME is the excess property and Mid is the ideal

mixture property.

The excess Helmholtz free energy at constant temper-

ature, constant volume, and constant number of moles

of each species can be defined based on Eq. (17) as:

AE(T, n, ρb) = A(T, n, ρb) − Aid(T, n, ρb)

= RT
∑

i

xi ln
bi

b
+ I −

∑

i

xiI
◦
i .

The first term represents effect of molecule size on

the free energy of mixing, while the final two terms

give the influence of the attractive interactions between

molecules.

For an equation of state similar in form to the SRK

EOS, the excess Helmholtz free energy can be written

as

AE(T, n, ρb) = RT
∑

i

xi ln
bi

b
+

Q(ρb)

2b

∑

i, j

xix jbib jEi j

(18)

where Ei j physically captures the free energy of inter-

action between a molecule of type i and a molecule of

type j, and the Q term describes the frequency of the

interactions. The parameter Ei j can be directly related

to the original parameters of the SRK equation of state

as

Ei j = −2
ai j

bib j

+
ai

b2
i

+
a j

b2
j

. (19)

Using the van der Waals mixing rules (see Eqs. (5)

and (6)) leads to:

Ei j = (δi − δ j)
2 + 2δiδ jki j (20)

where δi = a
1/2

i
/bi is the Scatchard-Hildebrand solubil-

ity parameter [17, 22, 28]. So we see that the binary

interaction parameter ki j describes the deviation of the

interaction free energy between two molecules from that

given by the regular solution model:

ki j =
Ei j − (δi − δ j)

2

2δiδ j

. (21)

The regular solution model applies to mixtures where

molecules are of similar size and interact only through

dispersion forces [17]. For mixtures of molecules of

different size or where other forces are present (e.g., hy-

drogen bonding, dipole-dipole interactions, etc.), devia-

tions from this model are to be expected. In this work,

this is captured by the mixing parameter ki j.

2.2. Group contribution method

In order to obtain accurate results with a cubic EOS,

appropriate values for binary interaction parameters are

required. Typically, the ki j’s are used as fit parame-

ters used to reproduce experimental data. However, fre-

quently the experimental data required to develop and

validate the thermodynamic models are lacking. Sev-

eral empirical methods have been proposed to estimate

binary interaction parameters; however, many of these

correlations fail to properly predict the phase behavior

at elevated pressures [29].

Alternate mixing rules to the van der Waals mixing

rule (see Eqs. (5) and (6)) have been proposed as in

order to improve the accuracy of EOS’s. One class of

these is based on combining the EOS with an activ-

ity coefficient model [21] and is typically referred to as

EOS/gE .

The use of group contribution techniques with activ-

ity coefficient models, such as UNIFAC, has been quite

successful [14]. Calculating an EOS’s parameters based

on a group contribution method (GCM) is often more

powerful than the use of activity coefficient models and

can provide accurate predictions [18, 21]. The combina-

tion of an EOS with a group contribution method results

in a predictive model that provides a theoretical expres-

sion for ki j

The interaction free energy energy Ei j between a

molecule of type i and a molecule of type j, which ap-

pears in Eq. (20), can be expressed in terms of a sum

of the interactions between pairs of groups within the

molecules [20]

Ei j = −
1

2

∑

k,l

(αik − α jk)(αil − α jl)Akl(T ) (22)

where the indices k and l run over all types of groups

in the system, and αik is the fraction of molecule i oc-

cupied by group k. For example, propane has a molec-

ular structure of CH3-CH2-CH3; It contains two CH3

groups and one CH2 group. Therefore the total number

of groups present in this molecule is three. In this case,

the fraction of molecule propane occupied by group

CH2 is αpropane−CH2 = 1/3, and the fraction of molecule

propane occupied by group CH3 isαpropane−CH3 = 2/3.
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The temperature dependence of the interaction pa-

rameter Akl(T ) is given by:

Akl(T ) = A0
kl

(

T0

T

)B0
kl
/A0

kl
−1

(23)

where T is the absolute temperature, T0 = 298.15 K is

a reference temperature, and A0
kl

and B0
kl

are the interac-

tion parameters between groups k and l.

