
Strathprints Institutional Repository

Puisa, Romanas and Tsakalakis, Nikolaos and Vassalos, Dracos (2012) 

Reducing uncertainty in subdivision optimization. Journal of Shipping 

and Ocean Engineering, 2. pp. 18-27. ISSN 2159-5879 , 

This version is available at http://strathprints.strath.ac.uk/58024/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


Journal of Shipping and Ocean Engineering 2 (2012) 18-27 

 

Reducing Uncertainty in Subdivision Optimization 

Romanas Puisa, Nikolaos Tsakalakis and Dracos Vassalos 

Ship Stability Research Centre, University of Strathclyde, Glasgow G20 0TL, UK 

 
Abstract: Design of watertight subdivision inherently involves its optimization with the objective to increase the index �A� above its 

minimum required value. In view of a big popularity of probabilistic search methods such as genetic algorithms, this task is intrinsically 

time consuming. Thus, even when an optimal subdivision layout (i.e. topology) is determined, it can be found that the optimal 

bulkhead positions can be a great challenge time-wise, often forcing designers to satisfy with suboptimal solutions. The fundamental 

reason why this happens is that the nature of the optimized function (e.g., index �A� as a function of bulkhead positions) is unknown 

and hence it has no effect upon the choice of optimization strategy, which therefore reflects subjective but not factual preferences. In 

this paper we study the nature of functional dependency between the subdivision index and bulkhead positions, as a simplest case, and 

indicate pertinent optimization strategies that consequently reduce the optimization time. In our study we use a cruise ship model to 

demonstrate the application results of our findings. 

 

Key words: Damage stability, optimization, watertight subdivision, index �A�, logistic regression, cruise ship, approximation, 

surrogate function. 

 

1. Introduction

 

Ship stability in a damaged condition is one of the 

safety critical functions that a designed ship has to 

provide. Ship subdivision into watertight 

compartments is a traditional approach to secure a 

needed level of damage survivability. The attained 

probabilistic subdivision index �A� of the international 

convention for the Safety of Life at Sea (SOLAS) 2009 

reflects the level of damage survivability and hence its 

calculation has been a routine task for naval architects. 

Naturally, design of watertight subdivision involves 

optimization of the index �A� with the objective to 

increase it above the minimum required value (denoted 

as R [1]) and keep maximising it further as long as it is 

cost effective. What is cost effective is rather 

subjective and conditional upon resources and time 

available. Apparently the both are limited and a quick 

delivery of the sufficient ship subdivision, i.e. A > R, is 

of primary interest. This is surely possible when past 

subdivision designs are re-used, however even in this 

case modifications are inevitable such as those brought 
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by changes in hull dimensions, the number and sizes of 

tanks, the engine room size, and so on. As a result, the 

existing level of the damage survivability is likely to be 

affected and the subdivision optimization towards A > 

R becomes necessary. Formally, we face with the 

following optimization problem, dropping other design 

objective functions (e.g., life cycle profitability, 

environmental impact) for simplicity. ܣሺxሻ ՜  ݔܽ݉

subject to ܣሺxሻ ൐ ܴ,               (1) 

hሺxሻ ൌ Ͳ, 

gሺxሻ ൑ Ͳ 

where ܣሺxሻ is the subdivision index �A� as a function 

of design variable vector x  (bulkhead positions, 

number of bulkheads, number of tanks etc.), hሺxሻ and 

gሺxሻ are vectors of equality and inequality constraints 

that can be additionally imposed. This optimization 

problem has to be always solved, regardless the 

presence of various methods that determine a 

close-to-optimal transversal subdivision. Thus for 

example, Karaszewski and Pawłowski [2] concluded 

that the optimal position of the transverse bulkheads is 

defined by a uniform distribution of the local indices 

DAVID  PUBLISHING 

D 



Reducing Uncertainty in Subdivision Optimization 

  

19

of subdivision. The relatively recent research study by 

Cabaj [3] allows linking flooding survivability of 

SOLAS 2009 with positions and lengths of 

compartments similar like the classical method of 

floodable length curves. 

