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ABSTRACT
Megaselia scalaris (Loew, 1866) (Diptera, phoridae) is a cosmopolitan fly species
used in forensic science, and has been developed as a laboratory model species. They
feed on decaying corpses as well as a wide variety of organic matter, and previous
studies have even found them feeding on liquid paint or shoe polish, suggesting the
possibility that they could breakdown industrial compounds. To test this possibility,
we fed M. scalaris on a variety of industrially obtained materials and found that it
was unable to complete its life cycle, dying at the larval stage, with the majority of
compounds tested. However, when fed on modeling clay, a substrate that contains
starch and inedible compounds, it was able to complete its life cycle. On this diet
we observed increased larval development time, decreased pupal development time
and a shortened adult life span. Additionally, pupae and adult flies were smaller than
control flies. Contrary to previous reports, we find no evidence that M. scalaris is able
to survive on modern formulations of liquid paint.

Subjects Entomology
Keywords Megaselia scalaris, Modeling clay, Plasticity, Lifespan, Size

INTRODUCTION
Human made synthetic materials are polluting the environment and it is important to

develop efficient methods for their removal (reviewed in Gregory, 2009; Thompson et

al., 2009; Teuten et al., 2009). Saprophages are organisms that feed on decaying organic

matter and can be used to treat organic waste (Sheppard et al., 1994). The possibility that

they could also dispose of synthetic materials could lead to economic alternatives for the

cleanup of pollution and the disposal or conversion of unwanted material. One candidate

for such a role is the scuttle fly Megaselia scalaris (Loew, 1866). Megaselia scalaris is in the

family Phoridae and has been used in forensic medicine to estimate post mortem intervals

(see Disney, 2008 and Varney & Noor, 2010 for reviews of M. scalaris biology). It has been

studied as a cause of myiasis in humans (Hira et al., 2004; Mazayad & Rifaat, 2005) and for

genetics and developmental biology (Sievert, Kuhn & Traut, 1997; Traut, 1994; Willhoeft

& Traut, 1990; Willhoeft & Traut, 1995; Wotton, 2014). It can feed on a wide variety of
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food, ranging from dead or alive animals, fruits, fungi and laboratory foods (Disney, 2008).

Importantly, this organism has also been reported to feed on otherwise inedible materials

such as shoe polish or paint (Lever, 1944; McCrae, 1967).

The ability of insects to obtain nutrients from different food sources affects their size;

well-fed animals are bigger than poorly fed ones (Chapman, 1998). In flies, the size of

the larvae at the moment of pupation will determine the size of both the pupae and

of the adult. Two terms define the size of the larvae before metamorphosis: the critical

weight is the size at which the larvae will start producing the hormones needed to begin

metamorphosis (Nijhout & Williams, 1974), while the minimal viable size is the size at

which the larvae will be able to survive metamorphosis (Nijhout, 1975). After attaining the

critical weight, larvae can still grow if they continue feeding, but failure to feed will not

prevent pupation. If larvae are starved before the critical weight, pupation is compromised

(Mirth, Truman & Riddiford, 2005).

The objective of this study is to test the ability of M. scalaris to complete its life cycle on

a variety of synthetic or semi-synthetic products, and to record the influence of the diets

on the flies. For all materials used, only modeling clay consistently sustained the life cycle

of M. scalaris. We studied the effects of a modeling clay diet on M. scalaris and found that

these flies were smaller and had shorter adult lives than control flies. Their larval and pupal

stages also differed from those of the controls. We discuss the possible reasons for these

differences in terms of reduced nutritional value of the food and the critical weight and

minimal viable size of the flies.