The quantity Akl(T ) represents the negative free en-

ergy of interaction between a group of type k and a

group of type l. From the Gibbs-Helmholtz equation

[17], we can then identify the quantity

B0
kl

(

T0

T

)B0
kl
/A0

kl
−1

with the attractive energy of interaction between groups,

and, consequently, the quantity

A0
kl(B

0
kl/A

0
kl − 1)

(

T0

T

)B0
kl
/A0

kl
−1

is related with the entropy of the interaction.

This group contribution method (GCM) was used by

Jaubert and Noël [21] to predict the VLE of several

binary mixture of hydrocarbon components using the

Peng-Robinson EOS (PR), calling this the predictive

Peng-Robinson 1978 (PPR78). Noël showed that the

obtained results from GCM are often more precise than

EOS/gE models. Another study used the GCM to pre-

dict ki j of a system containing hydrocarbon components

and carbon dioxide CO2 using SRK EOS [23]. The

study indicated its feasibility to estimate the ki j of any

mixture containing carbon dioxide and hydrocarbons at

any temperature. A relation between the ki j parameters

for PPR78 and the SRK EOS has been developed [22].

This helps to predict GCM parameters of SRK EOS

based on PR EOS GCM parameters. Consequently, the

values for the group interaction parameters A0
kl

and B0
kl

between a large number of different types of groups is

already available.

3. Results and discussion

In this section, we determine the values of the

group interaction parameters A0
kl

and B0
kl

appearing in

Eq. (23) between elemental mercury and various molec-

ular groups. As an initial step in this process, we need

to ensure that the properties of the pure components are

properly described by the SRK equation of state. This

is done by ensuring the vapor pressure curves are accu-

rately reproduced, which is described in the next sec-

tion.

Once the pure component parameters of the SRK

EOS are chosen, the values of the group interaction pa-

rameters are determined by fitting experimental solubil-

ity data for mercury in a variety of solvents. This is done

by minimizing the objective function Fobj

Fobj =
∑

i













S calc
i
− S

exp

i

S
exp

i













2

(24)

where S
exp

i
is the experimental solubility of mercury in

the selected solvent, and S calc
i

is the calculated solubility

of mercury in the selected solvent.

Vapor-liquid equilibrium (VLE) and liquid-liquid

equilibrium (LLE) calculations were performed for the

SRK equation of state using standard flash algorithms

implemented in Python to obtain the solubility of mer-

cury S calc
i

. The LmFit package in Python was used to

determine the values of the group interaction parame-

ters A0
kl

and B0
kl

in Eq. (23) that minimize the objective

function. The optimized values and their uncertainties

are summarized in Table 1. These are discussed in more

detail in the following parts of this section.

Table 1: Group interaction parameters A0 and B0 for mercury with

other groups.

group 10−4A0 10−4B0 B0/A0

bar−1 bar−1 —

CH 10.9143 ± 0.0023 7.00 ± 0.0945 0.66

CH2 7.8864 ± 0.0057 7.0562 ± 0.065 0.89

CH3 8.5137 ± 0.0207 7.1461 ± 0.27 0.84

OH 6.5524 ± 0.00204 5.29903 ± 0.837 0.80

ACH 7.7506 ± 0.0036 8.1350 ± 0.01 1.049

ACCH3 7.5699 ± 0.028 7.9629 ± 1.1 1.052

H2O 9.9037 ± 0.0063 3.7305 ± 0.0289 0.38

3.1. Vapor pressure

In order to predict the pure component properties of

a species, the SRK equation of state requires its criti-

cal pressure, critical temperature and acentric factor. In

principle, these can be obtained

In the literature, pure fluid parameters vary slightly

from reference to reference. In this work, the acen-

tric factor was only tuned in order to achieve the mini-

mum absolute average relative deviation error (AARD)