To this end, we need to select an optimization 

method to efficiently solve Eq. (1). Apparently, a 

choice of the most relevant method has to be driven by 

the mathematical structure of the problem. In particular, 

we are interested in the topology (structure of the 

function landscape) of the optimized function. Thus, 

for regular (continuous and differentiable) and 

preferably convex functions of design variables, 

gradient-based methods is the right choice. These 

deterministic methods guarantee optimal solutions in a 

few iterations. Their efficiency stems from the fact that 

they utilise knowledge about the function topology 

explicitly. In particular, a direction to the optimum and 

the step size are determined by respectively calculating 

the gradient vector and the Hessian matrix (related to 

the local curvature) of the optimized function. In case 

of discrete (e.g. due to noise) or/and discontinuous 

(e.g., there is no solution for certain design variable 

values) and hence not differentiable functions, which 

can be also multimodal (multiple local optima), 

probabilistic methods are preferable. The probabilistic 

methods (e.g. evolutionary algorithms) are intrinsically 

robust within a broad range of optimization problems, 

but the cost for that is greatly lesser efficiency. They 

are less efficient because they deliberately neglect the 

function topology, ranking alternative solutions based 

on function values only. Hence, the search for optima is 

blind, whereas its success is left to chance. As a result, 

probabilistic methods guarantee an improvement only 

with the probability. Apparently, this probability is 

bigger when the problem is simpler and the time 

allowed for optimization is more. Thus, this probability 

theoretically approaches one (for any problem) for the 

infinite search time. 

With the above in mind, we need to be certain of 

whether the optimization method we apply is really 

relevant. Surely, the preference falls on some 

deterministic approach, but its applicability has to be 

still verified. This can be done through examination of 

the topology of optimized functions, classifying the 

functions into convex or non-convex and identifying 

other properties such as the number of function 

extrema. This kind of analysis is not generally complex 

if explicit mathematical formulations of those 

functions are known and can be written in a closed 

form. However, in practice this knowledge is often 

limited. In such situations we can describe a functional 

relationship only implicitly and more often in the form 

of a �black box� with only known input and output. 

This has conventionally been the case with the index 

�A�. Its general form as a sum of its components is 

given as follows. ܣሺxሻ ൌ ෍ ൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥୡ୭୫୮୭୬ୣ୬୲஺೔࢏௜൫x࢙ݏ൯࢏࢖௜൫x݌
ே஽
௜ୀଵ  (2)

where ܰܦ  is the total number of damage cases, ݌௜൫x࢏࢖൯ is the probability of flooding of a given 

compartment or group of compartments i, x࢏࢖ is a set 

of design variables (x࢏࢖ ك x) that affect ݌௜, ݏ௜൫x࢙࢏൯ is 

the conditional probability of surviving flooding a 

given compartment or group of compartments i, x࢙࢏ is 

a set of design variables (x࢙࢏ ك x) that affect ݏ௜. Note, 

equality σ ௜݌ ൌ ͳ௜  must hold. Thus, bearing in mind 

Eqs. (1) and (2), maximization of ܣሺxሻ  implies 

maximization of components ܣ௜. 
We are fortunate enough to know that the 

subdivision index �A� is an aggregative function of 

linearly combined sub-functions ܣ௜ . Hence, the 

topology of the aggregative function can be determined 

via topology analysis of its sub-functions. The 

knowledge about this will enable us to estimate the 

complexity of optimization problem in Eq. (1) and 

select a relevant optimization strategy, as a result. This 

frames the actual paper, which is organized as follows. 

The following section addresses the topology analysis 

of components ܣ௜, the sequential sections address the 

problem complexity, the choice of the most relevant 

optimization strategy and its application to subdivision 
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optimization. The final section concludes the paper. 

2. Topology Analysis of Index “A” Function 

An explicit form of ݌௜൫x࢏࢖൯ is known and found in 

Refs. [1, 4]. The so-called p-factor, ݌௜, is calculated on 

the basis of probability density distributions for relative 

damage location, penetration and length, given (a) 

longitudinal positions of transversal watertight 

bulkheads that define flooded compartment(s) and (b) 

the minimum breadth of flooding wing compartment(s). 

Fig. 1 shows how p-factor varies with positions of 

transversal bulkheads confining a damaged 

compartment. Apparently, the relationship is convex 

and the maximum p-factor value is when the bulkheads 

are farthest apart. 