MATERIALS AND METHODS
We tested the ability of M. scalaris to complete its life cycle on 13 synthetic products

(Table 1). For each condition 4 females and 2 males M. scalaris ‘Wien’ strain (Mainx,

1964; Johnson, Mertl & Traut, 1988) were transferred into a tube containing the test food

source and allowed to mate. A total of 20 replicates for each condition were made. For all

experimental conditions, water was added ad libitum to prevent dehydration. Controls

were fed on standard Drosophila melanogaster (Meigen, 1830) fly food (Table 1). Tubes

were kept at stable room temperature (22.8 ± 0.8 ◦C). The materials used to feed the larvae

shown in Table 1 have been classified as mouldable (materials that can be shaped and are

therefore more deformable, and easier for the larvae to chew on) and non mouldable. We

used a modern formulation of the latex based paint described in McCrae (1967), however

this is not an exact equivalent of the 1967 formulation. After egg hatching, adults were

removed from the tubes. The presence and survival of larvae, pupae or new adults was

monitored daily until no more alive larvae or emergence of new flies were observed.

We recorded the duration of each stage (larval, pupal or adult) along with pupal and

adult sizes (pupal and adult length, pupal width). In some instances, pupae could not be

measured due to the location of the pupation site, since moving the pupae would have

caused damage. Only data from the pupae that emerged as adult flies was used to make

the comparisons, so that their genders could be assessed. Pictures were taken using a Leica

MS5 dissecting scope and a Leica EC3 camera and dimensions measured using the ruler
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Table 1 Test materials used to feed M. scalaris. The characteristics of the materials in terms of mouldability, as well as their commercial name,
when applicable, or composition, when available, are provided.

Material Characteristics Commercial name Composition

Plastic carrier bag Non-mouldable NA NA

Adhesive tape Non-moludable Scotch® 810 MagicTM tape (3M, USA) Synthetic adhesive, matte acetate

Nitrile gloves Non-moludable Versatouch Nitrile Gloves (Num. 92-205 Ansell
Healthcare, USA)

Nitrile rubber (synthetic rubber copoly-
mer of acrylonitrile and butadiene)

Latex gloves Non-moludable Naturflex Latex gloves (Ref. 121353 Barna Import
Medica, S.A., Spain)

Latex

Potato starch carrier bag Non-moludable NA NA

Synthetic paint Mouldable Titanlux Gloss Synthetic Paint (Color 539
(luminous blue), Industrias Titan, S.A., Spain)

Nafta, hydrocarbons, xilene, butanone-
oxima, cobalt bis (2-ethilhexanoate),
2-butoxietanol, 1-metoxi-2-propanol,
1-metil-2-metocietil acetate, (metil-2-
metoxietoxi) propanol, etilbenzene.

Latex based paint Mouldable La Pajarita Silk latex based paint (L-12
(intense blue) Carlos Grollo S.A., Spain)

Petroleum jelly Mouldable Vaseline® (Unilever, UK) Hydrocarbons (carbon numbers >25)

White tack Mouldable APLI White Tack (Ref. 11803 Apli Paper
S.A.U., Spain)

Mix of polymers, oils and carbonates

Chewing gum Mouldable Sugar free Orbit spearmint chewing gum
(Wrigley Co. S.L.U, Spain)

Gum base, soy lecithin, high intensity
non caloric sweeteners, glycerin, mint
essential oil, antioxidant BHA

Wax ear plugs Mouldable Ototap (removing the outer cotton coating)
(CN304261.1 Prophyl center, S.A., Spain)

Vegetable wax, petroleum jelly, pigment

Periphery wax Mouldable Surgident Periphery Wax (No 50092189 Heraeus
Kulzer, Inc., USA)

Paraffin wax

Modeling clay Mouldable Jovi modelling clay Plastilina (blue) (Art. 70
Jovi, S.A., Spain)

White oil, paraffin waxes, stearic acid,
metallic stearates, starch (50%), BHT,
pigment blue 15:3

Fly food Mouldable NA For 100 tubes: 1,125 ml H2O, 7.5 g agar,
55 g glucose, 50 g brewer’s yeast, 35 g
flour, 25 ml nipagin (10% in ethanol),
4 ml propionic acid

function in Photoshop. Statistical analysis to evaluate differences between conditions was

performed using the Student’s T-test, with a significance level for the associated probability

of 0.05. Data on the size, stage duration and statistical values for animals that completed

their life cycle can be found in File S1.