in vapor pressure. The adjusted acentric factor and criti-

cal pressure, critical temperature are summarized in Ta-

ble 2. Note that these values are in good agreement with

the accepted experimental critical properties for these

compounds in the literature.
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Figure 1 indicates that the SRK EOS is capable of

accurately predicting the vapor pressure of elemental

mercury, water, and alcohols. The AARD for 99 exper-

imental data points of elemental mercury over a tem-

perature range of 253.15 K to 773.15 K was 3.7%, the

experimental data used in this work were taken from

Refs. 30, 31, 32, 33. These data were classified by Hu-

ber et al. as primary experimental data, because of their

low experimental uncertainty of around 1% [12].

The AARD for the vapor pressure of water was 2.5%

for 38 experimental data points over a temperature range

of 319.6 K to 449.7 K; the experimental data used in this

work were taken from Ref. 34. For methanol and iso-

propanol, the AARD was 2.8% for 24 data points and

2.6% for 14 experimental data points, respectively; the

experimental data were taken from Ref. 35, 36, 37.

Figure 1: Relative deviation in vapor pressure for elemental mercury

(black), water (red), methanol, (yellow), and isopropanol (blue).

Figure 2 shows the relative deviation of the predic-

tions of the SRK equation of state for the vapor pres-

sure of some n-alkanes and aromatic compounds. The

AARD for propane, n-pentane, and n-decane was 0.4%

for 31 experimental data points, 0.2% for 50 experimen-

tal data points, and 2.5% for 32 experimental data points

respectively. the experimental vapor pressure data were

taken from Refs. 38, 39, and 40. In addition, the AARD

for the vapor pressure of benzene, toluene, and o-xylene

was 0.9% for 13 experimental data points, 0.3% for 17

data points, and 0.78% for 12 data points, respectively;

the experimental vapor pressure data for aromatics were

taken from Refs. 41,42, and 43.

3.2. Solubility of mercury in water

The solubility of elemental mercury in water is avail-

able over a wide range of temperatures. The experi-

mental data used in this work were taken from Ref. 47,

Figure 2: Relative deviation in vapor pressure of (a) n-alkanes and

(b) aromatic compounds.

which are shown as the symbols in Fig. 3(a) over a tem-

perature range of 273.15 K to 393.15 K. The dashed line

in Fig. 3(a) is the solubility of mercury predicted by

the SRK EOS, neglecting the binary interaction param-

eter (i.e. ki j = 0); without introducing proper binary in-

teraction parameters, the mercury solubility in water is

severely overestimated. The solid line in Fig. 3(a) gives

the prediction of the SRK EOS with the ki j shown in

Fig. 3(b). For this system, an AARD of 4.2% was ob-

tained for 25 experimental data points. The binary in-

teraction parameter between mercury and water is tem-

perature dependent; it increases by 0.05 with each 20 K

increase in temperature.

Figure 3: (a) Solubility of mercury in water. The dashed line is the

prediction of the SRK EOS with ki j = 0, and the solid line is the pre-

diction with ki j estimated using the group contribution method. (b)

The variation with temperature of the binary interaction parameter be-

tween mercury and water.
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Table 2: Pure component critical properties and acentric factor.

Component pc Tc ω Ref.

bar K —

mercury 1670.0 1764 −0.2102 [44]

propane 42.55 369.92 0.152 [45]

n-butane 37.966 425.16 0.205 [45]

n-pentane 33.691 469.7 0.250 [45]

n-hexane 30.124 507.31 0.305 [45]

n-heptane 27.358 540.1 0.3525 [45]

n-octane 24.865 568.76 0.3978 [45]

n-nonane 22.879 594.56 0.4419 [45]

n-decane 21.035 617.5 0.492 [45]

benzene 48.98 562.79 0.2130 [45]

toluene 43.2 591.8 0.268 [45]

o-xylene 39.8 633.3 0.304 [45]

methanol 80.959 512.5 0.556 [45]

isopropanol 47.63 508.37 0.657 [45]

water 220.64 647.14 0.324 [46]