The ranges for ݔଵ and ݔଶ in Fig. 1 are taken from a 

simplified cruise ship subdivision with 22 transversal 

bulkheads shown in Fig. 2. We assume that the 

function topologies will not essentially be different in 

more complex subdivisions (e.g., with numerous 

longitudinal and stepped transfers bulkheads) and also 

ship types. 

Note, the p-factor function for multiple compartment 

damages will have the same topological characteristics 

as for single compartment damage, but it will be 

additionally affected by intermediate (between ݔଵ and ݔଶ ) bulkhead positions as well [4]. The p-factor 

function for multiple compartment damages is of high 

dimensional and hence cannot be plotted for visual 

analysis. To this end, the p-factor function is seemingly 

convex, continuous and differentiable. 

The missing link in understanding the topology of 

Eq. (2) is the s-factor, ݏ௜, which is the second element 

of component ܣ௜ . Even though its explicit form is 

found in the regulations [1], that is ݏ௜ ൌ ܭ ൬ܼܩ௠௔௫ͲǤͳʹ Rangeͳ͸ ൰ଵସǤ (3)

In Eq. (3), ܭ is a constant, ܼܩ௠௔௫ is a maximum 

value of the positive righting lever, Range  is the 

range of positive righting levers, both determined 

through hydrostatic stability calculations. 

 
Fig. 1  The p-factor for single compartment, whose both 

ends are inside the ship length. Variables ࢞૚ and ࢞૛ are 

measured in meters from the aft terminal of the ship, hence 

defining the length and longitudinal position of the 

compartment. 
 

 
Fig. 2  A reference model of a cruise ship1 with a simplified 

subdivision that is usually used in primary damage stability 

calculations. The required subdivision index is R = 0.83. 
 

The s-factor relation to design variables such as 

bulkheads positions ݔଵ  and ݔଶ is not necessary 

obvious. From the physical point of view, the s-factor 

must be a function of the size and the location of a 

flooded compartment (or a group of adjacent 

compartments). That is, the size of a flooded 

                                                           
1 Main particulars of the ship: length between particulars Lbp = 
293 m, length overall Loa = 323 m, breadth B = 36.8 m, design 
draught T = 8.3 m. 
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compartment determines the volume of water that 

reduces the displacement of the damaged ship. In turn, 

the position of the flooded compartment tends to 

govern a combined effect of the heel and the trim on the 

ship�s stability. Thus, rather than using the coordinates 

of transverse watertight bulkheads ݔଵ and ݔଶ, we use 

the size and the position of a flooded compartment they 

define. That is, ߣ ൌ ሺݔଶ െ ߯ ,ଵሻݔ ൌ ଵݔ ൅ ఒଶ (4)

where ߣ  is the size and ߯  is the position of the 

damage compartment or the group of adjacent 

compartments being flooded. Thus, Fig. 3a shows the 

contour plots of the s-factor function across different 

damage cases that involve one, two, three, four and five 

adjacent compartments (or zones) filled with water. 

The contour plots indicate, and this is also confirmed in 

Fig. 3b, that the s-factor function follows a sigmoidal 

shape, which is a continuous surface with large plateau 

of 1/0 values. From the physical point of view, the 

plateaux define areas of stability ሺݏ௜ ൌ ͳሻ  or 

instability ሺݏ௜ ൌ Ͳሻ for the damaged ship in term of 

the position and the size of the damage. 

To this end, behavior of the s-factor is well defined. 

It ranges from 0 to 1 and resembles a Bernoulli trial 

with two dominating outcomes: survived ݏ௜ ൌ ͳ 

(success) and not survived ݏ௜ ൌ Ͳ  (failure). In 

statistics, this particular behavior of the dependent 

variable is well captured via the logistic regression 

(LR)2 [5], which has the following model. ݕሺxሻ ൌ ͳͳ ൅ exp ሺെߚሺxሻሻ (5)

where ߚሺxሻ  is usually a linear model with the 

intercept defined as ߚሺxሻ ൌ ଴ߚ ൅ ଵݔଵߚ ൅ ଶݔଶߚ ൅ ڮ ൅ߚ௡ݔ௡ (6)

with ߚ௜  being regression coefficients. In LR ݕሺxሻ  ,ሾͲǡͳሿ represents the probability of a particular outcomeא

given a set of explanatory variables x. This is exactly 

                                                           
2 Note, one of the properties of LR is that it can accommodate 
heterogeneous variables in the model (6). That is, some 
variables can be continuous, other discrete or/and categorical. 
Thus for example, the compartment size and position can be 
given in frames (discrete), whereas ܾ can be given in meters 
(continuous). 