RESULTS
Development of Megaselia scalaris on different types of
industrially obtained materials
We attempted to rear larvae on a wide variety of plastic, gum, wax and starch-based

products (see ‘Materials and Methods’, Table 1). We monitored the duration of the different

stages in all conditions (Table 2). Except for the paint treatments, adult flies had no

problem surviving in all materials provided until egg hatching. In both paint treatments,

adult flies died soon after the start of the treatment (but after egg laying), despite previous
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Table 2 Stage duration in different experimental conditions. Extent of stage duration (in days) of the longest surviving larvae, shortest successful larva to pupate,
longest successful larva to pupate, shortest pupa to emerge and longest pupa to emerge in each of the tested conditions.

Plastic
bag

Starch
bag

Adhesive
tape

Nitrile
gloves

Latex
gloves

Latex based
paint

Synthetic
paint

Petroleum
jelly

Wax ear
plugs

Peripheral
wax

Chewing
gum

White
tack

Modeling
clay

Fly food

Max larva alive
(not pupated)

13 26 17 5 13 18 NA 14 39 47 10 12 75 56

Min larva to pupa NA NA NA NA NA NA NA NA 29a 16 NA NA 11 7

Max larva to pupa NA NA NA NA NA NA NA NA 29a 17 NA NA 53 35

Min pupa to adult NA NA NA NA NA NA NA NA NA 11b NA NA 10 13

Max pupa to adult NA NA NA NA NA NA NA NA NA 11b NA NA 15 23

Notes.
NA indicates there is no value for that experiment.

a Refers to a single individual.
b Refers to a single individual.
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reports of M. scalaris feeding on liquid paint (McCrae, 1967). Based on intestine color,

adult flies were feeding on latex based paint before death.

Effects on eggs
Flies laid eggs on all materials supplied, but the ability of the flies to complete their life cycle

varied (see below). Only in the case of the synthetic paint did eggs fail to hatch.

Effects on larvae
Larvae were obtained in all but synthetic paint treatments. Wax earplugs, periphery wax

and modeling clay treatments produced larvae that reached the pupal stage. For the

remaining materials (plastic carrier bag, potato starch carrier bag, adhesive tape, nitrile

gloves, latex gloves, latex based paint, petroleum jelly, chewing gum, white tack), the larvae

obtained died before pupation (Table 2).

The nature of the materials in terms of mouldability did not seem to have an effect

on the chance of survival of the larvae, although wax and starch products did support

longer living larvae than other study conditions (Table 2). In some cases we observed

larvae feeding on dead eggs and larvae, suggesting that these individuals were surviving on

carrion rather than the materials themselves. In other cases, larvae were obviously feeding

on the food supplied as their guts were colored from the material (wax ear plugs, white

tack, latex based paint and modeling clay).

We could also see air bubbles in the intestines or tegument of larvae in the periphery

wax, wax earplugs, chewing gum, white tack, starch bag and adhesive tape experiments,

although we do not know if this air was a consequence of the feeding itself, of the digestion

of the food or an unrelated cause. Air bubbles have been reported before when M. scalaris

have been submerged in a liquid environment, and they have been proposed to assist

floatability (Harrison & Cooper, 2003). In our case, the larvae were not obligatorily

submerged and we did not see bubbles in other conditions where water was also added

to the media. Nevertheless we think these bubbles are equivalent to those observed in

Harrison & Cooper (2003).

Effects on pupae
We observed formation of pupae in the experiments fed on wax earplugs (1 pupa),

periphery wax (2 pupae) and modeling clay treatments (21 pupae). Pupae from the

experimental treatments were smaller than the ones obtained in the control (lengths

ranging from 60% to 66% of the control pupae in modeling clay and periphery wax).