Thermodynamically, the ratio B0/A0 reflects the in-

fluence of entropy on the mixing of groups. If the ratio

is less than one, the mixing process tends to increase

entropy; the molecules become more disordered than in

ideal mixing. If the ratio is greater than one, then en-

tropy is lost in mixing; the molecules are more ordered

than in ideal mixing. For a ratio of one, there is no

excess entropy of mixing and, and enthalpy drives the

process. In this case, the binary interaction parameter

temperature independent.

3.3. Solubility of mercury in normal alkanes

Normal alkanes represent more than 90% of natural

gas and crude oil species. Predicting mercury solubility

in these species is crucial. Elemental mercury is con-

sidered the dominant mercury species in the crude oil

and natural gas [9, 48]. The solubility data of elemental

mercury in hydrocarbon systems are sparse and covers a

limited temperature range, The experimental data used

in this work are shown as the symbols in Fig. 4(a) and

(b) for alkanes from C5 to C10, and Fig. 5(a) and (b)

for C3 and C4. These data were taken from Ref. 49

and Refs. 50 . Around 65 experimental data points

for C5 to C10 over a temperature range of 273.15 K to

336.15 K and atmospheric pressure, and 3 experimen-

tal data points for C8 over a temperature range from

338.15 K to 473.15 K and 6 bar. In addition to 17 data

points for C3 and C4 at different temperatures and pres-

sures.

Figures 4(a) and (b) show the predicted solubility of

elemental mercury in normal alkanes from C5 to C10.

The dashed lines in Fig. 4 are the solubilities predicted

by the SRK EOS, neglecting the binary interaction pa-

rameter (i.e. ki j = 0); without introducing the proper

binary interaction parameters, the mercury solubility in

alkanes is nearly independent of the molecular weight

of the alkanes. By introducing the binary interaction pa-

rameter, the results indicated by the solid lines in Fig. 4

are obtained. The AARD for the solubility in normal

alkanes from C3 to C10 was 5.47% for 74 experimental

data points.

In the recent study of Polishuk et al. [19], the Peng-

Robinson (PR) and PC-SAFT equations of state were

used to predict the properties of mercury-hydrocarbon

mixtures. In their work, a single, constant value of

ki j, which was fixed by fitting to experimental solubility

data of mercury in n-pentane, was used. The results of

the study showed that within this approach, the Peng-

Robinson EOS was incapable of estimating the solu-

bility of mercury in the studied hydrocarbon systems,

apart from mercury-pentane. The results presented in

Fig. 3 of Polishuk et al. show that the predicted sol-

ubility of mercury in C8 using PC-SAFT and the PR

EoS at 298.15◦C was 0.91 ppm and 3.5 ppm, respec-

tively, while the experimental solubility was 1.08 ppm.

The value obtained in this study using the GCM was

1.10 ppm which is much closer to the experimental

value.

In our study, different ki j values were calculated us-

ing GCM for each mercury-hydrocarbon binary system

at the system temperature and pressure. This approach

improves the prediction of mercury solubility in normal

alkanes more accurately than fixing ki j to a single value.

The solubility of elemental mercury increases with the

carbon numbers, which is in consistent with the obser-

vations of Refs. 49 and 50.

Several process facilities, such as stripping columns,

heat exchangers, reactors, and distillation units operate

at high temperatures; therefore, predicting mercury sol-

ubility in alkanes at high temperature is crucial. The sol-

ubility of elemental mercury in some organic solvents,

including octane, dodecane, and toluene, has been ex-

perimentally and theoretically estimated over a temper-

ature range from 100◦C to 200◦C and up to 6 bar [50].

Figure 4(b) represents the predicted solubility of ele-

mental mercury in normal octane at 6 bar and high tem-

peratures.