what the s-factor represents: the probability of 

surviving a damage case described by design variables 

 and ߯ and b; the latter being the minimum breadth 

of flooded wing compartment(s) when corresponding 

longitudinal bulkheads are present. The relevancy of 

LR is also backed by the fact that logistic function ݕሺxሻ in Eq. (5) is also sigmoidal. Thus, Eq. (5) can be 

rewritten as a regression model for the s-factor as ݏǁሺ઺ǡ ǡ ߯ǡ ܾሻ ൌ ͳͳ ൅ exp ሺെߚ଴ െ ߣଵߚ െ ଶ߯ߚ െ  ଶܾሻߚ
(7)

where ઺ is the vector of regression coefficients ߚ௜. 
Figs. 3b and 3c also shows application of LR on 

sample data for the s-factor. Specifically and 

interestingly, the approximation is very accurate for 

one and two compartment (zone) damages, and 

reasonably accurate for three, four and five 

compartment damages. Thus, the closer sample points 

to the sigmoidal shape, the more accurate regression 

results are. It�s important to note that regardless of the 

level of inconsistency between sample/calculated and 

regression points in Fig. 3, the expected value of the 

s-factor, ܧሺݏሻ, in both data sets is the same. That is, for 

each damage case model Eq. (8) holds when the 

number of samples is sufficiently large. ͳܰ ෍ ǁሺ઺ǡݏ ǡ ߯ǡ ܾሻே
௜ୀଵᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥாሺ௦ሻ of regression data

ൌ ͳܰ ෍ ௜ேݏ
௜ୀଵᇣᇤᇥாሺ௦ሻ of sample data 

 
(8)

where ܰ is the number of samples. Eq. (8) also holds 

for ܰ ൌ ͷ͹, which is the number of samples used in 

the plots of Fig. 3. Hence, the use of LR for 

approximating the s-factor can also be justified this 

way. 

To this end, the analysis of the p-factor has shown 

the function behind it to be continuous, differentiable 

and likely convex. In turn, the analysis of the s-factor 

function confirms its strong sensitivity to the size and 

position of the damaged compartment or a group of 

adjacent compartments involved in the damage case. 

As for the s-factor function topology, it signifies a 

continuous sigmoidal surface in 3D of which shape 

changes with the number of adjacent compartments 
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(a) (b) (c) 

Fig. 3  The variation of the s-factor function with the length and the position across multiple-zone damage cases: (a) a contour 

plot of the s-factor; (b) a 3D surface plots with sample points being approximated by the surface; (c) sampled (observed) vs. 

approximated (predicted) data plots, which are complementary to (b). 
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involved in the damage case. The s-factor surface may 

exhibit large plateaux with 0/1 values where the 

function derivatives vanish. Therefore, the s-factor 

function may also be classified as a flat or locally 

constant function. Additionally, the s-factor function is 

non-convex, which stems from its sigmoidal shape. 

Components ܣ௜  of the subdivision index �A�, as 

defined in Eq. (2), are hence intersections of convex 

and non-convex sets that correspond to the p- and 

s-factor functions, respectively. As a result, 

components ܣ௜  are non-convex functions of higher 

dimension. Consequently, the subdivision index �A� 

being a linear combination of non-convex functions is 

also a non-convex function of high dimension. For the 

strict convexity of a function implies the existence of 

just one maximum (or minimum) point, the 

non-convexity invalidates this theorem. Hence, the 

subdivision optimization problem such as studied in 

this work can have more than one global maximum. 