In the case of the wax products the larvae that pupated may have been additionally feeding

on the corpses of other larvae present in the tube. This may explain why only three pupae

were obtained, although pupation did not occur for the other treatments where carrion

feeding was observed.

Effects on emerged adult flies
Adults were obtained from the periphery wax (1 emerged adult) and the modeling clay

treatments (16 emerged adults). Modeling clay adults were smaller than the controls
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Figure 1 Size comparison between control and modeling clay animals. Size comparison between adult
(A) and pupae (B) of control and modeling clay treatments. Male and female individuals for adults and
pupae of control (WT) and modeling clay (mod. clay) treatments are shown. All adults showed in ventral
view. All pupae showed in dorsal view except female in modeling clay treatment, in ventral view.

(see below). This was also observed in the case of the periphery wax adult (68% of the

control size (1.87 vs. 2.27 mm)). Despite this, the single male fly from the periphery wax

treatment was able to fertilize a control female and produce larvae. However these larvae

only survived for two days under the same conditions. In the case of modeling clay, we

could observe consistent formation of pupae and emergence of fertile adult flies, which we

address in the next section.

Effects on survival, life cycle and size of rearing M. scalaris on
modeling clay
We found that eggs laid on modeling clay produced offspring that reached adulthood and

were fertile. However, the amount of adult flies obtained per mating from the modeling

clay condition was 84% less than that obtained from the controls (16 modeling clay, 98

controls). Since the amount of emerging larvae was similar between controls and modeling

clay conditions, the difference is likely due to higher larval mortality in the modeling clay.

We also observed that pupae and adults obtained from modeling clay-reared larvae are

significantly smaller than those fed on standard food (female pupae are 63% of the control

size, male pupae 61%, female adults 60% and male adults 65%; Figs. 1 and 2, see Table 3A

for size averages). In all cases we find that females are significantly larger both as adults and

pupae (control pupa males are 80% of female size, control adult males 67%; modeling clay

pupa males 78% and modeling clay adult males 73%) (Fig. 1, 2 and Table 3A).

Developmental time in modeling clay fed animals differed significantly from that of

controls at all stages (Fig. 3, see Table 3B for averages of stages duration). The time spent as

larvae is extended in the modeling clay treatment (24 vs. 14.8 days), with higher variation

between individuals than in the controls. The time spent as pupa for modeling clay fed

animals is smaller to that of control individuals (12.4 vs. 15.5 days), and the variation is

less pronounced than for the larvae, and similar to the controls. Adult lifespan is drastically

reduced in modeling clay treated animals (3.4 days vs. 26.7 days). Only control adults have
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Figure 2 Adult and pupal size of M. scalaris reared on modeling clay and control diets. Mean pupal
length and width and adult length (in mm) are shown for combined, female and male individuals in
control and modeling clay conditions. Asterisks indicate significant differences between comparisons
with all p-values <0.001.

Figure 3 Stage duration of larvae, pupae and adult M. scalaris reared on modeling clay and control
diets. Mean stage duration of larvae, pupae and adults (in days) are shown for individuals in modeling
clay and control conditions. Asterisks indicate significant differences between comparisons with all
p-values <0.01.

significant gender differences in the stage duration. Modeling clay treated flies may live too

short to show any such trend.

DISCUSSION
The size of pupae and adult flies depends on the size of the larvae at the moment

of pupation. Upon reaching the minimal viable size the larvae are able to survive

metamorphosis (Nijhout, 1975). However, if they are starved before they attain this size,

their larval stage is prolonged and they may die without going through to metamorphosis.
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Table 3 Averages and standard deviations for size and duration measurements. (A) Size (in mm) of
the pupa length, pupa width and adult length for control and modeling clay (Mod Clay) conditions. For
each condition, the total (male + female), female and male Average ± Standard Deviation is given. (B)
Stage duration (in days) of the larvae, pupa and adult stages for control and modeling clay (Mod Clay)
conditions. For each condition, the total (male+female), female and male Average ± Standard Deviation
is given.