Figures 5(a) and (b) show the solubility of mercury

in propane and butane, respectively, at a range of pres-

sures and temperatures. It is clear that the SRK EOS

predicts the solubility of elemental mercury in light hy-
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Figure 4: Solubility of mercury in normal alkanes: C5 (black), C6

(red), C7 (green), C8 (blue), C9 (orange), and C10 (indigo). The sym-

bols represent experimental data, the solid lines represent predicted

solubility with the binary interaction parameters estimated using the

GCM, and the dashed lines represent the solubility without introduc-

ing the binary interaction parameter.

drocarbons well. This is due to fact that cubic EOS’s are

capable of predicting vapor phase properties more accu-

rately than liquid phase properties. It can be noticed that

the solubility of elemental mercury in propane is almost

equal to that in butane. This implies that the solubility

of mercury in light hydrocarbons in the gas phase is in-

dependent of carbon number. This suggests that the in-

teraction of elemental mercury with methane or ethane

is similar to that with propane and butane. This enables

the estimation of mercury solubility in methane, as the

experimental data are unavailable.

The binary interaction parameters of mercury in nor-

mal alkanes from C5 to C10 are shown in Fig. 6. The in-

teraction of mercury with these higher molecular weight

alkanes depends on both the carbon number and temper-

ature.

3.4. Solubility of mercury in aromatics

Aromatics are considered to be the main raw material

for many petrochemical industries [51]. The naphtha

reforming process is one of main sources of aromatics.

As crude oil and natural gas are the main sources of

aromatics and crude oil is known to contain mercury,

predicting the solubility of mercury in aromatics is vital

of importance.

Figure 7(a) shows the solubility of elemental mer-

cury in benzene, toluene, and o-xylene over a range

of temperatures. The experimental data are taken from

Ref. 49, which are shown as the symbols. The dashed

lines are the predictions of the SRK EOS with ki j = 0.

Figure 5: Solubility of mercury in (a) propane and (b) butane.

Figure 6: Binary interaction parameter for mercury-alkane mixtures.

It is clear that by neglecting the binary interaction pa-

rameters, the predicted solubility of elemental mercury

in aromatics is relatively insensitive to the presence of

methyl groups.

Two types of interaction groups for benzene, toluene,

and o-xylene were defined by dividing the carbons in

the aromatic ring. One group ACH is an aromatic car-

bon that is attached to a hydrogen atom; benzene has

six of these groups, while toluene has only five and o-

xylene has four. The other group ACCH3 is an aromatic

carbon attached to a methyl group; benzene has none of

these groups, toluene has one, and o-xylene has two.

The values of the interaction parameters of these groups

with elemental mercury were fit to the solubility data for

mercury in benzene and in o-xylene. These are summa-

rized in Table 1.
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Figure 7: (a) Solubility and (b) binary interaction parameter of mer-

cury with in benzene (black), toluene (red), and o-xylene (green).

The solid lines in Fig. 7(a) show the solubilities cal-

culated by the SRK EOS with the binary interaction pa-

rameters estimated by the group contribution method.

As a test of the group contribution model, the binary in-

teraction parameter between mercury and toluene was

predicted based on the group interaction parameters

obtained from mercury-benzene and mercury-o-xylene

mixtures. The AARD for mercury in benzene, toluene,

and o-xylene was 1.87% for 8 data points over a tem-

perature range of 273.15 K to 313.15 K, 6.1% for 6

data points over a temperature range of 273.15 K to

308.15 K, and 2.7% for 5 data points over a temperature

range of 273.15 K to 308.15 K and atmospheric pres-

sure, respectively.

The results presented in Fig. 4 of the Polishuk et al.

[19] study show that the predicted solubility of mercury

in toluene using PC-SAFT and PR EoS at 293.15◦C was

0.91 ppm and 1.05 ppm, respectively, while the experi-

mental solubility was 0.98 ppm. The value obtained in

this work using the GCM and based on the group inter-

action parameters obtained from mercury-benzene and

mercury-o-xylene mixtures was 0.94 ppm, which better

reflects the experimental value. The GCM is capable of

predicting binary interaction parameters of compounds

where experimental data are unavailable.