3. Problem Complexity and Selection of 

Optimization Strategy 

In this section we aim to formalize the complexity 

of the optimization problem. That is, bearing in mind 

the character of the p-factor and s-factor functions, it 

becomes obvious that the nonlinearity and irregularity 

in resulting functions of components ௜ܣ  is 

predominantly driven by the presence of large 

plateaux in s-factor functions. Thus, in case of some 

s-factors equal one, corresponding components ܣ௜ 
represent a sum of differentiable and convex functions 

of the p-factors, which are hence easy to optimize. As 

s-factor decrease, components ܣ௜  become irregular 

until they cease contributing to the subdivision index 

�A� when corresponding s-factors become zero. On 

this basis, we could define the complexity of the 

optimization problem to be proportional to the 

expected s-factor over all damage cases, E(s). The 

complexity vanishes when the expected s-factor value 

is either zero or one, thus forming a bell-shaped curve 

like the one in Fig. 4. 

 
Fig. 4  Optimization complexity vs. expected survivability. 
 

This brings us to the conclusion that the initial (prior 

to optimization) value of the index �A�, which by 

definition is the expected survivability, indicates how 

difficult the optimization of a ship subdivision is going 

to be. Specifically, the higher initial index �A�, the 

easier optimization algorithm will be able to improve 

the design, and vice versa. Certainty, various 

topological characteristics of the bell-shaped curve in 

Fig. 4 such as the inception the complexity descent and 

others will vary across different subdivision designs. 

However, this subject is beyond the scope of this paper. 

As for the choice of an optimization method, 

deterministic gradient-based methods are definitely not 

applicable, unless the ship survives all the damages 

with the probability equal one. In this case the 

optimization of the index �A� would not be needed. 

Hence, we have no choice but to employ probabilistic 

(or stochastic) optimization methods that have been 

shown [6] to be suitable for this class of problems. 

Interestingly, probabilistic optimization methods and in 

particular genetic algorithms (GAs) [7] have been 

mainly applied in order to improve the index �A� [8-10]. 

However, the reason why GAs have been so popular is 

not because of anticipated problem complexity, but due 

to GA simplicity and hence convenience. This becomes 

obvious just observing the way the method has been 

used. That is, due to its stochastic nature, it should let 

run for an extended period of time 3  to arrive at 

solutions being close to the global optimum. However, 

since each evaluation of index �A� takes ca. 3.5 min for 
                                                           
3 A reasonable number of the index �A� evaluations can be 
1,000, which is a population of 10 individuals for 100 
generations, neglecting the effect of mutation and crossover. 
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Ro-Ro ships [9] and up to 20 min for cruise ships, to 

perform just 1,000 �A� evaluations it would take 58 and 

333 hours, respectively. As this might be prohibitive in 

practice, such an extended optimization is not likely to 

be performed, satisfying with only some minor 

improvement. For all probabilistic methods in average 

having a similar performance [11], the same would also 

apply in case of using any other probabilistic method. 

It stands to reason that the successful optimization of 

the index �A� requires an extensive exploration of 

design space. For this to happen, the runtime must be 

significantly reduced, to allow for numerous 

optimization runs. Such a reduction is only possible if 

we replace the time consuming hydrostatic calculations 

by approximate calculations. In other words, we need 

to find a surrogate function for the function behind the 

index �A� that is easy to implement and quick to 

evaluate. Such a surrogate function, which is based on 

the regression model from the preceding section, can 

be proposed to be as follows: ܣሚሺxሻ ൌ ෍ ǁሺ઺ǡݏ൯࢏࢖௜൫x݌ ǡ ߯ǡ ܾሻே஽
௜ୀଵ Ǥ (9)

Note the s-factor in Eq. (9) represents the regression 

model of Eq. (7), whereas the p-factor is calculated 

according to the formulae described by the regulations 

[1, 4]. Interestingly to note, the p-factor can be also 

quite accurately approximated using the logistic 

regression model of Eq. (5) with independent variables 

corresponding to positions of all the p-factor affecting 

bulk heads. Thus for example, Fig. 5 shows a 

comparison of regression data with sample data for the 

p-factor for 5 zones damage case. The plot in Fig. 5 

shows a good match even for 5 zones damage case, 

which involves 6 design variables (No. of zones + 1) 

affecting the p-factor. Thus, for fewer zones damage 

cases, the match should be even better. 