A Size Pupa length Pupa width Adult length

Control (total) 4.19 ± 0.49 1.65 ± 0.18 3.52 ± 0.66

Control (female) 4.61 ± 0.20 1.78 ± 0.11 4.04 ± 0.17

Control (male) 3.70 ± 0.10 1.50 ± 0.13 2.73 ± 0.19

Mod clay (total) 2.53 ± 0.44 0.96 ± 0.17 2.02 ± 0.47

Mod clay (female) 2.92 ± 0.44 1.09 ± 0.19 2.45 ± 0.46

Mod clay (male) 2.27 ± 0.29 0.90 ± 0.14 1.79 ± 0.27

B Stage duration Larvae Pupa Adult

Control (total) 14.8 ± 4.9 15.5 ± 2.0 26.7 ± 14.4

Control (female) 15.8 ± 4.4 15.8 ± 2.4 32.6 ± 13.4

Control (male) 13.3 ± 5.5 14.9 ± 1.1 17.6 ± 10.9

Mod clay (total) 24 ± 12.2 12.4 ± 1.6 3.4 ± 2.1

Mod clay (female) 17.2 ± 6.2 12 ± 1.9 5 ± 2.6

Mod clay (male) 27.3 ± 14.8 12.2 ± 1.3 2.7 ± 2

To begin this process, the larvae must reach the critical weight, after which it will start

producing the hormones needed for metamorphosis (Nijhout & Williams, 1974). In

small larvae like Drosophila melanogaster (Meigen, 1830) these two weights are attained

at the same time (Mirth, Truman & Riddiford, 2005). In the tobacco hornworm Manduca

sexta (Linnaeus, 1763), when the critical weight is achieved, larvae continue feeding and

growing for a few days. The size of the adult will therefore be determined by the critical

weight and the growth after this has been attained. If, however, larvae were left to starve

after reaching the critical weight, this would not delay metamorphosis (Davidowitz,

D’Amico & Nijhout, 2003). This study also reported that larvae starved before reaching

the critical weight take longer to pupate. In D. melanogaster, starvation after reaching the

critical weight accelerates pupation, while larvae starved before eventually die without

pupating (Mirth, Truman & Riddiford, 2005).

Diet restriction in D. melanogaster is usually attained by feeding standard food minus

yeast (glucose and starch) (Tu & Tatar, 2003). In our modeling clay experiments, more

starch is available in the food source than for the controls. However, it lacks free glucose

or yeast, and is filled with inedible compounds that may affect the digestion of the

starch (Table 1). In D. melanogaster experiments starvation generally starts at third

instar, whereas in our experiments larvae were fed modeling clay from egg laying. In

D. melanogaster, larvae died if starvation started before 72 h of growth (Beadle, Tatum

& Clancy, 1938). Our experiments show that M. scalaris can survive in suboptimal food

conditions from the beginning of the larval stage.

In M. scalaris, achieving the critical weight also presumably led to pupation. From the

time when larvae reach the critical weight to the moment of pupation, the animals keep

feeding and growing. In our modeling clay fed animals the rate of growth is smaller, with
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an increased time spent as larvae over the controls. Therefore growth achieved after critical

weight is likely to be very small, and this may explain the small size of both pupae and

adults compared to the controls. Critical weight and minimal viable size are probably, like

in D. melanogaster, also attained at the same time in control animals. This also indicates

that pupation is likely to happen with a very similar weight to the minimal viable size,

hence these flies are likely to be close to the minimal size limit possible for this species.