By introducing binary interaction parameters, the sol-

ubility of elemental mercury in aromatics is found to

increase with the number of methyl groups, which is

consistent with what is experimentally observed. Fig-

ure 7(b) indicates that the interaction between mercury

and aromatics is fairly independent of temperature.

3.5. Solubility of mercury in alcohols

Alcohols such as mono-ethylene glycol (MEG) and

diethylene glycol (DEG) are widely used in oil and

gas processing as anti-freeze and anti-corrosion agents;

however, experimental data for the solubility of mercury

in these alcohols are not available in the literature. One

of the motivations of this work is to predict mercury sol-

ubility in such alcohols.

Experimental data are available for the solubility of

mercury in methanol and isopropanol [47]. Figure 8(a)

shows a comparison of the SRK EOS, with and without

the binary interaction parameter, and experimental mea-

surements for the solubility of mercury in methanol and

isopropanol. Significant deviation can be observed be-

tween the experimental data and correlated results when

ki j = 0.

The group interaction parameters between elemental

mercury and the OH group were determined by fitting

experimental solubility data for alcohols (see Table 1).

Figure 8(b) shows that the ki j between mercury and iso-

propanol is more temperature dependent than methanol.

Using the group contribution method, the interaction

between mercury and MEG or DEG can be easily pre-

dicted. As a test of the group contribution model, we

predict the solubility of mercury in MEG. Large quan-

tities of MEG are injected at the wellhead in order to

avoid hydrate formation during transportation process.

The partitioning of elemental mercury from a gas phase

into MEG solutions was investigated under standard

laboratory conditions [52]. It was observed that the sol-

ubility of elemental mercury in MEG ranged from 0 to

60 ppb. Using the SRK combined with GCM developed

in this work to estimate ki j, we predict that the solubil-

ity of mercury in MEG is 57.7 ppb. Using ki j = 0, the

solubility of mercury in MEG is 1.78 ppm. It is clear

that the SRK combined with the GCM is able to predict

mercury solubility in alcohol systems.

4. Conclusions

Mercury is not only a toxic pollutant in the envi-

ronment, but it is also a corrosive element to process-

ing equipment. Understanding mercury pathways in

an ecosystem or its distribution in process facilities re-

quires a model that is able to predict its thermodynamic

behavior in a wide variety of conditions and solvents. In

this work, we parameterize a group contribution method

to estimate the temperature dependent binary interac-

tion parameters between elemental mercury and com-

pounds composed of CH, CH2, CH3, OH, H2O, ACH

and ACCH3 groups. By using these binary interaction

9



Figure 8: Solubility of mercury in methanol (black) and isopropanol

(red). The symbols represent experimental data, the solid lines are

predicted solubilities with the binary interaction parameter estimated

using the GCM, and the dashed lines are predictions with the binary

interaction parameter set to zero.

parameters, we find that the SRK EOS provides a good

description of mercury solubility in water, alkanes, al-

cohols, and aromatic solvents, as compared to available

experimental data. Improper estimates for ki j can yield

extremely poor results; for instance, setting ki j = 0, the

SRK predicts that the solubility of mercury in water at

298 K is 3,374 ppm, compared to the experimental value

of less than 1 ppm. The group contribution method al-

lows the estimation of ki j of elemental mercury with

a wide variety of solvents and solvent mixtures, even

when experimental data are not available. The group

interaction parameters are already available for a wide

range of systems [21, 23, 22], making this approach im-

mediately usable in practical applications.

Currently, we are using this group contribution

model to estimate the partitioning of elemental mercury

through a gas processing facility and validating the cal-

culations against field data. In future, we intend to ex-

tend this approach to organic mercury compounds to ex-

amine the speciation and distribution of mercury.
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