Regardless the way the p-factor is estimated, it does 

not change the proposed optimization strategy at the 

heart of which is the use of the surrogate Eq. (9). The 

next section illustrates an application of the surrogate 

index �A� function to subdivision optimization. 

 
Fig. 5  Regression vs. sample data of the p-factor for 5 

zones damage case. Note, the slope ൎ ૚ (close to one-to-one 

match) and the intercept is negligible. 

4. Surrogate Optimization of Index “A” 

In this section we apply the surrogate index �A� Eq. 

(9) to optimize the subdivision shown in Fig. 2. First 

we summarize the process of deriving the 

regression-based surrogate function. 

As for any other regression, we need to provide a 

data set based on which the regression coefficients can 

be estimated. The data can be sampled using some 

randomized sampling mechanism that should also be 

effective, in view of tedious calculations of the index 

�A�. We recommend the Latin hypercube sampling 

(LHS) [12] as an efficient sampling method that 

uniformly covers the design space. The number of 

samples in LHS is not required to increase with the 

number of variables that are subject to variation; this 

independence is one of the main advantages of this 

sampling scheme. Another advantage is that random 

samples can be taken one at a time, remembering which 

samples have been taken so far. In summary, the 

s-factor (and the p-factor analogically, if needed) is 

approximated according to the flowing procedure. 

 The subdivision topology (number of bulkheads, 

tanks and openings) is fixed. This makes sure that the 

number of damage cases is the same for each run. This 

also implies that the subdivision topology must be 

optimized in advance, thus for instance, the optimal 
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inefficient. This paper has shed light on the nature of 

the subdivision optimization problem (as implied by 

SOLAS 2009) with the aim to reducing uncertainty 

while selecting the most relevant optimization strategy. 

In particular, we have performed topology analysis 

of the index �A� sub-functions and concluded that they 

are generally non-convex, multimodal (the presence of 

multiple maxima) and can be highly irregular with flat 

regions where the function derivatives vanish. The 

existence of large plateaux with s-factor values 0/1 also 

means that a Taylor series expansion, which is often 

employed by some gradient-based optimization 

algorithms, cannot be applied to the index �A� function, 

as there is no convergent infinite power series. 

On this basis we have suggested that such 

irregularity of the index �A� function is reduced as the 

index increases. In other words, the higher the initial 

flooding survivability (i.e. the subdivision index �A�), 

the easier is to raise it further by optimizing positions 

of watertight bulkheads. This constitutes useful 

knowledge for practitioners who deal with the 

subdivision design problem on the regular basis. 

Further, due to the highlighted irregularity of the 

index �A� function, optimization algorithms that 

require computation of derivatives are obviously 

irrelevant. Therefore, probabilistic methods such as 

genetic algorithms (GA) (or evolutionary algorithms in 

general), simulated annealing (SA) and other heuristics 

should be used instead. It is important to note that 

particularly because of the presence of the plateau and 

multiple function maxima, a selected probabilistic 

method must have mechanisms to handle these search 

impairing difficulties. Such mechanisms are usually 

related to diversity preserving strategies. Thus for 

example, the mutation probability in GA can be made 

adaptive, automatically increasing when the search 

stagnates and loses diversity [19]. In SA the cooling 

schedule can be made less steep/fast or/and the search 

can be restarted (resetting the initial temperature) when 

it starts stagnating. 

We have also attempted to derive a surrogate 

function for the index �A�, aiming to reduce the 

optimization time. The surrogate function is based on 

the logistic regression used to approximate the s-factor. 

The main reason to use the logistic regression for 

s-factor approximation was due to similarity between 

the topological shapes of the logistic function and the 

s-factor function. Specifically, the both functions 

follow the shape of a sigmoidal function. The logistic 

regression has proven to be a good way of 

approximating the s-factor, although the approximation 

error is present and it increases with the number of 

compartments involved in a damage case. We have 

tested the surrogate index �A� function in optimizing 

the subdivision of a cruise ship and found that its 

inaccuracy is detrimental, although the optimization 

results were feasible and represented significant 

improvement of initial designs. We hence conclude 

that the proposed surrogate model is generally 

unsuitable. It is worth reminding the reader that the 

approximation of the subdivision index �A� has not 

been an objective but rather a natural consequence of 

the analysis presented in this paper.  
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