Indeed very few of the modeling clay fed larvae pupated, indicating that the minimal viable

size was not achieved in the majority of larvae. which eventually died before pupation, as

has been observed with starved D. melanogaster (Mirth, Truman & Riddiford, 2005). Inter-

estingly, pupal success rate—pupae that eventually hatch to adults—in modeling clay treat-

ments was higher than that of controls (76.2% vs. 53.8%). We think this could be due to the

very restrictive selection for fitter larvae before pupation in modeling clay fed animals.

Megaselia scalaris diets influence the development of larvae and pupae both in terms of

developmental time and size, as well as adult emergence and longevity (Idris, Abdullah &

Lin, 2001; Harrison & Cooper, 2003; Zuha et al., 2012). The difference in pupal and adult

size we observe is likely due to reduced nutrient content of modeling clay when compared

to standard food. Larvae would stay at this stage until they reach the minimum viable size,

which allows them to pupate successfully. Therefore the lower nutritional content of the

food leads to an increased larval time to reach the minimum viable size or critical weight.

We were not able to assess if the number of instar larvae was increased. In Manduca sexta,

supernumerary instar larvae have been reported when middle instars molted before a

minimal size was reached (Nijhout, 1975). Nevertheless, modeling clay fed larvae pupate

before the normal size is reached, giving smaller pupae and adults. As discussed above,

the larvae are unlikely to grow significantly after they reach the absolute minimum viable

size, making this and the critical weight similar. This reduced size could also explain the

faster pupation phase, since less tissue needs to be metamorphosed. Megaselia scalaris also

displays sexual dimorphism in the size of the adults and pupae (Carareto & Mourao, 1988).

In all cases we found that females are larger both as adults and pupae, indicating that sexual

dimorphism is conserved in the smaller-sized modeling clay fed pupae and adults.

There is an almost universal extension of life span by reduced nutrient intake (Partridge,

Piper & Mair, 2005). However, studies on the effects of limiting nutrition at the pre-adult

(third instar larvae) stages, showed that it did not extend adult life span in D. melanogaster

(Tu & Tatar, 2003; Zwaan, Bijlsma & Hoekstra, 1991). In M. scalaris, studies on different

sources of food (meat and yeast supplements) have previously demonstrated that life ex-

pectancy of the adult positively correlates with better nutritional values (Idris, Abdullah &

Lin, 2001). However, the results obtained in Idris, Abdullah & Lin (2001) differ from ours,

as their adult flies were not permitted to feed, hence the life expectancy of our control flies

was much higher (26.7 vs. 3.5 days). In our study, flies suffered a drastic reduction (more

than 700%) of the adult life expectancy when fed on modeling clay. Since adult flies were

feeding on the modeling clay (inferred by the coloured contents of their guts), we think

that the reduced size of these flies, and not their capacity to eat, probably has a connection
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to their lower adult life expectancy. Despite reduced size and lower life expectancy, model-

ing clay fed flies were able to produce viable eggs, although these larvae did not pupate.

We cannot rule out that the inorganic toxic compounds found in modeling clay may

have had a role in the reduced size and/or altered developmental time of the animals.

Such compounds may also have functioned together with the poorer nutritional value and

assimilation of the modeling clay.

CONCLUSIONS
Modeling clay fed larvae have lower survival rates than controls and produce substantially

smaller pupae and adults than those fed on standard food. Our results are in keeping with

previous observations of insects reared under poor feeding conditions. In addition we find

that sexual dimorphism is maintained in the nutrient-poor diet. The time spent as larvae

is extended and more variable than in the controls, making the overall developmental time

much longer. The length of the pupal stage is more similar to the controls, if shorter, and

far less variable than the previous stage. Of those few larvae that pupate in the modeling

clay treatment, more hatch successfully than in control treatment. We also find that life

expectancy of adult flies is shorter for modeling clay fed larvae. In contrast to previous re-

ports from 1967, we find that M. scalaris is unable to survive on paint, at least in its modern

formulation, and additionally died when tested on most other industrial substrates.
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